
Layout Syntax Support in the
BNF Converter

A Declarative Approach to Parsing Indentation-Sensitive
Language with Mainstream Parser Generators

Master’s thesis in Computer Science and Engineering

Beata Burreau

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023





Master’s thesis 2023

Layout Syntax Support in the BNF Converter

A Declarative Approach to Parsing Indentation-Sensitive
Language with Mainstream Parser Generators

Beata Burreau

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023



Layout Syntax Support in the BNF Converter
A Declarative Approach to Parsing Indentation-Sensitive Language with Main-
stream Parser Generators
Beata Burreau

© Beata Burreau, 2023.

Supervisor: Andreas Abel, Computer Science and Engineering
Examiner: Aarne Ranta, Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Division of Computing Science
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv



Layout Syntax Support in the BNF Converter
A Declarative Approach to Parsing Indentation-Sensitive Language with Main-
stream Parser Generators

Beata Burreau
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Many programming languages, such as Haskell and Python, use layout as part
of their syntax. We can expect future programming languages to also be layout-
sensitive. Therefore, the toolchains for implementing programming languages must
support layout-sensitive languages.

This thesis presents a declarative approach to describing layout-sensitive languages
and parsing programs written in them. We reserve the terminals newline, indent,
and dedent for describing layout syntax in BNF grammar and provide an algo-
rithm for representing the layout of a program with these terminals, before parsing
it. By verbalising layout syntax this way, mainstream parser generators, and their
parsing algorithms, can be used. This approach is successfully implemented in BNF
Converter (BNFC), a tool that generates a compiler front-end from a context-free
grammar in Labelled BNF (LBNF) form. With a special kind of LBNF rule, called
pragma, it is possible to declare global layout syntax rules, such as the offside rule,
which affects the insertion of layout terminals by the aforementioned algorithm.
The reserved terminals and the pragmas can together describe popular layout syn-
tax. Furthermore, both purely layout-sensitive languages and those mixing layout-
sensitive and insensitive syntax are describable in LBNF.

Keywords: layout syntax, indentation-sensitive language, context-free grammar,
Labelled BNF (LBNF), BNF Converter (BNFC), Pfenning safety
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1
Introduction

Many programming languages use layout, namely indentation and line breaks, for
code structure instead of, or as a complement to, the traditional curly brackets and
semicolons. Layout is thus part of their syntax. The idea of structuring code by
indentation was introduced by Landin [1] with his language ISWIM; it has inspired
a family of layout-sensitive languages, including Python, Haskell, Agda, F# and
YAML. Layout syntax is an integral part of many existing programming languages,
so we can expect future programming languages to also be layout-sensitive. There-
fore, our toolchains for implementing them must support layout syntax. One such
tool is the BNF Converter (BNFC), a compiler construction tool that can generate
a lexer and a parser from a context-free grammar in Labelled BNF (LBNF) form.
LBNF allows describing some standard layout syntax, but it does not offer enough
expressivity to, for instance, describe purely layout-sensitive languages like Python.

We set out to enhance BNFC’s support for layout syntax. We reserve ter-
minals newline, indent, and dedent for representing layout in LBNF and
introduce a set of pragmas, a kind of rule in LBNF, for expressing global layout
rules. Together, they allow describing common layout syntax rules and purely
layout-sensitive languages.
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1. Introduction
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2
Problem

The BNF Converter already offers some support for layout syntax, but its expres-
sivity could be improved. Grouping of program elements, such as statements, by
indentation can be expressed in LBNF. Take, for instance, Python’s function defi-
nitions. A function definition is composed of a header and a body. The header has
the form def name ( parameters ): and the body is a group of statements:

def f():
print("hello")
print("world")

The statements must be indented relative to def and vertically aligned, expressed
in LBNF using a so-called layout pragma. The pragma layout ":" in Figure 2.1
below declares that the list of statements following the colon must be indented and
vertically aligned if curly brackets and semicolons are omitted.

layout ":" ;
CS. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" "{" [Stmt] "}" ;
separator Stmt ";" ;

SPrint. Stmt ::= "print" "(" String ")" ;
...

Figure 2.1: Excerpt of an LBNF grammar describing Python-like function definition
with the layout pragma

Python’s function definitions are valid programs in the language described by the
above grammar, but so are the following two definitions.

def f(): print("hello") def f(): {
print("world") print("hello");

print("world"); }

The left definition is invalid in Python because the function body begins on the
same line as the header. In Python, multiline bodies must begin on a line below the
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2. Problem

header, but such line break requirements are not expressible in LBNF. The right
definition is invalid in Python because curly brackets and semicolons structure the
body instead of indentation and line breaks. Python offers no alternative to inden-
tation for structuring function definitions [2]. However, LBNF’s layout pragma
requires the terminal, such as the colon, to be followed by a list enclosed in curly
braces and separated by semicolons [3]. These are some limitations of the current
layout syntax formalism but not the only ones. Another example is that the offside
rule is enforced by default. The offside rule allows program elements, such as expres-
sions, to span multiple lines using indentation and, for instance, makes the below
three expressions equivalent.

1 + 1 1 + 1
1 + 1

Furthermore, terminals marking the beginning and end of a group of program
elements, such as Haskell’s let and in, are independently declared. Consequently,
an end terminal will mark the end of any group not only those begun by the
intended start terminal.

We aim to offer comprehensive support for layout-sensitive languages in BNFC
by sensibly extending, and if necessary modifying, BNFC’s current layout syntax
formalism. In the process, we should answer the following two questions.

• How can layout syntax be described in LBNF in a simple yet expressive
manner?

• How can layout syntax, described in LBNF, be verified in compiler front-ends
generated by BNFC?

LBNF is a context-free grammar formalism; description of layout syntax in
context-free grammar, and other forms of formal grammar, is an ongoing research
area [3]–[6]. Thence, there is no industry standard in place. The lack of a standard
offers some language design freedom, but in that freedom lies a challenge in
designing a simple yet expressive formalism.

BNFC uses mainstream LR parser generators, such as Bison, CUP, and Happy [7],
to generate LALR(1) parsers from LBNF grammars. Consequently, the parsing
algorithms implemented by these generators dictate the verification of layout syntax
in the BNFC-generated compiler front-ends. Because we must rely on existing
parsing algorithms, Adams’ extension to CFG for describing layout syntax and
the derived parsing algorithms [4] cannot be incorporated in BNFC for enhanced
layout syntax support.

BNFC can generate compiler front-ends in Haskell, Agda, C, C++, Java,
and OCaml. The offer of comprehensive support for layout syntax is limited to the
front-ends generated in Haskell, but portability to the other languages is kept in
mind since they should offer the same support in the future.
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3
Background

A programming language has rules for how elements from its alphabet can be com-
bined to form sentences, just like a natural language does. These rules constitute
the language’s syntax and are described by its grammar. Context-free grammar
(CFG) is a formal grammar for describing programming languages’ syntax. A stan-
dard notation for CFG is Backus-Naur form (BNF), and Labelled BNF (LBNF)
is a variant of BNF used by the BNF Converter (BNFC). Layout syntax is not de-
scribable in BNF, but some layout syntax can be described in LBNF using layout
pragmas.

3.1 Context-Free Grammar
A language is a set of sentences derivable from its grammar. Sentences are sequences
of letters from the alphabet and have a recursive structure; a sentence consists
of phrases, letters or both, the phrases consist of smaller phrases, letters or both,
and eventually only letters. Languages can therefore be defined recursively, and
context-free grammar is a formal notation for doing just that.

A context-free grammar G is defined by a four-tuple (N, T, P, S) as in [8,
p. 173]:

N is a finite set of nonterminals such that each represents a language.

T is a finite set of letters, formally terminals, and is the defined language’s
alphabet.

P is a finite relation in N × (N ∪T )∗ of productions and constitutes the recursive
language definition.

A production is a pair (A, α) ∈ P , often written A → α and referred to
as "the production for A". A ∈ N is the nonterminal (partially) defined by
the production, and α ∈ (N ∪ T )∗ a possibly empty sequence of terminals and
nonterminals. α defines one way to form sentences in the language represented
by A.

There can be more than one production for a particular A. The productions
A → α1, A → α2, ..., A → αn can then be written A → α1 | α2 | ... | αn.

5



3. Background

S is an element in N called start symbol. It represents the language defined by
the grammar. The other elements in N represent auxiliary languages that
help define the language represented by S.

By convention the productions for the start symbol are listed first in the
grammar [9, p. 197].

Let α, β and γ be sequences of terminals and nonterminals in (N ∪ T )∗.

We say that α A β yields α γ β, written α A β ⇒ α γ β , if there exists a production
A → γ in P .

We say that α derives β, written α
∗=⇒ β if α = β or there exists a sequence

α1, α2, ..., αk, k ≥ 0 such that α ⇒ α1 ⇒ α2 ⇒ ... ⇒ αk ⇒ β [10, p. 104].

The language of a grammar G = (N, T, P, S) is the set L(G) of sentences
derivable from G [8, p. 179]:

L(G) = {w ∈ T ∗ | S
∗=⇒ w}

A sentence is thus a sequence of terminals derivable from S.

An auxiliary language of a grammar G is the set LG(n) of sentences derivable from
a nonterminal n ∈ N \ {S}:

LG(n) = {w ∈ T ∗ | n
∗=⇒ w}

A sentence in L(G) comprises sentences from the auxiliary languages. These
auxiliary sentences have no established name in programming language theory, in
linguistics, however, they are called constituents [11, p. 26, 30] and we adopt this
term:

A constituent is a sequence of terminals derivable from n ∈ N \ {S}.

To exemplify, Figure 3.1 below shows a context-free grammar for boolean ex-
pressions. A boolean variable is a literal, for instance a, with two possible values:
true or false. A boolean expression comprises boolean variables, possibly negated
by ¬, joined by ∧ and ∨. Three nonterminals are needed to capture the precedence
relation between ¬, ∧ and ∨. The grammar is formally stated as

G = ({exp, term, factor, var}, {∨, ∧, ¬, (, )}, P, exp)

P is the set of productions listed in Figure 3.1. The start symbol exp represents the
language of boolean expressions. Boolean expressions are sentences in the language,
and terms, factors, and variables are constituents.

6



3. Background

exp → term
| term ∨ term

term → factor
| factor ∧ factor

factor → var
factor → ¬ factor
factor → ( exp )

Figure 3.1: A context-free grammar for boolean expressions

From the grammar, one can, for instance, deduce that ¬ a ∧ b is a valid boolean
expression:

1. ¬ a is a factor since a is one.

2. ¬ a ∧ b is a term since ¬ a and b are factors.

3. ¬ a ∧ b is an exp since it is a term.

Backus-Naur form (BNF) is a notation for context-free grammar and is often used
synonymously with it when defining programming languages. Productions are writ-
ten A ::= α;, terminals enclosed in quotation marks and nonterminals in <> [12,
p. 281].

3.2 Labelled BNF and the BNF Converter

Labelled BNF (LBNF) is a BNF grammar where every rule is labelled; productions
are written on the form l. A ::= α where l is the label. Given an LBNF grammar
G, the BNF Converter generates a compiler front-end for the language G describes.

The context-free grammar for boolean expressions can be expressed in LBNF as
in Figure 3.2. The productions’ unique labels, followed by dots, are listed in the
leftmost column.

7



3. Background

E. Exp ::= Term ;
EOr. Exp ::= Term "∨" Term ;

T. Term ::= Factor ;
TAnd. Term ::= Factor "∧" Factor ;

F. Factor ::= Ident ;
FNot. Factor ::= "¬" Factor ;
FPar. Factor ::= "(" Exp ")" ;

Figure 3.2: An LBNF grammar for boolean expressions

From an LBNF grammar G, the BNFC tool can generate a compiler-front end for
L(G). The compiler front-end, including the lexer and parser, is implemented in
an existing programming language called the target language. BNFC is a language-
agnostic tool that can generate front-ends in Haskell, Agda, C, C++, Java, and
OCaml. The tool uses existing lexer and parser generators for the target language,
such as Bison and Yacc for C, C++ and Java. As depicted in Figure 3.3, given
an LBNF grammar BNFC produces specification files for the lexer and parser
generators, which produce a lexer and parser implemented in the target language.
Among other things, BNFC also produces an abstract syntax implementation in
the target language [13]. The BNFC tool itself is implemented in Haskell.

Layout
resolverLexer Parser

Lexer
generator

Spec

Parser
generator

Spec

BNFC::=

G

—–—
—–—–—

w

AST

w

LBNF

L(G)

Target language

Figure 3.3: The BNFC toolchain

Say BNFC is used to generate a compiler front-end in Haskell from the gram-
mar for boolean expressions in Figure 3.2. Then give the compiler front-end
a boolean expression w. If w ∈ L(G), the compiler front-end will parse
the expression and output an abstract syntax tree (AST) representation of
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w. Otherwise, it will produce an error. For instance, ¬ a ∧ b is parsed to
E (TAnd (FNot (F (Ident "a"))) (F (Ident "b"))), while ¬ ∧ b yields an
error.

Besides regular productions, LBNF has rules called pragmas and macros. A
pragma instructs BNFC to treat specific terminals or nonterminals differently. For
instance, it is possible to specify multiple start symbols using the entrypoint
pragma. A macro is a short-hand notation for a set of productions. For exam-
ple, rules for translation between precedence levels can be represented with the
coercions macro. The tool supports some layout syntax [14]; languages with
Haskell-like layout syntax can be described using layout pragmas. If a layout
pragma is used in an LBNF grammar, BNFC will generate a layout resolver. The
resolver translates layout syntax into explicit syntax by inserting {, } and ; tokens
into the token stream from the lexer before forwarding it to the parser.
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4
Layout Syntax

Layout-sensitive languages have rules for line breaks and indentation; they have
layout syntax. There are commonalities in existing languages’ layout syntax, and
we here introduce some common rules and their interplay. A less established notion is
the stability, or rather instability, of layout-sensitive languages under the renaming
of identifiers, here introduced as Pfenning safety. The layout rules and Pfenning
safety are exemplified with the languages Haskell and Python.

4.1 Layout Syntax Rules
Layout syntax rules pose restrictions on the layout of individual sentences and con-
stituents (unary rules) or on multiple constituents (n-ary rules); some standard rules
are the single-line rule (unary), the offside rule (unary), line joining (unary), vertical
alignment (n-ary), and indentation (n-ary).

4.1.1 The Single-Line Rule
The single-line rule [6] restricts a constituent to one line; it requires that any charac-
ter in a constituent occurs on the line where the constituent starts. The single-line
rule requires constituents to have the following shape:

4.1.2 The Offside Rule
The offside rule allows a constituent to span multiple lines if the succeeding lines
are indented relative to the first line. The offside rule, and the concept of using
indentation for program structure, was introduced by Landin in his 1966 paper
”The Next 700 Programming Languages”. Below is Landin’s original formulation of
the rule followed by a more recent reformulation.

The southeast quadrant that contains the [constituent]’s first symbol
must contain the entire [constituent], except possibly for bracketed sub-
segments.

Landin, 1966 [1]

11



4. Layout Syntax

[The offside] rule requires that any character in the subsequent lines of
a certain structure occur in a column that is further to the right than
the column where the structure starts.

Amorim et al, 2018 [15]

Constituents adhering to the offside rule can, for instance, have the following shapes.

4.1.3 Line Joining

Line joining [16] by a reserved terminal t allows a constituent to span multiple lines
if t is the last terminal on all lines except the last one. The succeeding lines can
have any indentation, and t is not part of the constituent. Line joining terminals
allow constituents to, for instance, have the following shapes.

t t
t

4.1.4 Vertical Alignment

Vertical alignment of a group of constituents restricts them to be aligned at the
column. That is, all constituents in the group start in the same column. A vertically
aligned constituent group can, for instance, have the following shape where colours
distinguish the constituents.

The following is also a vertically aligned group if constituents are allowed to span
multiple lines, for instance, by adhering to the offside rule.

12



4. Layout Syntax

4.1.5 Indentation and Dedentation

Somewhat opposite to alignment, indentation can be enforced between constituents:
an indented constituent must have its first terminal at a column to the right of the
column of the first terminal of another constituent [15].

Similarly, a dedented constituent must have its first terminal at a column to the left
of the column of the first terminal of another constituent.

4.1.6 Interplay of Vertical Alignment and Indentation

A block of code is a vertically aligned group of zero or more constituents in a layout-
sensitive context. The column of the first terminal in a code block is the column at
which all constituents must be aligned. We will refer to this column as the block’s
offside line line and here illustrate it with a dashed line.

Enforcing indentation between two constituents in a block opens an inner block with
an offside line to the right of the outer block’s offside line. This is referred to as
block nesting.

A dedented constituent, the purple one above, marks the end of the preceding block.
Here, it starts at the offside line of the outer block and thus continues that block. If
it instead were to start at a column in-between the two existing ones, it would still
mark the end of the preceding block but also the beginning of a new block with this
intermediate column as the offside line.

13



4. Layout Syntax

4.1.7 Interplay of Vertical Alignment, Indentation and the
Offside Rule

Indentation plays a different role in a setting where constituents adhere to the offside
rule. As illustrated by the second and third blue lines below, lines starting to the
right of the current block’s offside line are part of a constituent starting at the
offside line. Consequently, block nesting can only be achieved by assigning block-
introducing properties to specific terminals, such aswhere, let, do, and of in Haskell.

4.2 Pfenning Safety
An interesting property of layout-sensitive languages is whether they are stable under
the renaming of an identifier preceding a layout-sensitive code block. Figure 4.1
below shows an example of Haskell’s instability under α-renaming; the two print
statements in f are vertically aligned and thus form a layout block, but renaming f
to fun breaks the vertical alignment and, thereby, the parsing.

f :: IO () fun :: IO ()
f = do print "hello" fun = do print "hello"

print "world" print "world"

Figure 4.1: A valid Haskell function f and the resulting, invalid function fun after
α-renaming the function identifier

The property can be referred to as Pfenning safety [17] and is defined as follows.

Definition 4.2.1 (Pfenning safety). α-renaming an identifier in a valid program
produces an equivalent, valid program

A layout-sensitive language L(G) is called Pfenning-safe if all programs w ∈ L(G)
are so.

4.3 Examples
Python’s and Haskell’s layout syntax differ at various levels. Python is purely
layout-sensitive, while Haskell has both layout-sensitive and insensitive syntax. Con-
stituents can span multiple lines with a line joining terminal in Python and by the
offside rule in Haskell. In Python, constituents are grouped by indentation alone,

14



4. Layout Syntax

while Haskell has reserved terminals for grouping. Python appears to be Pfenning-
safe, whereas Haskell is not.

4.3.1 Python
Python’s statements and expressions adhere to the single-line rule but can span
multiple lines if joined with a backslash, the line joining terminal. Expressions in
round, square or curly brackets can span multiple lines [16]. The indentation of the
succeeding lines is irrelevant. Strings within triple quotes, so-called documentation
strings, can span multiple lines and are allowed any indentation relative to the first
line [18].

Statements can only be grouped by indentation; there is no layout-insensitive
alternative. Statements are grouped in compound statements, comprising a header
and a statement group. A header includes one or more compound statement
keywords, such as if, for and in, with, and def and ends with a colon which
marks the beginning of the statement group. A group of statements can be listed
on one or multiple lines. Listed on one line, they are separated by semicolons, and
the first statement can begin on the same line as the header. Listed on multiple
lines, they must be indented, vertically aligned, and begin on a line below the
header [2].

compound_stmt → def var ( params ) : stmts
| for target in exps : stmts
| ...

stmts → stmts_line newline
| newline indent stmts_block dedent

stmts_block → stmts_line newline
| stmts_line newline stmts_block
| compound_stmt
| compound_stmt stmts_block

stmts_line → stmt1 ; ... ; stmtn (n ≥ 1)
| stmt1 ; ... ; stmtn ; (n ≥ 1)

Figure 4.2: Excerpt of a context-free grammar for Python’s compound statements
for and def [2]

Renamable identifiers appear in assignment statements, assignment expressions and
some compound statement headers, such as class and function definitions. Assign-
ment statements and assignment expressions are stable under renaming of their
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4. Layout Syntax

identifiers since multiline expressions must be bracketed and thus are indentation
insensitive. Compound statements are Pfenning-safe thanks to the forced line break
before multiline statement groups. Python is thus Pfenning-safe.

4.3.2 Haskell
Haskell’s sentences and constituents, such as declarations and statements, adhere to
the offside rule [19]. Constituents can be grouped in layout-sensitive or insensitive
blocks using either indentation or curly brackets and semicolons, and the grouping
mechanisms can be mixed and nested. Blocks appear in the Haskell constructs where,
let, do, and case. Figure 4.3 shows their concrete syntax in layout-insensitive form;
curly brackets surround the lists of declarations, statements, and case alternatives,
and semicolons separate the list elements. Omitting the opening bracket afterwhere,
let, do or of means that the succeeding constituents form a layout-sensitive block
and must be indented and vertically aligned.

rhs → exp
| exp where decls

exp → let decls in exp
decls → { d1 ; ... ; dn } (n ≥ 0)

exp → do { stmts }
stmts → stmt1 ; ... ; stmtn ; exp (n ≥ 0)

exp → case exp of { alts }
alts → alt1 ; ... ; altn (n ≥ 1)

Figure 4.3: Excerpt of a context-free grammar for Haskell’s constructs where, let, do
and case [20]

Haskell is not Pfenning-safe since renaming an identifier can break parsing, as illus-
trated in Section 4.2. Programming guidelines allude to this fact by telling Haskellers
to ”make sure renamings [do not] destroy the layout” [21].
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5
Enhanced Layout Syntax Support
in the BNF Converter

We reserve three terminals in LBNF for representing layout syntax: newline,
indent, and dedent. Like before, a layout resolver is generated and plugged in be-
tween the lexer and the parser. The layout resolver inserts layout tokens, newline,
indent and dedent, into the token stream from the lexer. When the stream reaches
the parser, it is checked against the language’s layout syntax as specified by its
grammar. A set of layout pragmas express standard layout syntax rules, such as
associating specific tokens with pre-defined layout rules and enforcing the offside
rule globally, and affect the layout resolution process.

5.1 Reserved Terminals Describe Layout Syntax
in LBNF

Line breaks and indentation are what constitute layout syntax. We, therefore,
reserve newline, indent, and dedent for describing layout syntax in LBNF
productions. They are the layout-syntactic equivalents ;, { and }.

In a layout-sensitive context, a line break (\n) generally marks the end of a
constituent. However, a constituent can span multiple physical lines if some layout
rule allows it. The offside rule is one example of such a rule, and line joining
terminals is another. For instance, the below expressions have different layout
syntax, but other than that, they are syntactically equivalent because of the offside
rule.

1 + 1 1 + 1
1 + 1

Having one production for each expression in LBNF would bloat the grammar, and
the only line break of real interest is that terminating the constituent. Therefore,
we adopt Python’s idea of logical lines [16]: a constituent can span one or more
physical lines and a newline terminal marks the end of a constituent. It also marks
the end of a physical line, just not all physical lines. Blank lines, i.e. physical
lines containing only spaces, tabs, possibly a comment, and a line break, are not
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5. Enhanced Layout Syntax Support in the BNF Converter

considered constituents and thus not ended by a newline terminal.

The indentation level of a constituent is described relative to the current
block’s offside line. indent represents indentation past the offside line, and dedent
represents indentation before it, in line with the indentation and dedentation rules
described in Section 4.1.5.

The layout terminals newline, indent, and dedent are written without quo-
tation marks for brevity and to distinguish them from other terminals. Recall the
Python-like function definition introduced in Chapter 2. This function definition
can now be expressed in LBNF with layout terminals describing its layout syntax,
as described by below grammar.

CSDef. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" Stmts ;

Stmts. Stmts ::= newline indent [Stmt] dedent ;
terminator Stmt newline ;

SPrint. Stmt ::= "print" "(" String ")" ;
...

Figure 5.1: An LBNF grammar for Python-like function definitions with newline,
indent and dedent describing layout syntax

The second production, for Stmts, describes the body of a function definition.
newline indent [Stmt] dedent describes how the function body must begin on
a line below the header, with the statements indented and vertically aligned. A line
break must terminate each statement, as terminator Stmt newline describes.

The definition of f below is a program in the language described by the
grammar.

def f():
print("hello")
print("world")

On the other hand, g1, g2, and g3 are not programs in the language. g1 is not one
because the function body begins on the same line as the header, g2 because the
body is not indented, and g3 because the statements are not vertically aligned.

def g1(): print("hello") def g2(): def g3():
print("world") print("hello") print("hello")

print("world") print("world")
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5. Enhanced Layout Syntax Support in the BNF Converter

As often with context-free grammar, different grammars can describe the same lan-
guage. For instance, the newline terminal marking the end of a statement can
either be declared using the terminator pragma, as in Figure 5.1, or included last
in the production for a statement, as below.

CSDef. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" Stmts ;

Stmts. Stmts ::= newline indent [Stmt] dedent ;
terminator Stmt "" ;

SPrint. Stmt ::= "print" "(" String ")" newline ;
...

Figure 5.2: Excerpt of an LBNF grammar for Python-like function definitions with
newline, indent and dedent describing layout syntax

Whether to include the newline terminal in the production or terminator pragma
depends on the layout syntax of the described language. It is, however, crucial to do
only one or the other, not both, to avoid requiring two consecutive newline terminals
at the end of, for instance, a statement. ”newline newline” will never occur in an
actual program after layout resolution because of the semantics of newline.

5.2 Layout Pragmas Express Global Layout Rules
in LBNF

The layout terminals newline, indent, and dedent can be used to describe some
layout syntax but, for instance, not all rules stated in Section 4.1. To increase
expressivity, we provide a set of layout pragmas. For ease of use, we provide a
macro for the indented, vertically aligned block. An LBNF grammar that includes
any layout terminals, pragmas or macros is a layout-sensitive grammar, and BNFC
will generate a layout resolver from it, further described in Section 5.4.

Since LBNF is a flavour of context-free grammar, the layout rule described
by a layout pragma holds globally with some fine print: in an LBNF grammar with
layout terminals, we consider layout-sensitivity to be the default. Hence a layout
rule holds globally in a purely layout-sensitive language. However, some languages
blend layout-sensitivity and insensitivity, and most layout rules only apply in
a layout-sensitive context. A layout-insensitive context is achieved by assigning
layout-escaping properties to a pair of terminals: within them, layout syntax is not
a thing. A typical such pair is { and }. We will refer to a layout-sensitive block as
a layout block and an insensitive block as an escaped block.
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5.2.1 Pragmas
• layout offside

Sentences and constituents must adhere to the offside rule.

• layout start t1 [ stop t2 ]

• t1 opens, and t2 closes a layout block. The block’s offside line is determined
by the start column of the first non-layout-related terminal following t1. The
second argument is optional. If included, the block can be closed by t2 or
dedentation; if omitted, the block can only be closed by dedentation.

• layout escape start t1 [ stop t2 ]

• t1 opens, and t2 closes an escaped block. The second argument is optional.
If omitted, t1 is used as both opening and closing terminal. The productions
describing the contents of the block should not include newline, indent, or
dedent terminals.

• layout escape toplevel

The top-level block for a parsed sentence is an escaped block.

• layout linejoin t

• t is a line joining terminal; when it is the last terminal on a physical line
and not part of a comment or string, the terminals on that line are joined
with those of the following line to form a single constituent. The line joining
terminal is not part of the constituent, and the indentation of the terminals
on the second line is irrelevant.

The only layout rule that applies in escaped blocks is the one described by
layout start t1 stop t2. t1 introduces a layout block regardless of context to
allow opening a layout block within an escaped block.

5.2.2 Macros
• layout block ns n [ nonempty ]

A shorthand for the pair of rules

ns. ns ::= indent [n] dedent ;
terminator n [nonempty] newline ;

where nonempty is optional. n is an existing nonterminal, and the terminating
newline must not be in the productions for n. ns is a new nonterminal; it
represents the block and can be included in other productions. Since the macro
is a shorthand for a terminator rule, it occupies the nonterminal [n], which
represents a list of n terminated by newline.
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5.3 Layout Syntax Rules Expressed in LBNF
With the given layout terminals, pragmas, and macro at hand, the layout syntax
rules presented in Section 4.1 can be expressed in LBNF. Some example productions
are given in the following sections; other productions expressing the rules also exist.

5.3.1 The Single-Line Rule
Let M be a nonterminal representing a set of constituents without newline. The
single-line rule is then expressed with a terminating newline

S. S ::= M newline ;

iff no line joining terminals nor the offside rule are declared.

5.3.2 The Offside Rule
The offside rule overrides the single-line rule, and is enforced through the correspond-
ing layout pragma.

layout offside ;

5.3.3 Line Joining
Line joining overrides the single-line rule, and a line joining terminal t is declared
using the corresponding layout pragma.

layout linejoin t ;

t is not part of the constituents and should therefore not be included in the produc-
tions describing them.

5.3.4 Vertical Alignment
Take two nonterminals, M and N, each representing a set of constituents. Let
l1. M ::= α1 and l2. N ::= α2 be the productions for the nonterminals, such that
that the terminating newline terminal is not included in α1 and α2. Then, vertical
alignment is described as

B1. B ::= M newline N newline ;

iff none of the constituents represented by M and N begin nor end with indent or
dedent.

For a single nonterminal, vertical alignment is expressed with a list, where
the list items are terminated by newline.

B2. B ::= [M] ;
terminator M newline ;
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Alternatively, the block macro is used.

layout block B M ;

5.3.5 Indentation and Dedentation
Indentation of a constituent represented by N relative to one represented by M is,
quite trivially, expressed as

I. I ::= M indent N ;

assuming none of the constituents represented by M end with indent and none of
the constituents represented by N begin with indent.

Dedentation is expressed correspondingly with dedent.

5.3.6 Interplay of Vertical Alignment and Indentation
Let B represent a vertically aligned group, like those described by the productions
in Section 5.3.4. An indented, vertically aligned group is then expressed as

IB. IB ::= indent B dedent ;

IB represents an indented block and is useful when describing a nested block struc-
ture. For instance, the structure of a single-line constituent, an indented block, and
another single-line constituent that is vertically aligned with the first one, shown
below.

NB1. NB ::= S IB S ;

5.3.7 Interplay of Vertical Alignment, Indentation and the
Offside Rule

When the offside rule applies, the layout start pragma is needed to achieve block
nesting.

layout offside ;
layout start "let" ;

NB2. NB ::= "let" IB ;

Note how this allows the indented block to start on the same line as let. Requiring
the block to start on a new line is expressed as

NB3. NB ::= "let" newline IB ;
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Unlike blocks opened by a start terminal like let, blocks opened by indentation
alone can only begin on a new line which must be reflected in the grammar by
a newline immediately preceding the indent. In the production NB1 above, the
newline is included in the production for S.

Correspondingly, declaring a stop terminal, like in, allows the stop terminal
and the constituent following it to be on the same line as the last line of the block.

layout offside ;
layout start "let" stop "in" ;

NB4. NB ::= "let" IB "in" S ;
NB5. NB ::= "let" newline IB "in" S ;

Stop terminals give rise to a situation where newline does not necessarily represent
a physical line break (\n) and dedent not necessarily dedentation. If this feels
unintuitive, remember how newline, indent, and dedent are the layout-syntactic
equivalents of ;, { and }. Consider a sentence matching productions NB4 or NB5;
the stop terminal, in, may well be on the same line as the last non-layout-related
terminal in the block. However, a newline should be used to mark the end of the
last constituent in the block and a dedent to mark the end of the block.

5.4 Layout Resolution

Plugged in-between lexer and parser, the layout resolver operates on a stream of
tokens, ts, and inserts newline, indent, and dedent tokens into the stream, rep-
resenting the parsed sentence’s layout syntax. The layout resolution algorithm is
defined recursively and visits each token in ts once. The algorithm takes two pa-
rameters, t and ts, and has a global state φ, further described in sections 5.4.1 and
5.4.3, respectively. The set of terminals, or tokens, is denoted by T , the set of blocks
by B, and the set of n-tuples, or lists, is denoted An, n ∈ N.

t ∈ T Inspected token in token stream
ts ∈ T m m ∈ N Remaining token stream
φ ∈ Bn n ∈ N Block stack

The layout resolution process is demonstrated with a Python example, namely the
definition of a ”hello world” function. The grammar in Figure 5.3 describes Python’s
function definitions and layout syntax and is similar to that in Figure 4.2. Python’s
line joining terminal, the backslash, is described with the layout linejoin pragma.
Expressions in round brackets can span multiple lines, which is expressed using the
layout escape pragma.
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layout linejoin "\\" ;
layout escape start "(" stop ")" ;

CSDef. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" Stmts ;
separator Ident "," ;

StmtsInl. Stmts ::= StmtsLine1 newline ;
StmtsMultil. Stmts ::= newline indent StmtsBlock dedent ;

SBl1. StmtsBlock ::= StmtsLine1 newline ;
SBl2. StmtsBlock ::= StmtsLine1 newline StmtsBlock ;
SBl3. StmtsBlock ::= CompoundStmt ;
SBl4. StmtsBlock ::= CompoundStmt StmtsBlock ;

-- snoc list to allow the optional, trailing semicolon
SL1Nil. StmtsLine1 ::= Stmt ;
SL2Nil. StmtsLine2 ::= Stmt ";" ;
SL2Snoc. StmtsLine2 ::= StmtsLine2 Stmt ;
SL2CSnoc. StmtsLine2 ::= StmtsLine2 Stmt ";" ;
coercions StmtsLine 2 ;

SCall. Stmt ::= Ident "(" [Exp] ")" ;
separator Exp "," ;

EStr. Exp ::= String ;

Figure 5.3: An LBNF grammar for Python’s function definitions and function calls
with layout syntax

Below is the subject of demonstration: the definition of a function f that prints
”hello world”.

def f():
print\
("hello world")

Figure 5.4: A ”hello world” function in Python with a line-joined print statement

5.4.1 Token Stream
The treatment of a token may depend on the token following it why tokens are
inspected pairwise; t is inspected relative to t′, the first token in ts. The treatment
also depends on the tokens’ positions; luckily, the tokens carry position information.
The line and column of a token t ∈ ts is denoted by tline and tcol respectively. The
undefined token is represented by ε.
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For n-tuples ts ∈ T n indexed from 0, such as the token stream, ts[i] repre-
sents the ith element; and ts[i :] represents the elements at index i and above. The
cons operator : is right-associative, so x : y : z is interpreted as x : (y : z).

5.4.2 Layout Pragma Variables
Layout pragmas affect layout resolution; they and the tokens reserved using them
are variables of the layout resolution. The boolean variables offside and toplevel are
set to true if corresponding layout pragmas are used. The sets Slayout, Sesc ⊂ T × T
contain ordered pairs of start and stop tokens for layout blocks and escaped blocks,
respectively. Let Tlstart , Tlstop ⊂ T be the sets of start and stop tokens for layout
blocks and Testart , Testop ⊂ T be the ones for escaped blocks, all pairwise disjoint
except for Testart and Testop . Then, Slayout ⊂ Tlstart × Tlstop and Sesc ⊂ Testart × Testop .
The set Tlinejoin ⊂ T contains line joining tokens. A token, or pair of tokens,
reserved using a layout pragma is a member of the corresponding set, as illustrated
below.

layout start t → ⟨t, ε⟩ ∈ Slayout ∧ t ∈ Tlstart

layout start t1 stop t2 → ⟨t1, t2⟩ ∈ Slayout ∧ t1 ∈ Tlstart ∧ t2 ∈ Tlstop

layout escape start t → ⟨t, t⟩ ∈ Sesc ∧ t ∈ Testart ∧ t ∈ Testop

layout escape start t1 stop t2 → ⟨t1, t2⟩ ∈ Sesc ∧ t1 ∈ Testart ∧ t2 ∈ Testop

layout linejoin t → t ∈ Tlinejoin

The Python grammar in Figure 5.3 yields the following variables for layout
resolution.

offside = false
toplevel = false
Slayout = ∅
Sesc = { ⟨"(", ")"⟩ }
Tlinejoin = { "\\" }

5.4.3 Block Stack
The insertion of indent and dedent tokens depends on the block context, why the
layout resolver maintains a stack of blocks. Type B denotes the set of blocks, where
a block b ∈ B is either a layout block or an escaped block: b ∈ (N × Slayout) | Sesc.
A layout block opened by a start token t1 is denoted ⟨c, t1, t2⟩, with t2 being the
stop token for t1, if one exists, and c the offside line of the block. A layout block
opened by indentation alone has no start or stop tokens and is therefore denoted
⟨c, ε, ε⟩. On the contrary, an escaped block must have a start and stop token but
no offside line and is denoted ⟨t1, t2⟩.
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We introduce some shorthand notation for a block b:

b ⟨c, t1, t2⟩ ⟨t1, t2⟩
bcol c ε Offside line
bstart t1 t1 Start token
bstop t2 t2 Stop token

The block stack, φ ∈ Bn, is modified through push and pop operations and can
be observed using peek. With only one stack, a reference to it is omitted in push,
pop and peek calls, so push is a unary operation whilst pop and peek are nullary
operations.

In connection with φ, we define Tφstop ⊆ Tlstop ∪ Testop as the set of tokens
that close blocks if encountered in the token stream. A layout block can be closed
by a stop token, while an escaped block must be closed by a stop token. Therefore,
Tφstop contains the stop tokens for the topmost layout blocks on the stack until and
including the topmost escaped block. If the stack contains only layout blocks, Tφstop

is the set of stop tokens for all blocks on the stack. Note that ε /∈ Tφstop , so Tφstop

may be empty. The top-level block can never be closed, so the bottom block in φ
remains throughout layout resolution and is unaffected by block closing operations.

5.4.4 Initialisation
On initialisation, t is undefined, and ts is the complete token stream of the parsed
sentence. The block stack, φ, is initialised with a layout block ⟨1, ε, ε⟩ unless
toplevel is true, in which case it is initialised with an escaped block ⟨ε, ε⟩.

In the Python example, ts represents the program in Figure 5.4, and the
block stack is initialised with a layout block since toplevel = false.

t = ε

ts = [ "def", "f", "(", ")", ":", "print", "\\", "(", "\"hello world\"", ")" ]
φ = [ ⟨1, ε, ε⟩ ]

5.4.5 Algorithm
The layout resolution process is first demonstrated with a Python example, then
described in full by Algorithm 1 and its auxiliary functions, Algorithms 2 - 8.
Algorithm 1 describes layout resolution independent of block context, whereas
algorithm 2 describes layout resolution specific to layout blocks. Algorithms 3 - 8
describe block stack operations.

The layout resolver visits each token in the token stream once but only acts
on two things: line breaks and reserved terminals from layout pragmas. Therefore,
the following demonstration only includes the iterations of the algorithm where
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the layout resolver takes action. Resolving the layout of the Python program, the
currently inspected token, t, and the token stream ts, are illustrated like below,
together with the state of the block stack, φ. The layout-resolved token stream
from previous iterations is included in light grey.

"def" "f"
"("︸︷︷︸

t

")" ":" "print" "\\" "(" "\"hello world\"" ")"︸ ︷︷ ︸
ts

φ = [ ⟨1, ε, ε⟩ ]

With the above input, the layout resolver acts since "(" ∈ Testart . It opens an
escaped block, as in the case on line 29 in Algorithm 1, which affects the block
stack and the set of tokens that can close blocks, Tφstop , as shown below. The set
Tφstop is only shown when non-empty.

"def" "f" "("
")"︸︷︷︸

t

":" "print" "\\" "(" "\"hello world\"" ")"︸ ︷︷ ︸
ts

φ = [ ⟨"(", ")"⟩, ⟨1, ε, ε⟩ ]
Tφstop = { ")" }

Now, t = ")", which also calls for action since ")" ∈ Tφstop . The resolver closes all
blocks on the stack until and including the block with ")" as stop token, by the
case on line 25 in Algorithm 1. Observe the effect on φ, where ⟨"(", ")"⟩ has been
popped off the stack. Consequently, Tφstop is empty.

"def" "f" "(" ")"
":"︸︷︷︸

t

"print" "\\" "(" "\"hello world\"" ")"︸ ︷︷ ︸
ts

φ = [ ⟨1, ε, ε⟩ ]

Being in a layout-sensitive block, the layout resolver acts on line breaks. It detects a
line break by comparing the lines of ":" and "print", done on line 4 in Algorithm 2.
Furthermore, it detects that "print" is indented relative to the current offside line
by comparing columns on line 7 in the same algorithm. Since offside = false, the
layout resolver opens a layout block by indentation with the column of "print", 5,
as offside line. It inserts the tokens newline and indent into the layout-resolved
token stream to reflect the layout.

"def" "f" "(" ")" ":" "newline" "indent" "print"
"\\"︸ ︷︷ ︸

t

"(" "\"hello world\"" ")"︸ ︷︷ ︸
ts

φ = [ ⟨5, ε, ε⟩, ⟨1, ε, ε⟩ ]
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Again, the layout resolver detects a line break by comparing the lines of "\\" and
"(". Though this time, "\\" ∈ Tlinejoin, which is caught in the case on line 5 in
Algorithm 2. The layout resolver simply omits the backslash from the token stream
and does not insert a newline, allowing the print statement to continue on the
next line.

"def" "f" "(" ")" ":" "newline" "indent" "print"
"("︸︷︷︸

t

"\"hello world\"" ")"︸ ︷︷ ︸
ts

φ = [ ⟨5, ε, ε⟩, ⟨1, ε, ε⟩ ]

As known by now, "(" ∈ Testart so the layout resolver opens an escaped block,
which affects φ and Tφstop .

"def" "f" "(" ")" ":" "newline" "indent" "print" "(" "\"hello world\""
")"︸︷︷︸

t

[]︸︷︷︸
ts

φ = [ ⟨"(", ")"⟩, ⟨5, ε, ε⟩, ⟨1, ε, ε⟩ ]
Tφstop = { ")" }

And again, ")" ∈ Tφstop , closing the escaped block. Though this time, since ts is
empty, the stop token is caught by the case on line 9 in Algorithm 1. The layout
resolver performs another iteration with t = ")" to also resolve the layout.

"def" "f" "(" ")" ":" "newline" "indent" "print" "(" "\"hello world\""
")"︸︷︷︸

t

[]︸︷︷︸
ts

φ = [ ⟨5, ε, ε⟩, ⟨1, ε, ε⟩ ]

With ts empty, one can imagine a last, invisible token on a line below t and at
column 1. Being in a layout block, the layout resolver inserts a newline into the
token stream to represent the line break between ")" and this imagined last token.
Furthermore, the imagined token is dedented relative to the offside line of any
block on the stack except the bottom block, resulting in a total block closing as
per Algorithm 8. For each closed layout block, the layout resolver inserts a dedent.

"def" "f" "(" ")" ":" "newline" "indent" "print" "(" "\"hello world\""
")" "newline" "dedent"
ε︸︷︷︸
t

[]︸︷︷︸
ts

φ = [ ⟨1, ε, ε⟩ ]

With t undefined and ts empty, the layout resolution is finished. The resulting,
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layout-resolved token stream is displayed below, as code for readability. Note how
there is no trace of the line joining token or the line break following it in the
resolved token stream.

def f(): newline
indent print

("hello world") newline
dedent

Terminals newline, indent, and dedent now represent the program’s layout, al-
lowing the parser to check it against the Python grammar with layout syntax in
Figure 5.3. The relevant productions are repeated below.

CSdef. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" Stmts ;

StmtsMultil. Stmts ::= newline indent StmtsBlock dedent ;

SBl1. StmtsBlock ::= StmtsLine1 newline ;
SL1Nil. StmtsLine1 ::= Stmt ;
SCall. Stmt ::= Ident "(" [Exp] ")" ;
EStr. Exp ::= String ;
...

The print statement ended by newline constitutes a StmtsBlock. Terminals
newline indent preceeds the StmtsBlock and dedent succeeds it, which matches
the production for Stmts. Finally, the header and Stmts constitute a CompoundStmt
and, thereby, a valid Python program.

The layout resolution process is described in full by the following algorithms.
As mentioned, Algorithm 1 describes layout resolution independent of block
context, Algorithm 2 describes layout resolution specific to layout blocks, and
algorithms 3 - 8 describe block stack operations. In algorithms 1 and 2, return is
omitted in favour of brevity; the last expression of a clause is returned.
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Algorithm 1 Layout Resolution
1: function resolve(t, ts)
2: b := peek φ

3: t′ := ts[0]

4: if ts empty then ▷ End of token stream
5: if t undefined then ▷ Empty token stream
6: [ ]
7: else if t ∈ Tlstart then ▷ Layout start token
8: t : newline : indent : dedent : closeAll
9: else if t ∈ Tφstop then ▷ Stop token

10: if b is layout block then
11: closeUntil(t) ++ t : newline : closeAll
12: else
13: closeUntil(t) ++ t : closeAll
14: else if b is layout block then
15: t : newline : closeAll
16: else
17: t : closeAll
18: else if t undefined then ▷ Beginning of token stream
19: if b is layout block ∧ bcol < t′

col then
20: openL(t′

col)
21: indent : resolve(ts[0], ts[1 :])
22: else
23: resolve(ts[0], ts[1 :])
24: else ▷ Arbitrary token in token stream
25: if t ∈ Tφstop then ▷ Stop token
26: closeUntil(t) ++ resolveL(t, ts)
27: else if t ∈ Tlstart ∧ t′ ∈ Tlstart ∪ Testart then ▷ Stacked start tokens
28: t : resolve(t′, ts[1 :])
29: else if t ∈ Testart then ▷ Escape start token
30: openEsc(t)
31: t : resolve(t′, ts[1 :])
32: else if t ∈ Tlstart then ▷ Layout start token
33: openL(t′

col, t)
34: if tline = t′

line then
35: t : indent : resolve(t′, ts[1 :])
36: else if b is escaped block ∨ bcol < t′

col then
37: t : newline : indent : resolve(t′, ts[1 :])
38: else
39: t : newline : indent : dedent : closeUntil(t′

col)
++ resolve(t′, ts[1 :])

40: else if b is layout block then
41: resolveL(t, ts)
42: else
43: t : resolve(t′, ts[1 :])
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Algorithm 2 Layout Resolution in Layout Block
1: function resolveL(t, ts)
2: b := peek φ

3: t′ := ts[0]

4: if tline < t′
line then ▷ Last token on line

5: if t ∈ Tlinejoin then ▷ Line joining token
6: resolve(t′, ts[1 :])
7: else if bcol < t′

col then ▷ Right of offside line
8: if offside then
9: t : resolve(t′, ts[1 :])

10: else
11: openL(t′

col)
12: t : newline : indent : resolve(t′, ts[1 :])
13: else if bcol = t′

col then ▷ On offside line
14: t : newline : resolve(t′, ts[1 :])
15: else ▷ Left of offside line
16: dedents = closeUntil(t′

col)
17: t : newline : dedents ++ resolve(t′, ts[1 :])
18: else if t′ ∈ Tφstop then ▷ Upcoming stop token
19: t : newline : resolve(t′, ts[1 :])
20: else
21: t : resolve(t′, ts[1 :])

Algorithm 3 Layout Block Opening
1: function openL(c, t1)
2: if t1 undefined then
3: push ⟨c, ε, ε⟩ φ

4: else
5: t2 := lookup t1 in Slayout

6: push ⟨c, t1, t2⟩ φ

Algorithm 4 Escaped Block Opening
1: function openEsc(t1)
2: t2 := lookup t1 in Sesc

3: push ⟨t1, t2⟩ φ

Algorithm 5 Single Block Closing
1: function close
2: pop φ
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Algorithm 6 Multiple Block Closing
1: function closeUntil(tstop) ▷ Closes all blocks until and including
2: b := peek φ the block with stop token tstop

3: dedents = [ ]
4: while bstop undefined ∨ bstop ̸= tstop do
5: close
6: dedents = dedent : dedents

7: if b is layout block then
8: dedents = dedent : dedents

9: close
10: return dedents

Algorithm 7 Multiple Block Closing
1: function closeUntil(c) ▷ Closes all blocks with offside lines
2: b := peek φ to the right of column c

3: dedents = [ ]
4: while b is layout block ∧ c < bcol do
5: close
6: dedents = dedent : dedents

7: return dedents

Algorithm 8 Total Block Closing
1: function closeAll
2: b := peek φ

3: dedents = [ ]
4: while 1 < |φ| do
5: if b is layout block then
6: dedents = dedent : dedents

7: close
8: return dedents

5.5 Implementation
The enhanced layout syntax support, as described in sections 5.1, 5.2, and 5.4, is
incorporated in BNFC version 3.0. The third version is a reimplementation of
BNFC not yet available to the public.
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Pfenning Safety

Recall the Pfenning principle: ”α-renaming an identifier in a valid program produces
an equivalent, valid program”. The statement holds for all programs in a Pfenning-
safe language; it often holds for some, but not all, programs in a language that is
not Pfenning-safe.

6.1 Safe Programs
A program w is Pfenning-safe if multiline layout blocks begin on lines where
renamable identifiers do not precede them. In other words, a layout-resolved
program w is Pfenning-safe if all occurrences of a renamable identifier, eventually
followed by indent, are first followed by a newline.

The Pfenning safety of a program w can be decided by controlling the token
stream after layout resolution; the below automaton describes this process. In
the automaton, flexible represents renamable identifiers. They are tokens of the
basic lexical types String and Ident, and lexical types defined by token rules.
Furthermore, fixed represents fixed-size tokens other than newline and indent. If
a renamable identifier is immediately followed by indent, the automaton ends in
the rejecting state, s2, and w is not Pfenning-safe. Otherwise, the automaton ends
in one of the accepting states, s0 and s1, and the program is Pfenning-safe.

s0start

s1 s2

fixed,
indent, newline

flexible

fixed, flexible

newline

indent fixed, flexible,
indent, newline

Figure 6.1: Pfenning-safety control of a layout-resolved program
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6. Pfenning Safety

6.2 Safe Languages
The layout-sensitive language described by a grammar G = (N, T, P, S) is Pfenning-
safe if all programs w ∈ L(G) are so. In LBNF, renamable identifiers are of the
basic lexical types String and Ident, or a lexical type defined by the user with
a token rule. Hence it should be possible to determine the Pfenning safety of a
language by analysing its LBNF grammar, for instance, by analysing the follow
sets of the nonterminals. We leave such an analysis for future work.
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7
Discussion

LBNF has reserved terminals, pragmas, and a macro for describing layout syntax.
Together with a layout resolver, plugged in-between lexer and parser in the
generated compiler front-ends, they allow describing and verifying standard layout
syntax. Because the layout resolver is self-contained, it is relatively straightforward
to extend the support to other target languages than Haskell. On the downside, a
parser-independent layout resolver cannot utilise parsing information to avoid parse
errors.

Standard layout syntax is describable in LBNF; both purely layout-sensitive
languages and those mixing layout-sensitive and insensitive syntax can be described.
Nonetheless, LBNF’s expressivity has its limits. We here discuss two examples of
layout syntax that is not expressible: Haskell and Agda-like module declarations
and requirements on the amount of indentation. Lastly, we call attention to the
global effects of reserving terminals with layout pragmas.

7.1 BNFC’s Layout Formalism
BNFC’s layout formalism relies on verbalising layout syntax. Reserve a set of
terminals for representing layout, and use them to express the layout rules in the
LBNF grammar. Then, insert layout terminals in the token stream from the lexer
before feeding it to the parser, and have the parser verify that the program adheres
to the layout rules specified by the grammar. This approach is not new. Python
uses newline, indent, and dedent together with a layout resolver between lexer
and parser. Haskell, essentially, does the same thing with ;, {, and }, and lets the
layout resolver translate layout into explicit syntax since the language has both
kinds of syntax. Where BNFC differs is that the tool can generate a layout resolver
for any layout-sensitive language described by an LBNF grammar. Therefore, the
layout resolver generated by BNFC is adaptable to standard layout rules specified
by layout pragmas in the grammar.

BNFC is a tool relying on existing lexer and parser generators and the pars-
ing algorithms that the latter support. Given these circumstances, we deemed it
the best solution to generate a layout resolver plugged in-between lexer and parser.
The layout resolver is relatively self-contained and only depends on the lexer’s
positional data associated with the tokens in the token stream. Because the layout
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resolver is self-contained, extending BNFC’s layout syntax support to other target
languages should be straightforward.

7.1.1 Portability to Target Languages Other than Haskell
LBNF’s layout terminals, pragmas and macro are the same for all target languages,
and so is the internal representation of an LBNF grammar in BNFC version 3.0.
Thus layout syntax in other target languages is supported by LBNF as-is.

The layout resolution algorithm is described in pseudocode in Section 5.4
and does not depend on Haskell-specific constructs. It should therefore be possible,
and relatively straightforward, to implement the generation of a layout resolver in
other target languages such as Java.

7.1.2 Stand-Alone Layout Resolvers Cannot Use Parsing In-
formation

A drawback of a separate layout resolver is that it cannot utilise parsing information.
Specifically, the layout resolver cannot consult the parser for parse errors avoidable
by inserting a dedent terminal, similar to Haskell’s parse-error(t) [22]. The consulta-
tion is this: let t be an arbitrary token in the token stream and ts the layout-resolved
token stream before t. Then, if ts t is not a valid prefix of the language’s grammar,
but ts dedent t is, insert dedent into the token stream. Agda performs similar
parser consultation for closing a let – in block at in. BNFC’s layout resolver can
handle this if in is declared a layout stop terminal, but cannot handle more complex
cases where parser consultation could avoid parse errors.

7.2 LBNF’s Expressivity Limits
It is possible to express the standard layout rules in LBNF with the layout terminals
and pragmas, as shown in Section 5.3. However, expressivity is limited by the
chosen layout terminals and pragmas and the fact that LBNF is a form of context-
free grammar. We give and discuss two examples of layout syntax that lie beyond
LBNF’s current expressivity limits.

7.2.1 Haskell and Agda-like Module Declaration
In Haskell and Agda, all occurrences of where require the layout block following it
to be indented, with one exception: the block of declarations following where in the
top-level module declaration. There, the layout block is not required to be indented,
and the languages allow both layouts below.

module M where module M where
f :... f :...
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Such context-sensitive requirements are not expressible in LBNF. A layout
block must be opened to enforce vertical alignment of the declarations following
where. where must be declared a layout start terminal to open the layout
block since the languages adhere to the offside rule. A layout block is, by
definition, indented relative to the offside line of the enclosing block, which is
why the layout of the right module declaration above cannot be described in LBNF.

A nested layout block could have the same offside line as its enclosing block
by tweaking the layout resolver; change the strict inequality to ≤ on line 36 in
Algorithm 1. This change would allow both layouts above but has a global effect. It
is thus similar to Haskell’s language extension NondecreasingIndentation [23] and
does not express the special layout treatment of where in the module declaration.

7.2.2 Requirements on the Amount of Indentation
The indent terminal represents any indentation past the offside line and poses no
requirements on the amount of indentation. Its definition limits the expressivity
of LBNF. Whether this limit can, and if so should, be breached is discussable.
Requirements on the amount of indentation can be broken down into two kinds:
exact requirements; and lower and upper bounds.

Exact requirements are expressible in LBNF by reserving a set of terminals
and altering the layout resolution algorithm. The terminal indentn could represent
indentation of n blank space characters relative to the current offside line, where
n ∈ N. The indent terminal would still represent any indentation past the
offside line, that is, of n > 0 blank spaces. The layout resolver would insert
indentn, instead of indent, terminals into the token stream. With a built-in type,
Indent, defined as ("indent" [1 - 9] digit*), BNFC would substitute any
occurrences of indent in the grammar with the nonterminal Indent. An indentn
terminal in the layout-resolved token stream would then match the terminal
indentn and the nonterminal Indent. This solution would allow expressing re-
quirements of any indentation, with indent, and exact requirements, with indentn.

An indentation of zero blank spaces is, in fact, no indentation, and therefore
indent0 would not be of the type Indent. However, the layout-resolver would
insert an indent0 terminal in-between a layout start terminal and the terminal
following it if the latter starts at the current offside line. Interestingly, this would,
together with a slight alteration of the layout-resolution algorithm, allow expressing
Haskell and Agda-like module declarations:

layout start "where" ;
Module. Module ::= "module" Ident "where" indent0 [Decl] dedent ;

Lower and upper bound requirements would be less trivial to express, if possible,
and are left for future work.
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From a language design perspective, whether BNFC should support requirements
on the amount of indentation is debatable. For instance, YAML’s documentation
[24] advises against using the exact amount of indentation to convey information.
Even the most straightforward requirements, such as indentation of exactly two
blank spaces, introduce additional concerns for someone writing a program in the
language and do not add much value except perfectly indented code.

7.3 Terminals Reserved with a Layout Pragma
Must be Handled with Care

LBNF is a form of CFG, so reserving a terminal using a layout pragma has a global
effect, the implication of which is best illustrated with an example using the layout
start pragma. Layout start terminals allow layout blocks to start on the same
line as the start terminal, as explained in Section 5.3.7. Returning to Python-like
function definitions, we can describe a language where the function body can begin
on the same line as the header by making the colon a layout start terminal.

layout start ":" ;

CSInl. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" Stmts ;
CSNewl. CompoundStmt ::= "def" Ident "(" [Ident] ")" ":" newline Stmts ;

Stmts. Stmts ::= indent [Stmt] dedent ;
terminator Stmt newline ;

SPrint. Stmt ::= "print" "(" String ")" ;
...

Figure 7.1: An LBNF grammar for Python-like function definitions with layout
syntax

Both definitions of f and g1 below are valid programs in the language described
by the grammar in Figure 7.1, in contrast to the language described in Figure 5.1
where g1 is not valid.

def f(): def g1(): print("hello")
print("hello") print("world")
print("world")

Now, if one were to describe a Python-like lambda expression for the same language,
described in Figure 7.1, it could be described by the following production without
a second thought.

Lambda. Lambda ::= "lambda" [Param] ":" Exp ;
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Only, and this is the caveat, no layout-resolved programs will match this production.
Because the colon is a layout start terminal, it opens a layout block, and the layout
resolver will have inserted an indent terminal in-between the colon and the expres-
sion. The lambda expression must instead be described by the following production
with indent and dedent.

Lambda. Lambda ::= "lambda" [Param] ":" indent Exp dedent ;

Hence, a note of caution on layout start terminals: they must be treated as such in
all productions where they occur. Layout stop terminals have a lower risk for this
kind of pitfall, both because they are associated with a specific layout start terminal
and because they are less common than start terminals.
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8
Conclusion

The BNF Converter now offers comprehensive support for layout syntax in compiler
front-ends generated in Haskell. Standard layout syntax can be described in
LBNF with the reserved terminals newline, indent, and dedent, a collection of
layout pragmas, and a macro. Both purely layout-sensitive languages and those
mixing layout-sensitive and insensitive syntax can be described. Given an LBNF
grammar describing a layout-sensitive language, BNFC generates a compiler
front-end with a custom layout resolver plugged in-between lexer and parser. The
compiler front-end verifies the regular syntax and layout syntax of a program
written in the layout-sensitive language. Extending BNFC’s layout syntax support
to other target languages than Haskell is straightforward since we provide a target
language-independent algorithm for layout resolution.

Layout syntax can introduce instability under α-renaming of identifiers in a
program; we call a program Pfenning-safe if α-renaming an identifier produces an
equivalent, valid program. An automaton can determine the Pfenning safety of an
individual, layout-resolved program. Determining the Pfenning-safety of an entire
language should be possible by analysing its LBNF grammar; we encourage further
research on such an analysis.
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