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Graded Call-By-Push-Value

ANONYMOUS AUTHOR(S)

Call-by-push-value (CBPV) is a simply typed lambda calculus that polarizes types into value and computa-

tion types and can thus express both call-by-name and call-by-value evaluation in the presence of effects.

Semantically, effects are modeled by a monad, and computation types as algebras over this monad.

Effect type systems usually express more information than the presence of an effect; often effects are

categorized by preordered monoid where the monoid operation represents accumulation of effects and the

order expresses effect subsumption, in analogy to subtyping. In this work, a graded version of CBPV is

presented where the typing of computations likens effect typing. Semantically, computation types are then

represented as graded monad algebras.

Observing that the value types of CBPV can be interpreted as comonad coalgebras, we further present a

version of CBPV that has coeffects graded by a preordered semiring. Value types and contexts are interpreted

as graded comonad coalgebras, allowing resource-aware interpretations of CBPV.

Finally, we combine the two systems into a fully graded version of CBPV where both effects and coeffects

are graded. This turns out to be possible without specifying any interaction between effects and coeffects.

Additional Key Words and Phrases: effects, coeffects, call-by-name, call-by-value, linear types

1 INTRODUCTION
Levy’s call-by-push-value calculus (CBPV) [2006] is a simply typed lambda calculus with disjoint

sums and eager and lazy products that allows the modelling of “lazy” effects. For instance, the

CBPV-program

print ”function”. λx . print ”argument”. x

of type P ⇒ ⋄P , will, unlike the corresponding ML-program, not print the word “function” and

return a function; it will simply wait for an input value of type P . Only after an argument has been

supplied, the program will print the words “function” and “argument” and then return the argument.

The reason is that effects in CBPV can only be observed at value types like P , and function types are

not value types but computation types. Effectful actions (like printing) at computation types N are

“pushed down” the type structure until they reach a position at a monadic type ⋄P where they can

be executed. Semantically, this is facilitated by interpreting computation types as monad algebras

with an action run : T N → N that allows to formally run effects transported by the monad T at

type N , even though N is not directly a monadic type ⋄P .
CBPV polarizes types into value types P and computation types N where the former embed into

the latter as ⋄P by the formal “monad” ⋄ and the latter embed into the former as □N by “thunking” □.
In Levy’s behavioral semantics, functor ⋄ is a left adjoint to functor □ and need not be a monad.

Quite the opposite: when modelling store, ⋄P = P × S is a comonad and □N = S → N a monad.

Contrastingly, in the above explained algebra semantics, ⋄ is indeed modeled by a monad T, yet □
just by the identity. It is however possible to model □ by a monoidal comonad D, and positive types

by comonad coalgebras with an action expose : P → D P that makes the services of the comonad

available at all value types, not just at □N .

Building on these observations, we investigate in this article how CBPV can keep track of not

just the presence of an effect or coeffect but also the kind of effect and coeffect. Semantically,

precise information about effects can be obtained by using a family of monads Te graded over

effect classifiers e drawn from a preordered monoid [Katsumata 2014]. For CBPV, we generalize

the concept of monad algebras N to graded such ones, Ne . Syntactically, computation typing
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1:2 Anon.

Γ ⊢ t : N | e is extended by an effect classifier e (as usual in type and effect systems [Nielson and

Nielson 1999]) such that a computation can be interpreted by a morphism Γ → Ne .

Coeffect type systems [Brunel et al. 2014; Ghica and Smith 2014; Petricek et al. 2014] have

been developed to track resource consumption by attaching usage information to each variable in

the typing context. Coeffect typing generalizes linear typing [Girard 1987] to quantitative typing

[Atkey 2018; McBride 2016; Sergey et al. 2014] and subsumes sensitivity analysis [Reed and Pierce

2010] and static information control flow [Volpano et al. 1996] aka security typing [Abadi et al.

1999]. Coeffects can be modeled by a comonad Dr graded over resource qualifiers r drawn from

a preordered semiring. For the sake of coeffect-graded CBPV, we generalize graded comonads to

graded comonad coalgebras. Value types P and contexts Γ are then interpreted as such coalgebras.

Value typing γ Γ ⊢ v : P and computation typing γ Γ ⊢ t : N are based on linear typing and come

equipped with a resource context γ . Semantically, values are interpreted as morphisms Γrγ → Pr
allowing the “multiplication” or scaling of a value by r and computations as morphisms Γγ → N .

Finally, effect and coeffect graded CBPV can be combined into a fully graded CBPV calculus, sur-

prisingly without sorting out any interaction between effects and coeffects, such as the distributive

laws of Gaboardi et al. [2016]. We credit the smoothness of the integration to the careful placement

of monad and comonad in CBPV’s type system, so that scaling is restricted to values and does not

arise for computations.

Contributions.

(1) We introduce graded monad algebras and an effect-graded version of CBPV in Section 2,

after recapitulating monads and their algebras and graded monad.

(2) We further introduce graded comonad coalgebras and a coeffect-graded version of CBPV in

Section 3. We give its denotational and operational semantics and adapt Atkey and Wood’s

substitution theorem [2019; 2020] to this version of CBPV.

(3) We present an effect- and coeffect-graded version of CBPV in Section 4.

Preliminaries. The reader should bring some elementary knowledge of category theory, such as

the interpretation of simply-typed lambda calculus in cartesian-closed categories. However, we

try to be gentle with categorical concepts such as monads and recapitulate their definition where

needed. In many cases, it is sufficient to think in terms of the category SET where objects are sets

and morphisms functions between sets, or in the functor category [C → SET] where objects are
monotone families of sets (Ai )i :C indexed by objects i of C such that Ci → Cj in SET for i → j in
C and morphisms are natural transformations (fi : Ai → Bi )i :C .

2 AN EFFECT-GRADED VERSION OF CBPV
2.1 Recapitulation: modelling effects via monads
In this section, we recapitulate monads and some essential vocabulary of category theory. There

are no surprises, thus, the experienced reader is invited to skip this section.

Consider a categorical model C of the simply-typed lambda calculus (STLC), i.e., where types

τ and contexts Γ are interpreted as objects Jτ K and JΓK of C and terms Γ ⊢ t : τ as morphisms

LtM ∈ C(JΓK, Jτ K). Such a category could be SET, interpreting types as sets and terms as functions,

mapping the valuation of their free variables to their value, or CPO, interpreting types as complete

partial orders and terms as monotone functions, or a presheaf model of the STLC etc. Typically,

C is a cartesian-closed category, i.e., has products A1 ×A2 of objects to model product types and

contexts, and exponentials A ⇒ B to model function types. Further C maybe be distributive, i.e.,
have coproducts A1 +A2 that distribute over products, to model variants aka disjoint sum types.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 1. Publication date: January 2021.
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Graded CBPV 1:3

Recall that effects are modeled by a suitable monad T : C → C in C. We shall refer to elements

of a monadic type TA as computations when C = SET. For a general C, computations shall be

the morphisms C (A, T B) called Kleisli arrows. An example monad would be the writer monad
TA = String × A that models the effect output. Another example would be the exception monad
Exc + _ where the result of a computation is either an exception e : Exc or a regular result. The
monad operations, together with their implementation for writer in SET, are the following:

fmapT : (A → B) → TA → T B
fmapT f (s, a) = (s, f b)

returnT : A → TA
returnT a = ("",a)

joinT : T (TA) → TA
joinT (s1, (s2,a)) = (s1 ++ s2, a)

Herein, "" shall denote the empty string and ++ string concatenation.

Monad unit return (written η in category speak) turns a value into a pure computation and monad

multiplication join (written µ in category speak) combines two effects and thus allows sequencing

of computations via Kleisli composition (д : C (B, TC)) ◦T (f : C (A, T B)) = (join ◦ fmap д ◦ f :

C (A, TC)).
The presence of fmap : C (A, B) → C (TA, T B) satisfying the functor laws fmap id = id and

fmap (f ◦ д) = fmap f ◦ fmapд makes T an (endo)functor, written T : [C → C]. The endofunctors

F : [C → C] form a category, the functor category, with identity IdA = A and composition

(F ◦G)A = F (G A). We shall write f : F Û→G for morphisms in the functor category, called natural
transformations. These are families fA : C (F A, G A) of morphisms that commute with the functor

action fmap, i.e., fmapG h ◦ fA = fB ◦ fmapF h for any h : C (A, B).
Unit return : Id Û→ T and multiplication join : T ◦ T Û→ T are natural transformations—which

breaks down to fmapT h ◦ return = return ◦h and fmapT h ◦ join = join ◦ fmap (fmap h). The three
equational laws of join can be visualized compactly in the following commutative diagram.

TA return //

id

T (TA)

join

��

T (T (TA))
joinoo

fmap join
��

TA
id

T (TA)
joinoo

TA

fmap return

OO

2.2 Effect algebras and graded monads
Following Katsumata [2014] we can obtain more information about effects using a monad Te
graded over elements e of a suitable effect algebra Eff. An effect algebra be a preordered monoid

(Eff, •, ε, ≤) such that _•_ is monotone wrt. the preorder ≤ in both arguments. The unit ε shall mean

no effect and the operation _•_ serves to accumulate effects, possibly in a sequential order—unless

the monoid is commutative. The preorder represents effect subsumption, i.e., loss in precision of

the effect analysis. Note that the unit ε is not necessarily the least element wrt. ≤.

Say we want to track an upper bound on the length of the output produced by a program. To

this end, we can use the preordered monoid Eff = N ∪ {∞} under addition _•_ = _+_ with unit

ε = 0 and the natural order ≤. The effect ∞ then denotes unbounded output, or output whose

length we cannot track in the type system (e.g., when it depends on some variable). Increasing the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 1. Publication date: January 2021.
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1:4 Anon.

upper bound along ≤ means loss of precision of our analysis, with ∞ the least precise information,

meaning no upper bound. The corresponding graded writer monad is Te A = (String≤ e) ×Awhere

the output is an element of String≤ e , a string of length at most e ∈ N ∪ {∞}. The operations of a

graded monad are, again given with their SET-implementation for the graded writer:

fmap : (A → B) → Te A → Te B
fmap f (s, a) = (s, f b)

return : A → Tε A
returna = ("",a)

join : Te1
(Te2

A) → Te1•e2
A

join (s1, (s2,a)) = (s1 ++ s2, a)

cast : Te A → Te ′ A for e ≤ e ′

cast = id

A graded version of the exception monad would use effect algebra Eff = P Exc under union and

subset; an effect e is a set of possible exceptions thrown by a computation.
1

The interesting laws for graded monads are given by the following commutative diagrams.

Te A
return //

id

Tε (Te A)

join

��
Te A

Te A
fmap return//

id

Te (Tε A)

join

��
Te A

Te1•e2
(Te3

A)

join

��

Te1
(Te2

(Te3
A))

joinoo

fmap join

��
Te1•e2•e3

A Te1
(Te2•e3

A)
joinoo

Further, cast commutes with fmap, namely fmap f ◦ cast = cast ◦ fmap f , and in two ways with

join, namely join ◦ cast = cast ◦ join and join ◦ fmap cast = cast ◦ join. We may write Te1≤e2
for

the natural transformation cast : Te1
Û→ Te2

.

Remark 1 (Eff-graded monad are lax monoidal functors T : [Eff → [C → C]]). The concept of a
graded monad can be more succinctly expressed by using more advanced language of category

theory. (This reformulation is not essential for the remainder of the exposition and may be skipped

on first reading.)

Recall that a monoidal category E has a designated object I : E and an operation _⊗_ : [E →

[E → E]], the tensor product on objects of E that is functorial in both positions. Further, there

are natural isomorphisms λ : (I ⊗ A) � A and ρ : (A ⊗ I) � A witnessing the unitality of I and
α : (A ⊗ (B ⊗ C)) � ((A ⊗ B) ⊗ C) witnessing associativity of ⊗.

Any preordered monoid, such as (Eff, _ • _, ε, ≤), makes a monoidal category E = Eff with

Homset E(e, e ′) = {() | e ≤ e ′}, tensor ⊗ = • and unit I = ε . Further, this category is thin, i.e., there
is at most one morphism between any two objects e, e ′.

A graded monad T : [Eff → [C → C]] is then a morphism from monoidal category (Eff, •, ε) to
monoidal category ([C → C], ◦, Id). The monoidal structure in the latter is just functor composition

and identity functor. Operations cast and fmap witness the functoriality of T in its first and second

argument. The operations return and join witness (in a directed way) the preservation of unit ε
and multiplication • by T, making T a lax monoidal functor. (End of remark.)

2.3 CBPV, monad algebras, and their graded version
Call-by-push value [Levy 2006] is a refinement of Moggi’s computational lambda-calculus [1991]

that allows effects not only in monadic types, i.e., in objects TA, but more generally in computation

1
An example of a exception-tracing type system is the Java language.
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Graded CBPV 1:5

types. These correspond to monad algebras for T in C, aka T-algebras. Those algebras are objects
B together with a morphism runB : T B → B that allows to formally run the monad, “merging”

its effects into B. The prime example of a monad algebra is simply a monadic type, because

runT A : T (TA) → TA is just join. Levy [2006] shows that monad algebras are closed under

products (×) and exponentiation (⇒) with arbitrary objects. E.g., in SET we can define, for writer
algebras:

runB×B′ : T (B × B′) → B × B′

runB×B′ (s, (b,b ′)) = (runB (s,b), runB′(s,b ′))

runA⇒B : T (A ⇒ B) → (A ⇒ B)
runA⇒B (s, f ) = λa. runB (s, f a)

These definition implement lazy effects that cannot be observed at computation types such as

A ⇒ B, but only at value types; the run of the monad algebra pushes the effects towards result

types that are eventually types of observable objects (values).

With run being a generalization of join, the laws for run are in analogy of those for join (if B
were TA):

B
return //

id

T B

run

��

T (T B)
joinoo

fmap run

��
B T B

runoo

In graded CBPV, monad algebras get replaced by graded monad algebras. Given a graded monad

T, a T-algebra is a family of objects (Be )e :Eff and morphisms runB : Te1
Be2

→ Be1•e2
satisfying these

laws:

Be
return //

id

Tε Be

run

��
Be

Te1•e2
Be3

run

��

Te1
(Te2

Be3
)

joinoo

fmap run

��
Be1•e2•e3

Te1
Be2•e3

runoo

Further the family B should be functorial in the sense that there is a family of coercion morphisms

Be1≤e2
: Be1

→ Be2
with Be≤e = id and Be2≤e3

◦ Be1≤e2
= Be1≤e3

.

Graded monad algebras are, like non-graded ones, closed under pointwise products (B × B′)e =

Be × B′
e and exponentiation with objects (A ⇒ B)e = A → Be ; here the graded writer example:

runB×B′ : Te1
(B × B′)e2

→ (B × B′)e1•e2

runB×B′ (s, (b,b ′)) = (runB (s,b), runB′(s,b ′))

runA⇒B : Te1
(A ⇒ B)e2

→ (A ⇒ B)e1•e2

runA⇒B (s, f ) = λa. runB (s, f a)

Remark 2 (Naturality of run). The T-algebra B : [Eff → C] comes with a natural morphism

rune1,e2
: C (Te1

Be2
, Be1•e2

) in the sense that B(e1≤e ′
1
)•(e2≤e ′

2
) ◦ rune1,e2

= rune ′
1
,e ′

2

◦ Te1≤e ′
1

Be2≤e ′
2

.

2.4 Effect-graded CBPV: syntax and typing
With the theory of graded monads in place, we design a graded version of CBPV. The syntax

and typing rules for effect-graded CBPV are given in Fig. 1. The differences to pure CBPV are in

gray boxes .

Types are classified into value types P ∈ Ty+ (written A in Levy [2006]) and computation types

N ∈ Ty− (written B in loc. cit.). These are positive and negative types in the terminology of focusing

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 1. Publication date: January 2021.
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Types.

Ty+ ∋ P ::= [e]N | o | Σi :IPi | ⊗i :I Pi Value types (positive types)

Ty− ∋ N ::= ⋄P | P ⇒ N | Πi :INi Computation types (negative types)

Cxt ∋ Γ ::= ∅ | Γ.x :P Typing context

Terms.

Tm+ ∋ v,w ::= x | thunk t | ini v | tup v̄ Values (positive terms)

Tm− ∋ t ,u ::= v bex . t Computations (negative terms):

| forcev | v cases {x . t} | v split x̄ . t value eliminations

| retv | u tox . t monad operations

| λx . t | t v functions

| record{i : t} | proji t lazy tuples (records)

Value typing Γ ⊢ v : P .

var

x :P ∈ Γ

Γ ⊢ x : P
□-intro

Γ ⊢ t : N | e

Γ ⊢ thunk t : [ e ]N

Σ-intro
Γ ⊢ v : Pi

Γ ⊢ ini v : ΣIP
⊗-intro

∀i:I , Γ ⊢ vi : Pi
Γ ⊢ tupv : ⊗I P

Computation typing Γ ⊢ t : N | e .

let

Γ ⊢ v : P Γ.x :P ⊢ t : N | e

Γ ⊢ v bex . t : N | e
□-elim

Γ ⊢ v : [ e ]N

Γ ⊢ forcev : N | e

Σ-elim
Γ ⊢ v : ΣIP ∀i:I , Γ.xi :Pi ⊢ ti : N | e

Γ ⊢ v cases {xi . ti }i :I : N | e
⊗-elim

Γ ⊢ v : ⊗I P Γ.xi :Pi
i :I

⊢ t : N | e

Γ ⊢ v split x̄ . t : N | e

⋄-intro
Γ ⊢ v : P

Γ ⊢ retv : ⋄P | ε
⋄-elim

Γ ⊢ u : ⋄P | e1 Γ.x :P ⊢ t : N | e2

Γ ⊢ u tox . t : N | e1 • e2

⇒-intro

Γ.x :P ⊢ t : N | e

Γ ⊢ λx . t : P ⇒ N | e
⇒-elim

Γ ⊢ t : P ⇒ N | e Γ ⊢ v : P

Γ ⊢ t v : N | e

Π-intro
∀i:I , Γ ⊢ ti : Ni | e

Γ ⊢ record{i : ti }i :I : ΠIN | e
Π-elim

Γ ⊢ t : ΠIN | e

Γ ⊢ proji t : Ni | e

sub

Γ ⊢ t : N | e

Γ ⊢ t : N | e ′
e ≤ e ′

Fig. 1. Effect-graded call-by-push-value.

[Zeilberger 2009]. Positive types are generated from base types o via disjoint sums Σi :IPi with tag

set I , eager products ⊗i :I Pi (composed from 1 and A1 ×A2 in loc. cit.) of arity I and thunking [e]N
(written U B in loc. cit.). In contrast to pure CBPV, thunk types [e]N are annotated with an effect e
that can be triggered when the thunk is forced. Negative types are just as in pure CBPV: monadic

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 1. Publication date: January 2021.
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Graded CBPV 1:7

types ⋄P (written F A in loc. cit.), function types P ⇒ N (written A → B) in loc. cit.) and record

types Πi :INi with label set I . Records are lazy tuples whose components are only computed by

demand. We abbreviate Σi :IPi by its “meta-level η-contraction” ΣIP ; notations ⊗I P and ΠIN are

understood analogously.

Terms are separated into values v ∈ Tm+ and computations t ∈ Tm−
and are identical to pure

CBPV, modulo changes in the concrete syntax. Values introduce positive types, computations

introduce negative types and eliminate both positive and negative types. We use bars to indicate

sequences, e.g., v̄ for a sequence of values, but drop the bar when the context of discourse makes

clear that we are dealing with sequences rather than single objects. For instance, “vi ” (where i : I )
in the premise of ⊗-intro indicates that v is a sequence of values with elements (vi )i :I . We may

abbreviate record{i : ti }i :I by recordI t where I is the label set and t a mapping from labels i : I to
terms ti .

The meaning of the term constructors is best understood via their typing. Typing contexts Γ are

finite maps from variables x to value types P , with Γ.x :P denoting the update of the finite map Γ at

key x with value P .
Value typing Γ ⊢ v : P is just as in pure CBPV, however, computation typing Γ ⊢ t : N | e also

records effects e : Eff potentially produced at runtime by computation t . Thunking a computation

(rule □-intro) stores the inferred effect classifier e in the thunk type [e]N .

Effects are accumulated via the introduction and elimination rule for the graded monad. The

unit retv of the monad is effect-free (⋄-intro); running this computation just produces the pure

value v . Sequencing computations u and t via the bind construct “u tox . t” composes the effects

e1 of u with the effects e2 of t in that order. The intuition is that first u is run, producing effects

classified by e1, and its result is bound to x to run t , producing effects classified by e2. The sum of

the effects is classified by e1 • e2.

The other introduction and elimination rules are just as in pure CBPV, except that they propagate

the effect classifier e from hypothesis to conclusion. Note that in case distinction (Σ-elim) and
record construction (Π-intro) all subterms ti are required to produce effects classified by the same

e . However, in reality, different branches of e.g. a case distinction may produce very different effects.

To end up with a unique classifier e , the branches may have to be typed using effect subsumption

(sub). In fact, the uses of sub can be confined to the hypotheses of Σ-elim and Π-intro, except
for a final invocation of sub at the very end of the typing derivation. Alternatively, we could have

introduced effect algebras with suprema supi :I ei instead of a preorder e ≤ e ′. However, suprema

might not always exist; by using subsumption sub, we delegate the problem of partiality to the

construction of a typing derivation.

Remark 3. We recover pure CBPV from graded CBPV using the trivial effect algebra Eff = {ε}.

2.5 Effect graded CBPV: denotational semantics
The denotational semantics of the novel parts of graded CBPV has been informally explained in

sections 2.1 to 2.3 already; in the following, we spell out the details. We assume a distributive

cartesian-closed category C with a strong graded monad T : [Eff → [C → C]]. Let us agree on

some notation for the constructions on objects and morphisms:

• Product

∏
i :I Ai with projections πi : C(

∏
I A,Ai ) and tupling ⟨fi ⟩i :I : C(C,

∏
i A) for fi :

C(C,Ai ). Binary products

∏
{1,2} A are written A1 × A2, and the nullary product (terminal

object) is written 1 with nullary tupling ⟨⟩ : C(C, 1).
• Coproduct

∐
i :I Ai with injections ιi : C(Ai ,

∐
I A), cotupling [fi ]i :I : C(

∐
I A,B) for fi :

C(Ai ,B), and distribution morphism dist : C (C ×
∐

I A,
∐

i :I (C ×Ai )).

• Exponential A ⇒ B with Λ : C(C ×A,B) → C(C,A ⇒ B) and eval : C((A ⇒ B) ×A,B).
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• Graded monad T with functoriality fmapT f : C(TeA, TeB) for f : C(A,B), unit return :

C(A, TεA), multiplication join : C(Te1
(Te2

A), Te1•e2
A), strength strengthl : C(A × TeB, Te (A ×

B)) and coercion cast : C(TeA, Te ′A) for e ≤ e ′. Costrength strengthr : C(TeA× B, Te (A× B))
is derivable in the standard way.

2.5.1 Interpretation of types. Positive types P are interpreted as objects JPK+ of C, where a

denotation JoK+ : C of base types o is assumed. This interpretation lifts to contexts Γ via JΓK+ =∏
x :dom(Γ)JΓ(x)K+.
Negative types N are interpreted as functors JN K− : [Eff → C] mapping effect classifiers e to

objects JN K−e and effect subsumption e ≤ e ′ to morphisms JN K−e≤e ′ : JN K−e → JN K−e ′ .

J_K+ : Ty+ → C

J[e]N K+ = JN K−e
JΣIPK+ =

∐
i :I JPiK+

J⊗I PK+ =
∏

i :I JPiK+

J_K−
_

: Ty− → Eff → C

J⋄PK−e = TeJPK+
JP ⇒ N K−e = JPK+ ⇒ JN K−e
JΠIN K−e =

∏
i :I JNiK−e

The graded T-algebra structure runJN K− is constructed by induction on N , as well as functoriality

JN K−e1≤e2

:

runJN K− : C (Te1
(JN K−e2

), JN K−e1•e2

)

runJ⋄PK− = join
runJP⇒N K− = Λ(runJN K− ◦ fmapT eval ◦ strength

r)

runJΠIN K− = ⟨runJNi K− ◦ fmapT πi ⟩i :I

JN K−e1≤e2

: C (JN K−e1

, JN K−e2

)

J⋄PK−e1≤e2

= cast
JP ⇒ N K−e1≤e2

= Λ(JN K−e1≤e2

◦ eval)
JΠIN K−e1≤e2

= ⟨JN K−e1≤e2

◦ πi ⟩i :I

This construction is the same as Levy [2006], modulo grading. The algebra laws ensue. That the

coercions JN K−e1≤e2

satisfy identity and composition—the functor laws for JN K−—is easy to verify.

2.5.2 Interpretation of terms. Values Γ ⊢ v : P are interpreted as morphisms LvM : C (JΓK+, JPK+)
just as in pure CBPV. Computations Γ ⊢ t : N | e are interpreted as morphisms LtM : C (JΓK+, JN K−e ).
Most of the cases are straightforward and in analogy to CBPV, so let us focus on the modified rules

where grading comes into play. A subtlety is that we interpret typing derivations rather than terms,

because rule sub is a silent construction on raw terms but becomes a coercion in the denotational

semantics. The most natural way to make this precise is to use intrinsically well-typed syntax.

Going from typing rules to such well-typed syntax is a routine transformation which we do not

spell out here. The reader interested in well-typed syntax for CBPV is referred to Abel and Sattler

[2019]. The other subtlety, that we ignore variable names in the interpretation, can also be made

precise by well-typed syntax which uses de Bruijn indices.

As in Levy’s algebra semantics [2006], creation and forcing of thunks is invisible in the model.

The bind operation (⋄-elim) utilizes the generalization of join to run. Subsumption is interpreted

by functoriality in Eff.

□-intro Lthunk tM = LtM
□-elim LforcevM = LvM

⋄-intro LretvM = return ◦ LvM
⋄-elim Lu tox . tM = runJN K− ◦ fmapT eval ◦ strength

l ◦ ⟨ΛLtM, LuM⟩

sub LtM = JN K−e≤e ′ ◦ LtM

These definitions are understood in the context of the given typing rules.

2.6 Example effects
We replay some of Levy’s [2006] effect examples in graded CBPV.
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Printing. Outputting a fixed string s before computing t is facilitated by “print s . t” which we

type by the following rule:

Γ ⊢ t : N | m

Γ ⊢ print s . t : N | n +m
s : String≤ n

Herein, we use effect algebra (N ∪ {∞},+, 0, ≤) and graded monad TnA = String≤ n × A. This
allows us to implement a family of morphisms output : String≤ n → SET (1, Tn 1) to interpret the

print statement as Lprint s . tM = runJN K ◦ fmapT π2 ◦ strengthr ◦ ⟨output s ◦ ⟨⟩, LtM⟩:

JΓK
⟨output s◦⟨⟩, LtM⟩ // Tn 1 × JN K−m

strengthr // Tn(1 × JN K−m)
fmapT π2 // Tn JN K−m

run // JN K−n+m

Exceptions. Given a set Exc of exceptions whose elements we refer to by e and whose subsets by

E, consider the effect algebra (P Exc,∪, ∅, ⊆). Primitives for throwing and catching exceptions can

be added to graded CBPV by the following rules:

Γ ⊢ throw e : N | {e}

Γ ⊢ u : N | E1 Γ ⊢ t : N | E2

Γ ⊢ u catch e 7→ t : N | E1 \ {e} ∪ E2

If u throws exception e , then “u catch e 7→ t” computes t , else u. In SET we use the graded monad

TE A = E+A and a family of morphism raise e : SET(1, T{e }A) to interpret Lthrow eM = raise e◦⟨⟩. To
interpret catch, define a family handleN e : SET (NE1

× NE2
, NE1\{e }∪E2

) by induction on N ∈ Ty−:

handle⋄P e (д,h) =

{
h if д = ι1e
д otherwise

handleP⇒N e (д,h)a = handleN e (д a,h a)
handle⊗I N e (д,h) i = handleNi e (д i,h i)

Catching is then Lu catch e 7→ tM = handleN e ◦ ⟨LuM, LtM⟩. Note that handle cannot be defined in

terms of run, but we have to break N down to monadic type ⋄P to get access to the exception

thrown by u.

2.7 Digression: grading via a partial monoid
Not all sequences of effects are always meaningful: For instance, reading from a file before it

was opened is impossible and could be prevented statically by graded effect typing. This could

be modelled by adding a maximal element ⊤ : Eff (with e ≤ ⊤ for all e : Eff) that signifies an
inconsistent state. This error element would also be dominant in sequences, i.e., ⊤ • e = e • ⊤ = ⊤.

A program Γ ⊢ t : N | e would only be accepted if e , ⊤.

Alternatively, we could work with a partial monoid, i.e., a carrier Eff with a predicate ε≤_ and a

ternary relation _•_≤_ such that the following laws hold:

(1) Unit: e ≤ e ′ :⇐⇒ ∃e0. ε ≤ e0 ∧ e0 • e ≤ e ′ iff ∃e0. ε ≤ e0 ∧ e • e0 ≤ e ′.
(2) Associativity: ∃e12. e1 • e2 ≤ e12 ∧ e12 • e3 ≤ e123 iff ∃e23. e1 • e23 ≤ e123 ∧ e2 • e3 ≤ e23.

(3) Monotonicity of ε≤_: If ε ≤ e and e ≤ e ′ then ε ≤ e ′.
(4) Monotonicity of _•_≤_: If e ′

1
≤ e1 and e

′
2
≤ e2 and e ≤ e ′ and e1 • e2 ≤ e then e ′

1
• e ′

2
≤ e ′.

(5) Reflexivity and transitivity of ≤.

The typing rules for ⋄would change accordingly.

⋄-intro
Γ ⊢ v : P

Γ ⊢ retv : ⋄P | e
ε ≤ e ⋄-elim

Γ ⊢ u : ⋄P | e1 Γ.x :P ⊢ t : N | e2

Γ ⊢ u tox . t : N | e
e1 • e2 ≤ e

Rule sub would be admissible.
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A monad T : Eff → [C → C] graded by a partial monoid Eff has natural transformations Id Û→Te
for ε ≤ e and Te1

◦ Te2
Û→ Te for e1 • e2 ≤ e . A T-algebra B has morphism runB : Te1

Be2
→ Be for

e1 • e2 ≤ e .

Remark 4. Another way of restricting effect composition is to use a 2-category Eff where the

objects i, j,k are state types, the morphisms e effect classifiers and the 2-cells effect subsumption

e ≤ e ′. The necessary theory has been worked out by Orchard et al. [2020]. An example would be a

typed state monad Te :i→jA = Si → (A× S j ) where the state type Si is indexed, and effects e : i → j
may only make valid modifications to the state. For instance, the index could be a set of pointers

denoting the allocated heap cells and a read/write/deallocate effect would require the respective

pointer to be a member of this set (and remove it in case of deallocate).

3 COEFFECT-GRADED CBPV
CBPV places the monad ⋄P at the transition from positive types to negative types. Dually, the

transition □N from negative types to positive types is a vessel that can be filled with a comonad.

Just like negative types N are monad algebras, positive types P can be comonad coalgebras.

3.1 Comonadic CBPV and their comonad coalgebras
Let us consider the stream comonad2 D B = N→ B, with head s = s 0 and tail s = s ◦ (_+1). The

stream comonad lets us work in a setting where values are not single data points, but streams

of data. Besides functoriality, a comonad has the natural transformations extract and display (in

category theory called ε and δ ), dual to return and join. The implementation of the stream comonad

in SET is as follows:

extract : D B → B
extract s = head s

display : D B → D (D B)
head (display s) = s
tail (display s) = display (tail s)

The generic operations of a comonad allow us to extract the value wrapped in a comonadic structure

and to display another layer of that structure.

The comonad laws are a simple dualization of the monad laws:

D B D (D B)
extractoo display // D (D (D B))

D B

display

OO

display // D (D B)

fmap display

OO

fmap extract

��
D B

A monoidal comonad implements a morphism zip that combines a tuples of comonadic values

into one comonadic tuple—here implemented for the stream comonad:

zip : ⊗i :I (D Bi ) → D(⊗I B)
zip (si )i :I n = (si n)i :I

Many other comonads are monoidal, like the store comonad (S ⇒ _) × S , though not all, e.g., the
context comonad S × _. In this article, we consider only monoidal comonads.

2
https://bartoszmilewski.com/2017/01/02/comonads/
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Graded CBPV 1:11

If type constructor □ is interpreted as a monoidal comonad D, then all positive types P can be

interpreted as D-coalgebras A = JPK, i.e., implement a morphism exposeA : A → DA satisfying the

laws of a comonad coalgebra:

A DA
extractoo display // D (DA)

A

expose

OO

expose // DA

fmap expose

OO

The implementation of exposeJPK proceeds by induction on P .

exposeJ□N K : D JN K → D (D JN K)
exposeJ□N K = display

exposeJ⊗I PK : ⊗i :I JPiK → D (⊗i :I JPiK)
exposeJ⊗I PK = zip ◦ ⊗i :I exposeJPi K

exposeJΣI PK : Σi :I JPiK → D (Σi :I JPiK)

exposeJΣI PK =
[
fmap ιi ◦ exposeJPi K

]
i :I

Positive base types o ∈ Ty+ are required to be D-coalgebras. For instance, elements of a base type

like Float ∈ Ty+ could represent streams of floating point numbers, e.g., continuous measurements

from a sensor.

Because comonad coalgebras are closed under products for monoidal coalgebras, contexts Γ
are interpreted as comonad coalgebras JΓK. In the presence of a comonad interpretation of □, the
operations thunk and force are no longer the identity, but “generalized cobind” and extract:

□-intro
Γ ⊢ t : N

Γ ⊢ thunk t : □N
Lthunk tM = fmapD LtM ◦ exposeJΓK

□-elim
Γ ⊢ v : □N

Γ ⊢ forcev : N
LforcevM = extract ◦ LvM

The map LthunkM : C (A, B) → C (A, D B) generalizes cobind : C (DC, B) → C (DC, D B) to
D-coalgebras A in the same way that the monadic bind : C (A, T D) → C (TA, T D) is generalized
to C (A, B) → C (TA, B) for T-algebras B in CBPV.

3.2 Graded comonads and their coalgebras
Graded comonads have been utilized to give semantics to context-dependent computation [Pet-

ricek et al. 2014]. For grading, loc. cit. uses a resource algebra in form of a preordered semiring

(R,+, 0, ·, 1, ≤). The semantics is resource aware and thus not constructed in a cartesian-closed

category but in a symmetric monoidal closed category (C, ⊗, I,⊸). There, introduction Λ and elim-

ination eval of exponentials are Λ : C (C ⊗ A, B) → C (C, A ⊸ B) and eval : C ((A ⊸ B) ⊗ A, B).
The tensor product ⊗ is a bifunctor and it is customary to overload ⊗ for the functorial action

f1 ⊗ f2 : C (A1 ⊗ A2, B1 ⊗ B2) where fi : C (Ai , Bi ). We shall also use I -ary products ⊗i :I Ai and

their functorial action ⊗i :I fi . Further, the symmetric monoidal structure is usually witnessed by

natural isomorphisms for left λA : C (I ⊗ A, A) and right unit ρA : C (A ⊗ I , A), associativity
αA,B,C : C (A ⊗ (B ⊗ C), (A ⊗ B) ⊗ C) and swap σA,B : C (A ⊗ B, B ⊗ A). We shall summarize

combinations of these isomorphisms under the name iso⊗ : C (⊗I A, ⊗J B) when the multisets

{Ai }i :I and {Bj }j :J coincide modulo addition and deletion of units (I).
As a running example for resource accounting, we use the semiring R = P N \ ∅ of multiplicities

ordered by ⊇ with pointwise sum and product, e.g., r + s = {n +m | n ∈ r ,m ∈ s}. Subsemirings of
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R have been used for quantitative typing [Atkey 2018; McBride 2016; Sergey et al. 2014]. The order

expresses precision of the quantities, e.g., {1} ≥ {0, 1} ≥ N states that linear use of a variable is

more informative than affine use than unrestricted use.

A matching symmetric monoidal closed category C can be obtained as follows: Assume a

preordered commutative monoid (W, ⊕, 0W,⊑,⊔) that is also a ⊔-semilattice with distribution law

⊔i :I (wi ⊕w
′
i ) ⊑ ⊔Iw ⊕⊔Iw

′
. The elements (“worlds”) can be seen as collection of available resources

under choice. The orderw ⊑ w ′
again expresses precision of information, i.e., if we can construct

something from resourcesw we can also construct it fromw ′
where we have additional choices.

The supremum ⊔i :Iwi expresses we can build the “thing” from any of thewi . Multiplication n ·w
is understood as w ⊕ · · · ⊕ w with n summands. Given a commutative monoid (M,⊎, ∅) whose
elements can be thought of as bags of atomic resources, an instance for W would be W = PM
under ⊑ = ⊆ and pointwise unionw ⊕w ′ = {m ⊎m′ | m ∈ w,m′ ∈ w ′}.

Resource qualifiers r ∈ R operate on worlds via r · w = ⊔n∈r (n · w). For instance the affine
qualifier {0, 1}w = 0W ⊕ w gives us the choice of using resources w or not (0W). It is routine to

verify that W is almost a left semimodule to R, i.e., the following laws hold:

1 ·w = ⊔n∈{1}nw = 1w = w
(rs) ·w = ⊔n∈r,m∈s (nm)w = ⊔n∈rn(⊔m∈smw) = r · (s ·w)

0 ·w = ⊔n∈{0}nw = 0w = 0W
(r + s) ·w = ⊔n∈r,m∈s (n +m)w = ⊔n∈r ⊔m∈s (nw ⊕mw) = (r ·w) ⊕ (s ·w)

r · 0W = ⊔n∈rn0W = ⊔n∈r 0W = 0W
r · (w ⊕w ′) = ⊔n∈rn(w ⊕w ′) ⊑ ⊔n∈rnw ⊕ ⊔n∈rnw

′ = (r ·w) ⊕ (r ·w ′)

Because the last law is not an equality but just the inequality r (w ⊕ w ′) ⊑ rw ⊕ rw ′
, we have

“almost” a semimodule.

Objects of C are functors A : [(W,⊑) → SET] and morphisms f : C (A, B) are natural transfor-
mations (fw : Aw → Bw )w :W , i.e., Bw⊑w ′ ◦ fw = fw ′ ◦Aw⊑w ′ . The tensorA⊗ B is Day’s convolution

(A ⊗ B)w =
⋃

w1⊕w2⊑w (Aw1
× Bw2

) with unit Iw =
⋃

0W⊑w 1. The unit I is constructible at world
w from nothing (the unit set 1) if 0W ⊑ w , i.e., if the world w includes the choice of using no

resources. A tensor A ⊗ B is constructible at worldw ifw includes the choice to split the resources

into w1 and w2 to construct A and B, resp. The exponential A ⊸ B is determined by currying

C ⊗ A ⊸ B � C ⊸ (A ⊸ B) and given by (A ⊸ B)w =
⋂

w1⊕w⊑w2

(Aw1
→ Bw2

).

The thus constructed symmetric monoidal closed category C has a R-graded comonad

D : [(R, ≤) → [C → C]]

(DrA)w =
⋃

rw ′⊑w Aw ′

implementing trivially the following natural transformations. Herein, we use as second monoidal

structure on the functor category [C → C], the pointwise tensor product of functors ( Û⊗i :I Fi )A =
⊗i :I (Fi A) in [C → C], in particular ÛIA = I.

extract : D1 Û→ Id
display : Dr s Û→ Dr ◦ Ds
drop : D0 Û→ ÛI
duplicate : Dr+s Û→ Dr Û⊗ Ds

For example, duplicate takes a ∈
⋃

rw ′⊕sw ′⊑w Aw ′ to (a,a) ∈
⋃

w1⊕w2⊑w
⋃

rw ′
1
≤w1

⋃
sw ′

2
≤w2

Aw ′
1

×

Aw ′
2

. The intermediate worlds arew ′
1
= w ′

2
= w ′

andw1 = rw
′
andw2 = sw

′
.
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The monoidal character of D is witnessed by the trivial morphism zip:

zip : C (⊗i :I (Dr Ai ), Dr (⊗I A))
zipw :

⋃
⊕i :Iwi ⊑w Πi :I (Dr Ai )wi →

⋃
rw ′⊑w (⊗I A)w ′

zipw :

⋃
⊕i :Iwi ⊑w Πi :I (

⋃
rw ′

i ⊑wi
Aiw ′

i
) →

⋃
rw ′⊑w

⋃
⊕i :Iw ′

i ⊑w
′ Πi :IAiw ′

i

zipw (ai )i :I = (ai )i :I

The comonad laws generalize to graded comonads as follows:

Dr B

display
��

display // Dr (D1 B)

fmap extract

��
D1 (Dr B)

extract // Dr B

Dqrs B

display

��

display // Dqr (Ds B)

display

��
Dq (Dr s B)

fmap display // Dq (Dr (Ds B))

These laws reflect that D maps the multiplicative monoid (R, ·, 1) to the monoid structure ([C →

C], ◦, Id) of composition in the functor category [C → C]. Similar laws need to hold for the additive

monoid and distributivity.

D0 B ⊗ Dr B

drop⊗id
��

Dr B
duplicateoo duplicate // Dr B ⊗ D0 B

id⊗drop
��

I ⊗ Dr B
λ // Dr B Dr B ⊗ I

ρoo

Dq B ⊗ Dr+s B

id⊗duplicate

��

Dq+r+s B
duplicateoo duplicate // Dq+r B ⊗ Ds B

duplicate⊗id

��
Dq B ⊗ (Dr B ⊗ Ds B)

α // (Dq B ⊗ Dr B) ⊗ Ds B

D(q+r )s B
display //

duplicate

��

Dq+r (Ds B)

duplicate

��
Dqs B ⊗ Dr s B

display⊗display // Dq(Ds B) ⊗ Dr (Ds B)

Dqr B ⊗ Dqs B

display⊗display

��

Dq(r+s) B
duplicateoo display // Dq(Dr+s B)

fmap duplicate

��
Dq(Dr B) ⊗ Dq(Ds B)

zip // Dq(Dr B ⊗ Ds B)

A D-coalgebra is a functor A : [(R, ≤) → C] with family of morphisms exposer,s : Ar s → Dr As
natural in r and s . For the D-coalgebra D_ B the family expose is just display, and the suitably

generalizable laws for display are required to hold for expose:

Ar

expose

��
D1 Ar

extract // Ar

Aqrs

expose

��

expose // Dqr As

display

��
Dq Ar s

fmap expose // Dq (Dr As )
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Further, A needs to map the additive monoidal structure (R,+, 0) to the monoidal structure (C, ⊗, I)
associated with the tensor product in C. We choose to overload the names duplicate and drop here

to accommodate for the generalization from R-comonads to R-comonad algebras:

duplicate : C (Ar+s , Ar ⊗ As )

drop : C (A0, I)

The laws of duplicate and drop for comonadic objects Dr B immediately generalize to comonad

algebras Ar :

A0 ⊗ Ar

drop⊗id
��

Ar
duplicateoo duplicate // Ar ⊗ A0

id⊗drop
��

I ⊗ Ar
λ // Ar Ar ⊗ I

ρoo

Aq ⊗ Ar+s

id⊗duplicate

��

Aq+r+s
duplicateoo duplicate // Aq+r ⊗ As

duplicate⊗id

��
Aq ⊗ (Ar ⊗ As )

α // (Aq ⊗ Ar ) ⊗ As

A(q+r )s
expose //

duplicate

��

Dq+r As

duplicate

��
Aqs ⊗ Ar s

expose⊗expose // DqAs ⊗ DrAs

Aqr ⊗ Aqs

expose⊗expose

��

Aq(r+s)
duplicateoo expose // Dq Ar+s

fmap duplicate

��
DqAr ⊗ DqAs

zip // Dq(Ar ⊗ As )

Graded comonad algebras are closed under pointwise sums (ΣIA)r = Σi :IAi,r and products

(⊗I A)r = ⊗i :I Ai,r .

exposeΣIA : C ((ΣIA)r s , Dr (ΣIA)s )
exposeΣIA =

[
fmap ιi ◦ exposeAi

]
i :I

dropΣIA : C ((ΣIA)0, I)
dropΣIA =

[
dropAi

]
i :I

duplicateΣIA : C ((ΣIA)r+s , (ΣIA)r ⊗ (ΣIA)s )
duplicateΣIA =

[
(ιi ⊗ ιi ) ◦ duplicateAi

]
i :I

expose⊗I A : C ((⊗I A)r s , Dr (⊗I A)s )
expose⊗I A = zip ◦ ⊗i :I exposeAi
drop⊗I A : C ((⊗I A)0, I)
drop⊗I A = iso⊗ ◦ ⊗i :I dropAi
duplicate⊗I A : C ((⊗I A)r+s , (⊗I A)r ⊗ (⊗I A)s )
duplicate⊗I A = iso⊗ ◦ ⊗i :I duplicateAi

This enables us to interpret all positive types of CBPV as graded comonad coalgebras.
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3.3 Structured graded comonads and their algebras
Coeffect, quantitative, and many modal type systems maintain a typing context where each vari-

able x is annotated by a resource qualifier r in addition to its type P . Such a typing context

(r1x1:P1, . . . , rnxn :Pn) =: γ Γ can be split into a pure typing context Γ = x1:P1, . . . ,xn :Pn and a re-

source context γ = x1:r1, . . . ,xn :rn such that domγ = dom Γ. We shall freely mix the two notations

as it suits our purpose.

In coeffect-graded CBPV, we wish to interpret each type in the context as a D-coalgebra for

a fixed graded comonad D. The interpretation JΓK of the context Γ should then be a comonad

coalgebra over the grading γ such that judgements γ Γ ⊢ t : N can be interpreted as morphisms

LtM : C (JΓKγ , JN K−). Since each variable comes with its own resource qualifier, we cannot simply

model the context as a tensor product ⊗x :dom ΓJΓ(x)K of D-coalgebras since this product would be

indexed by a single resource qualifier r : R rather than a resource context γ : dom Γ → R. The
solution offered by Petricek et al. [2014] are structured indexed comonads. We shall generalize this

to comonad coalgebras to the extend needed for interpreting contexts.

McBride [2016] observed that resource contexts γ : RI form a left R-semimodule under pointwise

addition (γ + δ )(i) = γ (i) + δ (i) and scaling (r · γ )(i) = r · γ (i). Contexts Γ can thus be interpreted

as (structured or) Rdom Γ-graded D-coalgebras C with the following operations:

dropC : C (C0, I)
duplicateC : C (Cγ+δ , Cγ ⊗ Cδ )

duplicateC : C (CΣIγ , ⊗i :I Cγi )

exposeC : C (Crγ , Dr Cγ )

The second, generalized form of duplicatewill be used to split resources accumulated from I parties.
Note that Ar := Crγ flattens a structured D-coalgebra C into an ordinary one, A.
We will also need to interpret context extension. To this end, we shall employ a structured

product (C ⊠D)γ .δ = Cγ ⊗Dδ where γ : RI and δ : RJ
and thusC ⊠D is a RI+J -graded D-coalgebra.

Further, we implicitly use the isomorphism between 1-structured D-coalgebras C : R1 → C and

R-graded D-coalgebras A : R → C and define

JΓ.x :PK = JΓK ⊠ JPK+,

sweeping name issues under the carpet (to be handled by de Bruijn indices).

3.4 Coeffect-graded CBPV: syntax and typing
We now have the mathematical structures in place to define a coeffect-graded variant of CBPV (see

Fig. 2). The difference to pure CBPV is laid out in gray boxes.
The fundamental novelty is that the typing judgements γ Γ ⊢ v : P and γ Γ ⊢ t : N are equipped

with resource contexts γ matching the typing contexts Γ. A common pattern in the rules is that

resource requirements of the subterms are added when both subterms are or may be evaluated

at runtime (rules ⊗-intro, let, Σ/⊗/⋄/⊸-elim). Note that in Σ-elim, the branches ti of the case
statement (Σ-elim) share a resource context γ since only one of the branches is executed at runtime.

Via rule weak, the different resource requirements of the branches can be subsumed under their

maximum wrt. ≤R. Similarly, the components ti of a record (Π-intro) share a resource context
since projection only retrieves one of the components (Π-elim). This is the opposite of eager tuples
(⊗-intro) where the elimination makes all components available at the same time (⊗-elim), thus,

all components have to be evaluated at runtime.

Function types rP ⊸ N are now graded by a resource qualifier r that specifies how the function

argument is to be used in the function body. (This type is often written !rP ⊸ N .) In quantitative

typing with R = P N, qualifier r gives the possible usage quantities of the function argument, e.g.
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Types.

Ty+ ∋ P ::= □N | o | Σi :IPi | ⊗i :I Pi
Ty− ∋ N ::= ⟨r ⟩P | rP ⊸ N | Πi :INi

Cxt ∋ Γ ::= ∅ | Γ.x :P
R ∋ r , s ::= 0 | 1 | r + s | rs Resource qualifiers

RCxt ∋ γ ,δ ::= ∅ | γ .x :r Resource context

Terms.

Tm+ ∋ v,w ::= x | thunk t | ini v | tup v̄
Tm− ∋ t ,u ::= v be r x . t

| forcev | v cases { r x . t} | v split r x̄ . t
| retv | u tox . t
| λx . t | t v
| record{i : t} | proji t

Value typing γ Γ ⊢ v : P .

var

0 Γ. 1 x :P ⊢ x : P
□-intro

γ Γ ⊢ t : N

γ Γ ⊢ thunk t : □N

Σ-intro
γ Γ ⊢ v : Pi

γ Γ ⊢ ini v : ΣIP
⊗-intro

∀i:I , γi Γ ⊢ vi : Pi

(Σi :Iγi ) Γ ⊢ tupv : ⊗I P

Computation typing γ Γ ⊢ t : N .

let

δ Γ ⊢ v : P γ Γ. r x :P ⊢ t : N

(γ + rδ ) Γ ⊢ v be r x . t : N
□-elim

γ Γ ⊢ v : □N

γ Γ ⊢ forcev : N

Σ-elim
δ Γ ⊢ v : ΣIP ∀i:I , γ Γ. r xi :Pi ⊢ ti : N

(γ + rδ ) Γ ⊢ v cases { r xi . ti }i :I : N
⊗-elim

δ Γ ⊢ v : ⊗I P γ Γ. r xi :Pi
i :I

⊢ t : N

(γ + rδ ) Γ ⊢ v split r x̄ . t : N

⋄-intro
γ Γ ⊢ v : P

r γ Γ ⊢ retv : ⟨ r ⟩P
⋄-elim

δ Γ ⊢ u : ⟨ r ⟩P γ Γ. r x :P ⊢ t : N

(γ + δ ) Γ ⊢ u tox . t : N

⊸-intro

γ Γ. r x :P ⊢ t : N

γ Γ ⊢ λx . t : rP ⊸ N
⊸-elim

γ Γ ⊢ t : rP ⊸ N δ Γ ⊢ v : P

(γ + rδ ) Γ ⊢ t v : N

Π-intro
∀i:I , γ Γ ⊢ ti : Ni

γ Γ ⊢ record{i : ti }i :I : ΠIN
Π-elim

γ Γ ⊢ t : ΠIN

γ Γ ⊢ proji t : Ni
weak

γ ′ Γ ⊢ t : N

γ Γ ⊢ t : N
γ ≤ γ ′

Fig. 2. Coeffect-graded call-by-push-value.
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{1} for exactly one use (linear), {0, 1} for at most one use (affine), {0} for no use (constant), and N
for arbitrary use (unrestricted). A resource qualifier could also be a security level (public or private),

or a sensitivity level (a non-negative real) [Reed and Pierce 2010]. If a lambda abstraction λx . t is
typed with rP ⊸ N , qualifier r is attached to variable x in the resource context (rule⊸-intro).

If a function t : rP ⊸ N is applied (rule ⊸-elim), we need an r -qualified argument v : rP . We

could have given a qualified value typing judgement γ Γ ⊢ v : rP in the style of McBride [2016]

that—in the quantitative interpretation—provides r copies of v to be consumed by the function.

Such a judgement could come with a scaling rule

γ Γ ⊢ v : sP

rγ Γ ⊢ v : (rs)P

that allows to scale the production of v by r if the resources are scaled accordingly (from γ to rγ ).
However, this would have prevented the typing of forcev (rule □-elim), bcause there is no place

for the scaling factor in computation typing. Semantically, the v in forcev lives in D_JN K−, and we

can only extract the computation in JN K− if we can instantiate the coeffect qualifier _ to 1. Such is

not possible if scaling already happened (and needs to be respected). Instead, we bake scaling into

the transition from values to computations. Thus,⊸-elim receives an argument δΓ ⊢ v : P , and to

satisfy the demands of the function γ Γ ⊢ t : rP ⊸ N , the resources δ for the argument are scaled

by r , summing the resource requirements for the application to γ + rδ . Analogous scaling of the
eliminatee is baked into the other value eliminators (Σ-elim, ⊗-elim), into let, and into ⋄-intro.

The monadic type ⟨r ⟩P records the multiplicity r of the value of type P resulting from the

computation. This construction is dual to the comonadic type [e]N from effect-graded CBPV

(Section 2.4). Since negative types are not D-coalgebras and do not support scaling, the scaling in

⋄-intro is the last opportunity for scaling before entering the monad. Typing of bind (u tox . t )
attaches the resource qualifier r stored in ⟨r ⟩P to the variable x (⋄-elim).

3.5 Coeffect-graded CBPV: denotational semantics
Positive types P are interpreted as D-coalgebras JPK+ : [(R, ≤) → C] and negative types N as

objects JN K− : C. The interpretation of contexts is JΓK = ⊠x :dom ΓJΓ(x)K+.

J_K+
_

: Ty+ → [(R, ≤) → C]

J□N K+r = Dr JN K−
JΣIPK+r =

∐
i :I JPiK+r

J⊗I PK+r = ⊗i :I JPiK+r

J_K−_ : Ty− → C

J⟨r ⟩PK− = TJPK+r
JrP ⊸ N K− = JPK+r ⊸ JN K−
JΠIN K− =

∏
i :I JNiK−

The symmetric monoidal category C needs to be equipped with cartesian products ΠIB as well as

with distributive coproducts

∐
I A with distribution morphism dist : C (C ⊗

∐
I A,

∐
i :I (C ⊗ Ai )).

Computationsγ Γ ⊢ t : N are interpreted as morphisms LtM : C (JΓKγ , JN K−) and valuesγ Γ ⊢ v : P

as families LvMr : C (JΓKrγ , JPK+r ) natural in r . Naturality here means that JPK+r ≤s ◦ LvMr = LvMs ◦(
JΓK

(_·γ )

)
r ≤s

. Again, because of weak, we interpret typing derivations rather than terms. The

interpretation is now rather straightforward, but we spell it out for reference.

var L0Γ.1x :P ⊢ x : PMr = ρ ◦ (dropJΓK ⊗ idJPK+r )

□-intro Lγ Γ ⊢ thunk t : □N Mr = fmapDr LtM ◦ exposeJΓK
Σ-intro Lγ Γ ⊢ ini v : ΣIPMr = ιi ◦ LvMr
⊗-intro L(ΣIγ )Γ ⊢ tupv : ⊗I PMr = ⊗i :I Lvi Mr ◦ duplicate
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let L(γ + rδ )Γ ⊢ v be r x . t : N M = LtM ◦ (idJΓKγ ⊗ LvMr ) ◦ duplicate
□-elim Lγ Γ ⊢ forcev : N M = extractD ◦ LvM1

Σ-elim L(γ + rδ )Γ ⊢ v cases {rxi . ti }i :I : N M = [Lti M]i :I ◦ dist ◦ (idJΓKγ ⊗ LvMr ) ◦ duplicate
⊗-elim L(γ + rδ )Γ ⊢ v split r x̄ . t : N M = LtM ◦ iso⊗ ◦ (idJΓKγ ⊗ LvMr ) ◦ duplicate
⋄-intro L(rγ )Γ ⊢ retv : ⟨r ⟩PM = return ◦ LvMr
⋄-elim L(γ + rδ )Γ ⊢ u to r x . t : N M = runJN K ◦ fmapTLtM ◦ strength

l

◦ (idJΓKγ ⊗ LuM) ◦ duplicate
⊸-intro Lγ Γ ⊢ λx . t : rP ⊸ N M = ΛLtM
⊸-elim L(γ + rδ )Γ ⊢ t v : N M = eval ◦ (LtM ⊗ LvMr ) ◦ duplicate
Π-intro Lγ Γ ⊢ recordI t : ΠIN M = ⟨Lti M⟩i :I
Π-elim Lγ Γ ⊢ proji t : Ni M = πi ◦ LtM
weak Lγ Γ ⊢ t : N M = LtM ◦ JΓKγ ≤γ ′

It is remarkable that coeffect-graded CBPV works without any distributive law [Gaboardi et al.

2016] for the monad T and the graded comonad D. This was a crucial design criterion, leading to

resource qualifiers in the monadic type ⟨r ⟩P . A distributive law would be required if we allowed

scaling of computations, not just of values.

3.6 Coeffect-graded CBPV: equational theory and operational semantics
The equational theory and operational semantics of coeffect-graded CBPV is identical to the one of

CBPV [Levy 2006, Fig. 11]. In this section, we make just a few remarks on an alternative presentation

of the permutation laws (called “sequencing laws” in loc. cit.).
The equational theory of pure CBPV comprises β and η laws, and sequencing laws that syntacti-

cally express that negative types are monad algebras [Levy 2006, Fig. 11]. The sequencing laws

contain a generalization of the associativity law for monads and allow to permute a bind under a λ
or record construction. In the presence of η for functions and records, they are inter-derivable with

the following permutation laws:

π -⋄ (t1 tox1. t2) tox2. t3 = t1 tox1. (t2 tox2. t3)
π -⊸ (u tox . t)v = u tox . t v
π -Π proji (u tox . t) = u tox . proji t

Note that permutations for let-bindings like (v be r x . t)w = v be r x . t w are instances of the β-law

v be r x . t = t[v/rx]. Herein, t[v/rx] shall the denote the (capture-avoiding) replacement t[v/x]

of an r -annotated positive variable x by value v in term t . Permutations for value-eliminations like

(v split r x̄ . t)w = v split r x̄ . t w are derivable (using the β-laws) from the η-laws, like the η-⊗-law
t ′[v/rz] = v split r x̄ . t ′[tup x̄/rz] (let t ′ = (z split r x̄ . t)w).

3.7 Coeffect-graded CBPV: substitution and metatheory
Substitution for coeffect-graded type system has been worked out in detail by Atkey and Wood

[2019];Wood and Atkey [2020]. It straightforwardly extends to coeffect-graded CBPV. A substitution

σ is a finite map from variable to terms, mapping positive variables x to valuesv . Substitution typing

ΨΓ ⊢ σ : ∆ is equipped with a matrix Ψ : Rdom Γ×dom∆
recording the usage vector Ψ(z) : Rdom Γ

for each variable z ∈ dom∆ = domσ in the domain of the substitution.

0Γ ⊢ ∅ : ∅

ΨΓ ⊢ σ : ∆ γ Γ ⊢ v : P

(Ψ,γ )Γ ⊢ (σ ,v/x) : (∆.x :P)

Capture-avoiding parallel substitution into values vσ and computations tσ is defined as usual

by recursion on the term.
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The matrix Ψ : Rdom Γ×dom∆
acts as a linear map (δ : Rdom∆) 7→ (δΨ : Rdom Γ) and allows us to

state the substitution theorem.

Theorem 3.1 (Substitution preserves typing). Let ΨΓ ⊢ σ : ∆.

(1) If δ∆ ⊢ v : P then (δΨ)Γ ⊢ vσ : P .
(2) If δ∆ ⊢ t : N then (δΨ)Γ ⊢ tσ : N .

Proof. Straightforward adaptation of Atkey and Wood [2019]; Wood and Atkey [2020]. □

Corollary 3.2 (Single substitution preserves typing).

(1) If δΓ ⊢ v : P and γ Γ.rx :P ⊢ w : P ′ then (γ + rδ )Γ ⊢ w[v/rx] : P ′.
(2) If δΓ ⊢ v : P and γ Γ.rx :P ⊢ t : N then (γ + rδ )Γ ⊢ t[v/rx] : N .

Corollary 3.3 (Subject reduction). β-reduction of coeffect-graded CBPV preserves types.

In the pure (effect-free) version, every computation at value type returns a value.

Conjecture 3.4 (Canonicity of pure coeffect-graded CBPV). If ⊢ t : ⋄P then t =β retv for
some ⊢ v : P .

This normalization result can be proved with standard techniques such as reducibility candidates

or normalization by evaluation (cf. Abel and Sattler [2019]).

The denotation of a substitution ΨΓ ⊢ σ : ∆ is a natural transformation LσMδ : C (JΓKδΨ, J∆Kδ )
such that J∆Kδ ≤δ ′ ◦ LσMδ = LσMδ ′ ◦ JΓKδΨ≤δ ′Ψ

. It is defined by recursion as follows:

0Γ ⊢ ∅ : ∅
L∅Mδ : C (JΓK

0
, I)

= dropJΓK

ΨΓ ⊢ σ : ∆ γ Γ ⊢ v : P

(Ψ,γ )Γ ⊢ (σ ,v/x) : (∆.x :P)
Lσ ,v/xM(δ,r ) : C (JΓK

(δ,r )(Ψ,γ ), J∆Kδ ⊗ JPK+r )

= (LσMδ ⊗ LvMr ) ◦ duplicateJΓK

Observe that (δ , r )(Ψ,γ ) = δΨ+rγ and, consequently, duplicateJΓK : C (JΓK
(δ,r )(Ψ,γ ), JΓKδΨ⊗JΓKrγ ).

Theorem 3.5 (Soundness of substitution). Let ΨΓ ⊢ σ : ∆.

(1) If δ∆ ⊢ v : P then LvσMr = LvMr ◦ LσMrδ : C (JΓKrδΨ, JPK+r ).
(2) If δ∆ ⊢ t : N then LtσM = LtM ◦ LσMδ : C (JΓKδΨ, JN K−).

Proof. By induction on the typing derivation of the term v and t , resp. □

Corollary 3.6 (Soundness of single substitution).

(1) If δΓ ⊢ v : P and γ Γ.rx :P ⊢ w : P ′ then

Lw[v/rx]Ms = LwMs ◦ (idJΓKsγ ⊗ LvMsr ) ◦ duplicateJΓK .

(2) If δΓ ⊢ v : P and γ Γ.rx :P ⊢ t : N then

Lt[v/rx]M = LtM ◦ (idJΓKγ ⊗ LvMr ) ◦ duplicateJΓK .

Proof. After comprehending that the semantics of identity substitutions is just id, we observe
that the semantics of single substitutions is Lv/rxM = (id ⊗ LvMr ) ◦ duplicate. □
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Types.

Ty+ ∋ P ::= [ e ]N | o | Σi :IPi | ⊗i :I Pi
Ty− ∋ N ::= ⟨r ⟩P | rP ⊸ N | Πi :INi

Value typing γ Γ ⊢ v : P .

var

0Γ.1x :P ⊢ x : P
□-intro

γ Γ ⊢ t : N | e

γ Γ ⊢ thunk t : [ e ]N

Σ-intro
γ Γ ⊢ v : Pi

γ Γ ⊢ ini v : ΣIP
⊗-intro

∀i:I , γiΓ ⊢ vi : Pi
(Σi :Iγi )Γ ⊢ tupv : ⊗I P

Computation typing γ Γ ⊢ t : N | e .

let

δΓ ⊢ v : P γ Γ.rx :P ⊢ t : N | e

(γ + rδ )Γ ⊢ v be r x . t : N | e
□-elim

γ Γ ⊢ v : [ e ]N

γ Γ ⊢ forcev : N | e

Σ-elim
δΓ ⊢ v : ΣIP ∀i:I , γ Γ.rxi :Pi ⊢ ti : N | e

(γ + rδ )Γ ⊢ v cases {rxi . ti }i :I : N | e
⊗-elim

δΓ ⊢ v : ⊗I P γ Γ.rxi :Pi
i :I

⊢ t : N | e

(γ + rδ )Γ ⊢ v split r x̄ . t : N | e

⋄-intro
γ Γ ⊢ v : P

rγ Γ ⊢ retv : ⟨r ⟩P | ε
⋄-elim

δΓ ⊢ u : ⟨r ⟩P | e1 γ Γ.rx :P ⊢ t : N | e2

(γ + δ )Γ ⊢ u tox . t : N | e1 • e2

⊸-intro

γ Γ.rx :P ⊢ t : N | e

γ Γ ⊢ λx . t : rP ⊸ N | e
⊸-elim

γ Γ ⊢ t : rP ⊸ N | e δΓ ⊢ v : P

(γ + rδ )Γ ⊢ t v : N | e

Π-intro
∀i:I , γ Γ ⊢ ti : Ni | e

γ Γ ⊢ record{i : ti }i :I : ΠIN | e
Π-elim

γ Γ ⊢ t : ΠIN | e

γ Γ ⊢ proji t : Ni | e

sub

γ ′Γ ⊢ t : N | e

γ Γ ⊢ t : N | e ′
γ ≤ γ ′, e ≤ e ′

Fig. 3. Fully graded call-by-push-value.

4 FULLY GRADED CBPV
In this section we finally present a fully graded version of CBPV where both effects and coeffects

are graded. Fig. 3 presents its types and typing rules where the differences to the coeffect-graded

version are highlighted .

We reintroduce effect grading into the computation typing γ Γ ⊢ t : N | e . As in the effect-graded

version, effects are accumulated in a single place, the monadic bind construct (⋄-elim).

The crucial insight concerning the absence of distributive laws is the laziness of effects in CBPV.

They are only observed at positive types [Levy 2006], thus, can be “bottled up” in thunk t : [e]N
and reactivated via forcing in forcev : N | e .

4.1 Graded CBPV: semantics
As in effect-graded CBPV, negative typesN are interpreted as graded monad algebras JN K− : [(Eff, ≤
) → C]. Dually, as in coeffect-graded CBPV, positive types are interpreted as graded comonad
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coalgebras JPK+ : [(R, ≤) → C]. Values γ Γ ⊢ v : P are interpreted as natural transformations

LvM : JΓK
(_·γ ) Û→ JPK+ and computations γ Γ ⊢ t : N | e as morphisms LtM : C (JΓKγ , JN K−e ). Except

for some change in typing, the denotation of terms is unchanged from coeffect-graded CBPV. We

recapitulate the most interesting cases here with the updated typing:

Lthunk tMr JΓKrγ
expose // Dr JΓKγ

fmapDr LtM
// Dr JN K−e

LforcevM JΓKγ
LvM1 // D1 JN K−e

extract // JN K−e

LretvM JΓKrγ
LvMr // JPK+r

return // Tε JPK+r

Lu tox . tM JΓKγ+δ
duplicate // JΓKγ ⊗ JΓKδ

id⊗LuM // JΓKγ ⊗ Te1
JPK+r

strengthl��
JN K−e1•e2

Te1
JN K−e2

runJN K−oo Te1
(JΓKγ ⊗ JPK+r )

fmapTe
1

LtM
oo

Subsumption (sub) is interpreted by pre- and post-composition with the functorial actions of JΓK
and JN K−:

JΓKγ
JΓKγ ≤γ ′ // JΓKγ ′

LtM // JN K−e
JN K−e≤e′ // JN K−e ′

The operational semantics of graded CBPV is identical to the one of CBPV, and the substitution

typing of coeffect-graded CBPV (Section 3.7) can be mechanically transferred to fully graded CBPV.

4.2 Discussion
Graded CBPV provides syntax to work with graded monads Te and comonads Dr . A priori, one
could have expected that these constructs are directly reflected in the syntax of types, as ⟨e⟩P and

[r ]N . Surprisingly, the adaptation of graded effect and coeffect typing to CBPV places the qualifiers

in the opposite way, as ⟨r ⟩P and [e]N . Given our semantics of types as (co)monad (co)algebras, this

apparent oddity has a natural explanation: the qualifiers do not instantiate the grade in the monad

or comonad, but in the respective (co)algebra. The alternative concrete syntax ⋄Pr and □Ne would

maybe transport the intended semantics, T−JPK+r and D−JN K−e , more directly.

How does Graded CBPV work as a programming language? A program is usually a set of

definitions and then an entrypoint in form of an expression or simply the name of the main

procedure. In Graded CBPV, the definitions are given as a sequence of let-bindings whose final

body serves as the entrypoint. The entrypoint should be an expression of type ⟨1⟩P , producing an

observable value and thus, the effects leading up to this result. The expressions bound by the lets

will often be functions (or records), but wrapped in thunks [e]N to satisfy the formal requirement

to be of positive type. This thunk is where the effects are declared that a function produces. Thus, in

the big picture, the effects of a computation are stated in the types, not just in the typing judgement

γ Γ ⊢ t : N | e , even though the effect annotation is in a a priori unexpected location.

5 RELATEDWORK
Our style of effect tracking and its interpretation via graded monads is based on Wadler and

Thiemann [2003] and Katsumata [2014].
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5.1 Effect tracking in CBPV
McDermott and Mycroft [2019] observe that CBPV can represent call-by-name and call-by-value

evaluation strategies but not call-by-need. As a remedy, they extend CBPV to ECBPV by variables

x : ⋄P that hold monadic values, plus a corresponding let-binding construct. They further present

an effect-graded version of ECBPV, drawing effect qualifiers from a preordered monoid. In contrast

to our version, effect annotations f are stored at monadic types ⟨f ⟩P . Instead of our judgement

Γ ⊢ t : N | e (that accumulates effect traces e) and a semantic interpretation of computation types

N as graded monad algebras, they define a syntactic operation ⟨f ⟩N that pushes down effect

qualifier f to the monadic types ⟨f ′⟩P in N where the effects are combined to ⟨f • f ′⟩P . This
way of handling effect grading seems equivalent to our approach, albeit it is syntactic rather than

semantic.

In previous work, McDermott and Mycroft [2018] use coeffect typing to track variable usage

in call-by-need simply-typed lambda calculus with conditionals. Compared to the usual resource

semiring R tailored to call-by-name usage analysis, their coeffect algebra is more expressive: it can

produce traces of variable usage, including usage of bound variables. They show how graded effect

tracking can be simulated by the coeffect typing, e.g., for the effect of non-determinism. Naturally,

they focus on operational semantics.

To accomodate several sorts of effects in one language (CBPV hosts only a single effect type),

Kammar and Plotkin [2012] present MAIL, the Multi-Adjunctive Intermediate Language, which is

a version of CBPV parameterized by effect qualifiers. In contrast to our effect-graded version of

CBPV, effect qualifiers are a parameter to the type system as a whole, basically a mode attached
to the typing judgement. Via effect subsumption, one can switch to a “wider” mode. However, as

effects qualifiers are drawn from a preordered set rather than a monoid, more detailed static effect

traces cannot be captured. In their own words:

Instead of one kind of computation, for each effectset ε ∈ E, we have ε-computations

Comp(ε) that can cause effects in ε . We view MAIL as multiple copies of CBPV,

one for each ε , sharing the same values. One can translate between these different

CBPVs by means of coercion [...]

5.2 Coeffect typing
Our style of coeffect typing is heavily influenced by McBride [2016] and Atkey [2018] who keep

the quantification of variable usage in usage context γ separate from the variable declaration in an

ordinary typing context Γ. This division of labor has removed two major obstacle in the integration

of linear and dependent types: the customary sorting of linear and unrestricted variables into

separate typing contexts, and the dominance of context concatenation operations in the typing of

the multiplicative connectives of linear logic, e.g.:
∆1 ⊢ v1 : A1 ∆2 ⊢ v2 : A2

∆1.∆2 ⊢ (v1,v2) : A1 ⊗ A2

In contrast to our style, the coeffect type systems of Reed and Pierce [2010], Petricek et al. [2014],

Brunel et al. [2014], Ghica and Smith [2014], and Orchard et al. [2019] keep context concatenation.

This does no harm in simply-typed settings, but seems to duplicate a mechanism already present in

form of the resource qualifier 0.

Our treatment of substitution in coeffect-graded CBPV is based on Wood and Atkey [2020], who

formalize (in Agda) substitution for intuitionistic linear logic with a subexponential representing

a graded comonad. They observe that instead of a preordered semiring, a left skew semiring can

be used as resource algebra. In a skew semiring, the laws involving multiplication only hold as

inequalities, not equalities.
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5.3 Interaction of effects and coeffects
Gaboardi et al. [2016] investigate systematically the possible interactions between semiring-graded

coeffects and monoid-graded effects, in form of distributive laws between the graded comonad

and monad. We do not rely on such distributive laws in Graded CBPV. The strict separation of

value and computation types and the placement of the monad and comonad at the transition points

makes interaction optional. How to integrate distributive laws into Graded CBPV is left for future

research.

6 CONCLUSIONS
In this article, we have demonstrated that CBPV can accommodate graded effects and coeffects in a

smooth way, keeping the term grammar virtually unchanged and only adding effect and coeffect

annotations at the transition points between value and computation types. The surprising simplicity

of our solution speaks for the design quality of Levy’s CBPV calculus [2006]. For instance, the

analogy to intuitionistic linear logic—that lies at the heart of coeffect typing—is already implicitly

present in the separation of value (⊗) and computation type products (Π).
For the semantics of Graded CBPV, we have evolved the concepts of monad algebra and comonad

coalgebra to their graded versions.

In future work, we would like to investigate whether the distributive laws of Gaboardi et al.

[2016] carry over to Graded CBPV, e.g., whether and how a graded comonad can be distributed

over a graded monad algebra or, in the symmetric case, a graded monad distributes over a graded

comonad coalgebra.
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