
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

TERMINATION CHECKING WITH TYPES ∗

Andreas Abel1

Abstract. The paradigm of type-based termination is explored for
functional programming with recursive data types. The article intro-
duces Λ+

µ , a lambda-calculus with recursion, inductive types, subtyping
and bounded quantification. Decorated type variables representing ap-
proximations of inductive types are used to track the size of function
arguments and return values. The system is shown to be type safe and
strongly normalizing. The main novelty is a bidirectional type checking
algorithm whose soundness is established formally.

1991 Mathematics Subject Classification. 68N15, 68N18, 68Q42.

Introduction

In interactive theorem provers like Alfa [26], Coq [29], or LEGO [33,43], which
are based on the Curry-Howard isomorphism, inductive proofs can be supplied
as recursive functions. However, only functions which terminate on all inputs
constitute valid proofs. In functional programming, functions are commonly de-
fined via general recursion and pattern matching. This imposes some challenge
on proof validation and, in general, it is undecidable whether a recursive program
terminates.

Many termination checkers which analyze untyped program code follow meth-
ods from term rewriting and rely on term orderings. In previous work [1], we
used the subterm ordering extended to higher-order functions to capture the class
of structurally recursive functions over strictly positive inductive datatypes. For

Keywords and phrases: Type-based termination, sized types, inductive types, course-of-value

recursion, bidirectional type checking, strong normalization

∗ Research supported by the Graduiertenkolleg Logik in der Informatik (PhD Program Logic in
Computer Science) of the Deutsche Forschungsgemeinschaft, the thematic networks TYPES

(IST-1999-29001) and Applied Semantics II (IST-2001-38957) of the European Union and

the project CoVer of the Swedish Foundation of Strategic Research.
1 Department of Computer Science, Chalmers University of Technology, Rännvägen 6, 41296

Göteborg, Sweden, e-mail: abel@cs.chalmers.se

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

polynomial inductive types, a greater class of functions is accepted in Telford and
Turner’s ESFP [46]. Their termination checker also incorporates a limited form of
size-change and dataflow analysis which recognizes certain functions as reducers
or preservers. Functions in these classes—first described by Walther [48]—have
the property that the size of their output is bounded by the size of some input
argument (strictly smaller in the case of reducers). Finally, Pientka [40] has imple-
mented termination and reduction checking for higher-order logic programs based
on the subterm ordering.

Such termination checkers, using syntactical conditions, have some drawbacks.
First, for non-strictly positive inductive types it is not clear how a syntactic cri-
terion should look like (see Section 7). Secondly, the acceptance of a program is
often sensitive to small changes in the code (introduction of redexes, substitution
of expressions by others of equal value).

Termination checking should abstract from the precise syntactical formula-
tion of an algorithm; therefore Giménez [23] advocates a type-based termination
method. The idea is to equip the types of recursive data structures with size
information. A recursive function is only accepted if the sizes of arguments to
recursive calls are bounded by the size of its inputs. Being an abstract property
like type, the size information is insensitive to small reformulations of expressions.
A nice feature of sized types is that function types can express whether functions
are size-preserving. Hence, termination checking scales to higher-order languages
which are problematic for purely syntactic methods.

Giménez was not the first to describe type-based termination; Hughes, Pareto
and Sabry [28] described sized types for reactive functional programming, also
in combination with region types [27, 37]. Amadio and Coupet-Grimal [7] used
guarded types to ensure productivity of infinite structures like streams. Although
these ideas have been around for some time, people are reluctant to pick up on
them, probably because they shun changes in their type theories.

The aim of this article is to provide a gentle access to sized types for termination
in order to increase their popularity. Therefore we restrict Giménez [23] proposal—
sized types for the Calculus of Constructions—to a simply-typed setting, ignore
coinductive types for now and confine subtyping to the necessary minimum. Once
type-based termination is understood at this simple level, one can go ahead and
upgrade to rich type theories with full subtyping, polymorphism or even dependent
types.

For the system presented, we show type safety syntactically and termination se-
mantically, by modeling types as set of strongly normalizing terms. Independently,
Barthe et al. [9] have defined a similar restriction of Giménez original proposal and
proven subject reduction and strong normalization. Relative to their work, the
novel contributions of this article are:

(1) An informal introduction into type based termination, starting with its
simplest form, Mendler’s rule for recursion [35], and ending with our re-
striction of Giménez’ system.

(2) A bidirectional type checking algorithm for our calculus. This is the main
technical novelty.

TITLE WILL BE SET BY THE PUBLISHER 3

(3) A motivation why the result type of a recursive function can only mono-
tonically depend on the type of its input. This side condition was miss-
ing in Giménez original formulation [23]. We give an example of a non-
terminating function which is accepted by the type system if the side
condition is dropped.

The article is structured as follows. In Section 1, we introduce a core language
Λµ with recursive datatypes and non-termination functions and show that it has
the strong type soundness property. By restricting the type of the fixed-point
combinator, one can force recursive functions to be total. In Section 2, we start
with Mendler’s recursion rule [35], “the mother of type-based termination”, and
refine it step by step, enlarging the class of accepted functions, until we reach
Giménez’ rule. The formal presentation of the type system Λ+

µ is given in Sec-
tion 3, together with a type-checking algorithm in Section 4. A proof of strong
normalization follows in Section 5. In Section 6, we first discuss the above men-
tioned side condition. Secondly, we show how to represent productive streams
in our type system as functions over natural numbers. Thus, we motivate, form
the perspective of inductive types, the rules for sized coinductive types given by
Giménez [23] and Barthe et al. [9]. Several applications for type-based termination
are sketched in Section 7, before we conclude with an summary of related work in
Section 8.

1. A Core Language with Recursion

We consider termination in the setting of simply-typed functional programming
with recursive datatypes. Table 1 shows the core language Λµ, a lambda-calculus
with finite sums and products and positive recursive types. By the latter we mean
recursive types µX.σ such that on each walk from the binding site to an occurrence
of the variable X we choose the left component of an arrow type an even number
of times (see itypes in Section 3). The particular selection of type and term formers
is inspired by category theory [25].

Throughout the paper we consider α-equivalent terms or types as identical. In
all contexts we consider the variable names to be unique. Both properties can be
ensured by considering the variable names as just a sugar for de Bruijn indices,
which we shall do for the whole of this article. We write [N/x]M resp. [ρ/Y]τ (or
τ(ρ)) for capture-avoiding substitution in terms resp. types. We take the liberty
to drop the dot in a binder if the expression after a binding consists of a single
symbol (e.g., λxM , µXσ).1

Table 1 lists the rules of the static semantics, the typing judgement Γ `M : τ ,
and the axioms of the dynamic semantics, the computation relation M −→β M ′.
In our terminology, a β-redex, i.e., the left hand side of a reduction axiom, shall
denote any elimination of a matching introduction. This notion is a generalization
of β-redexes in simply-typed λ-calculus to richer type systems. The full reduction

1This goes well with the definition of “.” which denotes an “opening parenthesis which closes
as far to the right as syntactically possible”.

4 TITLE WILL BE SET BY THE PUBLISHER

Types:

ρ, σ, τ ::= X | 1 | σ + τ | σ × τ | σ → τ | µX.ρ (where X appears only positively in ρ)

Terms:

Λµ 3 M, N ::= x | λx.M | M1 M2 | inl M | inr M | (case M of inl x1 ⇒ M1 | inr x2 ⇒ M2)

| () | (M1, M2) | fst M | snd M | fold M | unfold M | fix g(x).M

Contexts (all variables distinct):
Γ ::= · | Γ, x :τ

Typing (τ and all types in Γ closed):
Γ ` M : τ

Lambda-calculus:

x :τ ∈ Γ

Γ ` x : τ

Γ, x :σ ` M : τ

Γ ` λx.M : σ → τ

Γ ` M1 : σ → τ Γ ` M2 : σ

Γ ` M1 M2 : τ

Sum types:

Γ ` M : σ

Γ ` inl M : σ + τ

Γ ` M : τ

Γ ` inr M : σ + τ

Γ ` M : σ + τ Γ, x1 :σ ` M1 : ρ Γ, x2 :τ ` M2 : ρ

Γ ` case M of inl x1 ⇒ M1 | inr x2 ⇒ M2 : ρ

Product types:

Γ ` () : 1

Γ ` M1 : σ Γ ` M2 : τ

Γ ` (M1, M2) : σ × τ

Γ ` M : σ × τ

Γ ` fst M : σ

Γ ` M : σ × τ

Γ ` snd M : τ

Recursive types and terms:

Γ ` M : σ(µX.σ)

Γ ` fold M : µX.σ

Γ ` M : µX.σ

Γ ` unfold M : σ(µX.σ)

Γ, g :σ → τ, x :σ ` M : τ

Γ ` fix g(x).M : σ → τ

(Neutral) values:

Ne 3 U ::= x | U V | fst U | snd U | (case U of inl x1 ⇒ V1 | inr x2 ⇒ V2) | unfold U
Val 3 V ::= U | λx.V | inl V | inr V | (V1, V2) | fold V | fix g(x).V

Reduction axioms:

(λx.M) N −→β [N/x]M

case(inl N) of inl x1 ⇒ M1 | inr x2 ⇒ M2 −→β [N/x1]M1
case(inr N) of inl x1 ⇒ M1 | inr x2 ⇒ M2 −→β [N/x2]M2

fst(M1, M2) −→β M1
snd(M1, M2) −→β M2

unfold(fold M) −→β M

(fix g(x).M) N −→β [fix g(x).M/g][N/x]M

Reduction relations:

−→β β-reduction (only axioms)
−→ one-step reduction: closure of −→β under all term constructors

−→+ transitive closure of −→
−→∗ reflexive-transitive closure of −→
−→∞ −→∗ or divergence

Table 1. The Core Functional Language Λµ.

TITLE WILL BE SET BY THE PUBLISHER 5

relation −→∗ is obtained by closing the relation −→β under all term constructors,
reflexivity and transitivity. The proposition M −→∞ M ′ shall denote that either
M −→∗ M ′ or M diverges, combining finite and infinite reduction sequences.

Recursive functions can be defined via the general fixed-point combinator fix.
Note that fix g(x).M binds the two variables g (which stands for the recursively
defined function) and x (which denotes the argument to that function) in M . The
fixed-point combinator is the source of non-termination in our language, and in
this work we will show a method to restrict its use by typing such that termination
is regained.

Some significant subset of a functional language with recursive datatypes can
be translated into Λµ. For example, consider the following Haskell program which
sums up all elements in a list of natural numbers.

data Nat = Zero | Succ Nat
data ListN = Nil | Cons Nat ListN

sum (Nil) = Zero
sum (Cons n l) = sum′ n

where sum′ (Zero) = sum l
sum′ (Succ n′) = Succ (sum′ n′)

In Λµ, the defined datatypes are represented by the type expressions Nat :=
µX. 1 + X and ListN := µY. 1 + Nat × Y . We simulate the Haskell constructors
by the following term abbreviations.

Zero := fold(inl()) : Nat
Succ := λx. fold(inr x) : Nat→ Nat

Nil := fold(inl()) : ListN
Cons := λx.λxs. fold(inr(x, xs)) : Nat→ ListN→ ListN

What our representation of datatypes loses in succinctness, it gains in conceptual
clarity: it separates the notion of sum (+) and product (×) from recursion (µ),
which simplifies both the presentation of typing and the interpretation of types
(see Section 5).

The Haskell program translates into the following Λµ code which contains two
interleaving uses of fix.

sum : ListN→ Nat

sum := fix f(l). case(unfold l) of
inl u⇒ Zero
| inr p⇒

(
fix g(n). case(unfoldn) of

inlu⇒ f(snd p)
| inr n′ ⇒ Succ(g n′)

)
(fst p)

6 TITLE WILL BE SET BY THE PUBLISHER

We sketch a syntactical proof of type soundness, also called type safety, following
the method of Wright and Felleisen [49] which is explained in detail in Pierce [41].

The type system of Λµ guarantees that the language is free of junk terms (or
faulty terms [49]) such as fst (λx.x) which would cause evaluation to get stuck.
By showing that welltypedness is preserved under reduction, we ensure that junk
terms never arise during evaluation, and each term M reaches a value V or diverges.

Theorem 1.1 (Type Preservation and Progress). Let Γ ` M : τ be a well-typed
term.

(1) Types are preserved under reduction: If M −→M ′ then Γ `M ′ : τ .
(2) Evaluation can progress: Either M ∈ Val or M −→M ′ for some term M ′.

Proof. Both properties can be shown by induction on Γ ` M : τ . Preservation
and progress are text-book results, see Pierce’s Exercise 20.2.2 [41]. �

Corollary 1.2 (Strong Type Soundness for Λµ). If Γ ` M : τ then M −→∞ V
for some value V with Γ ` V : τ .

Proof. By coinduction. At this point, we should put forth a more precise definition
of possibly infinite reductions M −→∞ V . The relation −→∞ is obtained as the
greatest fixed point R of the following rules:

M RM
refl

M1 −→M2 M2 RM3

M1 RM3
step

Note that if we take the least fixed point, we get −→∗. Taking the greatest fixed
point instead of the least adds infinite reduction sequences.

To prove the corollary, we first apply Theorem 1.1(2) to the assumption Γ `
M : τ . If M is a value, we are done since V −→∞ V by rule refl. Otherwise,
M −→ M ′ where Γ ` M ′ : τ by Theorem 1.1(1). By coinduction hypothesis,
M ′ −→∞ V for some value V with Γ ` V : τ . Thus, M −→∞ V by rule step.
The use of the coinduction hypothesis is justified by the fact that we used at least
one generating rule of −→∞ to produce the goal M −→∞ V after appealing to
the coinduction hypothesis. This principle is called the guardedness condition by
Coquand [17]. �

Thus, well-typed Λµ programs cannot go wrong (Milner [36]). But they can
diverge, like the totally undefined function fix g(x).g x. In the remainder of the
paper, we develop a more restrictive set of typing rules in which only terminating
programs are typable.

2. From Mendler Iteration to Size-Preserving Recursion

Starting at Mendler’s formulation of iteration [35], we stepwise motivate our
principle of recursion through size-preserving functions inspired by Giménez [23].
We both give a semantical motivation as well as an interesting application: termi-
nation verification of quicksort by our type system.

TITLE WILL BE SET BY THE PUBLISHER 7

2.1. Iteration à la Mendler

Let L denote the set of lists of natural numbers and L→ L denote the set of all
total functions from lists to lists. Let f be some (possibly partial) function over
lists and n ∈ N arbitrary. Assume we can prove that if f is total for lists of length
less than n, then f is total for lists of length less than n + 1. By induction on n,
and since there are no lists of length less than 0, if follows that f is total for all
lists. More formally, let Ln := {l ∈ L : |l| < n} be the nth approximation to the
set of all lists L. The proof principle can be expressed via the following natural
deduction rule:

[n ∈ N][f ∈ Ln → L]
···

f ∈ Ln+1 → L

f ∈ L→ L

Mendler [35] first turned this principle into a typing rule for recursive functions
which by their typing are bound to terminate. For the case of functions from lists
to lists, his rule reads as follows:

Γ, Y : type, g :Y → ListN, x :1 + Nat× Y `M : ListN

Γ ` fix g(x).M : ListN→ ListN

In the assumptions of the premise, the (fresh) type variable Y stands for some
approximation Ln. The to-be-defined recursive function g is assumed to be element
of Ln → L. The premise now shows that the function is in Ln+1 → L. To this
end, an argument x : 1 + Nat × Y is assumed; its type denotes Ln+1 in unfolded
form. Under these assumptions, the body M of the recursive function is shown to
be well-typed. This implies that within M , recursive calls of g can only happen
with arguments of type Y , which can only arise as subterms of x, since Y is a type
variable. During evaluation of a function call via the reduction rule

(fix g(x).M) (fold N) −→ [fix g(x).M/g][N/x]M,

the type variable Y gets instantiated by ListN, g by the recursive function, and x
by the unfolded argument.

A closer look on the general form of Mendler’s rule, given in the following,
reveals that it types exactly the iterative programs (cf. Matthes [32], Sp lawski and
Urzyczyn [44]):

Γ, Y : type, g :Y → τ, x :σ(Y) `M : τ

Γ ` fix g(x).M : µXσ → τ

8 TITLE WILL BE SET BY THE PUBLISHER

Above, we used an instance of this rule with µXσ = τ = ListN. Some number-
theoretic functions which have a very natural iterative implementation are addi-
tion, multiplication and exponentiation. For instance:

add : Nat→ Nat→ Nat
add := λy. fix add(x). case x of

inlu ⇒ y
| inr x′ ⇒ Succ(add x′)

The definition is well-typed with the following type assignments to the bound
variables: y : Nat, add : Y → Nat, x : 1 + Y , u : 1 and x′ : Y .

From now, since we interpret µXσ as the least fixed-point of the type operator
σ(X), and since we allow µXσ only in the domain of total functions, we speak of
inductive types instead of recursive types.2

2.2. Primitive Recursion à la Mendler

Mendler also gave a more expressive rule which types all primitive recursive
programs [34]. The premise of the recursion rule has an additional hypothesis
i : Y → µXσ which can be used to convert a predecessor r : Y of the input x into
the inductive type µXσ. After conversion, it can either become part of the output
or be used as argument to previously defined functions. During reduction, i gets
instantiated with the identity λxx. We achieve the same gain of expressivity by
making Y a subtype of µXσ in the iteration rule.

Γ, Y≤µXσ, g :Y → τ, x :σ(Y) `M : τ

Γ ` fix g(x).M : µXσ → τ
.

The reduction rule remains unchanged—but we need to add subsumption to our
typing judgement. The following axiom and rule have to be added.

(Y≤µXσ) ∈ Γ
Γ ` Y ≤ µXσ

Γ `M : ρ Γ ` ρ ≤ σ

Γ `M : σ

To equip subtyping with the standard properties of transitivity and reflexivity (in
our case only for types ρ ≤ µXσ), we add the following axioms:

(Y≤µXσ) ∈ Γ
Γ ` Y ≤ Y Γ ` µXσ ≤ µXσ

2There is a Curry-Howard-correspondence of—on the programming side—elimination schemes

for µXσ and—on the logical side—induction axioms for inhabitants of µXσ, hence the name
“inductive types”. For more details on this correspondence, the reader is referred to Sp lawski
and Urzyczyn [44].

TITLE WILL BE SET BY THE PUBLISHER 9

Examples of number-theoretic functions which have a natural primitive recursive
implementation are predecessor, subtraction and factorial. For instance,

pred : Nat→ Nat
pred := fix pred(x). case x of

inlu ⇒ Zero
| inr x′ ⇒ x′

with types pred : Y → Nat, x : 1+Y , u : 1 and x′ : Y . Observe that this definition
would not have type-checked using the Mendler iteration rule, since we need to
make use of subtyping to convert x′ : Y to type Nat.

2.3. Course-of-Value Recursion

In our introductory example, type variable Y denotes some approximation Ln

of the set of number lists. The next stage of approximation Ln+1 is only available
in its unfolded version σ(Y). To make approximation stages first-class citizens,
we follow Giménez [23] and extend our type language by a “next stage” operator
(·)+. The cumulative character Ln ⊆ Ln+1 ⊆ Ln+2 ⊆ · · · ⊆ L is reflected by a
chain of subtyping relations Y ≤ Y + ≤ Y ++ ≤ · · · ≤ µXσ which can be derived
using the additional rules:

Γ ` ρ ≤ µXσ

Γ ` ρ+ ≤ µXσ

Γ ` ρ ≤ µXσ

Γ ` ρ ≤ ρ+

Γ ` ρ ≤ µXσ

Γ ` ρ ≤ ρ

Γ ` ρ ≤ σ Γ ` σ ≤ τ

Γ ` ρ ≤ τ

Folding and unfolding now must be applicable to inhabitants of approximations
of inductive types as well. We replace the original rules from Table 1 by

Γ ` ρ ≤ µXσ Γ `M : σ(ρ)
Γ ` fold M : ρ+

Γ ` ρ ≤ µXσ Γ `M : ρ+

Γ ` unfoldM : σ(ρ)
.

The original rules can be derived using the new ones plus the fact that subtyping
admits (µXσ)+ ≤ µXσ. With the new notation for approximation stages the
typing rule for recursion reads as follows.

Γ, Y≤µXσ, g :Y → τ, x :Y + `M : τ

Γ ` fix g(x).M : µXσ → τ
.

Since the argument x of the recursive function is no longer of the unfolded type
σ(Y), but inhabits Y +, we need to substitute the full fold N for x during reduction:

(fix g(x).M) (fold N) −→ [fix g(x).M/g][fold N/x]M,

Silently, we have turned primitive recursion into course-of-value recursion. This
can be seen from the following argument: If we have computed the predecessor
r : Y of input x : Y + within the body M of our recursive function, we can apply
the subtyping law Y ≤ Y + on the type of r, unfold r, and compute its predecessor

10 TITLE WILL BE SET BY THE PUBLISHER

in turn. Going on like this, we can analyze x arbitrarily deep to obtain subcompo-
nents which all qualify as arguments to recursive calls of g since they are assigned
type Y . Course-of-value recursion is useful, for instance, to program division by
two, or to implement the specification of the Fibonacci numbers directly:

fib : Nat→ Nat
fib := fixfib(x). case (unfold x) of

inlu ⇒ Zero
| inr y ⇒ case (unfold y) of

inlu ⇒ Succ(Zero)
| inr z ⇒ add (fib y) (fib z)

In this definition, we have the following types for the bound variables: fib : Y →
Nat, x : Y +, u : 1, y : Y ≤ Y + and z : Y . Since we can cast the type of y to Y +,
we can unfold it again, hence, look deeper into the recursion argument. This is the
essence of course-of-value recursion. Note also that in contrast to the fixed-point
rules before, the function argument x is not automatically in an unfolded state
any more; we need to unfold it manually in order to analyze it.

To be precise, fib is already an instance of the weaker scheme of course-of-value
iteration, a notion coined by Uustalu and Vene [47]. We obtain a rule for course-
of-value iteration by replacing the hypothesis Y ≤ µXσ by YX.σ ≤ Y +

X.σ. The
subscript X.σ to the variable Y expresses that Y is an approximation type of
µX.σ, an information that was implicit in the old hypothesis.

2.4. Recursion Via Size-Preserving Functions

Some functions like Euclidean division or functional quicksort have a succinct
recursive implementation where the argument r to the recursive call is derived
from the input argument x through another function. For example, assume a
function pivot a xs which splits the input list xs into two output lists (l, r) where l
contains all elements < a and r the remainder. Using pivot, we define qsapp xs ys
which quick-sorts list xs and prepends it to ys.

qsapp [] ys = ys
qsapp (x :: xs) ys = let (l, r) = pivot x xs

in qsapp l (x :: qsapp r ys)

(We use a sugared syntax for Nil and Cons in this example). This function is
defined by recursion on its first argument. However, the arguments l and r of
the recursive calls are not derived from the input directly, i.e., using only pattern
matching. They are connected to xs, a direct subterm of the input, via the function
pivot. If we know that both output lists (l, r) of the application pivotx xs are at
most as long as the input xs, we can justify that qsapp is defined by course-of-
value recursion on the length of its first argument and constitutes a total function.
We say (a bit sloppily) that pivotx needs to be a size-preserving function.3 In

3A similar terminology is used by Walther [48] and Pientka [40].

TITLE WILL BE SET BY THE PUBLISHER 11

terms of approximations, pivotx is size preserving if for every input xs ∈ Ln both
output lists l and r are in the same approximation stage Ln as the input xs. More
formally, we require pivotx ∈

⋂
n(Ln → Ln × Ln). Giménez [23] observed that

one can use bounded quantification

pivotx : ∀Y≤ListN. Y → Y × Y

to express this semantical property on the syntax level. How can we show a
function to be size preserving? Semantically, we can use the following proof by
induction (f = pivotx):

[f ∈ Ln → Ln × Ln]
...

f ∈ Ln+1 → Ln+1 × Ln+1

f ∈
⋂

n(Ln → Ln × Ln)

The difference to the proof scheme given in Section 2.1 is that the result type now
also mentions approximation stages. We can carry this modification over to the
syntactical level by allowing occurrences of Y in the result type τ of recursion. In
this article, we restrict to positive occurrences of Y in τ (so do Barthe et al. [9]).
As we will see in Section 6, negative occurrences can lead to non-termination. The
recursion rule now takes the following shape:

Γ, Y≤µXσ, g :Y → τ(Y), x :Y + `M : τ(Y +) Y pos. in τ(Y)
Γ ` fix g(x).M : ∀Y≤µXσ. Y → τ(Y)

It is crucial to keep the quantifier in the conclusion. If its type were just µXσ →
τ(µXσ), we would have lost the information about size relations between the input
and the outputs of the recursive function. To use functions defined with this rule,
we need a means to instantiate bounded quantification:

Γ ` ρ ≤ µXσ Γ `M : ∀Y≤µXσ. Y → τ(Y)
Γ `M : ρ→ τ(ρ)

In Giménez formulation [23], bounded quantification is not part of the type syntax
and consequently, instantiation is merged with the fixed-point rule. Size relations
can still be used this way, but local recursive functions can then not always be lifted
to the top-level to be made available for other functions. For instance, pivot would
have to be defined locally within qsapp. Since we have bounded quantification
as a first-class citizen, we can even abstract the pivot function out of the qsapp
function. We define a function qsapp′ such that qsapp = qsapp′ pivot and assign it
the type

qsapp′ : (∀Y≤ListN. Y → Y × Y)→ ∀Y≤ListN. Y → ListN→ ListN.

In the following, we complete the quicksort example and demonstrate that our
type system can verify its totality. We give the program in a Haskell-like language

12 TITLE WILL BE SET BY THE PUBLISHER

with type annotations, which is more readable than a direct representation in
the core language. However, there is a simple one-to-one correspondence between
type annotations in the clauses below and the typing rule for fix given above: The
principal function argument is assumed to have type Y +, recursive calls can only
occur with arguments of type Y , and the result must have type τ(Y +).

pivot : Nat→ ∀Y≤ListN. Y → Y × Y

pivot a []Y
+

= ([]Y
+
, []Y

+
)

pivot a (x :: xsY)Y +
= let (lY, rY) = pivot a xs in

if x < a then ((x :: l)Y +
, rY≤Y +

)
else (lY≤Y +

, (x :: r)Y +
)

qsapp : ∀Y≤ListN. Y → ListN→ ListN

qsapp []Y
+

ys = ys
qsapp (x :: xsY)Y +

ys = let (lY, rY) = pivot x xs in
qsapp lY (x :: qsapp rY ys)

quicksort : ListN→ ListN

quicksort l = qsapp l []
All annotations in the function bodies can be inferred by the type checking algo-
rithm presented in Section 4, once the types of the functions are given.

3. Type System

In the following we formally enrich the type system of Λµ by approximation
types, subtyping, and bounded quantification, as we explained informally in the
last section. This constitutes the language Λ+

µ . Due to the restricted fix-rule, it
types only strongly normalizing terms of Λµ.

3.1. Contexts, Types and Subtyping

Table 2 summarizes types and type-related judgements of Λ+
µ . The set of

raw types is an extension of the types of Λµ by decorations τ+ and bounded
quantifications ∀Y≤µXσ. Y → τ(Y). Additionally to term variables x, wellformed
contexts Γ can bind constrained type variables Y≤µXσ. As before, all variables
bound by Γ are assumed to be distinct. By two judgements, we distinguish two
kinds of types:

itype: Datatypes. These are essentially the positive inductive types of Λµ.
Additionally, they may contain type variables Y which are approximations
Y ≤ µXσ of an inductive datatype µXσ. For example, in Section 7.1 we
will see the type Y list = µX. 1 + Y × X referring to an approximation
type Y. Note that the itype-formation rule for σ → τ swaps positivity and
negativity of variables in σ.

TITLE WILL BE SET BY THE PUBLISHER 13

Raw types:

ρ, σ, τ ::= X | 1 | σ + τ | σ × τ | σ → τ | µXσ | τ
+ | ∀Y≤µXσ. Y → τ(Y)

Judgments:

Γ cxt Γ is a wellformed context.

Γ; ~X; ~X′ ` σ : itype σ is a datatype with free positive variables ~X and free negative variables ~X′.

Γ ` τ : type τ is a wellformed decorated type.

Γ ` ρ ≤ σ ρ is a subtype of σ.

Wellformed contexts Γ cxt.

· cxt

Γ ` τ : type

Γ, x :τ cxt

Γ; ·; · ` µXσ : itype

Γ, Y≤µXσ cxt

Datatypes Γ; ~X; ~Y ` σ : itype.

Γ cxt (Y≤µXσ) ∈ Γ

Γ; ~X; ~X′ ` Y : itype

Γ cxt

Γ; ~X; ~X′ ` 1 : itype

Γ; ~X; ~X′ ` σ : itype Γ; ~X; ~X′ ` τ : itype

Γ; ~X; ~X′ ` σ ? τ : itype
? ∈ {+,×}

Γ cxt

Γ; ~X; ~X′ ` Xi : itype

Γ; ~X′; ~X ` σ : itype Γ; ~X; ~X′ ` τ : itype

Γ; ~X; ~X′ ` σ → τ : itype

Γ; ~X, X; ~X′ ` σ : itype

Γ; ~X; ~X′ ` µXσ : itype

Subtyping I: Γ ` ρ ≤ µXσ.

Γ; ·; · ` µXσ : itype

Γ ` µXσ ≤ µXσ

Γ cxt (Y≤µXσ) ∈ Γ

Γ ` Y ≤ µXσ

Γ ` ρ ≤ µXσ

Γ ` ρ+ ≤ µXσ

Wellformed types Γ ` τ : type.

Γ cxt

Γ ` 1 : type

Γ ` σ : type Γ ` τ : type

Γ ` σ ? τ : type
? ∈ {+,×,→}

Γ ` ρ ≤ µXσ

Γ ` ρ : type

Γ, Y≤µXσ ` τ : type

Γ ` ∀Y≤µXσ. τ : type

Subtyping II: Γ ` ρ ≤ σ.

(Y≤µXσ) ∈ Γ

Γ ` Y ≤ Y

Γ ` µXσ ≤ ρ

Γ ` µXσ ≤ ρ+

Γ ` Y ≤ ρ

Γ ` Y ≤ ρ+

Γ ` τ ≤ ρ

Γ ` τ+ ≤ ρ+

Table 2. Contexts, Types and Subtyping

type: (Decorated) types. They can contain the standard type formers 1,
+, × and →, inductive types µXσ and their approximations ρ—this is
handled via the judgement ρ ≤ µXσ—and bounded quantification. All
free variables Y for a wellformed type Γ ` τ : type are approximations of
datatypes and bound in Γ.

Separation of the types in two classes simplifies the theory: First, we do not need to
define positivity for bounded quantification. Secondly, it brings some stratification

14 TITLE WILL BE SET BY THE PUBLISHER

that simplifies the semantics given in Section 5. For instance, monotonicity is only
required of itypes.

Subtyping of the form ρ ≤ µXσ (I) determines ρ to be an approximation of the
inductive type µXσ. Setting ρ0 := ρ and ρi+1 = (ρi)+, the approximations can
only take the shape Y i or (µXσ)i for some natural number i. We observe that

∃σ. Γ ` ρ ≤ µXσ

is decidable for all Γ and ρ. This entails that the other four judgements are also
decidable (only the rule for wellformed approximations ρ is critical). Furthermore,
if ρ ≤ µXσ and ρ ≤ µXσ′ then σ = σ′.

There is another set of subtyping rules ρ ≤ σ (II) for the cases where the right
hand side σ is an approximation of the shape Y or ρ+. These rules are never
invoked by the type-judgement, but by the subsumption rule (see below). The
presentation of subtyping differs from the one in the previous section, but the
same types are related. The formulation now is syntax-directed; transitivity and
reflexivity for approximations ρ ≤ µXσ are admissible.

The judgements have a number of technical properties. Wellformedness of the
context is a byproduct of the wellformedness of a type or a subtyping relation
between two types in the given context:

Lemma 3.1 (Wellformedness of contexts). If either Γ; ~X; ~X ′ ` σ : itype or Γ `
τ : type or Γ ` ρ ≤ σ then Γ cxt.

Proof. Simultaneously by induction on the derivation. �

All judgements allow weakening with wellformed contexts and substitution of
approximation variables Y by the full inductive type µXσ:

Lemma 3.2 (Type Substitution). Let Γ ` ρ ≤ µXσ. Then
(1) If Γ, Y≤µXσ, Γ′ cxt then Γ, [ρ/Y]Γ′ cxt.
(2) If Γ, Y≤µXσ, Γ′; ~X; ~X ′ ` τ : itype then Γ, [ρ/Y]Γ′; ~X; ~X ′ ` [ρ/Y]τ : itype.
(3) If Γ, Y≤µXσ, Γ′ ` τ : type then Γ, [ρ/Y]Γ′ ` [ρ/Y]τ : type.
(4) If Γ, Y≤µXσ, Γ′ ` τ1 ≤ τ2 then Γ, [ρ/Y]Γ′ ` [ρ/Y]τ1 ≤ [ρ/Y]τ2.

Proof. By simultaneous induction over the derivation. �

3.2. Terms and Type Assignment

Λ+
µ features the same terms as Λµ, but comes with a more precise typing of

inductive data (fold, unfold) and recursive functions (fix). Furthermore there are
typing rules which arise from subtyping and quantification. Table 3 summarizes
the changes to Λµ which have been introduced in Section 2 already. Due to the
richer type grammar, not every context is automatically wellformed and we have
to add the judgement Γ cxt to the two axioms of typing, var and unit. Similarly,
not every type is wellformed, so we also have to refine the injection rules for sums.

TITLE WILL BE SET BY THE PUBLISHER 15

Typing axioms:
Γ cxt x :τ ∈ Γ

Γ ` x : τ
var

Γ cxt

Γ ` () : 1
unit

Sum types:
Γ ` M : σ Γ ` τ : type

Γ ` inl M : σ + τ
inl

Γ ` σ : type Γ ` M : τ

Γ ` inr M : σ + τ
inr

Inductive types:

Γ ` ρ ≤ µX.σ(X) Γ ` M : σ(ρ)

Γ ` fold M : ρ+
fold

Γ ` ρ ≤ µX.σ(X) Γ ` M : ρ+

Γ ` unfold M : σ(ρ)
unfold

Recursive functions:

Γ, Y≤µXσ, g :Y → τ(Y), x :Y + ` M : τ(Y +) Y pos. in τ

Γ ` fix g(x).M : ∀Y≤µXσ. Y → τ(Y)
fix

Subtyping:

Γ ` ρ ≤ σ Γ ` M : ρ

Γ ` M : σ
sub

Γ ` ρ ≤ µXσ Γ ` M : ∀Y≤µXσ. τ(Y)

Γ ` M : τ(ρ)
inst

Neutral values:
Ne 3 U ::= . . . | (fix g(x).V) U

Reduction axiom:
(fix g(x).M) (fold N) −→β [fix g(x).M/g][fold N/x]M

Table 3. Typing and Reduction Rules for Λ+
µ .

The new typing rules for inductive data now also treat inhabitants of approxi-
mations of inductive types. Let us explain the fold-rule for the example of lists: Let
Y ≤ ListN = µX. 1+Nat×X be an approximation of the type of lists over natural
numbers and x : Nat a natural number. Let y : Y a list in this approximation,
i.e., a list with size < n for an unknown n. Then inr(x, y) : 1 + Nat×Y , hence, by
the folding rule, the list Cons(x, y) = fold(inr(x, y)) : Y + is of size < n + 1. The
unfold-rule works analogously. As mentioned in Section 2, the old folding rules (of
Λµ) are a special case of the new ones: set ρ = µXσ.

The reduction axioms of Λ+
µ are the same as for Λµ with the exception of

fixed-point unrolling. To ensure normalization, recursive functions fix g(x).M are
now only reduced if applied to a value fold N of an inductive type. Consequently,
we get a new neutral value (fix g(x).V) U for a value U which is not of the form
fold V . The one-step reduction relation −→ and multi-step reductions −→+, −→∗

and −→∞ are to be understood with regard to the modified axiom.

Example 3.3 (Empty Type). The empty type is definable as the least fixed-point
of the identity function on the type level.

0 := µX.X
abort := fix g(x).g(unfoldx) : 0→ τ

16 TITLE WILL BE SET BY THE PUBLISHER

Its elimination function abort is accepted by the type system in the above form
and is indeed no threat to strong normalization. Why this holds will be informally
explained by the following failed counterexample. It is formally established in
Section 5. Assume a free variable y : µX.X. Then we have fold y : µX.X and the
following reduction sequence.

abort (fold y) = (fix g(x).g(unfoldx)) (fold y)
−→ (fix g(x).g(unfoldx)) (unfold(fold y))
−→ (fix g(x).g(unfoldx)) y

= abort y

We observe that the present definition of abort in Λ+
µ does not produce loops, in

contrast to the function fix g(x).g x which would be the simplest definition of abort
in Λµ.

The typing calculus enjoys the usual properties of wellformedness, restricted
exchange, weakening, strengthening and substitution for term variables x. Substi-
tution also holds for type variables Y :

Lemma 3.4 (Type Substitution). If Γ, Y ≤ µXσ, Γ′ ` M : τ and Γ ` ρ ≤ µXσ
then Γ, [ρ/Y]Γ′ `M : [ρ/Y]τ .

Proof. By induction of the typing derivation and case distinction on the subtyping
derivation. �

Important for the soundness of typing is the fact that all contexts and types
appearing in the typing judgement are wellformed:

Lemma 3.5. If Γ `M : τ then Γ cxt and Γ ` τ : type.

Proof. By induction on the typing derivation. �

Example 3.6 (Tree Ordinals). The second number class can be represented as
the strictly positive inductive type Ord = µX. 1 + (X + (Nat → X)) with three
constructors.

OZero := fold(inl()) : Ord zero ordinal
OSucc := λa. fold(inr(inl a)) : Ord→ Ord successor ordinal
OLim := λf. fold(inr(inr f)) : (Nat→ Ord)→ Ord limit ordinal

Example 3.7 (Representation of ω). Assuming toOrd : Nat → Ord is defined as
the function which converts a natural number Succn(Zero) into its ordinal equiv-
alent OSuccn(OZero) we obtain a representation of the least infinite ordinal ω as
omega = OLim toOrd.

TITLE WILL BE SET BY THE PUBLISHER 17

Example 3.8 (Addition of Tree Ordinals). In Λ+
µ , ordinal addition can be defined

as follows:

oadd : Ord→ ∀Y≤Ord. Y → Ord

oadd := λx. fix oadd(y). case(unfold y) of
inl u ⇒ x

| inr y′ ⇒ case y′ of
inl a ⇒ OSucc(oadd a)

| inr f ⇒ OLim(λn. oadd (f n))

During type checking, the bound variables receive the following types: x : Ord,
oadd : Y → Ord, y : Y +, u : 1, y′ : Y + (Nat → Y), a : Y , f : Nat → Y
and n : Nat. Also, the positivity condition on the result type Ord of recursion is
trivially satisfied, since Y is not mentioned in Ord.

Datatypes with embedded function spaces, like in Example 3.6, are explicitely
excluded in the work on size types by Hughes, Pareto and Sabry [28]. The reason
is that in their their approach, size annotations are interpreted as ordinals ≤ ω.
But Example 3.7 needs larger ordinals, as explained in Section 5.

Translation contexts ∆ tcxt.

· tcxt

∆ tcxt · ; ·; · ` µXσ : itype

∆, Y≤µXσ tcxt
Y 6∈ ∆

Approximation erasure in types ∆ ` τ ||〉 τ ′.

∆ ` 1 ||〉 1

X 6∈ ∆

∆ ` X ||〉 X

∆ ` σ ||〉 σ′

∆ ` µXσ ||〉 µXσ

∆ ` ρ ||〉 ρ′ ∆ ` σ ||〉 σ′

∆ ` ρ ? σ ||〉 ρ′ ? σ′
? ∈ {+,×,→}

∆ ` ρ ≤ µXσ

∆ ` ρ ||〉 µXσ

∆ ` σ ||〉 σ′ ∆, Y≤µXσ′ ` τ ||〉 τ ′

∆ ` ∀Y≤µXσ.τ ||〉 τ ′

Approximation erasure in contexts Γ ||〉 Γ′; ∆.

· ||〉 · ; ·
Γ ||〉 Γ′; ∆ ∆ ` τ ||〉 τ ′

Γ, x :τ ||〉 Γ′, x :τ ′; ∆

Γ ||〉 Γ′; ∆ ∆ ` σ ||〉 σ′

Γ, Y≤µXσ ||〉 Γ′; ∆, Y≤µXσ′

Table 4. Erasure of Approximation Types.

3.3. Weak Type Soundness of Λ+
µ

In this section, we show that in the extended system Λ+
µ , programs still cannot

go wrong. Unfortunately, the type preservation property fails for the new type

18 TITLE WILL BE SET BY THE PUBLISHER

system, since our notion of subtyping is too weak. Consider the following typing
derivation:

M : σ(ρ1)

fold M : ρ+
1

ρ1 ≤ ρ2

ρ+
1 ≤ ρ+

2

fold M : ρ+
2

unfold(fold M) : σ(ρ2)

Since unfold(fold M) −→β M , type preservation requires that M : σ(ρ2). However,
our syntactic subtyping lacks the necessary property σ(ρ1) ≤ σ(ρ2) for arbitrary
ρ1 ≤ ρ2 and σ(X) in which X appears only positively4. One way to overcome
the problem would be to add the necessary closure properties to the subtyping
relation, as we have done in other work [3]. Instead, we make use of the fact
that we have the simpler type system Λµ which already ensures that well-typed
programs cannot go wrong. We show that each typing derivation of Λµ can be
turned into a typing derivation of Λ+

µ by replacing approximation types by the
full inductive types. Since the progress property—Theorem 1.1(2)—also holds for
the slightly restricted reduction relation and the slightly enlarged value set of Λ+

µ ,
type soundness of Λµ ensures that Λ+

µ programs cannot get stuck as well.
Table 4 specifies how to erase approximations in both types and contexts. The

judgement ∆ tcxt singles out such contexts ∆—called translation contexts—which
map approximation type variables Y into closed approximation-free inductive
types µXσ. Given an approximation context ∆ and a Λ+

µ -type τ with ∆ ` τ : type,
judgement ∆ ` τ ||〉 τ ′ outputs a wellformed Λµ-type τ ′ in which all approxima-
tion types ρ ≤ µXσ have been replaced by the full inductive type µXσ. Similarly,
Γ ||〉 Γ′; ∆ separates a wellformed Λ+

µ -context Γ cxt into a approximation-free
Λµ-context Γ′ and a translation context ∆ tcxt.

Theorem 3.9 (Soundness of Λ+
µ -typing with regard to Λµ-typing). If Γ `M : τ

in Λ+
µ , Γ ||〉 Γ′; ∆ and ∆ ` τ ||〉 τ ′, then Γ′ `M : τ ′ in Λµ.

Proof. By induction on Γ `M : τ . The proof amounts to removing all applications
of subsumption and instantiation from the Λ+

µ typing derivation. �

Corollary 3.10 (Weak Type Soundness for Λ+
µ). If Γ ` M : τ in Λ+

µ , then
M −→∞ V .

Proof. By combining the last theorem with Corollary 1.2. �

Since we are lacking type preservation in Λ+
µ , we cannot show Γ ` V : τ and

therefore only obtain the weak type soundness property. This is enough for our
purposes; in Section 5 we show that infinite reduction sequences are excluded by
the advanced type system—with the result that each well-typed term reduces to
a value in Λ+

µ .

4Semantically, this property does hold and is the content of Lemma 5.5.

TITLE WILL BE SET BY THE PUBLISHER 19

Terms.
L+

µ 3 M, N ::= · · · | λx :σ.M | (M :τ) | let x=N in M

Judgments.
Γ ` τ C τ ′ Extended subtyping.
Γ ` M ↓ τ The type of term M is inferred as τ .
Γ ` M ⇑ τ Term M is checked against type τ .

Type inference.

x :τ ∈ Γ

Γ ` x ↓ τ
↓var

Γ ` σ : type Γ, x :σ ` M ↓ τ

Γ ` λx :σ.M ↓ σ → τ
↓lam

Γ ` M ↓ σ → τ Γ ` N ⇑ σ

Γ ` M N ↓ τ
↓app

Γ ` () ↓ 1
↓unit

Γ ` M ↓ σ Γ ` N ↓ τ

Γ ` (M, N) ↓ σ × τ
↓pair

Γ ` M ↓ σ × τ

Γ ` fst M ↓ σ
↓ fst

Γ ` M ↓ σ × τ

Γ ` snd M ↓ τ
↓ snd

Γ ` M ↓ ρ+ Γ ` ρ ≤ µX.σ(X)

Γ ` unfold M ↓ σ(ρ)
↓ unfold+ Γ ` M ↓ ρ Γ ` ρ ≤ µX.σ(X)

Γ ` unfold M ↓ σ(ρ)
↓ unfold

Γ ` τ : type Γ ` M ⇑ τ

Γ ` (M :τ) ↓ τ
↓ann

Γ ` M ↓ ∀Y≤µXσ. Y → τ Y 6∈ FV(τ) Γ ` N ⇑ µXσ

Γ ` M N ↓ τ
↓appµ1

Γ ` M ↓ ∀Y≤µXσ. Y → τ(Y) Γ ` N ↓ ρ Γ ` ρ ≤ µXσ

Γ ` M N ↓ τ(ρ)
↓appµ2

Type checking.

Γ, x :σ ` M ⇑ τ

Γ ` λx.M ⇑ σ → τ
⇑lam

Γ ` M ⇑ σ

Γ ` inl M ⇑ σ + τ
⇑ inl

Γ ` M ⇑ τ

Γ ` inr M ⇑ σ + τ
⇑ inr

Γ ` N ↓ σ1 + σ2 Γ, xi :σi ` Mi ⇑ ρ

Γ ` case N of inl x1 ⇒ M1 | inr x2 ⇒ M2 ⇑ ρ
⇑ case

Γ ` N ↓ σ Γ, x :σ ` M ⇑ τ

Γ ` let x=N in M ⇑ τ
⇑ let

Γ ` ρ ≤ µX.σ(X) Γ ` M ⇑ σ(ρ)

Γ ` fold M ⇑ ρ+
⇑ fold

Γ ` M ⇑ σ(µX.σ(X))

Γ ` fold M ⇑ µX.σ(X)
⇑ foldµ

Γ ` M ⇑ σ Γ ` N ⇑ τ

Γ ` (M, N) ⇑ σ × τ
⇑pair

Γ, Y≤µXσ, g :Y → τ, x :Y + ` M ⇑ τ

Γ ` fix g(x).M ⇑ µXσ → τ
⇑ fix−

Γ, Y≤µXσ, g :Y → τ(Y), x :Y + ` M ⇑ τ(Y +) Y pos. in τ(Y)

Γ ` fix g(x).M ⇑ ∀Y≤µXσ. Y → τ(Y)
⇑ fix

Γ ` M ↓ ∀Y≤µXσ. Y → τ(Y) match τ ′ with τ(Y) =⇒ Y = ρ Γ ` ρ ≤ µXσ Γ ` N ⇑ ρ

Γ ` M N ⇑ τ ′
⇑appµ

Γ ` M ↓ σ → τ Γ ` τ C τ ′ Γ ` N ⇑ σ

Γ ` M N ⇑ τ ′
⇑app

Direction reversal.
Γ ` M ↓ τ Γ ` τ C τ ′

Γ ` M ⇑ τ ′
⇑↓

Extended subtyping.

Γ ` τ C τ
Crefl

Γ ` ρ ≤ σ

Γ ` ρ C σ
C≤

Γ ` ρ ≤ µXσ

Γ ` ∀Y≤µXσ. Y→τ(Y) C ρ → τ(ρ)
Cinst

Table 5. Type Checking.

20 TITLE WILL BE SET BY THE PUBLISHER

4. Type Checking

In order to use our type system as a termination checker, we need a suitable
type checking algorithm. One possibility would be to extend the Hindley-Milner
algorithm to bounded quantification and approximation types. This algorithm
would produce a set of existential type variables together with a set of equations
these variables have to satisfy. The problem with such an algorithm (as imple-
mented in SML 1997, for instance) is that in case of unsolvable equations, the
location “responsible” (from a human perspective) for the type error is hard to
locate.5

Pierce and Turner [42] advocate local type inference, which restricts propagation
of type information to adjacent nodes of the syntax tree of the term which is
to be type-checked—in contrast to Hindley-Milner which collects type equations
globally. Local type inference is based on bidirectional type checking, a folklore
method which is for instance used by Coquand [18] for dependent types and Davies
and Pfenning [20] for intersection types. Recently, Dunfield and Pfenning [21] have
extended this method to tridirectional checking.

Bidirectional type checking is incomplete, it can decide typing only for some
terms—in the case of the simply-typed lambda-calculus, it is exactly the normal
terms. Non-normal terms need type annotations to type-check. Hence, we extend
our calculus Λ+

µ by some means to aid the type-checker and obtain the language
L+

µ . The new constructs allow annotation of bound variables λx : σ.M and of
whole terms (M : τ). Additionally, we introduce let-binding let x = N inM which
has the same operational meaning as (λx.M) N , but better behavior w.r.t. type
checking.

We adapt bidirectional type checking to our calculus Λ+
µ , the rules are listed in

Table 5. The checking judgement Γ ` M ⇑ τ requires all of Γ, M and τ as input
and its generating rules are to be read upwards as the arrow suggests. It is defined
simultaneously with type inference Γ ` M ↓ τ , which computes the type τ from
given Γ and M—the rules for inference should be read downwards.

The general principle of bidirectional checking is that the type of variables and
eliminations can be inferred: rules ↓var, ↓ fst, ↓ snd, ↓ unfold, ↓app and ↓appµ1. In
contrast, the type of introductions must be checked against: rules ⇑lam, ⇑pair,
⇑ fold, ⇑ inl, ⇑ inr, ⇑ fix− and ⇑ fix (annotated lambda-abstractions λx :σ.M are an
exception and admit inference by rule ↓lam). The rule ⇑↓ allows one to switch from
checking mode into inference mode and should be applied if no other checking rule
matches. In this case, the infered type τ must be more general than the type τ ′

supplied to the checking judgement. This is expressed be the extended subtyping
relation τ C τ ′, which encompasses subtyping and instantiation. Hence, the non-
deterministic character of subsumption in the typing judgement is tamed in the
type checking algorithm by shifting applications of the subsumption rule to the
specific point where inference and checking meet.

5Recently, type inference algorithms which give better error messages have been put forward
by Haack and Wells [24] and Yang, Michaelson and Trinder [51].

TITLE WILL BE SET BY THE PUBLISHER 21

A positive abnormality to the introduction/elimination dichotomy are tuples:
They permit inference although they are constructors (↓unit, ↓pair). One of the
negative abnormalities is sum-elimination: The type of the side clauses in the
case-construct is arbitrary, and cannot be inferred in general (⇑ case). Let-binding
(⇑ let) can be seen as elimination of a unary sum and is therefore treated like case.
Another problem occurs with bounded quantification: In the rule ↓appµ2, the size
ρ of the argument needs to be inferred to give a size-bound τ(ρ) on the result of the
application. If the size of the result is known, it can be checked (rule ⇑appµ). This
rule involves simple matching on the level of types: τ ′ = τ(ρ) for some unknown ρ.
However, since types are first-order expressions without reduction, the matching
problem is decidable.

Disregarding the abnormalities, the algorithm can check the types of most nor-
mal expressions, which is the kind of expressions that dominates in practical pro-
gramming. Non-normal expressions need to be annotated with their type at some
sensible position (rules ↓ann and ↓lam). All top-level expressions and all recursive
functions, need to be defined with their type. This is not too heavy a load for the
programmer; in Haskell it is quite common.

Example 4.1 (Type-Checkable Version of sum Example). To make the function
sum from Section 1 acceptable by the type checker we need to introduce one
annotation. Using the let construct, we can write it as follows in L+

µ :

sum : ListN→ Nat
sum := fix f(l). case (unfold l) of

inlu ⇒ Zero
| inr p ⇒ let sum′ = (fix g(n). case (unfoldn) of

inlu ⇒ f (snd p)
| inr n′ ⇒ Succ(g n′))

: Nat→ Nat
in sum′(fst p)

The rules have been implemented in the higher-order logical framework Twelf
[39] to yield a prototypical type checker which is available on the homepage of the
author [4]. It is easy to turn the rules into a deterministic algorithm, namely into
two mutually recursive functions inf and chk with the following specification.

inf (Γ,M) =
{

τ if Γ `M ↓ τ
error otherwise

chk (Γ,M, τ) =
{

ok if Γ `M ⇑ τ
error otherwise

Function inf is defined by case distinction on M and function chk by cases on both
M and τ . The tests and recursive calls necessary in each case can be read off
the rules in Table 5. In some cases several rules seem applicable. This source of
non-determinism can be resolved by fusing the respective rules into a single one:

22 TITLE WILL BE SET BY THE PUBLISHER

(1) Case inf (Γ, unfoldM), rules ↓ unfold+ and ↓ unfold: After inferring the
type ρ of M , distinguish whether ρ is of shape ρ+ or not.

(2) Case inf (Γ, M N), rules ↓app, ↓appµ1 and ↓appµ2: Distinguish on the
infered type of M .

(3) Case chk (Γ, M N, τ ′), rules ⇑appµ and ⇑app: similarly.
(4) Case chk (Γ, M, τ ′), rule ⇑↓: Switch to inference only if no checking rule

is applicable.
The resulting function chk(Γ,M, τ) checks types in time linear in the size of the in-
put expression M plus type τ (modulo context lookup, type matching and subtype
checking).

Table 6 shows a trace of the type checker as it verifies the welltypedness of the
ordinal addition function oadd. The first column displays which rules have fired,
the second column lists the hypotheses which the rules have added to the context
and the third column show the new state of the checker. To simplify presentation
we have ignored the inl branches of the case expressions in this trace.

The algorithm is not complete, but it can check many interesting programs, for
instance, all examples of this article. In the following we show soundness of the
algorithm.

Definition 4.2 (Erasure). Let |M | ∈ Λ+
µ denote the result of erasing all type

annotations and let-bindings from M ∈ L+
µ . We define | · | by

|λx :σ.M | = λx.|M |,
|(M :τ)| = |M |, and
|let x=N inM | = (λx.|M |) |N |,

adding congruences for all other term constructors.

Proposition 4.3 (Soundness of Type Checking). Let Γ be a wellformed context,
M a term of L+

µ and τ a type.

(1) If Γ `M ↓ τ , then Γ ` τ : type and Γ ` |M | : τ .
(2) If Γ `M ⇑ τ and Γ ` τ : type, then Γ ` |M | : τ .

Proof. Simultaneously by induction on Γ `M ↓⇑ τ . For example:
Case

Γ `M ↓ ρ Γ ` ρ ≤ µX.σ(X)
Γ ` unfoldM ↓ σ(ρ)

↓ unfold

Γ `M : ρ by induction hypothesis
Γ ` ρ ≤ ρ+ from assumption by subtyping
Γ `M : ρ+ by subsumption rule
Γ ` unfoldM : σ(ρ) by unfolding rule

Case

Γ `M ↓ ∀Y≤µXσ. Y → τ Y 6∈ FV(τ) Γ ` N ⇑ µXσ

Γ `M N ↓ τ
↓appµ1

TITLE WILL BE SET BY THE PUBLISHER 23

oadd : Ord→ ∀Y≤Ord. Y → Ord

oadd := λx. fix oadd(y). case(unfold y) of
inl u ⇒ x

| inr y′ ⇒ case y′ of
inl a ⇒ OSucc(oadd a)

| inr f ⇒ OLim(λn. oadd (f n))

Γ0 := OZero :Ord, OSucc :Ord→ Ord,OLim : (Nat→ Ord)→ Ord

Rule Context ext. Judgement
start Γ0 λx. fix . . . ⇑ Ord→ ∀Y≤Ord. Y → Ord

⇑lam x : Ord fix oadd(y) . . . ⇑ ∀Y≤Ord. Y → Ord

⇑ fix Y ≤ Ord

oadd : Y→Ord

y : Y + case(unfold y) . . . ⇑ Ord

↓var y ↓ Y +

↓ unfold unfold y ↓ 1 + (Y + (Nat→ Y))
⇑ case y′ :Y + (Nat→Y) case y′ . . . ⇑ Ord

↓var y′ ↓ Y + (Nat→ Y)
⇑ case f : Nat→Y OLim(λn . . .) ⇑ Ord

⇑↓, ↓var OLim ↓ (Nat→ Ord)→ Ord

↓app λn. oadd . . . ⇑ Nat→ Ord

⇑lam n : Nat oadd (f n) ⇑ Ord

⇑↓, ↓var oadd ↓ Y → Ord

↓app f n ⇑ Y

⇑↓, ↓var f ↓ Nat→ Y

↓app n ⇑ Nat

⇑↓, ↓var n ↓ Nat

Table 6. Example Run of Type Checker.

Γ `M : ∀Y≤µXσ. Y → τ by induction hypothesis
Γ `M : µXσ → τ by instantiation
Γ ` µXσ → τ : type by Lemma 3.5
Γ ` N : µXσ by induction hypothesis
Γ `M N : τ by application rule

The other cases are similarly straightforward. �

24 TITLE WILL BE SET BY THE PUBLISHER

Most of the soundness proof has been formally verified in Twelf and can be
obtained from the author [4]. For the remainder of this article, we forget about
the additional constructs in L+

µ and return to our core calculus Λ+
µ .

5. Strong Normalization

In this section, we present a semantical soundness proof for Λ+
µ . More precisely,

we assign to each wellformed type τ a set [[τ]] of strongly normalizing terms such
that each term M which can be assigned type τ inhabits [[τ]]. The consequence is
that such M are strongly normalizing, which in combination with the weak type
soundness result of Section 3.3 guarantees that they reduce to values V in a finite
number of steps.

Proofs of strong normalization have a long tradition and several methods have
been developed. We use the saturated sets method based on the notion of weak
head reduction as found e.g. in Luo [31] and Altenkirch [6].

5.1. Preliminaries: Saturated Sets

The set of strongly normalizing terms SN ⊆ Λ+
µ is defined inductively by the

following rule:
∀M ′ ∈ Λ+

µ . M −→M ′ ⇒M ′ ∈ SN

M ∈ SN
In other words, SN is the wellfounded part of the set of terms w. r. t. the reduction
relation −→. All variables x are strongly normalizing as well as all subterms of
strongly normalizing terms. The set SN is closed under reduction.

The notion of weak head reduction can be elegantly defined with evaluation
contexts E[•], which are generated by the following grammar:

E[•] ::= • | E[•] M | fst E[•] | sndE[•]
| (case E[•] of inl x1 ⇒M1 | inr x2 ⇒M2)

| unfoldE[•] | (fix g(x).M) E[•]

Weak head reduction is reduction of the form E[M0] −→ E[M1] where M0 −→β

M1. In this situation, we say that E[M0] has a head redex M0. Terms of the form
E[x] are called neutral, they possess no head redex and produce no head redex
if substituted for some variable into some term. In the process of normalization,
weak head redexes E[M0] must be resolved, there is no way of skipping them by
performing other reductions first. This is expressed by the following standardiza-
tion lemma (Altenkirch [6]).

Lemma 5.1 (Weak Standardization). If M0 −→β M1 and E[M0] −→ N , then
either N = E[M1] or N = E′[M ′

0] for some E′[•], M ′
0 and there exists an M ′

1 such
that M ′

0 −→β M ′
1 and E[M1] −→∗ E′[M ′

1].

TITLE WILL BE SET BY THE PUBLISHER 25

Proof. By induction on the generation on E[•], and in the base case E[•] = • by
case distinction on M0 −→ N . �

A consequence of weak standardization is that the set SN is closed under weak
head expansion.

Lemma 5.2 (Weak Head Expansion). If E[M1] ∈ SN then for all M0 ∈ SN with
M0 −→β M1 it holds that E[M0] ∈ SN.

Proof. By simultaneous induction on E[•],M0 ∈ SN we show N ∈ SN for all N
with E[M0] −→ N , using Lemma 5.1. �

A set of terms P ⊆ Λ+
µ is called saturated, written P ∈ SAT , if it contains

only strongly normalizing terms, all strongly normalizing neutral terms, and if it
is closed under weak head expansion. The saturation of a set P is defined as the
closure under the following rules:

M ∈ P

M ∈ P ∗
E[x] ∈ SN

E[x] ∈ P ∗
M ∈ SN M −→β M ′ E[M ′] ∈ P ∗

E[M] ∈ P ∗

For sets of terms P , Q we define the function space

P → Q := {M ∈ SN : ∀N ∈ P. M N ∈ Q}.

In the following we reuse the well-known and easily verified fact that the function
space constructor → operates on saturated sets, i.e., for P,Q ∈ SAT also P →
Q ∈ SAT .

5.2. Type Interpretation

In this section, we give an interpretation [[τ]] for every wellformed type τ . For
datatypes σ, the semantics [[σ]] is a monotone operator on saturated sets. In
particular, [[µX.σ]] is the fixpoint of an operator derived from [[σ]]. In previous
work [5], we obtained this fixpoint by the theorem of Knaster and Tarski, resp.
by accessibility inductive definitions. This time we follow an idea of Mendler [35]
(reused by Amadio and Coupet-Grimal [7]) and reach the fixpoint by transfinite
iteration. This technique enables us to give an interpretation to approximation
types ρ ≤ µX.σ.

Let O be some set which we call origin set and Φ a monotonic operator on sets.
For an ordinal number α we define the α-iterate Φα by transfinite recursion on α:

Φ0 = O
Φα+1 = Φ(Φα)

Φλ =
⋃

α<λ Φα for λ limit ordinal

If O ⊆ Φ(O), then the hierarchy (Φα) is cumulative, that is, Φα ⊆ Φβ for all α < β.
A cumulative hierarchy, which is also called a chain, will become stationary at
some point in the iteration process, i.e., it reaches a fixed-point. Since we consider

26 TITLE WILL BE SET BY THE PUBLISHER

sets over a countable domain, the fixed-point will be reached latest at the least
uncountable ordinal Ω and we have

Φ(ΦΩ) = ΦΩ =
⋃

α<Ω

Φα.

If O is least in the considered collection of sets, then ΦΩ is guaranteed to be the
least fixed point. In the following, we consider operators on saturated sets and fix
O = ∅∗ to be the least saturated set, namely the saturation of the empty set.

In order to define the interpretation [[τ]] of type τ we need a valuation θ for the
free type variables occurring in τ . Since we later also interpret terms which have
free term variables, we introduce valuations θ : Γ which provide a substitute for
all variables bound in context Γ by the following rules:

· : ·
θ : Γ M ∈ Λ+

µ

(θ, x 7→M) : (Γ, x :τ)
θ : Γ P ⊆ Λ+

µ

(θ, Y 7→P) : (Γ, Y≤µXσ)

For context triples, θ : (Γ; ~X; ~X ′) holds if θ additionally provides a set of terms Q

for each variable in ~X, ~X ′.
Note that θ : Γ only expresses that dom(θ) = dom(Γ) and that each term vari-

able is mapped to a term and each type variable to a set of terms. We do not
require that the assigned terms are type-correct nor are there any conditions on
the assigned term sets. We do not even require Γ to be a well-formed context.
Still, this notion of valuation is sufficient to define a type interpretation and prove
monotonicity of this interpretation for all itypes, which are positive by definition.
In the next section, we will sharpen our requirements on valuations by an addi-
tional judgement θ ∈ [[Γ]].

Now to the semantics of types: Let τ be a type with free type variables in
∆ = (Γ; ~X; ~X ′) and θ : ∆. We define the interpretation [[τ]]θ by recursion on τ :

[[Z]]θ = θ(Z)

[[1]]θ = {()}∗

[[σ + τ]]θ = {inlM : M ∈ [[σ]]θ}∗ ∪ {inr M : M ∈ [[τ]]θ}∗

[[σ × τ]]θ = {(M1,M2) : M1 ∈ [[σ]]θ, M2 ∈ [[τ]]θ}∗

[[σ → τ]]θ = [[σ]]θ → [[τ]]θ

[[µXσ]]θ = ΦΩ where Φ = ΦX.σ,θ

[[ρ+]]θ = Φα+1 if [[ρ]]θ = Φα

[[∀Y≤µXσ. τ]]θ =
⋂

α<Ω

[[τ]](θ, Y 7→Φα) where Φ = ΦX.σ,θ

and ΦX.σ,θ(Q) = {fold M : M ∈ [[σ]](θ, X 7→Q)}∗

TITLE WILL BE SET BY THE PUBLISHER 27

It can be shown that for →-free inductive types the least-fixed point is reached at
ordinal ω. Examples include Nat = µX. 1 + X and ListN = µX. 1 + Nat×X, but
also the empty type.

Example 5.3 (Interpretation of the Empty Type). A built-in empty type 0 would
be interpreted as O. In our case, 0 is defined and [[0]]θ = [[µX.X]]θ = Φω

X.X,θ =
(Q 7→ {fold M : M ∈ Q}∗)ω. But we can show that [[0]] is extensionally equal
to O, i.e., for all M ∈ [[0]] exists some N ∈ O such that abort M −→∗ abort N
(recall that abort = fix g(x). g (unfoldx)). The proof proceeds by induction on the
approximations of [[0]] with a side induction on the saturation and makes use of
the fact that abort (fold N) −→+ abort N .

Inductive types involving function spaces can have a closure ordinal greater
than ω. One instance is the type of tree ordinals Ord introduced in Example 3.6.

Example 5.4. [Ord Requires Iteration Beyond ω] Let Φ denote the generating
operator for type Ord. Then the conversion function from natural numbers to tree
ordinals toOrd ∈ [[Nat]]→ Φα if and only if α ≥ ω. Hence the least approximation
stage that omega = OLim toOrd inhabits is ω + 1.

We continue by showing that the interpretation of a positive type is a monotone
operator. But first, observe that the interpretation is preserved under substitution,
that is, for types σ(X) and ρ it holds that

[[σ]](θ, (X 7→ [[ρ]]θ), θ′) = [[σ(ρ)]](θ, θ′).

Lemma 5.5 (Monotonicity of itype s). Let Γ; ~X; ~X ′ ` σ : itype and θ, θ′ be valu-
ations with θ(Y) = θ′(Y) for all Y ∈ Γ, θ(Xi) ⊆ θ′(Xi) for all 1 ≤ i ≤ | ~X| and
θ(X ′

j) ⊇ θ′(X ′
j) for all 1 ≤ j ≤ | ~X ′|. Then [[σ]]θ ⊆ [[σ]]θ′ and Φα

X.σ,θ ⊆ Φα
X.σ,θ′ for

all ordinals α.

Proof. By induction on Γ; ~X; ~X ′ ` σ : itype. �

For datatypes σ : itype, the interpretation [[σ]]θ is monotone in θ (in the sense
of the previous lemma), hence also the operator ΦX.σ,θ, which additionally has
the property O ⊆ ΦX.σ,θ(O). This entails that the fixpoints exist and the iterates
(Φα

X.σ,θ) form a cumulative hierarchy. The following fact will be important for the
proof of strong normalization: If a data value inhabits an approximation type, it
is already found in a successor iterate.

Lemma 5.6. If fold M ∈ Φα then fold M ∈ Φβ+1 for some β < α.

Proof. By transfinite induction on α. �

5.3. Proof of Strong Normalization

To complete the proof of strong normalization, we first ensure that the inter-
pretation of every type is a saturated set. Then we show that each well-typed
term inhabits the interpretation of its type and therefore is strongly normalizing.

28 TITLE WILL BE SET BY THE PUBLISHER

Wellformed contexts Γ cxt are interpreted as the set of all sound valuations. We
define θ ∈ [[Γ]] inductively by the following rules.

· ∈ [[·]]
θ ∈ [[Γ]] M ∈ [[τ]]θ
(θ, x 7→M) ∈ [[Γ, x :τ]]

θ ∈ [[Γ]] Φ = ΦX.σ,θ

(θ, Y 7→Φα) ∈ [[Γ, Y≤µXσ]]

We now can verify that our subtyping calculus is sound:

Lemma 5.7 (Soundness of Subtyping). If Γ ` ρ ≤ σ then for all θ ∈ [[Γ]] it holds
that

[[ρ]]θ = Φα ⊆ Φβ = [[σ]]θ

for some operator Φ and some ordinals α and β.

Proof. By induction over the derivation of Γ ` ρ ≤ σ. �

Note that in the previous lemma we do not always have α ≤ β, since subtyping
accepts (µXσ)+ ≤ µXσ, for example.

Lemma 5.8 (Saturatedness of Type Interpretations). If Γ ` τ : type then for all
θ ∈ [[Γ]] we have [[τ]]θ ∈ SAT .

Proof. State similar propositions for the other three type-related judgements on
Table 2 and prove all propositions by simultaneous induction. �

Lemma 5.9 (Wellformed Contexts are Satisfiable). If Γ cxt then there exists
some θ ∈ [[Γ]].

Proof. By induction on Γ cxt. For the empty context, we take the empty valuation.
In case Γ = (Γ′, x : τ) with Γ′ ` τ : type we know by Lemma 3.1 that Γ′ cxt and
obtain a θ′ ∈ [[Γ′]] by induction hypothesis. Since by the last lemma [[τ]]θ′ is a
saturated set, it contains x and hence θ = (θ′, x 7→x) is the desired valuation for
Γ. In the remaining case Γ = (Γ′, Y ≤ µXσ) we similarly obtain a θ′ ∈ [[Γ′]] by
induction hypothesis and extend it by the mapping Y 7→ [[µXσ]]θ′. �

Now we have assembled all the pieces to prove strong normalization.

Theorem 5.10 (Soundness of Typing). If Γ `M : τ then for all θ ∈ [[Γ]] we have
Mθ ∈ [[τ]]θ.

Proof. By induction on Γ ` M : τ . We only show the interesting cases of fold,
unfold and fix.

Case
Γ ` ρ ≤ µX.σ(X) Γ `M : σ(ρ)

Γ ` fold M : ρ+

From the assumption follows [[ρ]]θ = Φα for Φ(Q) = {fold N : N ∈
[[σ]](θ, X 7→Q)}∗ and some α. By induction hypothesis, Mθ ∈ [[σ]](θ, X 7→
Φα). Thus, fold Mθ ∈ Φα+1 = [[ρ+]]θ.

TITLE WILL BE SET BY THE PUBLISHER 29

Case
Γ ` ρ ≤ µX.σ(X) Γ `M : ρ+

Γ ` unfoldM : σ(ρ)
As in the last case, [[ρ]]θ = Φα. By induction hypothesis, Mθ ∈ Φα+1. We
show unfoldMθ ∈ [[σ(ρ)]]θ by side induction on the saturation of Φα.

Subcase Mθ = E[x]. Then unfoldMθ = unfoldE[x] is neutral and strongly
normalizing and therefore element of [[σ(ρ)]]θ.

Subcase Mθ = E[M0], M0 ∈ SN, M0 −→β M1 and E[M1] ∈ Φα. By side
induction hypothesis, unfoldE[M1] ∈ [[σ(ρ)]]θ and by saturation also
unfoldE[M0] ∈ [[σ(ρ)]]θ.

Subcase Mθ = fold N with N ∈ [[σ]](θ, X 7→ Φα) = [[σ(ρ)]]θ. Since we
can reduce unfold(fold N) −→β N , by saturatedness it follows that
unfoldMθ ∈ [[σ(ρ)]]θ.

Case
Γ, Y≤µXσ, g :∀Y → τ(Y), x :Y + `M : τ(Y +)

Γ ` fix g(x).M : ∀Y≤µXσ. Y → τ(Y)
where Y appears only positively in τ . Let Φ = ΦX.σ,θ. Then [[∀Y ≤
µXσ. Y → τ(Y)]]θ =

⋂
α<Ω(Φα → [[τ]](θ, Y 7→ Φα)). We show for all

ordinals α,

(fix g(x).M)θ ∈ Φα → [[τ]](θ, Y 7→Φα)

by a first side induction on α. Fix the ordinal α and some term N ∈ Φα.
We show

(fix g(x).M)θ N ∈ [[τ]](θ, Y 7→Φα)
by a second side induction on the saturation of Φα.

Subcase N = E[x]. Then (fix g(x).Mθ) E[x] is neutral and in [[τ]](θ, Y 7→Φα).
Subcase N = E[N1] with N1 −→β N2 and E[N2] ∈ Φα. By the second side

induction hypothesis, (fix g(x).Mθ) E[N2] ∈ [[τ]](θ, Y 7→Φα), and by
saturatedness also (fix g(x).Mθ) E[N1] ∈ [[τ]](θ, Y 7→Φα).

Subcase N = fold N ′ ∈ Φβ+1 ⊆ Φα (with Lemma 5.6). By the first side
induction hypothesis fix g(x).M ∈ (Φβ → [[τ]](θ, Y 7→Φβ)). Hence,

θ′ = (θ, Y 7→Φβ , g 7→ fix g(x).M, x 7→N)

∈ [[Γ, Y≤µXσ, g :Y → τ(Y), x :Y +]]

By main induction hypothesis

Mθ′ ∈ [[τ(Y +)]]θ′ = [[τ]](θ, Y 7→Φβ+1)

⊆ [[τ]](θ, Y 7→Φα),

since Y appears only positively in τ . We can conclude by saturation,
since

(fix g(x).M)θ (fold N) −→β Mθ′. �

30 TITLE WILL BE SET BY THE PUBLISHER

Remark 5.11 (Transfinite Induction). The soundness proof for the fixed point
rule uses a course-of-value transfinite induction on α, using the fact that new
canonical inhabitants of an inductive datatype are only found at successor iterates
(Lemma 5.6). It is quite instructive to consider the less economic proof by a simple
transfinite induction. In this case, the base case α = 0 holds since Φ0 contains no
canonical forms fold N , the step case α α + 1 follows from the main induction
hypothesis and the limit case α = λ needs monotonicity of [[τ(Y)]] which is ensured
by the positivity condition for τ .

Corollary 5.12 (Strong Normalization). If Γ `M : τ then M ∈ SN.

Proof. By Lemma 3.5 the context Γ is wellformed. This entails that there exists a
valuation θ ∈ [[Γ]], as constructed in the proof of Lemma 5.9, which maps all term
variables to themselves. Hence Mθ = M , and by soundness of typing M ∈ [[τ]]θ ⊆
SN, since the interpretation of τ is saturated. �

Remark 5.13 (Type-Based Termination in DML). Xi’s [50] more sophisticated
type system admits inconsistent contexts Γ. Consequently, strong normalization
does not hold although he can prove soundness of typing analogously to our The-
orem 5.10. But since in his case, a θ ∈ [[Γ]] as in the last proof does not always
exist, he can show normalization only for closed terms (empty Γ).

Strong normalization excludes infinite reduction sequences. More directly, we
can show that each possibly infinite reduction sequence is in fact finite. As a
consequence, each well-typed Λ+

µ -program reduces to a value.

Lemma 5.14 (Termination). If M ∈ SN and M −→∞ M ′ then M −→∗ M ′.

Proof. By induction on M ∈ SN and cases on M −→∞ M ′. �

Corollary 5.15 (Reduction to Value). If Γ `M : τ then M −→∗ V .

Proof. By Corollary 1.2, M −→∞ V . Since M ∈ SN by Corollary 5.12, Lemma 5.14
implies M −→∗ V . �

6. Extensions

Two issues are briefly discussed in this section: The positivity requirement for
result types in the recursion rule and approximations of coinductive types. Both
topics are treated rather informally and incompletely, more systematic approaches
can be found in Pareto [37], Barthe et al. [9] and Abel [3].

6.1. On Non-Monotonic Result Types of Recursion

In Section 2 we promised to motivate why we required the result type τ(Y) of
recursion to be positive in Y . In his first presentation, Giménez [23] had no such
requirement, it was added later [9]. Indeed, if we simply drop the side condition,

Γ, Y≤µXσ, g :Y → τ(Y), x :Y + `M : τ(Y +)
Γ ` fix g(x).M : ∀Y≤µXσ. Y → τ(Y)

TITLE WILL BE SET BY THE PUBLISHER 31

we can type non-terminating functions, which we will demonstrate in the following.
Recall the type Nat = µX. 1+X with the defined constructors Zero and Succ from
Section 1. We introduce an abbreviation

maybe : (1 + σ)→ τ → (σ → τ)→ τ
maybe := λtλbλf. case t of inl ⇒ b | inr a⇒ f a

for any types σ and τ . For ρ ≤ Nat, we define:

shift : (Nat→ (1 + ρ+))→ Nat→ (1 + ρ)
shift := λfλn. maybe (f (Succ n)) (inl()) (λz. unfold z)

inc : Nat→ (1 + Nat)
inc := λn. inr (Succ n)

The function inc is a fixed-point of shift as we can show by the following reduction
sequence:

shift inc −→+ λn. maybe (inr (Succ (Succ n))) (inl ()) (λz. unfold z)
−→+ λn. unfold (Succ (Succ n))
−→+ λn. inr (Succ n)

= inc

Using shift, we can construct a recursive function g with result type τ(Y) = (Nat→
(1 + Y))→ 1 which loops on input inc.

g : ∀Y≤Nat. Y → (Nat→ (1 + Y))→ 1
g := fix g(). λf. maybe (f Zero) ()

(λx. maybe (unfold x) ()
(λy. g y (shift f)))

This function is well typed, we can infer the following types for some subexpres-
sions:

g : Y → (Nat→ (1 + Y))→ 1
f : Nat→ (1 + Y +)
x : Y +

y : Y
shift f : Nat→ (1 + Y)

Hence, the application of the recursive function g y (shift f) is accepted by the type
system. By a simple computation,

g Zero inc −→+ g Zero (shift inc) −→+ g Zero inc

and we have created a loop.
What exactly causes non-termination? Not the mere negative occurrence of

Y because the type ∀Y ≤ Nat. Y → (1 + Y) → 1 would be unproblematic for
terminating recursion (cf. Abel [3]). Only through the presence of an argument

32 TITLE WILL BE SET BY THE PUBLISHER

f of type Nat → (1 + Y), arbitrary natural numbers n can “sneak through the
back door f” being declared of type Y on the way and present themselves as safe
arguments for recursion.

To be on the safe side, all arguments a : τ ′(Y) (for Y ≤ µXσ) to a recursive
function must be cocontinuous [3] resp. overshooting (in the terminology of Hughes,
Pareto and Sabry [28]). This means that for each limit ordinal λ,

[[τ ′]](Y 7→Φλ) ⊆
⋃

α<λ

[[τ ′]](Y 7→Φα),

where Φ = ΦX.σ. In our counterexample (where τ ′(Y) = Nat → (1 + Y)), the
argument inc violates this requirement for λ = ω. While inc clearly inhabits the
set [[Nat → (1 + Nat)]] on the left hand side, it is not member of the right hand
side set [[Nat→ (1 + Y)]](Y 7→Φα) for any α < ω, since Φα contains only codes for
the natural numbers < α.

A systematic treatment of admissible result types of recursion can be found
in Pareto’s PhD thesis [37], for evaluation of closed terms, and in Abel [3], for
evaluation under binders.

6.2. On Coinductive Datatypes

Approximation types have been used to check productivity of infinite structures
like streams (cf. Hughes, Pareto and Sabry [28], Amadio and Coupet-Grimal [7],
Giménez [23] and Barthe et al. [9]). In the following, we demonstrate how to
simulate productivity checking for streams in our type system via an encoding of
streams as functions over natural numbers.

Streams, being infinite sequences of elements of a fixed type, can—in finitary
languages—only be defined by recursion. The dual to termination in the case of
functions is productivity for streams. It means that at any time, one can unfold a
stream and extract its first element, obtaining a remainder which is again produc-
tive. What the size is for inductive data is definedness for coinductive structures.
If we define U to be the set of all partial streams of natural numbers,

Sn := {s ∈ U | s can be unfolded n times }

characterizes the streams of definedness n. While the corresponding predicate Ln

for lists is covariant in its argument n (see Section 2), i.e., Ln ⊆ Lm for n ≤ m,
definedness is contravariant: Sn ⊆ Sm for m ≤ n. The set of productive streams
S = Sω is the bottom element of the approximation chain (Sn). Productive
streams can be obtained via the induction rule “if s ∈ Sn implies s ∈ Sn+1 for all
n, then s ∈ S”. In the following, we present rules for productive streams which
could form an extension of Λ+

µ . Later we will show that these rules are admissible
in a small extension of our original calculus.

TITLE WILL BE SET BY THE PUBLISHER 33

Formation.

Γ; ~X; ~X ′ ` σ : itype

Γ; ~X; ~X ′ ` Stream(σ) : itype

Γ, Y ≥Stream(σ) ` τ(Y) : type

Γ ` ∀Y ≥Stream(σ). τ(Y) : type

Subtyping.

Stream(σ) ≤ . . . ≤ Stream(σ)++ ≤ Stream(σ)+ ≤ Stream(σ)
Stream(σ) ≤ . . . ≤ Y ++ ≤ Y + ≤ Y (for Y ≥ Stream(σ))

Elimination.

Γ ` hd : ∀Y ≥Stream(σ). Y + → σ Γ ` tl : ∀Y ≥Stream(σ). Y + → Y

Introduction.

Γ ` scons : σ → ∀Y ≥Stream(σ). Y → Y +

Recursion.

Γ, Y ≥Stream(σ), g :τ(Y)→ Y `M : τ(Y +)→ Y + Y pos. in τ(Y)
Γ ` fix2 g.M : ∀Y ≥Stream(σ). τ(Y)→ Y

Reduction.
hd (scons M N) −→β M
tl (scons M N) −→β N

hd ((fix2 g.M) N) −→β hd ([fix2 g.M/g]M N)
tl ((fix2 g.M) N) −→β tl ([fix2 g.M/g]M N)

These rules enable us, for instance, to code the sequence of natural numbers
starting at a given n, and a sorted merging of streams.

nats : ∀Y ≥Stream(Nat).Nat→ Y
nats := fix2 nats. λn. scons n (nats (Succ n))

merge : ∀Y ≥Stream(Nat). Y × Y → Y
merge := fix2 merge. λp.

let x=hd (fst p) in
let y=hd (snd p) in
if x < y then scons x (merge (tl (fst p), snd p)

else scons y (merge (fst p), tl (snd p))

We claim that all we need to simulate streams via the definition Stream(σ) =
Nat → σ in our type system, is a little more liberal handling of subtyping and
bounded quantification and a new fixed-point combinator which implements re-
cursion on the second argument. Thus, we extend Λ+

µ by the following rules
instead:

34 TITLE WILL BE SET BY THE PUBLISHER

Bounded quantification and subtyping.

Γ, X≤µZσ ` τ(X) : type

Γ ` ∀X≤µZσ. τ(X) : type

Γ ` σ′ ≤ σ Γ ` τ ≤ τ ′

Γ ` σ → τ ≤ σ′ → τ ′ Γ ` σ ≤ σ

Recursion on the second argument.

X neg. in τ
X pos. in τ ′

Γ, X≤µZσ, g : τ(X)→ X → τ ′(X) ` M : τ(X+)→ X+ → τ ′(X+)
Γ ` fix2 g.M : ∀X≤µZσ. τ(X)→ X → τ ′(X)

Reduction.

(fix2 g.M) N1 (fold N2) −→β [fix2 g.M/g]M N1 (fold N2)

To encode streams in the extended Λ+
µ , we replace all quantifications ∀Y ≥

Stream(σ) by ∀X≤ Nat, all occurrences of Y i by (Xi → σ) and all remaining
occurrences of Stream(σ)i by (Nati → σ). The formation rules for streams are
immediately valid, and subtyping can be justified using the rule for arrow, for
example Y + ≤ Y :

X ≤ X+ σ ≤ σ

(X+ → σ) ≤ (X → σ)

Destructors and the constructor for streams can be defined with the correct typing:

hd : ∀X≤Nat. (X+ → σ)→ σ
hd := λs. s Zero

tl : ∀X≤Nat. (X+ → σ)→ X → σ
tl := λsλn. s (Succ n)

scons : σ → ∀X≤Nat. (X → σ)→ X+ → σ
scons := λaλsλn. maybe (unfold n) a s

In the typing of scons we need the new introduction rule for bounded quantification.
The fixed-point combinator for streams is a special case of recursion over the
second argument, with τ ′(X) = σ. The polarity conditions are satisfied, since Y
positive in τ(Y) implies X negative in τ(X → σ). By calculation, we verify the

TITLE WILL BE SET BY THE PUBLISHER 35

computational behavior for streams:

hd (scons M N) −→ (λn. maybe (unfoldn) M N) Zero
−→+ M

tl (scons M N) −→ λn. (λn′. maybe (unfoldn′) M N) (Succ n)
−→+ λn. N n

hd ((fix2 g.M) N) −→ ((fix2 g.M) N) Zero
−→ ([fix2 g.M/g]M N) Zero
= hd ([fix2 g.M/g]M N)

tl ((fix2 g.M) N) −→ λn. ((fix2 g.M) N) (Succ n)
−→ λn. ([fix2 g.M/g]M N) (Succ n)
←− tl ([fix2 g.M/g]M N)

Reduction is not completely simulated by the encoding since tl M is equal to a
lambda-abstraction. But for each axiom M −→β M ′ for streams, M and M ′ are
βη-equal in the encoding. The reader is invited to check that the programs for
nats and merge also inhabit the translated types.

nats : ∀X≤Nat.Nat→ X → Nat

merge : ∀X≤Nat. (X → Nat)× (X → Nat)→ X → Nat

Summing up, we have managed to justify the use of approximation stages also
for coinductive types in the example of streams. We hope that we hereby have
provided an easy access to the rules of productivity checking for infinite structures,
which are—in the experience of the author—harder to communicate than the rules
for termination checking.

7. Applications

After establishing soundness, we show the effectiveness of the presented ap-
proach in this section. We sketch how the explored principles can be applied in
functional programming, theorem proving and, as a specific example, for resource
bound certification.

7.1. Functional Programming

Throughout the article we have demonstrated type-based termination on small
functional programs already. In the following we present another example which
shows that our system can handle mutual recursion, interleaving inductive types,
and even non-strictly positive types.

36 TITLE WILL BE SET BY THE PUBLISHER

We introduce two abbreviations for certain datatypes: X list for lists over some
type X and term for first-order terms with continuations.

X list = µY. 1 + X × Y
term = µX. int + int×(X list) + ((X → 0)→ 0)

The first-order terms we consider are constructed from variables, n-ary function
symbols and continuations6. We have three constructors:

Var : int→ term
Func : int×term list→ term
Mu : ((term→ 0)→ 0)→ term

Var(i) denotes the ith variable, Func(i, l) the ith function symbol applied to the
terms of the list l and

Mu(λaterm→0. bterm→0 t)

the term that stores the current continuation in a, retrieves a continuation b and
throws the term t at b.

Note that term is the rare example of a non-strictly positive type, furthermore
term and list are interleaving, also called nested. Nevertheless, our system accepts
the following mutually recursive substitution function.

subst : (int→ term)→ ∀X≤ term. X → term

subst f (Var(i))X+
= f(i)

subst f (Func(i, l))X+
= Func(i, sl(lX list))

where sl : ∀Y≤X list. Y → term list

sl ([])Y +
= []

sl (t :: ts)Y +
= (subst f tX) :: sl tsY

subst f (Mu(t))Y +
= Mu (λaterm→0. t(Y→0)→0 (λrY.

a (subst f rY)))
Recursion over interleaving inductive datatypes is most naturally expressed by
mutually recursive functions. In our case it is crucial that this mutual recursion
is not simultaneous but interleaving, as the approximation of the type of terms
X ≤ term must be available with in the inner function sl for the approximation
Y ≤ X list. Informally, X contains terms upto a certain height and X list lists of
such terms. Hence, Y contains lists of restricted length which consist of terms of
bounded height. The typing ensures that the call subst f t within sl terminates,
no call graphs are necessary (cf. Abel and Altenkirch [5] or Lee, Jones and Ben-
Amram [30]).

6The continuations we consider are modeled after the λµ-calculus (Parigot [38]), which is
very well presented in Bierman [10]. The chosen representation as positive type is derived from
Abel [2].

TITLE WILL BE SET BY THE PUBLISHER 37

The last line encodes substitution for continuations, applying our technique for
non-strictly positive types. Here, termination is not obvious at all, also not for
measure-based approaches—it is not clear which measure one should use. For
sure, termination cannot be checked with the usual untyped notion of the subterm
ordering, since r is no subterm of t. Type-based termination succeeds since the
types provide us with some data flow information which is not available in subterm
calculi.

In every-day programming, some functions are not terminating on all inputs.
Others may be terminating, but the termination proof may involve complicated
arguments and cannot be checked automatically. For that reason, it is desirable to
allow both total and partial functions in a program. This can be realized naturally
in our system by simply adding the fix-rule of Λµ which does not impose any
restriction on recursion. In the extended system, functions are total if their typing
derivation does not use the liberal fix-rule. To keep efficiency in an implementation
of the type system, functions could be tagged as total resp. possibly partial by the
compiler.

7.2. Theorem Proving

As pointed out in the introduction, the typed-based approach to termination is
suitable for theorem provers based on theories with inductive definitions, e.g., Agda
[16], Coq [29], and LEGO [43]. However, it needs to be adapted to dependent type
theories. A first proposal has been put forth by Blanqui [12]. He combines parts
of the approaches of Xi [50], Giménez et al. [9,23] and Hughes et al. [28] to obtain
a type-based termination criterion for the Calculus of Algebraic Constructions.

7.3. Resource Bound Certification

Crary and Weirich [19] describe a language LXres for resource bound certifi-
cation. To estimate the cost of defined operations they use static cost functions.
Technically these cost functions are so-called constructors in their type theory
which is based on Fω. For type-checking to be decidable, these constructors must
be terminating. Currently they are restricted to Mendler-style primitive recursive
functions (see Section 2). Our extension could be integrated into their type theory
which would strictly increase the expressiveness of their language.

8. Conclusion

We have presented a method of ensuring termination by types, shown sound-
ness, given an algorithm for type checking and discussed applications besides the
intended use in theorem provers. Table 7 gives an overview over the technical
results of this article. In Section 4 we have formalized a type checking algorithm
which is sound for Λ+

µ . Typing of Λ+
µ excludes infinite reduction sequences as

proven in Section 5. Each Λ+
µ -program can also be assigned a Λµ-type which is

obtained by erasure (Section 3.3) and guarantees that evaluation does not get stuck

38 TITLE WILL BE SET BY THE PUBLISHER

Γ `M ′ : τ (Λ+
µ)

Γ ||〉 Γ′; ∆
∆ ` τ ||〉 τ ′

��

+3 M ′ ∈ SN

"*NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Γ `M ⇑ τ

M ′ = |M |
3;nnnnnnnnnnnnnn

nnnnnnnnnnnnnn
M ′ −→∗ V

Γ′ `M ′ : τ ′ (Λµ) +3 M ′ −→∞ V

4<pppppppppppppp

pppppppppppppp

Table 7. Summary of Technical Results.

(Section 1). Putting things together, each type-checkable Λ+
µ -program reduces to

a value in finite time.
Type based termination combines three program analyses: ordinary type check-

ing, termination checking and what is called reduction checking (Pientka [40]) resp.
size checking (Chin and Khoo [15]). We expect that this combination will make
implementations of normalizing calculi more succinct, efficient and transparent to
the user. However, to give substance to our claim, implementations of type based
termination have to be tested in practice.

We conclude with a discussion of related work on sized types and termination.

8.1. Hughes, Pareto et al.

Hughes, Pareto [27] and Sabry [28] use sized types for termination and produc-
tivity checking of functional programs. A detailed treatment is given by Pareto
in his thesis [37]. His type system refers to approximations of the type of natural
numbers as Nat i where i is a size expression. The full type of natural numbers
is represented as Nat ω. Instead of bounded quantification he uses quantification
over size variables, and our next-stage operation (·)+ is simulated by a successor
operation on sizes. For instance, the type Nat → ∀Y ≤ ListN. Y → Y × Y of the
pivot function would be written Nat → ∀i. List iNat → List iNat× List iNat in his
system, where i is a size variable.

Pareto’s type language is more expressive than ours in two aspects: First, since
sizes are separated from approximation stages, he can assign, for instance, the
precise type ∀α. ∀i. List i α → Nat i to the length function; furthermore, this en-
ables size information for polymorphic functions like map: ∀α∀β. (α → β) →
∀i. List i α → List i β. Secondly, size expressions can contain addition of sizes
and multiplication with a constant, thus, a more precise type ∀α ∀i. List i α →
∀j. List (j + 1) α → List (i + j) α of the append function is possible. On the other

TITLE WILL BE SET BY THE PUBLISHER 39

hand, since sizes are bounded by ordinal ω, he can not treat inductive types with
embedded function spaces like Ord (Example 3.6). Also, his semantics is denota-
tional and based on domains, hence he only shows termination for closed programs,
whereas we permit evaluation under binders.

Notwithstanding the different interpretations, the formation of recursive func-
tions underlies the same constraints in Pareto’s and our approach. Our side con-
dition on the fixed point rule (see Section 6.1) is a restriction of his condition to
instantiate a size quantifier ∀i to the limit ordinal ω. He has another side condition
on the fixed point rule, the so called bottom check. It expresses that the type ∀i. τ
of a recursive function must, when i is instantiated to 0, be the universe of all
terms in the semantics. In our setting, types of recursive functions are restricted
to the shape Y → τ ′(Y), which trivially satisfy the bottom check [37, page 148] for
empty types Y such as the 0th approximation of an inductive type. Our pendant
to the bottom check is the base case α = 0 of the transfinite induction over α in
the soundness proof of the fixed point rule (see Remark 5.11).

8.2. Giménez et al.

Giménez [23] provided the starting point for our work. He describes type-
based termination using approximation types for an extension of the Calculus of
Constructions, but provides no soundness proof. Showing strong normalization
for his method was the original motivation for the present article.

In Giménez later work with Barthe et al. [9], the formulation of the type system
follows Hughes et al.. The set of size expressions is generated by size variables,
the successor operation, and the symbol∞, denoting the first uncountable ordinal
Ω. The type system features function types and inductive datatypes, but excludes
quantification over size variables, hence one cannot abstract over a size-preserving
function (see qsapp′ in Section 2.4). Except for bounded quantification, our system
embeds into Barthe et al., and they give both a proof of subject reduction and
strong normalization. However, they do not describe a type checking algorithm.
Thus, their type system is not ready to be used as a termination checker.

8.3. Xi’s Dependent ML

Xi [50] considers termination of closed functional programs in DML, a functional
language with lightweight dependent types. In contrast to our approach and the
approaches described above, the size of a data structure is not determined to be
its height, but it can be any integer expression defined by the user. For example,
one could define the size of a tree as the total number of nodes, or even the sum
of its labels. Recursive functions come with a termination measure which has the
form of a lexicographic product of size expressions. His size annotations are exact
in contrast to our notion of size which is just an upper bound. Therefore, he does
not need subtyping; to compare integer expressions he relies on a constraint solver.

On one hand, due to exact size annotations, Xi can also perform size-checking
for accumulation parameters in functions, which is impossible with the approaches

40 TITLE WILL BE SET BY THE PUBLISHER

mentioned above. This qualifies Xi’s approach for practical termination checking
of realistic functional programs. On the other hand, since Xi has no ordinal sizes,
he can not handle higher-order datatypes like infinite trees which are common in
proof theory. This limits the applicability of his approach in theorem provers.

8.4. Other Related Work

On termination in general, a vast amount of literature has been published, so
we can only give a non-representative overview of work related to ours.

Typed functional programming. In previous work [1] with Thorsten Altenkirch [5],
we have described a syntactic check for structurally recursive functions in the
context of simple types. We proved termination only for closed terms (no strong
normalization). Telford and Turner [45,46] check termination and productivity of
recursive functions by an abstract interpretation. They track size-change on an
abstract domain; the power of the approach is comparable to the one presented
here. Giesl [22], also with Brauburger [14], generates termination predicates by
static analysis of functional programs. Termination can be proven by some external
automated theorem prover. Their approach is limited in power only by the theorem
prover, hence very flexible, but also quite unpredictable.

Higher-order logic programming. Pientka [40] describes a calculus for termination
and reduction checking of logic programs over a higher-order term language. Her
calculus is based on the subterm ordering and used in the HOAS theorem prover
Twelf [39].

Untyped functional programming. Lee, Jones and Ben-Amram [30] investigate
termination of untyped first-order functional programs via size-change graphs.
They show that the implicit complexity of termination-checking mutually recursive
functions is PSPACE-hard.

Term rewriting. This is the classical area of investigating termination. We ac-
centuate Giesl’s work, for example, with Arts, on dependency pairs [8]. Blan-
qui, Jouannaud and Okada investigate term rewriting for systems with inductive
types [13]. In his thesis [11], Blanqui proves strong normalization for the Calculus
of Algebraic Constructions with rewrite rules.

The author thanks Thorsten Altenkirch for more than one year of joint work on termi-
nation, Thierry Coquand for pointing to Giménez’ work, John Hughes and Lars Pareto
for a conversation which eventually lead to the counterexample in Section 6, Martin Hof-
mann, Frank Pfenning and Brigitte Pientka for helpful discussions, and Frédéric Blanqui
for encouraging feedback on this article. He is indebted to Ralph Matthes for careful
reading of the draft and for conversation and advice which helped overcome unforeseen
difficulties in the final preparation phase of this articles. Last but not least, thanks to
the anonymous referees for critical remarks which led to a clearer presentation.

TITLE WILL BE SET BY THE PUBLISHER 41

References

[1] A. Abel. Specification and verification of a formal system for structurally recursive func-

tions. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proof and
Programs, International Workshop, TYPES ’99, volume 1956 of Lecture Notes in Computer

Science, pages 1–20. Springer, 2000.

[2] A. Abel. A third-order representation of the λµ-calculus. In S. Ambler, R. Crole, and
A. Momigliano, editors, Electronic Notes in Theoretical Computer Science, volume 58. El-

sevier Science Publishers, 2001.

[3] A. Abel. Termination and guardedness checking with continuous types. In M. Hofmann,
editor, Typed Lambda Calculi and Applications (TLCA 2003), volume 2701 of Lecture Notes

in Computer Science, pages 1–15, Valencia, Spain, June 2003. Springer.
[4] A. Abel. Soundness of a bidirectional typing algorithm. Twelf code, available on the author’s

homepage, http://www.tcs.informatik.uni-muenchen.de/˜abel, May 2004.

[5] A. Abel and T. Altenkirch. A predicative analysis of structural recursion. Journal of Func-
tional Programming, 12(1):1–41, January 2002.

[6] T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, Uni-

versity of Edinburgh, November 1993.
[7] R. M. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type theory. In

M. Nivat, editor, Foundations of Software Science and Computation Structures, First In-

ternational Conference, FoSSaCS’98, volume 1378 of Lecture Notes in Computer Science.
Springer, 1998.

[8] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
[9] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of

recursive definitions. Mathematical Structures in Computer Science, 14(1):1–45, 2004.

[10] G. M. Bierman. A computational interpretation of the λµ-calculus. In L. Brim, J. Gruska,
and J. Zlatuska, editors, Proceedings of Symposium on Mathematical Foundations of Com-

puter Science, volume 1450 of Lecture Notes in Computer Science, pages 336–345, Brno,
Czech Republic, August 1998.

[11] F. Blanqui. Type Theory and Rewriting. PhD thesis, Univeristé Paris XI, Sept. 2001.

[12] F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In V. van Oostrom, editor, Rewriting Techniques and Applications, 15th Interna-

tional Conference, RTA 2004, Aachen, Germany, June 3 – 5, 2004, Proceedings, volume

3091 of Lecture Notes in Computer Science, pages 24–39. Springer, 2004.
[13] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive data type systems. Theoretical Com-

puter Science, 277, 2001.

[14] J. Brauburger and J. Giesl. Termination analysis for partial functions. In Proceedings of the
Third International Static Analysis Symposium (SAS’96), volume 1145 of Lecture Notes in

Computer Science, Aachen, Germany, 1996. Springer.

[15] W.-N. Chin and S.-C. Khoo. Calculating sized types. Higher-Order and Symbolic Compu-
tation, 14(2–3):261–300, 2001.

[16] C. Coquand. Agda. WWW page, 2000. http://www.cs.chalmers.se/˜catarina/agda/.
[17] T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow, editors, Types

for Proofs and Programs (TYPES ’93), volume 806 of Lecture Notes in Computer Science,
pages 62–78. Springer, 1993.

[18] T. Coquand. An algorithm for type-checking dependent types. In Mathematics of Program
Construction. Selected Papers from the Third International Conference on the Mathematics

of Program Construction (July 17–21, 1995, Kloster Irsee, Germany), volume 26 of Science
of Computer Programming, pages 167–177. Elsevier Science, May 1996.

[19] K. Crary and S. Weirich. Resource bound certification. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 184–198,
Boston, Massachusetts, USA, January 2000.

42 TITLE WILL BE SET BY THE PUBLISHER

[20] R. Davies and F. Pfenning. Intersection types and computational effects. In Proceedings

of the International Conference on Functional Programming (ICFP 2000), pages 198–208,

Montreal, Canada, September 2000.
[21] J. Dunfield and F. Pfenning. Tridirectional typechecking. In N. D. Jones and X. Leroy,

editors, 31st Annual Symposium on Principles of Programming Languages (POPL’04),
Venice, Italy, pages 281–292. ACM, jan 2004.

[22] J. Giesl. Termination of nested and mutually recursive algorithms. Journal of Automated

Reasoning, 19:1–29, 1997.
[23] E. Giménez. Structural recursive definitions in type theory. In Automata, Languages and

Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17,

1998, Proceedings, volume 1443 of LNCS, pages 397–408. Springer, 1998.
[24] C. Haack and J. B. Wells. Type error slicing in implicitly typed, higher-order languages. In

Programming Languages and Systems, 12th European Symp. Programming, volume 2618 of

Lecture Notes in Computer Science, pages 284–301. Springer, 2003.
[25] T. Hagino. A typed lambda calculus with categorical type constructors. In D. H. Pitt,

A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer Science, volume

283 of Lecture Notes in Computer Science, pages 140–157. Springer, 1987.
[26] T. Hallgren. Alfa home page. http://www.math.chalmers.se/˜hallgren/Alfa/, 2003.

[27] J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: To-
wards embedded ML programming. In International Conference on Functional Program-

ming (ICFP’99), pages 70–81, 1999.

[28] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. In Symposium on Principles of Programming Languages, pages 410–423, 1996.

[29] INRIA. The Coq Proof Assistant Reference Manual, version 8.0 edition, April 2004.

http://coq.inria.fr/doc/main.html.
[30] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program

termination. In ACM Symposium on Principles of Programming Languages (POPL’01),

London, UK, January 2001. ACM Press.
[31] Z. Luo. ECC: An Extended Calculus of Constructions. PhD thesis, University of Edinburgh,

1990.

[32] R. Matthes. Extensions of System F by Iteration and Primitive Recursion on Monotone
Inductive Types. PhD thesis, Ludwig-Maximilians-University, May 1998.

[33] C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis, Univer-
sity of Edinburgh, 1999.

[34] N. P. Mendler. Recursive types and type constraints in second-order lambda calculus. In

Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, Ithaca,
N.Y., pages 30–36. IEEE Computer Society Press, 1987.

[35] N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus.

Annals of Pure and Applied Logic, 51(1–2):159–172, 1991.
[36] R. Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348–375, Aug. 1978.

[37] L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of Technology,
2000.

[38] M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In

A. Voronkov, editor, Logic Programming and Automated Reasoning: Proc. of the Interna-
tional Conference LPAR’92, pages 190–201. Springer, Berlin, Heidelberg, 1992.

[39] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for

deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Con-
ference on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial
Intelligence, pages 202–206, Trento, Italy, July 1999. Springer.

[40] B. Pientka. Termination and reduction checking for higher-order logic programs. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Automated Reasoning, First International Joint Confer-

ence, IJCAR 2001, volume 2083 of Lecture Notes in Artificial Intelligence, pages 401–415.
Springer, 2001.

TITLE WILL BE SET BY THE PUBLISHER 43

[41] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[42] B. C. Pierce and D. N. Turner. Local type inference. In POPL 98: The 25TH ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, Cal-
ifornia, 1998.

[43] R. Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh, 1994.
[44] Z. Sp lawski and P. Urzyczyn. Type fixpoints: Iteration vs. recursion. SIGPLAN Notices,

34(9):102–113, 1999. Proceedings of the 1999 International Conference on Functional Pro-

gramming (ICFP), Paris, France.
[45] A. J. Telford and D. A. Turner. Ensuring streams flow. In Algebraic Methodology and Soft-

ware Technology (AMAST ’97), volume 1349 of Lecture Notes in Computer Science, pages

509–523. Springer, 1997.
[46] A. J. Telford and D. A. Turner. Ensuring termination in ESFP. Journal of Universal Com-

puter Science, 6(4):474–488, Apr. 2000. Proceedings of BCTCS 15 (1999).

[47] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value (co)iteration, categor-
ically. Informatica (Lithuanian Academy of Sciences), 10(1):5–26, 1999.

[48] C. Walther. Argument-Bounded Algorithms as a Basis for Automated Termination Proofs.

In E. L. Lusk and R. A. Overbeek, editors, 9th International Conference on Automated
Deduction, volume 310 of Lecture Notes in Computer Science, pages 602–621. Springer,

1988.
[49] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, 1994.

[50] H. Xi. Dependent types for program termination verification. Journal of Higher-Order and
Symbolic Computation, 15:91–131, Oct. 2002.

[51] J. Yang, G. Michaelson, and P. Trinder. Explaining polymorphic types. Computer Journal,

45(4):436–452, 2002.

Communicated by Zoltán Ésik and Igor Walukiewicz.

May 14, 2004.

