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Abstract. Higher-order logical frameworks provide a powerful technol-
ogy to reason about object languages with binders. This will be demon-
strated for the case of the λµ-calculus with two different binders which
can most elegantly be represented using a third-order constant. Since
cases of third- and higher-order encodings are very rare in comparison
with those of second order, a second-order representation is given as well
and equivalence to the third-order representation is proven formally.

1 Introduction

The λµ-calculus [Par92,OS97,Bie98], a proof theory for the implicational frag-
ment of classical logic, has been established as a general tool to reason about
functional programming languages with control, e.g. continuations and excep-
tions. It is basically an extension of the λ-calculus by a second binder. Some of
its properties like strong normalization and confluence are very fundamental for
its use in functional programming and proof systems; a formal verification of
these basic properties is therefore desirable. Human proofs are error-prone; even
these which have undergone the scientific review process. For instance, the first
published proof of confluence for the λµ-calculus contained a flaw that was only
recently corrected [BHF01].

When reasoning about programming languages and logics with binders—
like the λ-calculus—the use of a higher-order logical framework can greatly re-
duce the size formalized proofs require. This is due to its built-in notions of
α-equivalence and substitution which make several technical lemmata obsolete
if a clever representation of the object language is chosen.

To our knowledge, properties of the λµ-calculus have not been verified me-
chanically so far. This article intends to provide a working point by giving two
possible encodings of the λµ-calculus in a higher-order abstract syntax. As it will
be seen, the λµ-calculus is one of the rare examples that can best be represented
in a way that involves a third-order constructor. This representation will enable
a natural implementation of the structural or mixed substitution that has been
discussed controversially in the literature [OS97,SR98,dG98,Bie98].
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The remainder of this article is organized as follows: In Sect. 2 we will in-
troduce the λµ-calculus in its original formulation by Parigot [Par92]. We will
proceed to interpret it computationally in Sect. 3 by giving a small-step seman-
tics and an application in exception handling. Sect. 4 contains a development of
a third-order representation for the untyped and the typed λµ-calculus together
with the formalization of the small-step semantics. We will point out a difficulty
with the representation and give an alternative, second-order encoding and prove
equivalence of both representations in Sect. 5. An outlook on further work will
conclude this article.

2 Parigot’s λµ-Calculus

In his seminal 1992 paper Parigot [Par92] introduced the λµ-calculus as a proof
theory for classical logic. In the following we will present the first-order fragment
which, in its computational interpretation, provides a general tool to model
control in functional programming.

The raw terms are given by this grammar:

M ::= x | λx.M |MM | µa.N (Unnamed) terms

N ::= [a]M Named terms

It is basically the untyped λ-calculus plus a second binder µ and µ-application
[a]M . Furthermore there is a second class of variables which we call µ-variables
and denote by a, b and c, in contrast to the λ-variables denoted by x, y and z.
The constructor µ binds a µ-variable in the following term; as for λ-variables,
α-equivalence can be defined. In the following we will not distinguish between
α-equivalent terms.

The raw terms can be typed by the following rules which we present in natural
deduction style:

x : A···
M : B

→Ix
λx.M : A→ B

M1 : A→ B M2 : A
→E

M1M2 : B

a : A M : A
contra

[a]M : −

a : A···
N : −

raa
a

µa.N : A

In the rule raa the judgment N : − means that the term N has no type. The
symbol − denotes the absurdity, which is not considered to be a type. The
formula A denotes the cotype of A; in the realm of logic A would be the negated
proposition A. Thus the µ-introduction is isomorphic to the reductio ad absurdum
rule in classical logic, which states that A holds if ¬A leads to a contradiction.

The contra rule is analogous to the fact in logic that ¬A and A entail a
contradiction. Note that there is no rule which constructs an inhabitant of a
cotype. Thus, if C : A holds, C must be a µ-variable a. The term [a]M resulting
from the application of a µ-variable a to a term M has no type, but it is said to
be named by a and hence is called a named term.



As closed λ-terms inhabit types that are isomorphic to tautologies in the
implicational fragment of intuitionistic logic, closed λµ-terms inhabit types that
are isomorphic to tautologies in the implicational fragment of classical logic. The
primary example is the Pierce-type ((A→ B)→ A)→ A which is inhabited by
the λµ-term

λx(A→B)→A.µaA.[a](xλyA.µbB .[a]y)

but empty in the λ-calculus. (For better readability we have annotated the ab-
stracted variables with their type.)

2.1 Reductions

In the simply-typed λ-calculus each normal termM has the subformula property:
if x1 : A1, . . . , xn : An ` M : A then each subterm of M is an inhabitant of a
type given by a subformula of A or Ai for some i. Each term M has a normal
form which can be obtained by a finite number of β-reductions. The reduction
relation is given by the compatible closure of the β-axiom.

(λx.M1)M2 −→β [M2/x]M1

In the λµ-calculus, we ignore negation when determining subformulas, that
is, A is considered a subformula of A. Then we can define a reduction relation
that computes normal forms which have the subformula property as in the λ-
calculus. Besides β-reduction we need permutative conversions induced by the
following axiom:

(µa.N)M −→π µb.[λ◦z.[b](zM)/a]N

This involves a new kind of substitution [λ◦z.[b](zM)/a]N , Parigot’s structural
substitution, which has the following effect: In N , replace every subterm of the
form [a]M ′ by [b](M ′M) for any term M ′. Our presentation of the structural
substitution follows de Groote [dG98], who introduces internal extensions of the
syntax:

M ::= x | λx.M |MM | µa.N Terms
N ::= [C]M Named terms
C ::= a | λ◦z.N (z appears exactly once in N) Contexts

Structural substitution is generalized to a substitution of contexts [C/a]M . After
a context is substituted for a µ-variable, appearances of λ◦ are eliminated silently
by linear β-reductions:

[λ◦z.N ]M −→β◦ [M/z]N.

The effect of the π-reduction is to uncover hidden β-redices; it is best ex-
plained in an example. Consider the following open term of type A:

y :A ` (µaA→A.[a]λxA.x) y : A



Because it contains the subterm λx.x of type A → A, this term does not fulfill
the subformula property. It is destroyed by a β-redex (λx.x) y which is separated
by a µ-abstraction. This hidden redex can be uncovered by a permutation:

(µaA→A.[a]λxA.x) y −→π µb
A.[λ◦zA→A.[b](z y)/a]([a]λxA.x)

= µbA.[λ◦zA→A.[b](z y)]λxA.x
−→β◦ µb

A.[λxA.x/z]([b](z y))
= µbA.[b](λxA.x) y

−→β µb
A.[b]y

Note that the −→β◦ -reduction step counts as part of the structural substitution.
Finally, we introduce a third kind of reduction which is analogous to β-

reduction:
[a]µb.N −→µβ [a/b]N

Parigot calls this reduction “renaming” of named terms. It requires a third
kind of substitution—µ-variables for µ-variables—as Ong and Steward point
out [OS97]. However, in our formulation it is just a special case of context sub-
stitution.

The reduction relation induced by the three axioms β, π and µβ is confluent.
However, a straightforward adaption of the Tait and Martin-Löf parallel reduc-
tion method fails. This was overlooked in the original confluence proof [Par92],
and only after years a correct proof was given by Baba, Hirokawa and Fujita
[BHF01]. They found that in its straightforward definition parallel reduction
does not have the diamond property. This is due to the twofold effect of π-
reduction: It may create a β-redex but at the same time disrupt a µβ-redex. For
example,

(µa.[a]µb.[a](λx.x)) y

π

%%KKKKKKKKKK
µβ

zzuuuuuuuuuu

(µa.[a](λx.x)) y

π
$$IIIIIIIIII

µa.[a](µb.[a](λx.x) y) y

?yy
µa.[a](λx.x) y

The µβ-redex [a]µb... is hidden after the π-reduction step. Another π-reduction
is required to restore it.

3 A Computational Interpretation

Since the pioneering work of Griffin [Gri90] it is known that control constructs for
functional programming like call/cc or Felleisen’s C [FFKD87] can be typed
by classical tautologies. Therefore we expect that the λµ-calculus can be in-
terpreted operationally such that known control constructs can be encoded as
λµ-terms. This is indeed the case—as demonstrated by Ong and Stewart [OS97]



and Bierman [Bie98]. In the following we present Ong and Stewart’s call-by-value
λµ-calculus, Bierman’s small step semantics and an encoding of de Groote’s ex-
ception handling calculus [dG95] into the λµ-calculus.

3.1 Call-by-Value λµ-Calculus

The λµ-calculus can be extended by datatypes, case-distinction and recursion
to form the core of a programming language. This has been done by Ong and
Stewart who named the resulting toy language µPCF−v . We will stick to its core
λµv which is the λµ-calculus with a call-by-value reduction strategy.

A value v is simply a λ-abstraction. We obtain a call-by-value strategy by
adding two rules and restricting the β-axiom to values.

(λx.M) v −→βv [v/x]M

v (µa.N) −→πv µb.[λ
◦z.[b](v z)/a]N

µa.[a]M −→µη M (a 6∈ µFV(M))

A deterministic evaluation strategy for λµv is given by the following small-step
semantics.

3.2 A Small-Step Semantics

Bierman [Bie98] gives a simple call-by-value small-step semantics that sheds
some light on the meaning of µ-abstraction and µ-application. Before we present
it, we define redices and evaluation contexts with a single hole •:

E ::= • | EM | v E Evaluation context

R ::= v v | µa.N Redex

Lemma 1 (Decomposition). Every λ-closed unnamed term M is either a
value or can be uniquely decomposed into an evaluation context E[•] and a redex
R such that M = E[R].

Furthermore, named terms N are always of the form [a]M . Hence, using an
environment E which maps µ-variables into evaluation contexts, we can spell
out the small-step semantics ⇒ by three axioms:

(E[(λx.M) v], E) ⇒ (E[[v/x]M ], E)
(E[µa.N ], E) ⇒ (N, E ] {a 7→ E[•]})
([a]M, E ] {a 7→ E[•]})⇒ (E[M ], E ] {a 7→ E[•]})

Note the invariant that the environment E binds all free µ-variables in M or N .
This semantics suggests that, in the same way as λ-variables are placeholder

for terms, µ-variables stand for contexts or continuations. Binding a µ-variable a
means saving the current context in a, and applying a to a term M means restor-
ing the context denoted by a and continuing the evaluation of M in this context.
This insight will be critical in finding the best higher-order representation later
in this article.



3.3 de Groote’s Exception Handling Calculus

To demonstrate the capability of the λµ-calculus to model control we present an
SML-like exception handling mechanism given by de Groote [dG95]. Exceptions
are added to the λ-calculus via two constructs: one that declares a new exception
and provides a handler for it; another one that raises the exception. They are
typed as follows:

e : A···
M : B

x : A···
Me : B

Handle
(exception e in M handle e(x).Me) : B

e : A M : A
Raise

raise e(M) : B

We sketch the desired computational behavior by two examples:

exception e in E[raise e(v)] handle e(x).Me ; [v/x]Me

exception e in v handle e(x).Me ; v

Bierman gives the following translation of the two constructs into λµ-terms. Note
that the encoding of raise introduces a β-redex to ensure call-by-value evaluation.

praise e(M)q = (λy.µ .[e]y) pMq
pexception e in M handle e(x).Meq = µa.[a](λx.pMeq) (µe.[a]pMq)

The reader is invited to convince himself that this translation has the stipulated
evaluation behavior, e.g. by verifying that

(pexception e in raise e(v) handle e(x).xq , E)⇒∗ (v, E ′).

Assuming the reader has gained some familiarity with the λµ-calculus by now,
in the next section we shall proceed by discussing its formal representation in a
reasoning framework.

4 A Third-Order Representation

Formal reasoning about logics and programming languages, in the following
called object theories, must take place in a framework, the meta theory. A possi-
ble choice for such a logical framework is predicate logic: first-order terms, made
up from function symbols and variables, encode the syntactic entities of the ob-
ject theory, and predicates represent properties of these entities, for example
the wellformedness of a formula or the validity of a proof. However, reasoning
about languages with binders in a first-order representation is a tedious business
and requires numerous technical lemmata concerning variable renaming, substi-
tution etc. (see e.g. [Sha88], [Alt93]). More suitable is a logical framework with
a higher-order term language which has binders itself. Then object variables
can be encoded by meta variables and substitution in the object theory can be
expressed by substitution in the logical framework.



The primary candidate for a higher-order logical framework is the simply-
typed λ-calculus λ→ with βη-equality, in which object languages with binders
can be encoded in a direct way. For example, the untyped λ-calculus can be
represented by the following signature.

Base types tm Terms

Constants lam : (tm→ tm)→ tm Abstraction
app : tm→ tm→ tm Application

The representation function p·q maps any untyped λ-term M into a term t of
the logical framework. It is defined by recursion over M as follows:

pxq = x

pλx.Mq = lamλx : tm. pMq
pM1M2q = app pM1q pM2q

The given representation is adequate, that is, there exists a one-to-one corre-
spondence between untyped λ-terms and their canonical representation in the
logical framework.

Theorem 1 (Adequacy). Let Γ = x1 : tm, . . . , xn : tm be a context. Then

1. for every untyped λ-term M with free variables in {x1, . . . , xn} it holds that
Γ ` pMq : tm,

2. for every canonical (i.e. β-normal η-long) term t with Γ ` t : tm there exists
an untyped λ-term M s.th. pMq = t, and

3. the representation function is compositional in the sense that p[M1/x]M2q =
[pM1q /x] pM2q.

Proof. By induction on (1.) M , (2.) t canonical, and (3.) M2. The cases for
abstraction λx . . . refer to the induction hypothesis with an extended context
(Γ, x : tm).

We observe these benefits of representing the untyped λ-calculus in a higher-
order logical framework like λ→: (i) α-equivalent object terms M1 and M2 trans-
late into equivalent terms of the logical framework and, (ii) substitution does not
have to be implemented. More on logical frameworks can be found in [Pfe01b].

4.1 Untyped λµ-Calculus

The untyped λµ-calculus extends the untyped λ-calculus by µ-abstraction and
µ-application. How shall we represent the new binder? Let us analyse the general
structure of a binder bind :

bind : (ρ→ σ)→ τ

The binder bind generates an expression of type τ from a context of type σ with
a free variable of type ρ. We know that the binder µ takes a named term N with



a free µ-variable a and returns a term. Thus we add the following constants to
our signature.

Base type nam Named terms

Constant mu : (ρ→ nam)→ tm µ-abstraction

In this signature ρ has to be replaced by the type of the variables that are
bound by mu. In the case of lam we had ρ = tm since λ-variables just stand for
terms. The crucial question is: “What do µ-variables stand for?” The small-step
semantics suggested that they are placeholder for evaluation contexts. This is
confirmed by the nature of the structural substitution which replaces contexts
with contexts. We make use of the fact that contexts can be represented directly
in λ→ as functions from terms to terms and set ρ = tm→ nam. Hence, the type
of the constant mu is third-order:

mu : ((tm→ nam)→ nam)→ tm

Surprisingly, we do not have to add a constant for µ-application; it is represented
by application in λ→. The translation function for λµ-terms M , N and contexts
C is an extension of p·q by the following definitions:

pµa.Nq = muλa : tm→ nam. pNq : tm

p[C]Mq = pCq pMq : nam

paq = a : tm→ nam

pλ◦z.Nq = λz : tm. pNq : tm→ nam

Theorem 2 (Adequacy). Let Γ = x1 : tm, . . . , xn : tm, a1 : tm → nam, . . . , am :
tm→ nam. Additionally to an adaption of Thm. 1 for λµ it holds that

4. for every named term N with free variables in Γ it holds that Γ ` pNq : nam,
5. for every canonical term s with Γ ` s : nam there exists a named term N

s.th. pNq = s,
6. for every (not necessarily linear) context C with free variables in Γ it holds

that Γ ` pCq : tm→ nam,
7. for every canonical term r with Γ ` r : tm → nam there exists a (not

necessarily linear) context C s.th. pCq = r, and,
8. the representation is compositional for context substitution, that is,

p[C/a]Mq = [pCq /a] pMq .

Proof. We prove 1., 4. and 6. simultaneously by induction on M/N/C, 2., 5.
and 7. by induction on the canonical forms of tm, nam and tm → nam, and 8.
by induction on M .

Note that we only represented general contexts adequately, not linear contexts
C. However, all contexts we de facto write down in the encoding of reduction
rules and small-step semantics will actually be of the required form. In the given



encoding the structural substitution, which looks complicated in the literature
(e.g. [OS97]), is just λ→-substitution for µ-variables (see 8.). For example,

p[λ◦z.[b](z y)/a]([a]x)q = p[b](xy)q = b (appx y) = (λz : tm .b (app z y))x

= [λz : tm .b (app z y)/a](a x) = [pλ◦z.[b](z y)q /a] p[a]xq .

Well-typed terms:

ty : type Types

tm : ty→ type Typed terms
nam : type Named terms

i : ty Base type
⇒ : ty→ ty→ ty Function space

lam : (tmA→ tmB)→ tm(A⇒ B) λ-abstraction
app : tm(A⇒ B)→ tmA→ tmB Application
mu : ((tmA→ nam)→ nam)→ tmA µ-abstraction

Reduction:

−→ : tmA→ tmA→ type Red. for typed terms
−→n : nam→ nam→ type Red. for named terms

−→β : ΠM : tmA→ tmB.ΠN : tmA.
app (lamM)N −→M N β-axiom

−→π : ΠM : (tm(A⇒ B)→ nam)→ nam. ΠN : tmA.
app (muM)N −→ muλa : tmB → nam.
M (λz : tm(A⇒ B).a (app z N)) π-axiom

−→lam, −→app1, −→app2 : . . . lam- and app-congruences

(i) Direct representation (not adequate):

−→µβ : Πa : tmA→ nam. ΠM : (tmA→ nam)→ nam.
a (muM) −→n M a µβ-axiom

−→nam : Πa : tmA→ nam. M −→M ′

→ aM −→n aM
′ nam-congruence

−→mu : (Πa : tmA→ nam. N a −→n N
′a)

→ muN −→ muN ′ mu-congruence

(ii) Representation with local rules (adequate):

−→mu : (Πa : tmA→ nam.
Π−→µβ : (ΠM : (tmA→ nam)→ nam. a (muM) −→n M a).
Π−→nam : (ΠM,M ′ : tmA. M −→M ′ → aM −→n aM

′).
→ N a −→n N

′a)
→ muN −→ muN ′ mu-congruence

Table 1. The Signature Σ3rd: Well-Typed Terms and Reduction.



4.2 Typed λµ-calculus

Table 1 lists the signature Σ3rd which encodes the well-typed λµ-terms in the de-
pendently typed λ-calculus λΠ—the core of logical frameworks like LF [HHP93].
To represent terms of type A we instantiate the type family tm : ty → type to
tmA. Note that in the constant declarations A and B are considered to be
implicitly quantified. For example, the full type of the constant lam would be
ΠA : ty.ΠB : ty.(tmA→ tmB)→ tm(A⇒ B).

Reduction is represented by a pair of type families, −→ and −→n. In part (i),
the representation of the two rules −→µβ and −→nam is not adequate yet, since
context C could be instantiated for a, but only µ-variables should be allowed.
This problem can be circumvented by removing these rules and making them
local : Whenever a new parameter a : tmA→ nam is introduced, add these rules
dynamically for this specific a. The only rule that introduces such parameters is
−→mu; we replace it by the version in part (ii). Adequacy of our representation
can be stated and proven in a similar way to Thm. 2.

4.3 Small-Step Semantics

In the following we will refine and encode the small-step semantics (M, E) ⇒
(M ′, E ′) given in Sect. 3.2. The original formulation has a little flaw: during the
process of evaluation the environment E grows monotonically and accumulates
contexts that will never be used again. We give a modification that uses sub-
stitution instead of environments and includes the decomposition of the subject
M into evaluation context C and redex R. The µ-constant eval denotes the top
level evaluation context.

Values val : tmA→ type
v ::= λx.M vlam : ΠM : tmA→ tmB. val (lamM)

Evaluation Contexts
C ::= λ◦z.[eval]z eval : tmA→ nam

| λ◦z.[C](zM) λz. pCq (app z pMq)
| λ◦z.[C](v z) λz. pCq (app pvq z)

Again not each inhabitant of tmA → nam stands for a valid evaluation con-
text. However, a judgment ecxt : (tmA → nam) → type which singles out the
evaluation contexts can be defined easily.

The small-step semantics can be defined by the four rules given below. For-
mally, it maps one named term into another. We say a term M evaluates to a
value v iff [eval]M ⇒∗ [eval]v.

⇒β [C]((λx.M) v)⇒ [C]([v/x]M) ⇒µβ [C](µa.N)⇒ [C/a]N

⇒appl

[λ◦z.[C](zM2)]M1 ⇒ N

[C](M1M2)⇒ N
⇒appr

[λ◦z.[C](v z)]M ⇒ N

[C](vM)⇒ N



On the left hand side of ⇒ an occurrence of [C]M is to be read as “term M in
context C” but on the right hand side it is just the named term [C]M . After
each step we decompose the reduct N afresh into [eval]M . This is possible since
the following invariant holds: If C and M are closed and [C]M ⇒ N , then
N = [eval]M ′ for a closed term M ′. Obviously it holds for the rules ⇒β , ⇒appl

and ⇒appr. To justify it for the rule ⇒µβ we first notice that the right hand
side [C/a]N is a closed named term. Hence, it must be equal to [c]M ′ for some
µ-constant c, which can only be eval.

The representation of “⇒” maps a context-term pair C M into another
context-term pair C ′ M ′. The decomposition of a named term into context and
term we did silently in the informal treatment is performed by the auxiliary
judgment “⇒n”.

⇒ : (tmA→ nam)→ tmA→ (tmA′ → nam)→ tmA′ → type

⇒n : nam→ (tmA′ → nam)→ tmA′ → type

⇒eval : ΠM : tmA′. (evalM)⇒n eval M

The four computation rules for “⇒” are given in the following. Note that “⇒”
is written infix and appears after two of its arguments.

⇒β : ΠC : tmB → nam. ΠM : tmA→ tmB. ΠV : tmA. valV →
(C (M V ))⇒n C

′ M ′ → C (app (lamM)V )⇒ C ′ M ′

⇒µβ : ΠN : (tmA→ nam)→ nam. ΠC : tmA→ nam.
(NC)⇒n C

′ M ′ → C (muN)⇒ C ′ M ′

⇒appl : (λz.C(app zM2)) M1 ⇒ C ′ M ′

→ C (appM1M2)⇒ C ′ M ′

⇒appr : (λz.C(appV z)) M ⇒ C ′ M ′ → valV
→ C (appV M)⇒ C ′ M ′

5 A Second-Order Representation

Even though we managed to show that the third-order representation of the
λµ-calculus is elegant and adequate, it is not without pitfalls: As we have seen
in Sect. 4.2, the direct representation of the reduction relation is not adequate;
the rules for named terms have to be locally introduced for a new parameter
a : tmT → nam. This works for ordinary reduction, but cannot be applied to a
representation of parallel reduction. Consider the rule =⇒µβ :

=⇒µβ : Πa : tmT → nam. (Πb : tmT → nam.M b =⇒n M
′b)

→ a(muλb.M b) =⇒n M
′ a

An application of this rule has the following effect: [a]µb.M is reduced by the µβ-
rule, and additional reductions may occur within M . The hypothesis introduces
a new parameter b since we step under the binder µ. To make this rule local,
it has to be added for each µ-variable that is introduced as a parameter and



Adequacy of the second-order representation of λµ-terms:
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Fig. 1. Overview: Adequacy of the Second-Order Representation

therefore also for b. Thus, =⇒µβ has to be inserted into itself. This leads to an
infinite chain of local rules and cannot be implemented.

These problems do not occur with a second-order representation, which we
present in this section. We define the representation function indirectly and also
prove adequacy indirectly as outlined in Fig. 1. First, we define the calculus
of continuations Cont, a modification of the λµ-calculus which allows general
continuation terms K in a µ-application, now called throwKE. In principle,
we make λ◦ an explicit constructor klam and do not treat −→β◦ silently any
more. Furthermore, in the representation Σ2nd we add a base type cont for
continuations. Then, we define the canonical expressions H ∈ Contcan as those
which only contain continuation variables, that is, no klam. Every expression
H ∈ Cont can be made canonical by applying normalization H � H ′.

For the three representations of these calculi we can show adequacy in a
straightforward manner. Hence, in each case a one-to-one correspondence ex-
ists, and we can restrict ourselves to reason about the original calculi to obtain
analogous results for their representations. Particularly, if we construct a bijec-
tion between λµ and Contcan, we implicitly define an adequate second-order
representation of λµ.

As a second part, we define reduction in Contcan and prove that it is the
second-order representation of the reduction in λµ. It is sufficient to show bisim-
ulation of reduction in λµ (L −→ L′) and reduction in Contcan (H −→ H ′) as
sketched in Fig. 1. The only case where we have to be careful is H −→π H

′ be-
cause applying structural substitution on H temporarily creates a non-canonical



expression H0 on which we have to apply normalization. Thus, we incorporate
normalization into π-reduction.

In the following we will sketch the proof of adequacy of the second-order
representation of λµ. The whole proof has been carried out in Twelf [PS98]
and is available electronically [Abe01]. We consider it as a case study for formal
reasoning about a system by a third-order representation. To my knowledge, this
is the first formal proof in a representation of order strictly greater than two.
This may be because cases are rare where third- or higher-order representations
can be applied.

Raw expressions:

E ::= x | λx.E | EE | catch k.F Expressions
F ::= throwKE Responses
K ::= k | klam x.F Continuations

H ::= E | F | K Any Cont-term

Typing:

k : A···
F : −

catch k.F : A

K : A E : A

throwKE : −

x : A···
F : −

klam x.F : A

Signature Σ2nd:

exp : ty→ type
resp : type
cont : ty→ type

lm : (expA→ expB)→ exp(A⇒ B)
ap : exp(A⇒ B)→ expA→ expB
catch : (contA→ resp)→ expA
throw : contA→ expA→ resp
klam : (expA→ resp)→ contA

Canonical raw expressions canH:

can x···
canE

canλx.E

canE1 canE2

canE1 E2

canK canE

can throwKE

can k···
canF

can catch k.F

Normalization H � H′:

[E/x]F � F
′

throw (klam x.F )E � F
′

x� y
···

E � E
′

λx.E � λy.E
′

E1 � E
′
1 E2 � E

′
2

E1 E2 � E
′
1 E
′
2

K � K
′

E � E
′

throwKE � throwK′ E′

k � l···
F � F

′

catch k.F � catch l.F ′

Translation L ==>= H from λµ into Contcan:

x ==>= y
···

M ==>= E

λx.M ==>= λy.E

M1 ==>= E1 M2 ==>= E2

M1 M2 ==>= E1 E2

a ==>= K M ==>= E

[a]M ==>= throwKE

a ==>= k···
N ==>= F

µa.N ==>= catch k.F

Reductions H −→ H′ in Contcan:

(λx.E1)E2 −→β [E2/x]E1

throw k (catch l.F ) −→µβ [k/l]F

[klam z.throw l (z E)/k]F � F
′

(catch k.F )E −→π catch l.F ′

Table 2. Calculus of Continuations Cont and Canonical Fragment Contcan



5.1 The Calculus of Continuations Cont

Table 2 defines expressions, continuations and responses (name due to Streicher
and Reus [SR98]) of Cont all of which we will refer to as raw expressions H.

Canonical raw expressions H are those which do not contain a klam. The
judgment canH is established by recursion on H; there are congruence rules for
all constructs except klam. Contcan is the quotient of Cont w.r.t. the equality
induced by the axiom throw (klamx.F )E = [E/x]F . We obtain the canonical
representative H ′ of a Cont-term H by applying the big-step call-by-name
normalization procedure H � H ′.

Lemma 2 (Properties of �).

1. If H1 � H2 then canH2.
2. If H1 � H2 and canH then [H/x]H1 � [H/x]H2.

Proof (of both assertions). By induction on H1 � H2. ut

5.2 Bisimulation

The relation L ==>= H constitutes a bijective translation between terms of the
λµ-calculus L and Contcan-expressions H. The following rectangle theorem (cf.
Fig. 1) states that λµ-reductions can be simulated by Contcan-reductions.

Theorem 3 (Simulation). If L ==>= H and L −→ L′ then L′ ==>= H ′ and
H −→ H ′ for some H ′.

Proof. By induction on L −→ L′. The only difficult case is −→π for which we
need Lemma 3. ut

Lemma 3 (Substitution).
If

a ==>= k···
L ==>= H

and
x ==>= z � y

···
C ==>= D′ � D

then
[λ◦x.C/a]L ==>= H ′ � [klam y.D/k]H

Proof. By induction on L. We spell out the hard case L = [a]M .

[a]M ==>= throw k E by ass. and def. of ==>=
M ==>= E by inversion
[λ◦x.C/a]M ==>= E′ by induction hypothesis
[λ◦x.C/a]([a]M) = [[λ◦x.C/a]M/x]C ==>= [E′/z]D′ by assumption
E′ � [klam y.D/k]E by induction hypothesis
[E′/z]D′ � [[klam y.D/k]E/y]D by assumption
[E′/z]D′ � throw (klam y.D) ([klam y.D/k]E) by def. of �
= [klam y.D/k](throw k E) ut



Note that the proof makes use of substitution of deductions. For example, we
show [[λ◦x.C/a]M/x]C ==>= [E′/z]D′ by instantiating the deduction x ==>= z of
the assumption C ==>= D′ with [λ◦x.C/a]M ==>= E′.

Analogously, it can be shown that the reduction in Contcan simulates the
reduction in the λµ-calculus which gives us bisimulation.

6 Conclusion

We have presented the λµ-calculus with an application and discussed two dif-
ferent encodings. The third-order representation seems to fit the λµ-calculus
best since all three kinds of substitutions are reduced to substitution of the
logical framework. Furthermore, we could formalize the small-step semantics
economically. However, a direct representation of parallel reduction fails. The
second-order representation is unaffected by these problems but requires aux-
iliary notions like canonical term and normalization which blow up the proofs
considerably in practice.

Two further directions of research open up from here: On the side of the
third-order representation, alternative formulations of parallel reduction have to
be investigated. A concrete idea is to introduce an auxiliary judgment “C is a
µ-variable” which makes the localizations of rules superfluous.

To improve support of the second-order representation, the logical framework
could be extended to allow type refinement. The type of canonical expressions
would be a refinement (a subtype) of the type of expressions. The fact whether a
term H is canonical could be decided and the proof of canH would be irrelevant
and could be hidden. The theoretical foundations for such an extension of the
logical framework have been laid by Pfenning [Pfe01a].

The third-order representation can be used to prove many properties of the
λµ-calculus. For a start, I have formally shown soundness of the big-step se-
mantics given by Ong and Stewart [OS97] wrt. to an evaluation-frames-stack
small-step semantics. I expect more applications of the encoding in the future.
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