
On Parametric Polymorphism and Irrelevance in Martin-Löf Type Theory

Andreas Abel
Project PI.R2, INRIA Rocquencourt and PPS, Paris

andreas.abel@ifi.lmu.de

Abstract

We devise a typed equality judgement for a predicative
version of Miquel’s Implicit Calculus and complete it with
a calculus for explicit substitutions. The resulting theory
IITT, Implicit Intensional Type Theory, is shown consis-
tent by a partial equivalence model. We further present a
bidirectional type checking and extraction algorithm and
briefly sketch the integration of another notion of irrele-
vance, Awodey and Bauer’s bracket types. This work is
aimed at providing a solid an practical foundation for ex-
traction of efficient programs from type theory.

Keywords: Explicit Substitutions, Program Extraction,
Implicit Quantification, PER Model, Typed Equality.

1 Introduction

Dependently typed programming languages such as
Agda [18] and Coq [11] allow the programmer to express
in one language programs, their types, rich invariants, and
even proofs of these invariants. Besides code executed at
runtime, dependently typed programs contain some to ex-
cessively much code needed only to pass the type checker,
which is a the same time the verifier of the proofs woven
into the program. After type checking, this static code needs
to be discarded as much as possible to extract an efficient
program.

To determine code and data irrelevant at runtime, some
heuristics have been proposed, e.g., the erasure of index ar-
guments in the constructors of inductive families [10]. The
Coq program extractor [12] discards all proofs meaning all
pieces of code whose type is a proposition, i. e., lives in
universe Prop. In general, it is undecidable which piece of
code is dead [9], and only the programmer himself knows.
Therefore, I advocate means to explicitly state which part of
the code is static (i. e., runtime irrelevant), and they should
be more flexible than the universe-based approach. I will
now introduce a few such means to the reader—the main
body of this article is then mostly on advancing Miquel’s
approach.

1.1 Approaches to Irrelevance

Pfenning’s logical framework with proof irrelevance [19]
defines a judgement Γ ` M ÷ A, meaning that term M is
a proof of type A, and proof irrelevance is realized by the
rule:

Γ `M,M ′ ÷A
Γ `M = M ′ ÷A

Consequently, Pfenning allows proof hypotheses, with
Γ, x÷A `M : B meaning that x is irrelevant both in term
M and its type B, which is ensured by the missing typing
rule Γ, x÷A ` x : A. Pfenning’s system is a bit restrictive,
it forbids proof hypotheses even in programs terms which
do not have computational content anyway, e.g., in inhabi-
tants of the empty type like f : A→ 0, x÷A ` f x : 0.

Awodey and Bauer [6] have a more semantic criterion of
irrelevance. The introduce and eliminate proof types, called
bracket types [A] by the following rules.

Γ `M : A
Γ ` [M] : [A]

Γ ` N : [A] Γ ` B Γ, x :A `M : B
Γ, x :A, y :A `M = M [y/x] : B

Γ `M where [x]← N : B

A proof N can be used in a term M if M does not de-
pend on its value, expressed by the equality premise in the
elimination rule. By this extensional perspective, the term
f : A → 0, x : [A] ` f z where [z] ← x : 0 is well typed,
since f x = f y : 0 for arbitrary x, y. However, the type B
in the elimination rule may still not depend on the value x
of proof N . This limitation is overcome by Miquel.

Miquel [16] has intersection types ∀x : A.B similar to
Pfenning’s Πx÷A.B and Awodey and Bauer’s Πx : [A]. B.
However, they are much more powerful because B may
now depend on x in a non-parametric way. For example,
the constructor cons for vectors can be given type

cons : ∀A :Type.∀n :Nat. A→ VecAn→ VecA (n+ 1)

1

This means that the number n, denoting the length of the
vector, is irrelevant for the construction of a vector at run-
time, and can be erased during compilation. However, n is
relevant for the type itself, it determines the shape of the
vector type. Using proposition m < n, the type of a safe
projection function for vectors can be expressed as

lookup : ∀A :Type.∀n :Nat.Πm :Nat.∀p :m < n.
Πv :VecAn.A,

marking argumentsA,n, p as static, requiring only the com-
putationally relevant m and v at runtime. Miquel’s Implicit
Calculus of Constructions (ICC) does not even store irrel-
evant terms, he uses a Curry-style representation with the
typing rules:

Γ, x :A `M : B
Γ `M : ∀x :A.B

x 6∈ FV(M)

Γ `M : ∀x :A.B Γ ` N : A
Γ `M : B[N/x]

Γ `M : A Γ ` B
Γ `M : B

A =βη B

To accommodate impredicativity, countably many predica-
tive universes, Curry-style, and contravariant subtyping,
Miquel constructs an impressive model in coherence spaces,
solving a recursive domain equation over a uncountable car-
rier, hosting countably many inaccessible cardinals.

ICC∗. Since typing is undecidable in Miquel’s ICC, Bar-
ras and Bernardo [7] design a Church-style term language
ICC∗, which is justified by well-typed erasure into ICC.
They show completeness for ICC without subtyping, mean-
ing that every ICC term M has a decoration N in ICC∗

whose erasure N∗ is equal to M . The core rules of ICC∗

are:

Γ, x :A `M : B
Γ ` λ[x :A].M : ∀x :A.B

x 6∈ FV(M∗)

Γ `M : ∀x :A.B Γ ` N : A
Γ `M [N] : B[N/x]

Γ `M : A Γ ` B
Γ `M : B

A∗ =βη B
∗

The soundness of ICC∗ wrt. ICC is immediate by the for-
mulation of the rules. However, the use of untyped con-
version has well-known drawbacks: It cannot be extended
to η for Σ types, since surjective pairing destroys conflu-
ence of untyped reduction. Extensional equality for the unit
and empty type cannot even be stated in the absence of type
information. It is therefore desirable to move to a typed
conversion relation à la Pfenning.

1.2 This Work: IITT

Type conversion (aka judgmental equality) for ICC∗

faces the problem that types may depend on irrelevant
terms. The crux is the congruence rule for application:

Γ `M = M ′ : ∀x :A.B Γ ` N : A Γ ` N ′ : A
Γ `M [N] = M ′[N ′] : B[N/x]

SinceN andN ′ are unrelated, the rule produces an ill-typed
right hand side Γ ` M ′[N ′] : B[N/x] in ICC∗. Con-
sider for example the function length : ∀A : Type.∀n :
Nat.VecAn→ Nat, the rule allows us to derive

length[String][3] = length[Nat][5] : Vec String 3

which does not look sound. But is it? Since the arguments
to length are erased and only serve to help type checking,
this should still be fine. In fact, the congruence rule is sound
by forcing type correctness of the seemingly ill-typed right
hand side. This is realized by the unexpected typing rule

Γ `M ′ : ∀x :A.B Γ ` N : A
Γ `M ′[N ′] : B[N/x]

.

This rule is obviously sound by erasure into ICC, but para-
doxical since N ′ is in no connection to N , provides no help
for the type checker, and may even be ill-typed. 1 In fact,
this rule is as undecidable as Miquel’s ICC, and it should not
be considered in the specification of the well-typed terms
we want to be able to type check. Yet it serves us in the
specification of well-typed applications and paves the way
for a typed equality for implicit quantification.

Contributions and overview. In the remainder of this pa-
per, we present IITT, Implicit Intensional Type Theory, a
predicative type theory á la Martin-Löf with implicit quan-
tification.

In the next section, we present the typed equality in de-
tail, and in Section 3 we add a non-standard explicit sub-
stitution calculus. Consistency of IITT is shown via a PER
model in Section 4 before we proceed to bidirectional type
checking and extraction in Section 5. In Section 6 we dis-
cuss the integration of bracket types into IITT.

2 Typed Equality for Implicit Quantification

IITT is a core dependently typed language with count-
ably many predicative universes Setk, three base types 0, 1,

1While I have never seen this rule in syntax—it is certainly a sound rule
for Church-style System F—it is present in untyped reducibility semantics,
e.g.

[[∀XB]] = {M | ∀A,A. M [A] ∈ [[B]]X 7→A}
with no connection between the syntactic type A and the reducibility can-
didate A (see for instance [8]).

2

and Nat with their introduction and elimination principles
given by constants, and dependent (Π:) and polymorphic
(Π÷) function type. We represent bound variables by de
Bruijn indices vi (i ∈ N).

Sort 3 s ::= Setk (k ∈ N)
Const 3 c ::= s | 1 | 〈〉 | 0 | abort2

| Nat | zero | succ1 | natrec4

Ann 3 ? ::= ÷ | :
Exp 3 t, u, T, U ::= c | Π?U T

| vi | λt | t u
Cxt 3 Γ,∆ ::= � | Γ.?T

The arity ar(c) of a constant c is 0 except where denoted
otherwise by superscript, e.g., ar(abort) = 2.

The irrelevance annotation ÷T shall mean that we con-
sider the inhabitants of T irrelevant in the expression they
are embedded. In general, we drop the relevance annotation
:T , writing just T instead.

The notation Π?U T subsumes the dependent func-
tion type Π:U T , short ΠU T , and the polymorphic type
Π÷U T , also written ∀U T . The informal syntax Πx :A.B
is sugar for ΠAλxB which de Bruijn-translates to ΠU λT
in our formal syntax. If T does not depend on v0, we write
U → T for ΠU λT .

At this point, we stress that despite the notational similar-
ity of Π÷U T to Pfenning’s proof quantification Πx÷A.B,
it corresponds to Miquel’s implicit quantification ∀x :A.B.
This is witnessed by its formation rule (see below).

Resurrection Γ⊕ erases all markers ÷(−) from Γ, making
every variable relevant [19]. The generalization Γ? shall
mean Γ⊕ if ? = ÷, and just Γ otherwise.

Judgements are the usual ones:

Γ ` context Γ is well-formed
Γ ` t : T expression t has type T
Γ ` t = t′ : T expressions t and t′ are equal of type T

A crucial invariant of the last two judgements is Γ⊕ ` T :
s for some sort. This means that in types T all variables
are relevant and can be used, even those that are declared
irrelevant and unusable for term t in the context Γ.

Rudimentary subtyping. In this work, we do not consider
contravariant subtyping as Miquel does [15]. For subsump-
tion, we only honor subsorting, Setk ≤ Setl for l ≤ k, and
type equality. Let Γ ` T ≤ T ′ mean that there exists a sort
s such that either Γ ` T = T ′ : s or T ≡ s1 and T ′ ≡ s2

with s1 ≤ s2 < s.

Signature. Types for the constants are given by the judge-
ment `Σ c : T with the axioms below. Note that abort and
natrec have a universe-polymorphic type, so it is really an
axiom scheme.

`Σ Setk : Setk+1

`Σ 1 : Set0 `Σ 〈〉 : 1
`Σ 0 : Set0 `Σ abort : ∀Setk λ.∀ 0λv1

`Σ Nat : Set0 `Σ zero : Nat
`Σ succ : Nat→ Nat `Σ natrec : Natrec

Herein, Natrec = ∀ (Nat → Setk)λ.(v0 zero) →
(Π Natλ.(v2 v0)→ v3 (succ v1)) → Π Nat v3. In infor-
mal syntax, the type of abort is ∀A : Setk.∀ : 0. A and
the one of natrec is ∀C : Nat → Setk. C zero → (Πn :
Nat. C n→ C (succn))→ Πn :Nat. C n.

Equations ∆ `Σ t = t′ : T . The computational behavior
of primitive recursion natrec is given by the following equa-
tions. Let herein ∆ = C ÷ Nat→ Setk . tz : C zero . ts :
Πn :Nat. C n→ C (succn).

∆ `Σ natrecC tz ts zero = tz : C zero

∆ . n : Nat `Σ natrecC tz ts (succn) =
ts n (natrecC tz ts n) : C (succn)

Context well-formedness. The judgement Γ ` accepts
only contexts that do not contain erased variable declara-
tions ÷T . This does not mean that contexts with such dec-
larations are not well-formed. It just means that this judge-
ment is only invoked for resurrected contexts.

� `
Γ ` Γ ` T : s

Γ.T `

Typing.

Γ⊕ ` `Σ c : T
Γ ` c : T

Γ ` U : s1 Γ ` T : U → s2

Γ ` Π?U T : s3
s1, s2 ≤ s3

Γ⊕ ` Γ(i) = :T

Γ ` vi : T �i+1

Γ.?U ` t : T
Γ ` λt : Π?U λT

Γ ` t : Π?U T Γ? ` u : U
Γ ` t u : T u

APP2
Γ ` t : ∀U T Γ⊕ ` u : U

Γ ` t u′ : T u

Γ ` t : T Γ⊕ ` T ≤ T ′

Γ ` t : T ′

3

The typing rules are inspired by Pfenning [19], like him, we
do not have a rule for Γ.÷T ` v0 : T �. However, there are
subtle differences of great impact. Our calculus, as Miquel’s
[15], has for Γ ` t : T the presupposition Γ⊕ ` T : s
for some sort s, whereas Pfenning’s has Γ ` T : s. This
means he cannot type cons : ∀n : Nat. A → VecAn →
VecA (succn) since n is not irrelevant in VecAn. In our
calculus, types are always irrelevant, which corresponds to
the intuition that they are not present at run-time.

The second rule for implicit application APP2 destroys
decidability of type checking, since u and u′ are not con-
nected, and u′ might even be ill-typed. The rule is needed
for internal soundness properties of the calculus (Theo-
rem 2), it is omitted in the specification of type-checkable
terms. Defining the judgement Γ ` t 4 u ? U by

Γ ` t 4 u : U ⇐⇒ Γ ` u : U and Γ ` t = u : U
Γ ` t 4 u÷ U ⇐⇒ Γ⊕ ` u : U

we get the admissible rule of application

Γ ` t : Π?U T Γ ` u′ 4 u ? U
Γ ` t u′ : T u

.

Equality for expressions without substitutions is given by
the following rules, plus reflexivity, symmetry, transitivity,
and subsumption.
Computation. Substitution of u for index 0 in t is written
t 〈u〉.

Γ.?U ` t : T Γ ` u′ 4 u ? U
Γ ` (λt)u′ = t 〈u′〉 : T 〈u〉

Γ `Σ t = t′ : T
Γ ` t = t′ : T

Extensionality.

Γ ` t : Π?U T

Γ ` t = λ. (t �) v0 : Π?U T

Γ ` t, t′ : T
Γ ` t = t′ : T

T ∈ {0, 1}

Compatibility.

Γ⊕ ` `Σ c : T
Γ ` c = c : T

Γ ` U = U ′ : s1 Γ ` T = T ′ : U → s2

Γ ` Π?U T = Π?U ′ T ′ : s3
s1, s2 ≤ s3

Γ⊕ ` T : s
Γ.T ` v0 = v0 : T �

Γ.?U ` t = t′ : T
Γ ` λt = λt′ : Π?U λT

Γ ` t = t′ : Π?U T Γ ` u 4 u′ ? U
Γ ` t u = t′ u′ : T u′

The last rule is the crucial one. In case of a dependent func-
tion type, we get the instance

Γ ` t = t′ : ΠU T Γ ` u = u′ : U
Γ ` t u = t′ u′ : T u′

.

which is equivalent to the usual compatibility rule for appli-
cation. In case of polymorphic type, we obtain

Γ ` t = t′ : ∀U T Γ⊕ ` u′ : U
Γ ` t u = t′ u′ : T u′

.

Using symmetry and transitivity, we can derive the fully
general

Γ ` t1 = t2 : ∀U T Γ⊕ ` u′ : U
Γ ` t1 u1 = t1 u2 : T u′

.

When is this rule needed in its full generality, mean-
ing for terms u1, u2 which are arbitrary or at least not
of the same type? Suppose we have a term t : ∀n :
Nat.∀v : Vecn.C n v. Then we should be able to derive
t (succ (succ zero)) bla ′ = t (succ zero) bla : C zero nil,
since after erasure of implicit arguments we have just t = t :
C zero nil which is certainly an instance of the polymorphic
typing of t. Hence, a more modest rule like

Γ ` t1 = t2 : ∀U T Γ⊕ ` u1, u2, u
′ : U

Γ ` t1 u1 = t1 u2 : T u′

which avoids arbitrary untyped terms u1, u2 is not suffi-
cient; the terms bla ′ and bla do not have a common type
U .

3 A Calculus of Explicit Substitutions

In this section, we present a calculus of explicit substi-
tutions [13, 1] for IITT. Explicit substitutions are important
for implementing IITT, especially in the presence of meta
variables [17]. On the theoretical side, explicit substitution
calculi are incarnations of PER models (see next section).

Extension of syntax.

Exp 3 t, u, T, U ::= · · · | t σ explicit substitution
Subst 3 σ, τ ::= id | σ τ identity and composition

| � | 〈σ, t〉 lifting and extension

In the presence of explicit substitutions, we only need the
0th variable v0. The ith variable is now represented by the i-
fold application of the lifting substitution � to the expression
v0. We still use the expression vi, but now as a shorthand for
the expression v0 �i. The notation 〈t〉 shall now abbreviate
the singleton substitution 〈id, t〉.

Judgements. Usually [13], the judgements for substitu-
tions are Γ ` σ : ∆ and Γ ` σ = σ′ : ∆, and then
there is a rule like

Γ ` σ : ∆ ∆ ` t : T
Γ ` t σ : T σ

.

4

However, with irrelevant assumptions that can nevertheless
be used in types, this rule is unsound. We have ` [Ω/x] :
(x÷Nat) and x÷Nat ` t x : T x if t : ∀x :Nat. T x. After
substitution, ` tΩ : T Ω, and the type T Ω is ill-formed. In-
side types we need to substitute with only well-typed terms,
yet inside terms we need to be able to instantiate irrelevant
variables with arbitrary, possibly junk terms. This dilemma
is solved by considering a rule

Γ ` σ 4 τ : ∆ ∆ ` t : T
Γ ` t σ : T τ

with a judgement

Γ ` σ 4 τ : ∆

which relates a term-side substitution σ to a type-side sub-
stitution τ . The substitutions must coincide at relevant vari-
ables, but might differ for irrelevant variables. This is illus-
trated by the substitution extension rule:

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ ` t 4 u ? T τ
Γ ` 〈σ, t〉 4 〈τ, u〉 : ∆.?T

In case ? = : of a relevant variable the third assumption
is Γ ` t = u : T τ . The term t must be well-typed and
equal to u. In the case of an irrelevant variable we only
ask for Γ⊕ ` u : T τ . Only the value u substituted into
types must be well-typed and may of course use even irrel-
evant variables. The value t substituted into terms can be
arbitrary. In the example above we would have substitu-
tions ` [Ω/x] 4 [zero/x] : (x ÷ Nat) and get the sound
tΩ : T zero after substitution.

Accordingly, we refine the substitution equality judge-
ment to

Γ ` σ = σ′ 4 τ : ∆.

The rules of the substitution calculus are given in Fig. 1.
Once the need for a separate type-side substitution τ has
been understood, the rules are standard. Only conversion is
new and deserves some explanation:

Γ ` σ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ 4 τ ′ : ∆

A type-side substitution τ always maps a completely rel-
evant context ∆⊕ to a completely relevant context Γ⊕.
Hence, even if τ and τ ′ appear on the term-side in the sec-
ond hypothesis, because of resurrection they are equal type-
side substitutions.

3.1 Internal Soundness

We write Γ ` J for any judgement where J stands for
the (possibly empty) statement right of the turnstile `. We
also use the forms Γ ` L : R and Γ ` L 4 M : R

to denote a set of judgements, where L could be just an ex-
pression or substitution, or an equation between expressions
or substitutions.

Lemma 1 (Resurrection as weakening).

1. If Γ ` J then Γ⊕ ` J .

2. If Γ ` L : ∆⊕ then Γ ` L : ∆.

Theorem 2 (Syntactic Validity).

1. If Γ.Γ′ ` J then Γ⊕ `.

2. If Γ `(Σ) L : T then Γ⊕ ` T : s for some sort s.

3. If Γ `(Σ) t = t′ : T then Γ ` t : T and Γ ` t′ : T .

4. If Γ ` L 4 τ : ∆ then ∆⊕ ` and Γ⊕ ` τ 4 τ : ∆⊕.

5. If Γ ` σ = σ′ 4 τ : ∆ then Γ ` σ 4 τ : ∆ and
Γ ` σ′ 4 τ : ∆.

Rule APP2 is needed to show proposition 3 for the appli-
cation congruence rule.

4 Semantics

In this section, we give a PER model for IITT and use an
instance involving only closed terms to show consistency
of the calculus. Normalization could be shown by another
instance allowing open terms, however, this is beyond the
scope of this paper. Since we are defining a PER model
for typed equality, we do not need extensionality of the un-
derlying λ-model, which in our case are closures and weak
head normal forms. Extensionality is handled at the level
of PERs. This is in contrast to Miquel’s [14] semantics for
ICC with untyped equality where the interpretation of λ-
terms must be semi-extensional. Our semantics, in contrast
to Miquel’s impressive piece of art, is relievingly simple,
mostly due to the absence of impredicativity.

4.1 Evaluation

In the following, we present a call-by-name semantics
for terms and substitutions. A term t in an environment η
constitutes a closure t η ∈ Clos, where an environment η ∈
Env is a list of closures. Weak head evaluation α↘ a takes
a closure α ∈ Clos to a value a ∈ Val. Values Val ⊆ Clos ⊆
Exp are expressions in weak head normal form. Evaluation
of a function λt in an environment η results in a function
closure (λt) η.

Val 3 a, b, f, A,B, F ::= ΠAF | ∀AF | (λt) η | c | succα
| c ~α (|~α| < ar(c))

Clos 3 α, β ::= t η | a | natrecβ αz αs αn
Env 3 η, ρ ::= id | 〈η, α〉

5

Γ ` σ 4 τ Γ ` σ 4 τ : ∆ ∆ ` t : T
Γ ` t σ : T τ

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ ` t 4 u ? T τ
Γ ` 〈σ, t〉 4 〈τ, u〉 : ∆.?T

Γ⊕ `
Γ ` id 4 id : Γ

Γ1 ` σ′ 4 τ ′ : Γ2 Γ2 ` σ 4 τ : Γ3

Γ1 ` σ σ′ 4 τ τ ′ : Γ3

Γ⊕ ` T : s
Γ.?T ` � 4 � : Γ

Γ ` σ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ 4 τ ′ : ∆

Γ ` σ = σ′ 4 τ : ∆

Γ ` σ 4 τ : ∆
Γ ` idσ = σ 4 τ : ∆

Γ ` σ 4 τ : ∆
Γ ` σ id = σ 4 τ : ∆

Γi ` σi 4 τi : Γi+1 for i = 1..3
Γ1 ` (σ3 σ2)σ1 = σ3 (σ2 σ1) 4 τ3 (τ2 τ1) : Γ4

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ⊕ ` u ? T τ
Γ ` � 〈σ, t〉 = σ 4 τ : ∆

Γ′ ` σ′ 4 τ ′ : Γ Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ ` u 4 t ? T τ
Γ′ ` 〈σ, u〉σ′ = 〈σ σ′, u σ′〉 4 〈τ τ ′, t τ ′〉 : ∆.?T

Γ⊕ ` T : s
Γ.?T ` id = 〈�, v0〉 4 id : Γ.?T

Γ⊕ `
Γ ` id = id 4 id : Γ

Γ1 ` σ′1 = σ′2 4 τ
′ : Γ2 Γ2 ` σ1 = σ2 4 τ : Γ3

Γ1 ` σ1 σ′1 = σ2 σ′2 4 τ τ
′ : Γ3

Γ⊕ ` T : s
Γ.?T ` � = � 4 � : Γ

Γ ` σ = σ′ 4 τ : ∆ ∆⊕ ` T : s Γ ` t 4 t′ ? T τ
Γ ` 〈σ, t〉 = 〈σ′, t′〉 4 〈τ, t′〉 : ∆.?T

Γ ` σ 4 τ : ∆
Γ ` σ = σ 4 τ : ∆

Γ ` σ = σ′ 4 τ : ∆
Γ ` σ′ = σ 4 τ : ∆

Γ ` σ1 = σ2 4 τ : ∆ Γ ` σ2 = σ3 4 τ : ∆
Γ ` σ1 = σ3 4 τ : ∆

Γ ` σ = σ′ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ = σ′ 4 τ ′ : ∆

Γ ` t = t′ : T

Γ ` σ = σ′ 4 τ : ∆ ∆ ` t = t′ : T
Γ ` t σ = t′ σ′ : T τ

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ ` t : T τ
Γ ` v0 〈σ, t〉 = t : T τ

Γ ` σ 4 τ : ∆ `Σ c : T
Γ ` c σ = c : T

Γ ` t : T
Γ ` t id = t : T

Γ1 ` σ′ 4 τ ′ : Γ2 Γ2 ` σ 4 τ : Γ3 Γ3 ` t : T
Γ1 ` (t σ)σ′ = t (σ σ′) : T (τ τ ′)

Γ ` σ 4 τ : ∆ ∆ ` U : s1 ∆ ` T : U → s2

Γ ` (Π?U T)σ = Π?(U σ) (T σ) : s3
s1, s2 ≤ s3

Γ ` σ 4 τ : ∆ ∆.?U ` t : T
Γ ` (λt)σ = λ. t 〈σ �, v0〉 : Π?(U τ) (λ. T 〈τ �, v0〉)

Γ ` σ 4 τ : ∆ ∆ ` t : Π?U T ∆ ` u 4 u′ ? U
Γ ` (t u)σ = (t σ) (uσ) : (T τ) (u′ τ)

Figure 1. Explicit substitution calculus.

6

Evaluation of substitutions. We define the total function
LσMη = η′ by induction on σ.

LidMη = η
Lσ τMη = LσMLτMη

L〈σ, t〉Mη = 〈LσMη, t η〉
L�M〈η,α〉 = η
L�Mid = id

The last equation is only there to make the definition total,
it will never be invoked for well-scoped substitutions.

We introduce the judgements α ↘ a “closure α evalu-
ates to a” and f @ α ↘ b “value f applied to closure α
evaluates to b” inductively by the following rules.

a↘ a c η ↘ c

U η ↘ A T η ↘ F

(Π?U T) η ↘ Π?AF

α↘ a

v0 〈η, α〉 ↘ a (λt) η ↘ (λt) η

t η ↘ f f @ (u η)↘ b

(t u) η ↘ b

t LσMη ↘ a

(t σ) η ↘ a

t 〈η, α〉 ↘ b

(λt) η @ α↘ b c ~α @ α↘ c ~αα

natrecβ αz αs αn ↘ b

natrecβ αz αs @ αn ↘ b

αn ↘ zero αz ↘ b

natrecβ αz αs αn ↘ b

αn ↘ succα αs ↘ fs fs @ α↘ f
f @ (natrecβ αz fs α)↘ b

natrecβ αz αs αn ↘ b

Evaluation is deterministic, thus, in case f @ α ↘ b, we
write f · α for (the unique) b. Also, we write LtMη for b in
case t η ↘ b.

While we have now given a quite concrete λ-model, we
can present it more abstractly as a partial applicative struc-
ture. Although we do not go into detail, we like to stress
that the formulation of PER models in the next section re-
lies only on the abstract properties.

4.2 PER Models

In this section, we axiomatize PER models over the par-
tial syntactical applicative structure given in the last section
and prove the soundness of IITT in all PER models.

We denote by A,B ∈ Per partial equivalence relations
(PERs) over the set of values Val, thus, A is a subset of Val
with an equivalence relation written a = a′ ∈ A. A family
F ∈ A → S respects the equivalence, i. e., F(a) = F(a′)
for all a = a′ ∈ A.

We write f · α = f ′ · α′ ∈ B if there are b = b′ ∈ B
such that f @ α ↘ b and f ′ @ α′ ↘ b′. Given A ∈ Per

we define the closure extensionA and the PER [A] (“smash
A”), and the PERs ΠAF and ∀AF for F ∈ A → Per, by

α = α′ ∈ A ⇐⇒ α↘ a and α′ ↘ a′

and a = a′ ∈ A
a = a′ ∈ [A] ⇐⇒ a ∈ A and a′ ∈ A
f = f ′ ∈ ΠAF ⇐⇒ f · α = f ′ · α′ ∈ F(α)

for all α = α′ ∈ A
f = f ′ ∈ ∀AF ⇐⇒ f · β = f ′ · β′ ∈ F(α)

for all α ∈ A and β, β′ ∈ Clos .

Smashing A trivializes the equality structure on A but pre-
serves the carrier.

Let us write Πα ∈ A. F(α) for ΠA (α 7→ F(α)) and
∀α ∈ A. F(α) for ∀A (α 7→ F(α)). We abbreviate Π ∈
A. B further to A → B.

Universes. A pair (U ∈ Per, El ∈ U → Per) is called
a universe if it is closed under dependent and polymorphic
function space, i. e., if A = A′ ∈ U and F ·α = F ′ ·α′ ∈ U
for all α = α′ ∈ El(A), then

1. ΠAF = ΠA′ F ′ ∈ U with El(ΠAF) = Πα ∈
El(A). El(F · α) and

2. ∀AF = ∀A′ F ′ ∈ U with El(∀AF) = ∀α ∈
El(A). El(F · α).

Note that the “formation rules” for Π and ∀ coincide, i. e.,
membership of ΠAF and ∀AF in U depends on the same
conditions. In particular, F is not required to be constant
in the formation of ∀AF , as it would be in Π [A] F . Thus,
polymorphism gives us more than bracket types.

A sequence (Setk, Elk) is a cumulative hierarchy of uni-
verses à la Russell if for all k ∈ N

1. Setk ⊆ Setk+1 and Elk(A) = Elk+1(A) for all A ∈
Setk, and

2. Setk ∈ Setk+1 and Elk+1(Setk) = Setk.

The first condition guarantees the existence of a supremum
(Setω, Elω) with Setk ⊆ Setω and Elk(A) = Elω(A) for all
k ∈ N and A ∈ Setk. We may simply write El for Elω .

Base types for a universe (U , El). A PER Unit is called a
unit type if Unit = [Unit] and 〈〉 ∈ Unit . A PER Empty is
called an empty type if Empty = [Empty] and abort ∈ ∀A∈
U . Empty → El(A). A PERNat is called a natural number
type if zero ∈ Nat , succ ∈ Nat → Nat , and natrec ∈
∀F ∈Nat → U . El(F · zero) → (Πa∈Nat . El(F · a) →
El(F · (succ a))) → Πa ∈ Nat . El(F · a). We say the
universe has the base types if El(1) is a unit type, El(0) is an
empty type, and El(Nat) is a natural number type.

7

Definition 3 (PER model for IITT). A PER model for IITT
is a cumulative hierarchy (Setk, Elk) of universes that have
the base types.

For the definition of PER models we have just used
the application operation on values and closures. To show
soundness of IITT we also need to utilize the partial inter-
pretation function L M and the computation laws.

Context. We write LtMη = Lt′Mη′ ∈ A if there are a = a′ ∈
A such that t η ↘ a and t′ η′ ↘ a′. Also, Let [[T]]η =
ElLT Mη .

By induction on Γ we simultaneously define the propo-
sition Γ
 and the PER ρ = ρ′ ∈ Γ.

�
 Γ.?T
⇐⇒ Γ

and LT Mρ = LT Mρ′ ∈ Setω for all ρ = ρ′ ∈ Γ

id = id ∈ � 〈ρ, α〉 = 〈ρ′, α′〉 ∈ Γ.?T ⇐⇒
ρ = ρ′ ∈ Γ and α = α′ ∈ JT Kρ

Note that irrelevance markers are ignored by theses defini-
tions. Thus, we have Γ
 iff Γ⊕
 and ρ = ρ′ ∈ Γ iff
ρ = ρ′ ∈ Γ⊕.

Environment approximation. By induction on Γ we define
the proposition η 4 ρ ∈ Γ.

id 4 id ∈ �
〈η, α〉 4 〈ρ, β〉 ∈ Γ.T ⇐⇒

η 4 ρ ∈ Γ and α = β ∈ JT Kρ
〈η, α〉 4 〈ρ, β〉 ∈ Γ.÷T ⇐⇒

η 4 ρ ∈ Γ and α ∈ Clos and β ∈ JT Kρ

Note that η 4 ρ ∈ Γ implies ρ = ρ ∈ Γ and η 4 ρ ∈ Γ⊕

implies η = ρ ∈ Γ.

Lemma 4. Let Γ
 and ρ = ρ′ ∈ Γ. Then ρ 4 ρ′ ∈ Γ and
η 4 ρ′ ∈ Γ for all η 4 ρ ∈ Γ.

We write η, η′ 4 ρ ∈ Γ iff η 4 ρ ∈ Γ and η′ 4 ρ ∈ Γ.
Observe that , 4 ρ ∈ Γ is a PER, trivially.

Judgements. The semantic counterparts Γ
 J of the re-
maining syntactic judgements Γ ` J are defined as follows.

Γ
 T :⇐⇒ Γ⊕
 and
either T = s or Γ
 T : s for some s

Γ
 t : T :⇐⇒ Γ
 t = t : T
Γ
 t = t′ : T :⇐⇒ Γ
 T and

∀η, η′ 4 ρ ∈ Γ. LtMη = Lt′Mη′ ∈ [[T]]ρ
Γ
 σ 4 τ : ∆ :⇐⇒ Γ
 σ = σ 4 τ : ∆
Γ
 σ = σ′ 4 τ : ∆ :⇐⇒ Γ⊕
 and ∆⊕
 and

∀η, η′ 4 ρ ∈ Γ. LσMη, Lσ′Mη′ 4 LτMρ ∈ ∆

Lemma 5 (Resurrection as weakening).

1. If Γ
 J then Γ⊕
 J .

2. If Γ
 σ = σ′ 4 τ : ∆⊕ then Γ
 σ = σ′ 4 τ : ∆.

Theorem 6 (Soundness of IITT). If Γ ` J then Γ
 J .

Proof. By induction on Γ ` J . Each case follows quite
directly from the induction hypotheses. �

4.3 Closed Model and Consistency

In the following, we construct the least PER model over
the set of closed values Val, to show consistency of IITT.

Define PERs Empty = ∅ and Unit = {(〈〉, 〈〉)} and let
the PER Nat be inductively given by:

zero = zero ∈ Nat
α = α′ ∈ Nat

succα = succα′ ∈ Nat

We define each of the universes (Setk, Elk) inductive-
recursively, and the whole sequence by induction on k ∈ N.
The clauses are:

0 = 0 ∈ Set0
El0(0) = Empty

1 = 1 ∈ Set0
El0(1) = Unit

Nat = Nat ∈ Set0
El0(Nat) = Nat

A = A′ ∈ Setk
F · α = F ′ · α′ ∈ Setk for all α = α′ ∈ Elk(A)

Π?AF = Π?A′ F ′ ∈ Setk

Elk(Π?AF) = Π?α ∈Elk(A). Elk(F · α)

A = A′ ∈ Setk
A = A′ ∈ Setk+1

Elk+1(A) = Elk(A)

Setk = Setk ∈ Setk+1
Elk+1(Setk) = Setk

Then Setω =
⋃
k∈N Setk and Elω =

⋃
k∈N Elk.

Lemma 7 (Closed PER model). The sequence (Setk, Elk)
is a PER model of IITT.

Proof. Clearly, Unit is a unit type. The requirement
abort ∈ ∀A ∈ Setk. ∀β ∈ Empty . Elk(A) follows from
Empty = ∅. The well-definedness of natrec follows by in-
duction on Nat using the laws of weak head evaluation.

�

Theorem 8 (Consistency). 6` t : 0.

Proof. By Thm. 6 we have LtMid ∈ Empty in contradiction
to the definition of Empty . �

8

5 Type Checking and Extraction

In this section, we specify a procedure that type-checks
input t : T and extracts an untyped lambda term M from t
in which all implicit abstractions and applications have been
removed. Our bidirectional type-checker [20, 5] does not
require type annotation at λs but can therefore only check
terms in β-normal form (which is in reality not a severe
restriction in practice). Implicit application can only be type
checked in the form

Γ ` t : ∀U T Γ⊕ ` u : U
Γ ` t u : T u

and not in the form t u′ for an arbitrary u′ as permitted by
rule APP2. After all, the sole purpose of the argument u in
implicit application is to aid the type checker, and it will be
discarded afterwards.

Since implicit abstraction λt : ∀U T will be erased as
well, it is convenient to extract named terms rather than
de Bruijn terms. This saves us shifting de Bruijn indices;
if necessary the named term can be converted back to de
Bruijn after extraction is complete. Named terms are given
by the usual grammar

M,N ::= c | x | λxM |M N

where we consider new arities for abort0 and natrec3 since
the implicit arguments have been dropped.

Bidirectional type-checking and extraction is given by
the two judgements:

∆ ` t⇒ A [M] in ∆, the inferred type of t is A
∆ ` t⇔ A [M] in ∆, term t checks against type A

Both judgements have the extraction M of t as an optional
output. It is convenient to keep types A in evaluated form
during the process of type checking. Consequently, ∆ is a
context of type values. To save us de Bruijn index shift-
ing, we endorse a locally nameless approach to values [21].
Free variables are represented by de Bruijn levels xj while
restricting indices vi to bound variables. We write x∆ for
x|∆|. We extend the set of values a by de Bruijn levels xi
and neutral values e:

a ::= · · · | e
e ::= xi | e α | abortβ e | natrecβ αz αs e

For evaluation of terms needed during type checking, we
define the identity environment id∆ which replaces the |∆|
free de Bruijn indices by de Bruijn levels as follows:

id� = id
id∆.?A = 〈id∆, x∆〉

Rules for inferring the level of a type ∆ ` T ⇒ Setk.
Checking well-formedness of types involves inference of
their universe level. We only accept Π (and ∀)-types in the
form ΠU λT which is not a restriction since, coming from
actual input Πx :U. T , they are always in this form.

∆ ` Setk ⇒ Setk+1 ∆ ` c⇒ Set0
c ∈ {0, 1,Nat}

∆ ` U ⇒ Seti ∆.?LUMid∆ ` T ⇒ Setj

∆ ` Π?U λT ⇒ Setmax(i,j)

We need not extract types since they have no computational
content. If they extraction should be demanded neverthe-
less, we return a dummy value:

∆ ` T ⇒ Setk

∆ ` T ⇒ Setk 〈〉

This is necessary, e. g., if we extract
natrecλ.natrecSet1 Nat (λλSet0) v0 zero (λλNat) , a function
that returns value zero on input zero and type Nat on other
inputs. The extracted term is then natrec zero (λλ〈〉) .

Rules of type inference ∆ ` t ⇒ A M . The type of
a applicative term starting with a variable or a constant can
be inferred. Extraction in context ∆ turns a de Bruijn index
vi into a name of a de Bruijn level x|∆|−1−i, which can later
be abstracted over.

∆ ` vi ⇒ ∆(i) x|∆|−1−i

∆ ` t⇒ ΠAF M ∆ ` u⇔ A N

∆ ` t u⇒ F · (u id∆) M N

∆ ` t⇒ ∀AF M ∆⊕ ` u⇔ A

∆ ` t u⇒ F · (u id∆) M

`Σ c : T
∆ ` c⇒ T c

c ∈ {〈〉, zero, succ}

∆⊕ ` T ⇒ Setk

∆ ` abortT ⇒ L∀ 0λT Mid∆ abort

∆⊕.Nat ` C ⇒ Setk

∆ ` natrecλC ⇒ LTCMid∆ natrec

In the last rule TC = C 〈zero〉 →
(Π Natλ.C 〈v0〉 → C 〈succ v1〉) → Π Natλ.C 〈v0〉.
The rules for abort and natrec not subsumed under the rule
for constants c as to account for universe polymorphism
(they can be used at any level k).

9

Rules of type checking ∆ ` t ⇔ A M . Only λ-
abstractions cannot be inferred, they need a type to be
checked against as to provide the type of the abstracted vari-
able. Note that extraction discards the implicit abstraction
(case ∀AF). When asked to check non-abstractions t, their
type A is inferred and then compared to the ascribed type
B.

∆.A ` t⇔ F · x∆ M

∆ ` λt⇔ ΠAF λx∆M

∆.÷A ` t⇔ F · x∆ M

∆ ` λt⇔ ∀AF M

∆ ` t⇒ A M ∆ ` A ≤ B
∆ ` t⇔ B M

This completes the specification of the type checker. The
implementation of algorithmic subtyping ∆ ` A ≤ B is
left for future work. We favor the solution which computes
the normal forms of A and B with normalization by evalu-
ation [4] and then employs structural comparison.

6 On Bracket Types

Awodey and Bauer’s bracket type former [A] is another
means to mark the terms of typeA as irrelevant. Practically,
it can be used when one wants to consider typeA as a propo-
sition. It is important to note that bracket types and implicit
quantification, although they look similar, do not subsume
each other. In type Πx : [A]. B, type B cannot depend on
x, as opposed to Miquel’s ∀x : A.B. On the other hand,
bracket types can also appear in positive positions as in the
type Πx :Nat. [x ≥ 0], thus they are useful for manipulating
proofs.

Bracket types can be readily added to IITT with the fol-
lowing rules:

Γ ` A : Setk

Γ ` [A] : Setk

Γ `M : A
Γ `M : [A]

Γ ` N : [A] Γ ` B Γ, x :A `M : B
Γ, x :A, y :A `M = M [y/x] : B

Γ `M where x← N : B
The PER model can be easily extended using the semantics
a = a′ ∈ [A] ⇐⇒ a, a′ ∈ A. Type directed extraction
replaces all inhabitants of bracket types by 〈〉 and simplifies
(M where x← N) to M .

7 Conclusions

We have presented IITT with a typed equality judgement
for implicit quantification with a surprising twist in the ap-
plication rule. Typed equality has two advantages: It allows

equality axioms which rely on typing, especially η-laws for
types with at most one constructor, such as Σ-, unit, and
empty types. A second advantage is the presentation of
models, which requires no technical tricks as opposed to
models for untyped equality.

MiniAgda [3] has a prototypical implementation of im-
plicit quantification à la IITT, which dispenses with irrel-
evance markers on the term level (as opposed to Barras’
ICC∗).

To complete this work, we aim to implement and verify
normalization by evaluation for IITT. We also like to inves-
tigate how to integrate the Werner’s universe-based notion
of irrelevance [22] which allows to eliminate identity proofs
into types. Preliminary investigations have been carried out
[2], but many open questions remain.

Acknowledgments. Thanks to Bruno Barras and Bruno
Bernardo for discussions on implicit quantification. Thanks
also to Hugo Herbelin, Brigitte Pientka, Matthieu Sozeau,
and Lionel Vaux for their interest in this work.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit
substitutions. JFP, 1(4):375–416, 1991.

[2] A. Abel. Extensional normalization in the logical framework
with proof irrelevant equality. In Wksh. on Normalization by
Evaluation, 2009.

[3] A. Abel. Miniagda, a toy implementation of type theory.
http://www2.tcs.ifi.lmu.de/˜abel/miniagda/, 2010.

[4] A. Abel, T. Coquand, and P. Dybjer. Normalization by evalu-
ation for Martin-Löf Type Theory with typed equality judge-
ments. In LICS’07, pages 3–12. IEEE CS Press, 2007.

[5] A. Abel, T. Coquand, and P. Dybjer. Verifying a semantic
βη-conversion test for Martin-Löf type theory. In MPC’08,
volume 5133 of LNCS, pages 29–56. Springer, 2008.

[6] S. Awodey and A. Bauer. Propositions as [Types]. JLC,
14(4):447–471, 2004.

[7] B. Barras and B. Bernardo. The implicit calculus of
constructions as a programming language with dependent
types. In FoSSaCS, volume 4962 of LNCS, pages 365–379.
Springer, 2008.

[8] G. Barthe, B. Grégoire, and C. Riba. Type-based termina-
tion with sized products. In CSL’09, volume 5213 of LNCS,
pages 493–507. Springer, 2008.

[9] S. Berardi, M. Coppo, F. Damiani, and P. Giannini. Type-
based useless-code elimination for functional programs. In
SAIG’00, volume 1924 of LNCS, pages 172–189. Springer,
2000.

[10] E. Brady, C. McBride, and J. McKinna. Inductive families
need not store their indices. In TYPES’03, volume 3085 of
LNCS, pages 115–129. Springer, 2004.

[11] INRIA. The Coq Proof Assistant Reference Manual. INRIA,
version 8.2 edition, 2008. http://coq.inria.fr/.

[12] P. Letouzey. Extraction in coq: An overview. In CiE’08,
volume 5028 of LNCS, pages 359–369. Springer, 2008.

10

[13] P. Martin-Löf. Substitution calculus. Unpublished notes
from a lecture in Göteborg, 1992.

[14] A. Miquel. A model for impredicative type systems, uni-
verses, intersection types and subtyping. In LICS’00, pages
18–29, 2000.

[15] A. Miquel. The implicit calculus of constructions. In
TLCA’01, volume 2044 of LNCS, pages 344–359. Springer,
2001.

[16] A. Miquel. Le Calcul des Constructions implicite: syntaxe
et sémantique. PhD thesis, Université Paris 7, 2001.

[17] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal
type theory. ACM Trans. Comput. Log., 9(3), 2008.

[18] U. Norell. Towards a Practical Programming Language
Based on Dependent Type Theory. PhD thesis, Chalmers,
Göteborg, Sweden, 2007.

[19] F. Pfenning. Intensionality, extensionality, and proof irrel-
evance in modal type theory. In LICS’01. IEEE CS Press,
2001.

[20] B. C. Pierce and D. N. Turner. Local type inference. In
POPL’98, San Diego, California, 1998.

[21] R. Pollack. Closure under alpha-conversion. In TYPES’93,
volume 806 of LNCS, pages 313–332. Springer, 1994.

[22] B. Werner. On the strength of proof-irrelevant type theories.
LMCS, 4(3), 2008.

11

A Proofs

Theorem (2 Syntactic Validity).

1. If Γ.Γ′ ` J then Γ⊕ `.

2. If Γ `(Σ) L : T then Γ⊕ ` T : s for some sort s.

3. If Γ `(Σ) t = t′ : T then Γ ` t : T and Γ ` t′ : T .

4. If Γ ` L 4 τ : ∆ then ∆⊕ ` and Γ⊕ ` τ 4 τ : ∆⊕.

5. If Γ ` σ = σ′ 4 τ : ∆ then Γ ` σ 4 τ : ∆ and Γ ` σ′ 4 τ : ∆.

Proof. Simultaneously by induction on the derivation. Let us look at proposition 4. The first goal ∆⊕ ` is trivial, we focus
on Γ⊕ ` τ 4 τ : ∆⊕ for L = σ a substitution.

Case
Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ ` t′ 4 t ? T τ

Γ ` 〈σ, t′〉 4 〈τ, t〉 : ∆.?T

We have Γ⊕ ` τ 4 τ : ∆⊕ by induction hypothesis, and since resurrection is idempotent, ∆⊕⊕ ` T : s by assumption.
In case ? = ÷, we have Γ⊕ ` t : T τ by assumption, otherwise it follows from the assumption Γ ` t : T τ by Lemma 1.
Together, we can infer Γ⊕ ` 〈τ, t〉 : ∆⊕.T .

Case
Γ⊕ `

Γ ` id 4 id : Γ

Since Γ⊕⊕ ` by assumption, Γ⊕ ` id 4 id : Γ⊕.

Case
Γ1 ` σ′ 4 τ ′ : Γ2 Γ2 ` σ 4 τ : Γ3

Γ1 ` σ σ′ 4 τ τ ′ : Γ3

By composition of the induction hypotheses.

Case
Γ⊕ ` T : s

Γ.?T ` � 4 � : Γ

By assumption Γ⊕⊕ ` T : s, hence, Γ⊕.T ` � 4 � : Γ⊕.

Case
Γ ` σ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ 4 τ ′ : ∆

By induction hypothesis 5, Γ⊕ ` τ ′ 4 τ ′ : ∆⊕.

Next, consider proposition 2.

Case
Γ ` σ 4 τ : ∆ ∆ ` t : T

Γ ` t σ : T τ
By induction hypothesis ∆⊕ ` T : s for some sort s, and Γ⊕ ` τ 4 τ : ∆⊕, from which we obtain Γ⊕ ` T τ : s τ
entailing the goal Γ⊕ ` T τ : s.

For proposition 5, consider the cases:

Case conversion.
Γ ` σ = σ′ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ = σ′ 4 τ ′ : ∆
By induction hypothesis, Γ ` σ 4 τ : ∆ which entails Γ ` σ 4 τ ′ : ∆ by conversion.

12

Case left identity.

Γ ` σ 4 τ : ∆
Γ ` idσ = σ 4 τ : ∆

We have Γ ` idσ 4 id τ : ∆, and since by induction hypothesis Γ⊕ ` τ 4 τ : ∆⊕, we can use Γ⊕ ` id τ = τ 4 τ :
∆⊕ to convert our first inference to the goal Γ ` idσ 4 τ : ∆.

Case second projection.

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ⊕ ` u ? T τ
Γ ` � 〈σ, t〉 = σ 4 τ : ∆

First, Γ ` 〈σ, t〉 4 〈τ, u〉 : ∆.?T , and since ∆.?T ` � 4 � : ∆, Γ ` � 〈σ, t〉 4 � 〈τ, u〉 : ∆. Since by induction
hypothesis Γ⊕ ` τ 4 τ : ∆⊕, another instance of the above rule yields Γ⊕ ` � 〈τ, u〉 = τ 4 τ : ∆⊕. Thus we use
conversion to arrive at our goal Γ ` � 〈σ, t〉 4 τ : ∆.

Finally let us look at proposition 3.

Case

Γ ` σ 4 τ : ∆ ∆.?U ` t : T
Γ ` (λt)σ = λ. t 〈σ �, v0〉 : Π?(U τ) (λ. T 〈τ �, v0〉)

Let us first establish some general facts.

Γ⊕ ` τ 4 τ : ∆⊕ by ind.hyp.

∆⊕ ` U : s by ind.hyp.

Γ⊕ ` U τ : s τ by substitution
`Σ s : s′ by sort abundance

Γ⊕ ` s τ = s : s′

Γ⊕ ` U τ : s by conversion

(Γ.?U τ)⊕ `

The first goal Γ ` (λt)σ : Π?(U τ)λ. T 〈τ �, v0〉 is then derived as follows:

∆ ` λt : Π?U λT by abstraction
Γ ` (λt)σ : (Π?U λT) τ by substitution

Γ⊕ ` U τ = U τ : s by reflexivity

∆⊕.U ` T : s′′ by ind.hyp.

Γ⊕ ` (λT) τ = λ. T 〈τ �, v0〉 : Π (U τ) (λ. s′′ 〈τ �, v0〉) by this rule

Γ⊕ ` Π (U τ) (λ. s′′ 〈τ �, v0〉) = Π (U τ) (λs′′) : s′′′ by boring derivation

Γ⊕ ` (λT) τ = λ. T 〈τ �, v0〉 : Π (U τ) (λs′′) by conversion

Γ⊕ ` Π?(U τ) ((λT) τ) = Π?(U τ) (λ. T 〈τ �, v0〉) : max(s, s′′) by compatibility

Γ⊕ ` (Π?U λT) τ = Π?(U τ) (λ. T 〈τ �, v0〉) : max(s, s′′) by propagation
Γ ` (λt)σ : Π?(U τ) (λ. T 〈τ �, v0〉) by conversion

The second goal Γ ` λ. t 〈σ �, v0〉 : Π?(U τ)λ. T 〈τ �, v0〉 follows from the facts by this sequence of inferences: as

13

follows:

Γ.?U τ ` � 4 � : Γ
Γ.?U τ ` σ � 4 τ � : ∆ by composition
Γ.?U τ ` v0 4 v0 ? U τ � by variable rule
Γ.?U τ ` 〈σ �, v0〉 4 〈τ �, v0〉 : ∆.?U by pairing
Γ.?U τ ` t 〈σ �, v0〉 : T 〈τ �, v0〉 by substitution
Γ ` λ. t 〈σ �, v0〉 : Π?(U τ)λ. T 〈τ �, v0〉 by abstraction

�

Theorem (6 Soundness of IITT). If Γ ` J then Γ
 J .

Proof. By induction on Γ ` J . Each case follows quite directly from the induction hypotheses.

Case

Γ ` σ 4 τ : ∆ ∆⊕ ` T : s Γ⊕ ` t : T τ
Γ ` 〈σ, t′〉 4 〈τ, t〉 : ∆.÷T

Γ⊕
 goal 1, by ind.hyp.1

∆⊕
 T : s by ind.hyp.2

(∆.÷T)⊕ = ∆⊕.T
 goal 2
η, η′ 4 ρ ∈ Γ assumption
LσMη, LσMη′ 4 LτMρ ∈ ∆ by ind.hyp.1

ρ, ρ 4 ρ ∈ Γ⊕

LtMρ = LtMρ ∈ [[T τ]]ρ by ind.hyp.3

[[T τ]]ρ = [[T]]LτMρ by ind.hyp.2

t ρ ∈ JT KLτMρ

t′ η, t′ η′ ∈ Clos

L〈σ, t′〉Mη, L〈σ, t′〉Mη′ 4 L〈τ, t〉Mρ ∈ ∆.÷T goal 3

Case

Γ ` σ = σ′ 4 τ : ∆ ∆⊕ ` T : s Γ⊕ ` t′ : T τ
Γ ` 〈σ, t〉 = 〈σ′, t′〉 4 〈τ, t′〉 : ∆.÷T

14

Γ⊕
 goal 1, by ind.hyp.1

∆⊕
 T : s by ind.hyp.2

(∆.÷T)⊕ = ∆⊕.T
 goal 2
η, η′ 4 ρ ∈ Γ assumption
LσMη, Lσ′Mη′ 4 LτMρ ∈ ∆ by ind.hyp.1

ρ 4 ρ ∈ Γ⊕

Lt′Mρ ∈ [[T τ]]ρ by ind.hyp.3

[[T τ]]η = [[T]]LτMη by ind.hyp.2

t′ ρ ∈ JT KLτMρ

t η, t′ η′ ∈ Clos

L〈σ, t〉Mη, L〈σ′, t′〉Mη′ 4 L〈τ, t′〉Mρ ∈ ∆.÷T goal 3

Case

Γ ` σ = σ′ 4 τ : ∆ Γ⊕ ` τ = τ ′ 4 τ ′ : ∆⊕

Γ ` σ = σ′ 4 τ ′ : ∆

η, η′ 4 ρ ∈ Γ assumption
LσMη, Lσ′Mη′ 4 LτMρ ∈ ∆ by ind.hyp.1

ρ 4 ρ ∈ Γ⊕ by Lemma 4

LτMρ 4 Lτ ′Mρ ∈ ∆⊕ by ind.hyp.2
LσMη, Lσ′Mη′ 4 Lτ ′Mρ ∈ ∆ by Lemma 4

Case

Γ.÷U ` t = t′ : T
Γ ` λt = λt′ : Π÷U λT

η, η′ 4 ρ ∈ Γ assumption
β, β′ ∈ Clos, a ∈ [[U]]ρ assumption

〈η, β〉, 〈η′, β′〉 4 〈ρ, a〉 ∈ Γ.÷U by def.
LtM〈η,β〉 = Lt′M〈η′,β′〉 ∈ [[T]]〈ρ,a〉 by ind.hyp.

LλtMη · β = Lλt′Mη′ · β′ ∈ El(LλT Mρ · a) by def.
LλtMη = Lλt′Mη′ ∈ ∀a∈ [[U]]ρ. El(LλT Mρ · a)

LλtMη = Lλt′Mη′ ∈ [[Π÷U λT]]ρ

Case

Γ ` t1 = t2 : ∀U T Γ⊕ ` u : U
Γ ` t1 u1 = t2 u2 : T u

15

η1, η2 4 ρ ∈ Γ assumption
Lt1Mη1 = Lt2Mη2 ∈ [[∀U T]]ρ by ind.hyp.1

ρ 4 ρ ∈ Γ⊕ by Lemma 4
LuMρ ∈ [[U]]ρ by ind.hyp.2

u1 η1, u2 η2 ∈ Clos

Lt1 u1Mη1 = Lt2 u2Mη2 ∈ [[T u]]ρ goal

Case
Γ ` σ = σ′ 4 τ : ∆ ∆ ` t = t′ : T

Γ ` t σ = t′ σ′ : T τ

η, η′ 4 ρ ∈ Γ assumption
LσMη, Lσ′Mη′ 4 LτMρ ∈ ∆ by ind.hyp.1
LtMLσMη = Lt′MLσ′Mη′ ∈ [[T]]LτMρ by ind.hyp.2

∀u, a. LuMLσMρ ↘ a ⇐⇒ LuσMρ ↘ a by def.

Lt σMη = Lt′ σ′Mη′ ∈ [[T τ]]ρ

�

16

