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Abstract

Instances of a polytypic or generic program for a concrete recursive type often exhibit
a recursion scheme that is derived from the recursion scheme of the instantiation type.
In practice, the programs obtained from a generic program are usually terminating, but
the proof of termination cannot be carried out with traditional methods as term orderings
alone, since termination often crucially relies on the program type. In this article, it is
demonstrated that type-based termination using sized types handles such programs very
well. A framework for sized polytypic programming is developed which ensures (type-
based) termination of all instances.

1 Introduction

In the last decade, polytypic or generic programming has been explored for func-
tional programming languages [26,19,22,23]. With polytypic programming, repeti-
tive tasks, like writing a size-function for data structures of type A, can be mech-
anized by writing a generic size-function which then can be instantiated to all
sorts of types A. Over the years, many useful examples of generic programs have
been put forth, like parsing and unparsing, map and zip functions, and even finite
maps for key type A. When generic programs are defined by recursion on type A,
then the resulting programs often exhibit a recursion structure that corresponds to
the recursion structure of type A; and it is the rule that they terminate, if applied
to finite input. However, because of the high degree of abstraction that generic pro-
grams usually involve, termination cannot be proven with conventional methods
like term orderings alone. It is the purpose of this article to outline a systematic
solution to the termination problem of many generic programs.
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As an example, we take Hinze’s [18] generic definition of finite maps. If instantiated
to key type list of A, in Haskell syntax [a], we get the following definition of a
finite map:

data MapList f v = Leaf
| Node (Maybe v) (f (MapList f v))

Herein, v is the range of the finite map, and f w represents the finite maps from
a to w. Instantiating a with Char and f w with Char→w, we would get finite
maps over strings. Such a finite map is either totally undefined (Leaf) or a pair of
maybe a piece of data associated with the current key (Maybe v) plus a finite map
for each extension of the current key by one character (f (MapList f v)).

Merging finite maps is a completely generic operation. Again for the key type of
lists, we get the following instance. Let

comb :: (v -> v -> v) -> Maybe v -> Maybe v -> Maybe v

be a conflict resolution function for up to two candidate values of a finite map at a
certain key. Then the following Haskell program merges two finite maps over lists:

mergeList ::
(forall w. (w -> w -> w) -> f w -> f w -> f w) ->
(v -> v -> v) ->
MapList f v -> MapList f v -> MapList f v

mergeList mergeF c Leaf t = t
mergeList mergeF c t Leaf = t
mergeList mergeF c (Node m1 t1) (Node m2 t2) =

Node (comb c m1 m2) (mergeF (mergeList mergeF c) t1 t2)

This function has an extraordinary recursion behavior: As a recursive “call”, the
whole function mergeList mergeF c is passed to one of its arguments, mergeF.
It is not immediately obvious that mergeList is a total function. Indeed, if we
disregard its type, we can create a non-terminating execution: Define

mf m t1 t2 = m (Node Nothing t1) (Node Nothing t2)

and run:

mergeList mf fst (Node Nothing t1) (Node Nothing t2)

However, mf does not have the right type, and the polymorphic nature of the argu-
ment mergeF is a critical ingredient for termination.

This example shows that term-based termination arguments do not suffice for generic
programs. We need a method for establishing termination which takes the type of
a program into account. Such a method is type-based termination, which has been
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developed by Hughes, Pareto, and Sabry [24], and independently by Giménez [16]
who advanced the pioneering work of Mendler [27]. Since then, type-based termi-
nation has been considered by several authors [2,8,9,12].

In this work, we show that type-based termination can be successfully applied to
generic programs. We build on previous work, System Fω̂ [1], which is an extension
of type-based termination to higher-order data types. Our contribution is an adap-
tation of Hinze, Jeuring, and Löh’s generic programming framework [23] to sized
types, including a condition on the type of a generic program which ensures that all
its instances are admissible recursion types in Fω̂.

We will briefly introduce the necessary concepts to the reader in Section 2 and then
outline a framework for total generic programming in Sect. 3. In Sect. 4 we prove
that all instances of generic programs are well-typed which entails termination.
More related work and directions for future research are discussed in Sect. 5.

This article is an extension of my MPC’06 conference paper [3].

1.1 Preliminaries

We assume that the reader is familiar with the higher-order polymorphic lambda-
calculus, System Fω (see Pierce’s text book [34]), or the functional programming
language Haskell. Additionally, some familiarity with generic programming would
be helpful [22].

Generic programming takes a minimalistic view on data types: Each ground type
can be constructed using the unit type 1, disjoint sum type A + B, product type
A×B and recursion. The following terms manipulate these types:

() : 1

pair : ∀A∀B. A → B → A×B

fst : ∀A∀B. A×B → A

snd : ∀A∀B. A×B → B

inl : ∀A∀B. A → A + B

inr : ∀A∀B. B → A + B

case : ∀A∀B∀C. A + B → (A → C) → (B → C) → C

Pairs pair r s are written (r, s). We assume the usual reduction rules, for instance,
fst (r, s) −→ r. Multi-step reduction is denoted by −→+. Sometimes it is conve-
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nient to introduce abbreviations for derived data constructors. For instance:

Nat = 1 + Nat

zero = inl ()

succ = λn. inr n

To improve readability, we will freely make use of the pattern matching notation

match r with p1 7→ t1 | · · · | pn 7→ tn

for patterns pi generated from both elementary and derived data constructors. We
use a non-recursive let p=r in t as abbreviation for match r with p 7→ t.

2 Sized Types in a Nutshell

We use sized types for type-based termination checking, as described by Hughes,
Pareto, and Sabry [24,32] and Barthe, Frade, Giménez, Pinto, and Uustalu [8]. In
comparison with the cited works, our system, Fω̂, also features higher-order poly-
morphism and heterogeneous (nested) and higher-order data types. In this section,
we quickly introduce the most important features of Fω̂ [1], a summary of the rules
can be found in the appendix.

Monotone type constructors and polarized kinds. Inductive types are recur-
sively defined types which can only be unfolded finitely many times. The classical
example are lists which are given as the least fixed-point of the type constructor
λX. 1 + A × X , where A is the type of list elements. If the type constructor un-
derlying an inductive type is not covariant (monotone), non-terminating programs
can be constructed without explicit recursion [27]. Therefore we restrict inductive
types to fixed-points of covariant constructors. We write

∗ +→ ∗ or +∗ → ∗ for the kind of covariant,
∗ −→ ∗ or −∗ → ∗ for the kind of contravariant, and
∗ ◦→ ∗ or ◦∗ → ∗ for the kind of mixed-variant

type constructors, the last meaning constructors which are neither co- nor con-
travariant, or the absence of variance information. For example, λX. X → 1 is
contravariant, and λX. X → X is mixed-variant. The notion of variance is ex-
tended to arbitrary kinds, and p-variant function kinds are written as

pκ → κ′ or κ
p→ κ′.
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For instance, we have the following kindings for disjoint sum, product, function,
and polymorphic type constructor:

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ
◦→ ∗) +→ ∗ quantification

We assume a signature Σ that contains the above type constructor constants to-
gether with their kinding, plus some base types 1, Char, Int . . . The signature Σ is
viewed as a function, so Σ(C) returns the kind of the constructor constant C. A bit
sloppily, we write C ∈ Σ if C is in the domain of this function, C ∈ dom(Σ). Also,
we usually write ∀X :κ.A for ∀κλX.A, or ∀XA, if the kind κ is inferable.

Kinding judgement. A kinding context ∆ is a finite map from constructor vari-
ables X to pairs pκ of a polarity p and a kind κ. Kinding ∆ ` F : κ of constructors
is given inductively by the following rules:

C :κ ∈ Σ

∆ ` C : κ

X :pκ ∈ ∆ p ∈ {+, ◦}
∆ ` X : κ

∆, X :pκ ` F : κ′

∆ ` λXF : pκ → κ′
∆ ` F : pκ → κ′ p−1∆ ` G : κ

∆ ` F G : κ′

The kinding judgement ∆ ` F : κ expresses that if ∆(X) = qκ′ then F is q-
variant in X . In particular if q = + then F is monotone in X and if q = − then F
is antitone in X . Since X is monotone in X , the judgement ∆ ` X : κ is valid if
and only if ∆(X) is +κ or ◦κ; this justifies the variable rule. Special attention has
to be paid to the application rule: the variance of the application H = F G depends
not only on the variance of F and G in X , but also on the variance of the function
F itself. The hypotheses of the rule are ∆ ` F : pκ → κ′ and p−1∆ ` G : κ. The
operation p−1∆ modifies the polarities of the free variables in G according to p. If
p = +, then +−1∆ = +∆ = ∆; this is because F G is monotone (antitone, resp.)
in X if both F and G are. If p = −, then F G is monotone in X if F is monotone
in X and G is antitone in X . This means that the polarities in the kinding context
for G have to be reversed. We set (−−1∆)(X) = (−∆)(X) = −(∆(X)), where
−+ = −, −− = +, and −◦ = ◦. Finally, if p = ◦ then F G is monotone (antitone,
resp.) in X if F is monotone (antitone, resp.) in X and X does not appear in G.
Hence ◦−1∆ needs to erase all variables X : qκ′′ from ∆ whose polarity q is + or
−; only variables of mixed variance are kept. Thus (∆−1)(X) = ◦κ if ∆(X) = ◦κ,
otherwise (∆−1)(X) is undefined.

Ordinary Fω kinding ∆ ` F : κ is regained if all polarities in ∆ and κ are ◦.
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Further information on kinding can be found in the thesis of the author [1, Ch. 2].

Sized inductive types. We write inductive types as µaF , where F is a covari-
ant constructor and a a constructor of special kind ord. This kind models the stage
expressions of Barthe et al. [8], which are interpreted as ordinals, and has the fol-
lowing constructors:

s : ord
+→ ord successor of ordinal,

∞ : ord infinity ordinal.

The infinity ordinal is the closure ordinal of all inductive types considered, i. e., an
ordinal big enough such that the equation

F (µ∞F ) = µ∞F

holds for all type constructors which are allowed as basis for an inductive type.
If F is first-order, i. e., does not mention function space, then the smallest infi-
nite ordinal ω is sufficient. However, if we allow higher-order datatypes like the
infinitely-branching µ∞λX.1 + (Nat → X), higher ordinals are required. 1

In the following, we will only make use of ordinal constructors that are either ∞
or ı + n, where ı is a constructor variable of kind ord and n a natural number and
a+n is a shorthand for prepending the constructor a with n successor constructors
s.

Sized inductive types are explained by the equation µa+1F = F (µaF ). Viewing
inductive types as trees and F as the type of the node constructor, it becomes clear
that the size index a is an upper bound on the height of trees in µaF . Hence, induc-
tive types are covariant in the size index, and their instances stand in the subtyping
relation

µaF ≤ µa+1F ≤ µa+2F ≤ · · · ≤ µ∞F.

Some examples for sized inductive types are:

Nat : ord
+→ ∗

Nat := λı. µıλX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıλX. 1 + A×X

Tree : ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA. µıλX. 1 + A× (B → X)

1 More details can be found in the thesis of the author [1, Sect. 3.3.3].
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Nata denotes the type of natural numbers < a, ListaA the type of lists of length
< a, and TreeaB A the type of B-branching A-labeled trees of height < a. For
lists, we define the usual constructors:

nil := inl () : ∀ı∀A. Listı+1 A

cons := λaλas . inr (a, as) : ∀ı∀A. A → Listı A → Listı+1A.

Heterogeneous data types. Nothing prevents us from considering inductive types
of higher kind, i. e., such µaF where F is not of kind ∗ +→ ∗, but, for instance, of
kind (∗ +→ ∗) +→ (∗ +→ ∗). For such an F we get an inductive constructor, or a
heterogeneous data type [6], in the literature often called nested type [4,11,18,31].
In general, the least-fixed point constructor µκ can be used on any F : κ

+→ κ
where κ must be a pure kind, i. e., must not mention special kind ord. Examples for
heterogeneous types are:

PList : ord
+→ ∗ +→ ∗

PList := λı. µı
+∗→∗λXλA.A + X (A× A)

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µı
+∗→∗λXλA.1 + A×X (X A)

The type PLista A implements lists with exactly 2n elements of type A for some
n < a. The second type, bushy lists, is an example of a truly nested type since X
appears in an argument to X . It is well-defined since we can infer covariance of
X (X A) in X from the assumption that X is covariant itself. 2

Example 1 (A powerlist) Let a0, a1, a2, a3 : A and ı : ord. We can construct the
powerlist PListı+3 A containing these four elements as follows:

((a0, a1), (a2, a3)) : ((A× A)× (A× A)) =: A4

inl ((a0, a1), (a2, a3)) : A4 + PListı (A4 × A4)

inl ((a0, a1), (a2, a3)) : PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : A× A + PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : PListı+2 (A× A)

inr (inr (inl ((a0, a1), (a2, a3)))) : A + PListı+2 (A× A)

inr (inr (inl ((a0, a1), (a2, a3)))) : PListı+3 A

Structural recursion. Since we are considering a terminating programming lan-
guage, recursion cannot be available without restriction. In the following we give

2 The constructor underlying Bush fails a purely syntactical covariance test, like the test
for strict positivity in Coq [25].
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a typing rule for structurally recursive functions. Herein, we interpret structurally
recursive in the context of sized types: A function is structurally recursive if the
recursive instance is of smaller size than the calling instance. As typing rule, this
definition reads:

Γ, ı :ord, f : A ı ` t : A (ı + 1)

Γ ` fixµ(λf.t) : ∀ı. A ı
A fixµ-adm

Of course, the type A ı must mention the size variable ı in a sensible way; with the
constant type A ı = Nat∞ → Nat∞ one immediately allows non-terminating func-
tions. Barthe et al. [8,9] suggest types of the shape A ı = µıF → C where ı does not
occur in F and only positively in C. In this article, we want to consider recursive
functions that simultaneously descend on several arguments, and also polymorphic
recursion. Hence, we consider types of the shape

∀~Y 0. µıF ~G → ∀~Y 1. B1 → · · · → ∀~Y m. Bm → C,

where ı does not occur in F and ~G, index ı occurs only positively in C, and each
of the Bi is either contravariant in ı or of the shape µıF ′ ~G′ with F ′, ~G′ ı-free. This
condition is written A fixµ -adm, or Γ ` A fixµ -adm if A has free variables whose
types are recorded in Γ. More valid shapes for the type A ı are described by Hughes,
Pareto, and Sabry [24], in Pareto’s thesis [32] and my thesis [1,2].

To obtain a strongly normalizing system, unrolling of fixed-points has to be re-
stricted to the case

fixµs v −→ s (fixµs) v,

where v is a value (an injection, a pair, a λ-abstraction, an under-applied function
symbol). For convenience, we define the fixed-point combinator fixµ

n that takes n
non-recursive arguments before the first recursive argument:

backn := λgλt1 . . . λtnλr. g r t1 . . . tn

frontn := λgλrλt1 . . . λtn. g t1 . . . tn r

fixµ
n[s] := backn (fixµ (λf. frontn (s (backn f)))).

fixµ
n := λs. fixµ

n[s]

Lemma 2 (Reduction of defined fixed-points) If |~t| = n, then

fixµ
n[s]~t v −→+ s (fixµ

n[s])~t v.

Proof. Easy. Observe, however, that fixµ
n s~t v 6−→+ s (fixµ

n s)~t v (would require
one β-expansion step). 2
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Lemma 3 If Γ ` s : (∀ ~X1. A1 → · · · → ∀ ~Xn. An → ∀ ~X. B → C) →
(∀~Y 1. A′

1 → · · · → ∀~Y n. A′
n → ∀~Y .B′ → C ′) then Γ ` λf. frontn (s (backn f)) :

(∀ ~X1 . . . ~Xn ~X. B → ~A → C) → (∀~Y 1 . . . ~Y n~Y .B′ → ~A′ → C ′).

The admissibility condition is generalized to functions that have n non-recursive
arguments before the recursive ones: We write Γ ` A fixµ

n-adm if A ı is of the
shape

∀ ~X1. A1 → · · · → ∀ ~Xn. An → ∀~Y 0. µıF ~G → ∀~Y 1. B1 → · · · → ∀~Y m. Bm → C,

where the ı may occur only negatively in the Aj , and for the other type expressions
the same conditions hold as in the definition of A fixµ-adm.

Lemma 4 (Typing of defined fixed-points) Let Γ ` A fixµ
n-adm. If Γ ` s :

∀ı. A ı → A (ı + 1), then Γ ` fixµ
n[s] : ∀ı. A ı. Hence,

Γ ` fixµ
n : (∀ı. A ı → A (ı + 1)) → ∀ı. A ı.

Example 5 (Merge sort) Assume a type A with a comparison function ≤: A →
A → Bool, a function merge : List∞A → List∞A → List∞A which merges
two ordered lists into an ordered output list and a function split : ∀ı. ListıA →
ListıA × ListıA which splits a list into two parts of roughly the same size. The
type of split expresses that none of the output lists is bigger than the input. We can
encode merge sort msort a as for non-empty lists cons a as in Fω̂ as follows:

msort : ∀ı. A → ListıA → List∞A

msort := fixµ
1 λmsortλaλxs . match xs with

nil 7→ cons a nil

cons b l 7→ let (as , bs) = split l

in merge (msort a as) (msort b bs)

The recursive calls to msort are legal because of the typing of split. Indeed, we can
assign the following types:

msort : A → Listı A → List∞ A

a, b : A

xs : Listı+1 A

l : Listı A

as , bs : Listı A

The termination of msort depends on the fact that split is non size-increasing. This
information could have been established by other means than typing, e. g., by a
term ordering as usual for termination of term rewriting systems. However, for the
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instances of generic programs we consider in the next section, the typing will be
essential for termination checking.

3 A Framework for Generic Programming with Sized Types

Hinze [19] describes a framework for generic programming which is later extended
by Hinze, Jeuring, and Löh [23] and implemented in Generic Haskell [22]. In this
framework, both types and values can be constructed by recursion on some index
type. The behavior is only specified for the type and constructor constants like Int,
1, + and ×, and this uniquely defines the constructed type or value. In the fol-
lowing we propose an extension by sized types, sized polytypic programming, and
demonstrate its strength by giving termination guarantees for Hinze’s generalized
tries [18].

In the sequel we will employ the following typographic conventions:

Capital Type〈A〉 generic datatypes type-indexed types
UPPERCASE TYPE〈κ〉 their kinds kind-indexed kinds
lowercase poly〈A〉 generic functions type-indexed values
Capital Poly〈κ〉 their types kind-indexed types

The definition of the framework will be grayed, example generic programs will be
lightly grayed.

3.1 Type-indexed Types

In generic programming as proposed by Hinze, Jeuring, and Löh [23], one can
define a family Type〈A〉 indexed by another type A. For instance, one can define
the type Map〈A〉V of finite maps from A to V generically for all index types A,
by analyzing the structure of A. To this end, one specifies what Map〈A〉 should
be for base types A0 and for the standard type constructors, e. g., + and ×. Then,
Map〈A〉 is computed for a specific instance of A, where recursion is interpreted
as the infinite unfolding. We differ from this setting in that we deal with inductive
types instead of recursive types, thus, in our case, Map〈A〉 for an inductive type A
will be itself an inductive type.

Roughly, a type-indexed type Type〈A〉 is A where constructor constants C have
been replaced by user-defined constructors Type〈C〉. More precisely, we define
Type〈A〉 by recursion on A, using the equations to follow. We generalize this defi-
nition to Type ~X〈F 〉, where F is a constructor and ~X are the variables under whose
binders we have stepped in the course of the definition. So, in fact, we are dealing
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with constructor-indexed constructors, but we stick to the sloppy terminology used
by datatype-generic programmers.

Type〈A〉 can be fully computed if A is closed; if A contains a free variable Y , then
Type〈A〉 will have occurrences of the subexpression Type〈Y 〉 that can be further
reduced if we substitute a (closed) type constructor for Y .

Type ~X〈C〉 = Type〈C〉 (user-defined) for C ∈ {1, +,×, Int, Char, . . . }
Type ~X〈X〉 = X if X ∈ ~X

Type ~X〈λXF 〉 = λX. Type ~X,X〈F 〉
Type ~X〈F G〉 = Type ~X〈F 〉 Type ~X〈G〉
Type ~X〈µκ〉 = µ?

What should the kind index to µ be in the last equation? We can answer this ques-
tion if we look at the kind TYPE〈κ〉 of a type-indexed type Type〈F 〉. The kind
TYPE〈κ〉 depends on the kind κ of constructor F . The given equations for abstrac-
tion and application dictate the law for function kinds.

TYPE〈∗〉 = κ, user-defined
TYPE〈κ1

p→ κ2〉 = TYPE〈κ1〉
p→ TYPE〈κ2〉

The kind TYPE〈∗〉 has to be chosen such that for the basic type constructors C ∈ Σ
the user-defined Type〈C〉 : TYPE〈Σ(C)〉. (Of course, Type〈C〉 can be undefined
for some C, typically for C = → and C = ∀κ.) For instance, the kind MAP〈κ〉 for
the type of finite maps Map〈F : κ〉 is defined by MAP〈∗〉 = ∗ +→ ∗. We can now
complete the construction law for types indexed by inductive types.

Type ~X〈µκ〉 = µTYPE〈κ〉

Remark 6 Note that the presence of polarities in TYPE〈Σ(C)〉 restricts the choices
for Type〈C〉. For instance, Type〈→〉 = λAλB.A× B or Type〈×〉 = λAλB.A →
B are both impossible (and meaningless). However, I do not know any practical,
meaningful type-indexed types that are excluded by the polarity restriction.

We extend the framework to sized types by giving homomorphic construction rules
for everything that concerns sizes:

TYPE〈ord〉 = ord

Type ~X〈s〉 = s

Type ~X〈∞〉 = ∞
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Since except for constants, the defining clauses for type-indexed types are homo-
morphic, type-indexed types are compositional.

Lemma 7 (Substitution in type indices)
Type ~X〈[G/X]F 〉 = [Type ~X〈G〉/X]Type ~X,X〈F 〉.

Proof. By induction on F . 2

As a consequence, type-indexed types preserve equality. Kinding and subtyping are
also preserved, since TYPE〈κ〉 preserves the polarities in κ.

Theorem 8 (Well-kindedness, equality, and subtyping for type-indexed types)
Let Σ be a signature of constructor constants and assume Type〈C〉 : TYPE〈κ〉 for
all (C :κ) ∈ Σ.

(1) If X1 : p1κ1, . . . , Xn : pnκn ` F : κ, then X1 : p1TYPE〈κ1〉, . . . , Xn :
pnTYPE〈κn〉 ` Type ~X〈F 〉 : TYPE〈κ〉.

(2) If X1 : p1κ1, . . . , Xn : pnκn ` F = F ′ : κ, then X1 : p1TYPE〈κ1〉, . . . , Xn :
pnTYPE〈κn〉 ` Type ~X〈F 〉 = Type ~X〈F ′〉 : TYPE〈κ〉.

(3) If X1 : p1κ1, . . . , Xn : pnκn ` F ≤ F ′ : κ, then X1 : p1TYPE〈κ1〉, . . . , Xn :
pnTYPE〈κn〉 ` Type ~X〈F 〉 ≤ Type ~X〈F ′〉 : TYPE〈κ〉.

Proof. Each by induction on the derivation. The rules are given in the appendix.
2

Example: finite maps via generalized tries. Hinze [18] defines generalized tries
Map〈F 〉 by recursion on F . In particular, Map〈K : ∗〉V is the type of finite maps
from domain K to codomain V . The following representation using type-level λ
can be found in his article on type-indexed data types [23, page 139].

MAP〈∗〉 := ∗ +→ ∗

Map〈Int〉 := λV. efficient implementation of Int →fin V

Map〈Char〉 := λV. efficient implementation of Char →fin V

Map〈1〉 := λV. 1 + V

Map〈+〉 := λFλGλV. 1 + F V ×G V

Map〈×〉 := λFλGλV. F (G V )

Well-kindedness of these definitions is immediate, except maybe for Map〈×〉which
must be of kind (∗ +→ ∗) +→ (∗ +→ ∗) +→ (∗ +→ ∗). For Map〈+〉 we have used the
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variant of spotted products (or lifted products) which Hinze mentions in section 4.1
of his article [18]. This way we avoid that certain empty tries have an infinite nor-
mal form (see [18, page 341]) which requires lazy evaluation. The constructor for
finite maps over strings can now be computed as follows:

Map〈λı. Listı Char〉
= Map〈λı. µı

∗ λX. 1 + Char ×X〉
= λı. µı

∗+→∗λX. Map〈+〉Map〈1〉 (Map〈×〉Map〈Char〉X)

= λı. µı
∗+→∗λXλV. 1 + (1 + V )×Map〈Char〉 (X V )

The matching kind is

MAP〈ord +→ ∗〉 = ord
+→ ∗ +→ ∗.

Note that the type Map〈λı. Listı Char〉 of sized, string-indexed tries involves a higher-
kinded inductive type µ∗+→∗. However, it is not heterogeneous, but homogeneous,
meaning that X is always applied to the variable V . Thus, we have the option to
simplify it using λ-dropping and obtain an ordinary inductive type:

Map〈λı. Listı Char〉 = λıλV. µı
∗ λY. 1 + (1 + V )×Map〈Char〉Y

It is easy to interpret this type as a trie for strings with prefix p: The trie is either
“()” (first 1), meaning that strings with this prefix are undefined in the finite map,
or it is a pair of maybe a value v (the value mapped to p) and of one trie for strings
with prefix p · c for each c ∈ Char. A trie for strings with empty prefix is then a
finite map over all strings.

Remark 9 (λ-dropping) We use λ-dropping in some places in this article to sim-
plify types or values computed by the generic programming framework. However,
it has no official status and is not essential for our results.

3.2 Type-indexed Values

The key ingredient to generic programming are type-indexed values, meaning, pro-
grams poly〈F 〉 which work for different type constructors F but are uniformly
(generically) constructed by recursion on F . Again, the user supplies the desired
behavior poly〈C〉 on base types and type constructors C, and the polytypic program
poly〈F 〉 is then constructed by the following laws.

poly〈C〉 = user-defined
poly〈X〉 = X

poly〈λXF 〉 = λX. poly〈F 〉
poly〈F G〉 = poly〈F 〉 poly〈G〉
poly〈µκ〉 = fix
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The handling of variables is still sloppy in this definition; we assume that we can
reuse type variables as special term variables. Here we just want to convey the idea,
later we will make the variable handling water proof.

Hinze [20] has observed that type-indexed values poly〈F : κ〉 have kind-indexed
types Poly〈F, . . . , F : κ〉 : ∗ with possibly several copies of the parameter F ,
obeying the following laws:

Poly〈A1, . . . , An : ∗〉 = user-defined, parametric in ~A

Poly〈F1, . . . , Fn : κ
p→ κ′〉 = ∀G1 :κ . . .∀Gn :κ.

Poly〈G1, . . . , Gn : κ〉 → Poly〈F1 G1, . . . , Fn Gn : κ′〉

For example, three copies of F are required for a generic definition of zipping
functions [20, Sect. 7.2].

Hinze works in a framework where only covariant type constructors serve as in-
dices, i. e., p = + in the above equation. However, with polarity information at
hand, it is sometimes useful to depart from Hinze’s scheme. One example is a
generic map function (monotonicity witness, functoriality witness):

GMap〈A, B : ∗〉 := A → B

GMap〈F, G : κ
−→ κ′〉 := ∀X∀Y. GMap〈Y,X : κ〉 → GMap〈F X, G Y : κ′〉

GMap〈F, G : κ
p→ κ′〉 := ∀X∀Y. GMap〈X, Y : κ〉 → GMap〈F X, G Y : κ′〉

for p ∈ {+, ◦}

With this refined definition of kind-indexed type, a generic map function is defin-
able which also works for data types with embedded function spaces, e. g., Tree.

gmap〈1 : ∗〉 := λu. u

gmap〈+ : ∗ +→ ∗ +→ ∗〉 := λfλgλs. case s (λx. inl (fx)) (λy. inr (g y))

gmap〈× : ∗ +→ ∗ +→ ∗〉 := λfλgλp. (f (fst p), g (snd p))

gmap〈→ : ∗ −→ ∗ +→ ∗〉 := λfλgλhλx. g (h (f x))

For the main example we want to consider, generic operations for tries, types
Poly〈F : κ〉 indexed by a single constructor F are sufficient, hence, we will re-
strict the following development to this case. Formally, our framework contains
rules to compute

Poly〈κ〉 : κ
◦→ ∗

from the user-defined type constructor Poly〈∗〉 : ∗ ◦→ ∗. The notation Poly〈F : κ〉
shall be a shorthand for the β-normal form of Poly〈κ〉F (thus, removing admin-
istrative redexes). If the kind κ of F is clear from the context of discourse, we
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abbreviate Poly〈F : κ〉 by Poly〈F 〉. The computation rules for Poly〈κ〉 are the
following:

Poly〈∗〉 = λXA : ∗ ◦→ ∗, user-defined
Poly〈ord〉 = λ_1

Poly〈κ1
p→ κ2〉 = λF∀G :κ1. Poly〈κ1〉G → Poly〈κ2〉(F G)

The second line treats base kind ord which is new in Fω̂. Since ordinals are only
used to increase the static information about programs, they have no computational
significance and can be mapped to inhabitants of the unit type.

Theorem 10 (Well-kindedness of kind-indexed types) If Γ ` Poly〈∗〉 : ∗ ◦→ ∗,
then Γ ` Poly〈κ〉 : κ

◦→ ∗.

Proof. By induction on κ. 2

The defined notion Poly〈F : κ〉 is trivially substitutive, meaning Γ ` Poly〈[G/X]F :
κ〉 = [G/X]Poly〈F : κ〉 : ∗ when Γ ` G : κ′ and Γ, X :κ′ ` F : κ. And likewise
trivially, it respects equality: Γ ` F = F ′ : κ implies Γ ` Poly〈F : κ〉 = Poly〈F ′ :
κ〉 : ∗.

We can refine the generation laws for type-indexed programs as follows. Formally,
we define polyn,φ〈F 〉 where n is a natural number and φ maps type variables to
term variables.

poly〈C〉 = t : Poly〈C〉, user-defined

polyn,φ〈C〉 = poly〈C〉
polyn,φ〈X〉 = φ(X)

polyn,φ〈λXF 〉 = λx. polyn,φ[X 7→x]〈F 〉, x fresh
polyn,φ〈F G〉 = polyn,φ〈F 〉 polyn,φ〈G〉
polyn,φ〈µ~p~κ→∗〉 = λ_. fixµ

n+|~κ|

In the last equation there is a void abstraction to take care of the argument of unit
type which arises from the ordinal argument a of µa

κ. Also, n has to be chosen such
that the nth argument to the resulting recursive function is of an inductive type
whose size is associated to a. The choice of n depends on the definition of the type
Poly〈A :∗〉 of the type-indexed program given by the user. For the example of map
lookup functions (see below), the polytypic program is of type

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V.
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Hence, we set n = 0, because the recursive argument of the function that is gen-
erated in case K = µaF is the first one, of type K. In the example of finite map
merging to follow, we will have the type

Merge〈K :∗〉 := ∀V. Bin V → Bin (Map〈K〉V )

with Bin V = V → V → V . Since Map〈K〉 is an inductive type for inductive K,
the second argument is the recursive one and we have n = 1. The choice of n will
be formally determined in the next section.

Example: generic finite map lookup. In the following, we implement Hinze’s
generic lookup function in our framework. The definitions on the program level are
unchanged, only the types are now sized, and we give termination guarantees. The
lookup function is polymorphic in the value type V , it takes a key of type K and a
finite map from K to V and returns maybe a value.

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V

In the definition of the generic lookup function, we use the bind operation �=
for the Maybe monad λV. 1 + V . It obeys the laws (inl() �= f) −→ inl() and
(inr v �= f) −→ f v.

lookup〈1〉 : ∀V. 1 → 1 + V → 1 + V

lookup〈1〉 := λkλm.m

lookup〈+〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A + B → 1 + (Map〈A〉V )× (Map〈B〉V ) → 1 + V

lookup〈+〉 := λlaλlbλabλtab. tab �= λ(ta, tb).

match ab with

inl a 7→ la a ta

inr b 7→ lb b tb

lookup〈×〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A×B → Map〈A〉 (Map〈B〉V ) → 1 + V

lookup〈×〉 := λlaλlbλ(a, b)λtab. la a tab �= λtb. lb b tb

All these definitions are well-typed, which is easy to check since there are no ref-
erences to sizes.
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Example: lookup for list-shaped keys. The previous definitions determine the
instance of the generic lookup function for the type constructor of lists.The kind-
indexed type unfolds to:

Lookup〈List : ord
+→ ∗ +→ ∗〉

= ∀ı. 1 → ∀K. Lookup〈K : ∗〉 → Lookup〈Listı K : ∗〉
= ∀ı. 1 → ∀K. Lookup〈K : ∗〉 → ∀V. ListıK → Map〈ListıK〉 → 1 + V

= ∀ı. 1 → ∀K. Lookup〈K : ∗〉 → ∀V. ListıK →
(µı

∗λY. 1 + (1 + V )× Y ) → 1 + V

Note that the type Lookup〈List〉 mentions the size variable ı twice, as index to
both inductive arguments. This makes sense, since the length of the search keys
determines the depth of the trie. The lookup function is computed as follows:

lookup0〈List〉 = lookup0〈λıλK. µı
∗λX. 1 + K ×X〉

= λiλlookupK . (λ_. fixµ
0) i (λlookup. lookup〈+〉 lookup〈1〉

(lookup〈×〉 lookupK lookup))

= λiλlookupK . fixµ
0 λlookupλlλm. m �= λ(n, c).

match l with

nil 7→ n

cons k l′ 7→ lookupK k c �= λm′. lookup l′ m′

Well-typedness follows as the type Lookup〈ListıK〉 is valid for recursion with fixµ
0 ,

according to criterion given in Sect. 2. We reason on an abstract level:

lookupK : Lookup〈K〉
lookup : Lookup〈ListıK〉
lookup〈×〉 lookupK lookup =: r : Lookup〈K × ListıK〉
lookup〈+〉 lookup〈1〉 r =: s : Lookup〈1 + K × ListıK〉

: Lookup〈Listı+1K〉
fixµ

0 λlookup. s : Lookup〈ListıK〉
lookup〈List〉 : Lookup〈List〉

Example: generic trie merging. Hinze [18] presents three elementary opera-
tions to construct finite tries: empty, single, and merge. In the following we replay
the construction of merge in our framework, since it exhibits a very interesting
recursion scheme.

We first define the type Bin V for binary operations on V and a function comb
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which lifts a merging function for V to a merging function for 1 + V :

Bin : ∗ ◦→ ∗
Bin := λV. V → V → V

comb : ∀V. (V → V → V ) → (1 + V → 1 + V → 1 + V )

comb := λcλm1λm2. match (m1, m2) with

(inl(), _) 7→ m2

(_, inl()) 7→ m1

(inr v1, inr v2) 7→ inr (c v1 v2)

When merging two finite maps of type Map〈K〉V , one has to resolve a conflict
when both maps assign a value to the same key. This conflict resolution function
c : Bin V is abstracted out, leading to the following kind-indexed type:

Merge〈K :∗〉 := ∀V. Bin V → Bin (Map〈K〉V )

The following definitions determine a generic merging function for finite maps over
key whose type is composed from 1, +, ×, and µ.

merge〈1〉 : Merge〈1〉
merge〈1〉 := comb

merge〈+〉 : ∀A. Merge〈A〉 → ∀B. Merge〈B〉 →
∀V. Bin V → Bin (1 + Map〈A〉V ×Map〈B〉V )

merge〈+〉 := λmaλmbλc. comb

λ(ta1, tb1)λ(ta2, tb2). (ma c ta1 ta2, mb c tb1 tb2)

merge〈×〉 : ∀A. Merge〈A〉 → ∀B. Merge〈B〉 →
∀V. Bin V → Bin (Map〈A〉 (Map〈B〉V ))

merge〈×〉 := λmaλmbλc. ma (mb c)

In the last line, mb c : Bin (Map〈B〉V ) merges finite maps over key type B. This
function serves as conflict resolver to merge finite maps from A to Map〈B〉V ,
arriving at the elegant λc. ma (mb c) : Merge〈A×B : ∗〉.
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Example: list-trie merging. The type of the merge function for finite maps over
list-shaped keys is derived as follows:

Merge〈List : ord
+→ ∗ +→ ∗〉 = ∀ı. 1 → ∀K. Merge〈K〉 → Merge〈ListıK〉

= ∀ı. 1 → ∀K. (∀V. Bin V → Bin (Map〈K〉V ))

→ ∀W. Bin W → Bin (Map〈ListıK〉W )

Mechanically, we compute the merge function for list-tries:

merge1〈List〉
= merge1〈λıλK. µıλX. 1 + K ×X〉
= λiλmergeK . (λ_ fixµ

1) i merge1〈λX. 1 + K ×X〉
= λiλmergeK . fixµ

1(λmerge. merge〈+〉merge〈1〉 (merge〈×〉mergeK merge))

= λiλmergeK . fixµ
1 λmergeλc. comb

λ(mv 1, t1)λ(mv 2, t2). (comb c mv 1 mv 2, mergeK (merge c) t1t2)

[= λiλmergeKλc. fixµ
0 λmerge. comb

λ(mv 1, t1)λ(mv 2, t2). (comb c mv 1 mv 2, mergeK merge t1 t2)]

In the last step (enclosed in [brackets]), we have decreased the rank of recursion by
λ-dropping.

Surprisingly, recursion happens not by invoking merge on structurally smaller argu-
ments, but by passing the function itself to a parameter, mergeK . Here, type-based
termination reveals its strength; it is not possible to show termination of merge〈List〉
disregarding its type. With sized types, however, the termination proof is again just
a typing derivation, as easy as for lookup〈List〉. We reason again on the abstract
level:

mergeK : Merge〈K〉
merge : Merge〈ListıK〉
merge〈×〉mergeK merge =: r : Merge〈K × ListıK〉
merge〈+〉merge〈1〉 r =: s : Merge〈1 + K × ListıK〉

: Merge〈Listı+1K〉
fixµ

1 λmerge. s : Merge〈ListıK〉

The type Merge〈ListıK〉 is admissible for recursion on the second argument (the
first argument is of type Bin V ): The whole type is of shape ∀V. Bin V → µıF →
µıF → µıF for some F which does not depend on the size variable ı. Hence, the
type has the required shape.
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Example: merging bushy tries. An even more dazzling recursion pattern is ex-
hibited by the merge function for “bushy” tries, i. e., finite maps over bushy lists.

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µı
∗+→∗λXλK. 1 + K ×X (X K)

Map〈Bush〉 : ord
+→ (∗ +→ ∗) +→ (∗ +→ ∗)

Map〈Bush〉 = λı. µı
(∗+→∗) +→(∗+→∗) λXλFλV. 1 + (1 + V )× F (X (X F ) V )

The merge function for bush-indexed tries can be derived routinely:

merge1〈Bush〉
= merge1〈λı. µı

∗+→∗λXλK. 1 + K ×X (X K)〉
= λi. (λ_ fixµ

2) i (λmergeλmergeK .

merge〈+〉merge〈1〉 (merge〈×〉mergeK (merge (merge mergeK ))))

= λi. fixµ
2 λmergeλmergeK

λc. comb λ(mv 1, t1)λ(mv 2, t2).

(comb c mv 1 mv 2, mergeK (merge (merge mergeK ) c) t1 t2)

The recursion pattern of merge〈Bush〉 is adventurous. Not only is the recursive
instance merge passed to an argument to the function mergeK , but also this function
is modified during recursion: it is replaced by (merge mergeK ), which involves the
recursive instance again! All these complications are coolly handled by type-based
termination!

We have now seen how termination of some specific programs, which happened to
be instances of generic programs, can be established using types. In the next section
we develop a criterion on generic programs which entails termination of all of their
instances.

4 Termination of Generic Programs

In this section, we establish the soundness of the framework presented in the last
section, i. e., we prove that all instances of generic programs are indeed terminating.
It suffices to show that they are well-typed in Fω̂, since this type system only accepts
total programs. Critical is the typing of fixed-points

polyn,φ〈µκ : ord
+→ (κ

+→ κ)
+→ κ〉 = λ_. fixµ

n+m, where κ = ~p~κ → ∗, m = |~κ|

or more perspicuously, polyn,φ〈µı
κ〉 = fixµ

n+m : ∀F. Poly〈F : κ
+→ κ〉 → Poly〈µı F 〉.

It is easily established that the step term s, the first argument to fixµ
n+m, can be in-

stantiated to the correct type.
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Lemma 11 If Γ ` s : Poly〈F : κ
+→ κ〉 then Γ ` s : Poly〈µıF 〉 → Poly〈µı+1F 〉.

Proof. We have Poly〈F : κ
+→ κ〉 = ∀G :κ.Poly〈G : κ〉 → Poly〈F G : κ〉, hence,

instantiating G to µıF and using the equation F (µıF ) = µı+1F , we get the typing
Γ ` s : Poly〈µıF 〉 → Poly〈µı+1F 〉. 2

So polyn,φ〈F 〉 is a candidate for a step term s of a recursive function fixµ
n+m s.

If we can ensure that λı. Poly〈µıF 〉 is admissible for recursion, we have ensured
termination of all generic programs in our framework. Let us recall admissible
recursion types, this time in form of an inductive definition.

Lemma 12 (Inductive definition of fixµ
n -adm) The following rules define fixµ

n -adm
inductively.

Γ, ı :+ord ` A : ∗
Γ ` λı. A fixµ

−∞ -adm
(1)

Γ, Y :◦κ ` λı.A fixµ
n -adm

Γ ` λı.∀Y :κ.A fixµ
n -adm

(2)

Γ ` F : (~p~κ → ∗) +→ (~p~κ → ∗) p−1
i Γ ` Gi : κi (all i) Γ ` λı.A fixµ

n -adm

Γ ` λı.µıF ~G → A fixµ
0 -adm

(3)

−Γ, ı :−ord ` A0 : ∗ Γ ` λı.A fixµ
n -adm

Γ ` λı. A0 → A fixµ
n+1 -adm

(4)

Each admissible function type Γ ` λı.A fixµ
n -adm with n ≥ 0 must end in a covari-

ant codomain (1), which is preceded by at least one inductive domain (3) and by an
arbitrary number of contravariant domains (4). Universal quantification can come
in at any point (2). The first inductive domain counts as the recursive argument, and
the number of domains preceding it make up n.

With the judgement Γ `X
n B to follow, we characterize such user-defined types

Poly〈∗〉 of generic programs that give rise to admissible recursion types. More pre-
cisely, if � `X

n Poly〈X : ∗〉 and κ = ~p~κ → ∗ with m = |~κ|, then λı. Poly〈µı
κF :

κ〉 fixµ
n+m -adm (Lemma 16). Simultaneously, the judgement determines the n in

the number n + m of non-recursive arguments in fixµ
n+m.

Definition 13 (Admissible types of recursive generic programs) Let Γ be a kind-
ing context, X a variable not assigned in Γ, n a natural number or −∞, and B a
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type. The judgement Γ `X
n B is inductively given by the following rules.

Γ, X :+∗ ` B : ∗
Γ `X

−∞ B
p ≤ + (1)

Γ, Y :◦κ `X
n B

Γ `X
n ∀Y :κ.B

(2)

p−1
i Γ ` Hi : κi (for all i = 1..|~κ|) Γ `X

n B

Γ `X
0 Type〈X〉 ~H → B

TYPE〈∗〉 = ~p~κ → ∗

Γ `X
n B

Γ `X
0 X → B

(3)

−Γ, X :−∗ ` A : ∗ Γ `X
n B

Γ `X
n+1 A → B

p ≤ + (4)

In Γ `X
n B, we assume that X 6∈ Γ and maintain the invariant Γ, X :◦∗ ` B : ∗. If

n = −∞, then even Γ, X : +∗ ` B : ∗. We use the subscript −∞ to indicate that
an occurrence of X or Type〈X〉 has not yet been encountered, which means that
there is no recursive argument yet. (Note that −∞+ 1 = −∞.)

The rules of `X
n correspond to the ones of fixµ

n -adm and have been numbered ac-
cordingly. The placeholder X will be instantiated to an inductive type µıF ~G. Rule
(1): Since B is monotone in X , its instantiation will be monotone in ı. Remember
that admissible function types need at least one inductive domain (3). This can ei-
ther come from X or from a type-indexed type Type〈X〉, since a type indexed by an
inductive type is again an inductive type. Finally, leading non-recursive arguments
must be in contravariant domains (4).

Example 14 The kind-indexed types of the last section satisfy this judgement.

`K
0 Lookup〈K : ∗〉 = ∀V. K → Map〈K〉V → 1 + V

`K
1 Merge〈K : ∗〉 = ∀V. Bin V → Bin (Map〈K〉V )

Lemma 15 (Soundness of Γ `X
n B) Let Γ ` F : κ

+→ κ for κ = ~p~κ → ∗ and
p−1

j Γ ` Gj : κj for 1 ≤ j ≤ |~κ|. Let ı 6∈ dom(Γ) and A = λı.[µıF ~G/X]B. If
Γ `X

n B then Γ ` A fixµ
n -adm.

Proof. By induction on Γ `X
n B.

• Case (1)
Γ, X :+∗ ` B : ∗

Γ `X
−∞ B

p ≤ +
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Since λı. µıF ~G : ord
+→ ∗ and X appears only positively in B, we have Γ ` A :

ord
+→ ∗.

• Case (3)
Γ `X

n B

Γ `X
0 X → B

By induction hypothesis, Γ ` A fixµ
n -adm. Thus, Γ ` λı. µıF ~G → A ı fixµ

0 -adm.
• Case (3)

p−1
i Γ ` Hi : κi (for all i = 1..|~κ|) Γ `X

n B

Γ `X
0 Type〈X〉 ~H → B

TYPE〈∗〉 = ~p~κ → ∗

Let A := [µıF ~G/X]B. By induction hypothesis, Γ ` λı. A fixµ
n -adm. Since X

not free in ~H , we have [µıF ~G/X](Type〈X〉 ~H → B) = Type〈µıF ~G〉 ~H → A.
By definition of type-indexed types Type〈µıF ~G〉 = µıF ′ ~G′ for some ı-free
F ′, ~G′, hence, Γ ` λı. µıF ′ ~G′ ~H → A fixµ

0 -adm.

The remaining two cases for Γ `X
n B follow by induction hypothesis and the

matching rule for fixµ
n -adm. 2

The previous lemma implies that if `X
n Poly〈X : ∗〉 then Poly〈µı

∗F : ∗〉 fixµ
n -adm.

The next lemma extends this result to higher kinds, such that we can treat programs
indexed by nested data types.

Lemma 16 Let κ = p1κ1 → · · · → pmκm → ∗. If `X
n Poly〈X : ∗〉 for some

n ≥ 0 and Γ ` F : κ
+→ κ then Γ ` Poly〈µı

κF : κ〉 fixµ
m+n -adm.

Proof. From the previous lemma, by induction on m. 2

Now we are able to show that all instances polyn,φ〈F 〉 of a generic program are
well-typed, hence, terminating, if their type Poly〈F 〉 is of suitable shape.

Theorem 17 (Termination of generic programs) Let Γ ` poly〈C〉 : Poly〈C : κ〉
for all constants (C : κ) ∈ Σ and `X

n Poly〈X : ∗〉 for some n ≥ 0. Let ∆ :=
(Xi : piκi)i=1..l and ∆′ := (Xi : piκi, xi : Poly〈Xi : κi〉)i=1..l. If ∆ ` F : κ and
φ(Xi) = xi for i = 1..l, then Γ, ∆′ ` polyn,φ〈F 〉 : Poly〈F : κ〉.

Proof. By induction on ∆ ` F : κ. The interesting case is ∆ ` µκ : ord
+→ (κ

+→
κ)

+→ κ with κ = p′1κ
′
1 → . . . p′mκ′m → ∗.

polyn,φ〈µκ〉 = λ_. fixµ
m+n = λ_λs. fixµ

m+n[s]

Poly〈µκ〉 = ∀ı. 1 → ∀F. Poly〈F : κ
+→ κ〉 → Poly〈µı

κF 〉
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Let A := λı. Poly〈µı
κF 〉. By Lemma 16, ∆ ` A fixµ

m+n-adm. By Lemma 11,
∆, ı : ◦ord, _ : 1, F : ◦(κ +→ κ), s : Poly〈F 〉 ` s : A ı → A (ı + 1), hence,
∆, _ : 1, F : ◦(κ +→ κ), s : Poly〈F 〉 ` s : ∀ı. A ı → A (ı + 1). By Lemma 4,
∆, ı : ◦ord, _ : 1, F : ◦(κ +→ κ), s : Poly〈F 〉 ` fixµ

m+n[s] : A ı. Thus, by abstraction,
generalization, and weakening, we conclude Γ, ∆′ ` polyn,φ〈µκ〉 : Poly〈µκ〉. 2

5 Conclusions and Related Work

We have seen a polymorphic λ-calculus with sized higher-order data types, Fω̂, in
which all programs are terminating. This calculus is strong enough to certify ter-
mination of arbitrary instances of generic programs, provided the generic programs
themselves do not use unrestricted recursion. A systematic method to certify ter-
mination using the framework of sized polytypic programming has been presented.
The approach of type-based termination we have seen can handle convoluted re-
cursion patterns that go far beyond schemes of iteration and primitive recursion
stemming from the initial algebra semantics of data types. The recursion patterns
of many examples for generic programming [21,22] can be treated in Fω̂, and I
am still looking for sensible examples that exceed the capabilities of Fω̂. It seems
promising to pursue this approach further.

In this article, we have not addressed the problem of type-checking sized types.
However, some solutions exist in the literature: Pareto [32], Barthe, Grégoire, and
Pastawski [9], and Blanqui [12] have given constraint-based inference algorithms
for sized types.

System Fω̂ is strongly normalizing [1], as is its non-polymorphic predecessor λ̂
[8]. More suitable for functional programming seems an interpretation of types as
sets of closed values or finite observations—this, however, is future work. Hughes,
Pareto, and Sabry [24] have presented a similar calculus, with ML-polymorphism,
and given it a domain-theoretic semantics. What is not so pretty in this approach
is that one constructs the semantics using undefinedness (⊥), but then later shows
that each well-typed program is totally defined. One wonders why one has to speak
about ⊥ in the first place.

Related Work on Termination. The research on size-change termination (SCT),
which is led by Neil Jones, has received much attention. Recently, Sereni and Jones
have extended this method to higher-order functions [36]. Is SCT able to check ter-
mination of the generic programs presented in this work? No, because SCT analy-
ses only the untyped program, and without typing information termination of, e. g.,
mergeList cannot be established, as explained in the introduction (mergeList
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diverges on ill-typed arguments). Neither can the methods developed for higher-
order term rewriting systems, as for instance bundled in the tool AProve [15], be
applied to the generic program, since they disregard typing. (I conducted my ex-
periments in Fall 2005.)

Related Work on Generic Programming. We have considered generic program-
ming in the style of Generic Haskell which has been formulated by Hinze, Jeuring,
and Löh [19–23]. Another philosophy of generic programming is rooted in the ini-
tial algebra semantics for data types (see the introductory text by Backhouse, Jans-
son, Jeuring, and Meertens [7]). Jansson and Jeuring [26] present PolyP, a polytypic
extension for Haskell which gives more control in defining polytypic functions, for
instance, “recursion” is a type constructor one can treat in a clause of the polytypic
program, whereas in Generic Haskell and our extension to sized types, recursion
on types is always mapped to a recursive program.

Pfeifer and Rueß [33] study polytypic definitions in dependent type theory where
all expressions are required to terminate. Termination is achieved by limiting re-
cursion to the elimination combinators for inductive types, which correspond to
the scheme of primitive recursion or paramorphisms. This excludes many interest-
ing generic programs we can treat, like merging of tries, that do not fit into this
scheme. Benke, Dybjer, and Jansson [10] extend the approach of Pfeifer and Rueß
to generic definitions over inductive families. They also restrict recursion to itera-
tion and primitive recursion. Altenkirch and McBride [5] pursue a similar direction;
they show that generic programming is dependently typed programming with tai-
lored type universes. They construct a generic fold for members of the universe of
Haskell types, which allows to define generic iterative functions (catamorphisms).

Norell and Jansson [29] exploit the type class mechanism to enable polytypic pro-
gramming in Haskell without language extensions. They also present an approach
to generic programming using template Haskell [30]. Finally, Norell [28] describes
an encoding of generic programs in dependent type theory. None of these works
considers the problem of termination of the generated programs.

Generic programming within an intermediate language of a typed compiler has
been studied under the names intensional polymorphism and intensional type anal-
ysis by Harper and Morrisett [17] and Crary, Weirich, and Morrisett [14]. The gist
of this approach is to have a type case construct on the level of programs, in later de-
velopments even also on the level of types. This way, certain compiler optimizations
such as untagging and unboxing can be performed in a type-safe way. Crary and
Weirich [13] even enrich the kind language by inductive kinds and the constructor
language by primitive recursion. Saha, Trifonov, and Shao [35] consider intensional
analysis of polymorphism. To this end, they introduce polymorphic kinds. For our
purposes, this would be counterproductive since a language with two impredicative
universes on top of each other is non-normalizing (Girard’s paradox).
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A System Fω̂

This section gives a short overview over system Fω̂ and lists typing, subtyping, and
kinding rules. In comparison to the author’s thesis [1], the version of Fω̂ presented
here has no coinductive types, but only inductive types.

A.1 Kinds and Constructors

Polarities. To track the monotonicity of type constructors, we introduce polarities
p, which range over the three values + (covariant),− (contravariant), and ◦ (mixed-
variant). They are partially ordered; the order is given by ◦ ≤ p and p ≤ p.

Kinds κ are the “types” of type constructors. In Fω̂, size expressions belong to the
type language and have kind ord.

κ ::= ∗ types
| ord ordinals
| pκ1 → κ2 co-/contra-/mixed-variant constructor transformers

Notation: κ
p→ κ′ for pκ → κ′. Pure kinds κ∗ are kinds that do not mention ord.

Constructors are λ-terms over some constants C.

a, b, A,B, F, G ::= C | X | λXF | F G

The constructor constants C are taken from a fixed signature Σ0 which contains at
least the following constants together with their kinding.

1 : ∗ unit type

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ
◦→ ∗) +→ ∗ quantification

µκ∗ : ord
+→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord infinity ordinal
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We sometimes write the size index superscript, e. g., µı instead of µ ı.

Polarized contexts. A kinding context usually records the kinds of the free vari-
ables of a type constructor; a polarized context additionally records variance in-
formation for each variable to distinguish whether this free variable occurs only
positively (p = +), only negatively (p = −), or arbitrarily (p = ◦) in the type
constructor under consideration.

∆ ::= � | ∆, X :pκ

Negation of a polarity −p is given by the three equations −(+) = −, −(−) = +
and −(◦) = ◦. We define inverse application p−1∆ of a polarity p to a polarized
context ∆.

+−1∆ = ∆

−−1(�) = �
−−1(∆, X :pκ) = −−1∆, X : (−p)κ

◦−1(�) = �
◦−1(∆, X :◦κ) = ◦−1∆, X :◦κ
◦−1(∆, X :+κ) = ◦−1∆

◦−1(∆, X :−κ) = ◦−1∆

Inverse application is used in the kinding judgement.

Kinding. ∆ ` F : κ

C :κ ∈ Σ0

∆ ` C : κ

X :pκ ∈ ∆ p ≤ +

∆ ` X : κ

∆, X :pκ ` F : κ′

∆ ` λXF : pκ → κ′
∆ ` F : pκ → κ′ p−1∆ ` G : κ

∆ ` F G : κ′

Constructor equality. Constructors are identified modulo β and η. Furthermore,
there are two axioms for sizes and inductive types.

Computation axioms.

∆, X :pκ ` F : κ′ p−1∆ ` G : κ

∆ ` (λXF ) G = [G/X]F : κ′
∆ ` F : pκ → κ′

∆ ` (λX. F X) = F : pκ → κ′

∆ ` s∞ = ∞ : ord

∆ ` a : ord

∆ ` µs a
κ = λF. F (µa

κ F ) : (κ
+→ κ)

+→ κ
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Congruences.

X :pκ ∈ ∆ p ≤ +

∆ ` X = X : κ

∆, X :pκ ` F = F ′ : κ′

∆ ` λXF = λXF ′ : pκ → κ′

C :κ ∈ Σ0

∆ ` C = C : κ

∆ ` F = F ′ : pκ → κ′ p−1∆ ` G = G′ : κ

∆ ` F G = F ′ G′ : κ′

Symmetry and transitivity.

∆ ` F = F ′ : κ

∆ ` F ′ = F : κ

∆ ` F1 = F2 : κ ∆ ` F2 = F3 : κ

∆ ` F1 = F3 : κ

Higher-Order Subtyping. Subtyping captures the natural inclusion order µaF ≤
µs aF between sized inductive types.

Reflexivity, transitivity, antisymmetry.

∆ ` F = F ′ : κ

∆ ` F ≤ F ′ : κ

∆ ` F1 ≤ F2 : κ ∆ ` F2 ≤ F3 : κ

∆ ` F1 ≤ F3 : κ

∆ ` F ≤ F ′ : κ ∆ ` F ′ ≤ F : κ

∆ ` F = F ′ : κ

Abstraction and application.

∆, X :pκ ` F ≤ F ′ : κ′

∆ ` λXF ≤ λXF ′ : pκ → κ′
∆ ` F ≤ F ′ : pκ → κ′ p−1∆ ` G : κ

∆ ` F G ≤ F ′ G : κ′

∆ ` F : +κ → κ′ ∆ ` G ≤ G′ : κ

∆ ` F G ≤ F G′ : κ′
∆ ` F : −κ → κ′ −∆ ` G′ ≤ G : κ

∆ ` F G ≤ F G′ : κ′

Successor and infinity.

∆ ` a : ord

∆ ` a ≤ s a : ord

∆ ` a : ord

∆ ` a ≤ ∞ : ord

A.2 Terms and Typing

Terms.
Tm 3 r, s, t ::= c | x | λxt | r s | fixµ

Const 3 c ::= () | pair | fst | snd | inl | inr | case
The signature Σ0 contains the types for the constants in Const.
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Typing contexts.

Γ ::= � | Γ, x :A | Γ, X :pκ

Wellformed contexts.

� cxt

Γ cxt

Γ, X :◦κ cxt

Γ cxt Γ ` A : ∗
Γ, x :A cxt

Typing. Γ ` t : A
Lambda-calculus.

(x :A) ∈ Γ Γ cxt

Γ ` x : A

Γ, x :A ` t : B

Γ ` λxt : A → B

Γ ` r : A → B Γ ` s : A

Γ ` r s : B

Quantification.

Γ, X :◦κ ` t : F X

Γ ` t : ∀κF
X 6∈ FV(F )

Γ ` t : ∀κ F Γ ` G : κ

Γ ` t : F G

Subsumption.
Γ ` t : A Γ ` A ≤ B : ∗

Γ ` t : B

Recursion and further constants.

Γ ` A fixµ-adm Γ ` a : ord

Γ ` fixµ : (∀ı :ord. A ı → A (ı + 1)) → A a

(c :A) ∈ Σ0

Γ ` c : A

Γ ` A fixµ-adm means that Γ ` A = λı.∀ ~X0.µıF ~G → ∀ ~X1.B1 · · · → ∀ ~Xm.Bm →
C : ord

◦→ ∗ where the ı does not occur in F and ~G and only positively in C. Each
Bj either is of the form µıF ′ ~G′ where ı does not occur in F ′, ~G′ or ı occurs only
negatively in Bj .

A.3 Values and Reduction

Values are weak-head normal forms.

v ::= λxt | pair t1 t2 | inl t | inr t proper values
| fixµ | fixµ s | pair | pair t | inl | inr | fst | snd | case under-applied functions
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Reduction. The one-step reduction relation t −→ t′ is the closure of the follow-
ing axioms under all term constructors.

(λxt) s −→ [s/x]t

fixµ
n s v −→ s (fixµ

n s) v

fst (r, s) −→ r

snd (r, s) −→ s

case (inl r) −→ λxλy. x r

case (inr r) −→ λxλy. y r

Well-typed terms are strongly normalizing under this reduction.
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