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Abstract

Formal languages and automata are a foundational topic of computer sci-
ence, with many practical applications such as compiler construction, textual
search, model checking, and decidability of certain logics. Automata are an
instance of transitions systems which have the structure of a coalgebra, and
coalgebraic and coinductive reasoning tools such as simulations, bisimula-
tions, and up-to techniques have been successfully employed to study formal
languages.

In this paper, we show how routine reasoning about formal languages
can be carried out with just the coinductive notion of equality of languages
aka bisimilarity. We formalize a coinductive type of languages and the coin-
ductive type family of strong bisimilarity of languages in the proof assistant
Agda using sized types. The sized typing enables us to establish algebraic
properties of language operations through coinductive proofs of bisimilarity
by equational reasoning. In particular, after verifying that formal languages
form a Kleene algebra, the laws of the Kleene algebra are sufficient to prove
correctness of the usual constructions on automata.
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1. Introduction

Formal languages and automata are a foundational topic of computer sci-
ence, with many practical applications such as compiler construction, textual
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search, model checking, and decidability of certain logics. While the theory
of formal languages and automata goes back to the 1960s, its connection to
the coalgebras of category theory is more recent. This coalgebraic formula-
tion suggests that coinduction should be central for reasoning about formal
languages and automata. In particular, to show that two automata recognize
the same language, one can find a bisimulation between these automata and
then use coinduction in form of the theorem of Knaster and Tarski (1955)
for the greatest fixed point. However, coming up with a suitable bisimu-
lation is so far an act of creativity and has not been automated, although
remedies like parameterized coinduction (Hur et al., 2013) have been sug-
gested for a smoother experience of formal coinductive reasoning. Further,
a set of standard strategies to find a bisimulation have become known as
coinduction-up-to techniques (Pous and Sangiorgi, 2012).

In this article, we demonstrate that a generalization of primitive coinduc-
tion to well-founded coinduction as both a definition principle and a proof
principle lets us carry through a substantial part of basic automata theory
with just equational reasoning over coinductive equality (bisimilarity). Tech-
nically, we rely on a formulation of coinduction with sized types (Hughes
et al., 1996; Amadio and Coupet-Grimal, 1998; Barthe et al., 2004; Abel,
2008; Sacchini, 2013; Abel and Pientka, 2013) in the context of Martin-Löf
Type Theory (1975). This enables us to define the Kleene algebra opera-
tions of formal languages elegantly via their Brzozowski derivatives (1964).
Further, we can define coinductive language equality in a way that gives
us the ability to prove theorems by coinduction and equation chains. In
particular, it allows us to apply the coinductive hypothesis under the proof
term for transitivity. The latter is not possible in weaker formulations of
coinduction such as the Calculus of (Co)inductive Constructions underlying
the Coq (2016) proof assistant, which makes use of an untyped guarded-
ness check (Coquand, 1994). As an alternative to sized types, well-founded
coinduction could probably be based on ordered families of equivalences (Gi-
anantonio and Miculan, 2003) or ultrametric spaces. A type theory utilizing
these approaches is emerging (Bizjak et al., 2016), but has not seen a mature
implementation yet.

Agda (2016) is currently the only type-theoretic proof assistant with sup-
port for sized types. Albeit still experimental, Agda’s sized types let us
formalize decidable languages and automata elegantly through definition by
copattern matching (Abel et al., 2013). All the definitions, theorems, and
proofs of this paper have been extracted from Agda code via an Agda to
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LaTeX translation and are, thus, guaranteed to be correct (assuming the
consistency of Agda itself).

This article does not present any new or surprising results about formal
languages or automata but is solely concerned about the techniques for formal
definition and proof. It should, thus, be seen as a tutorial. It has been
inspired by Rutten’s tutorial on coalgebraic techniques for formal languages
(1998) and Traytel’s recent formalizations in Isabelle (2016). Traytel reports
that Isabelle is being extended by friendly coinductive definitions that bring
part of the reasoning power of sized types, possibly sufficient to mimic the
reasoning style employed in this article.

Overview. In Section 2 we briefly recapitulate the bits and pieces of Type
Theory and Agda relevant for this article. In Section 3 we define decid-
able languages as infinite tries and some operations on them in the style of
Brzozowski derivatives. Subsequently, in Section 4 we prove the Kleene al-
gebras for these operations. The final technical section, 5, is devoted to the
corresponding constructions on automata and their correctness.

2. Preliminaries: Type Theory and Agda

The definitions and theorems of this article are formulated in Dependent
Type Theory à la Martin-Löf (1975), in particular, in the Agda (2016) lan-
guage. Agda is an implementation of Type Theory with several extensions;
we will most notably make use of sized types (Hughes et al., 1996; Abel and
Pientka, 2013) to express coinductive types and definitions by coinduction.

On the one hand, Agda is a dependently-typed purely functional pro-
gramming language, and on the other hand, thanks to the Curry-Howard
correspondence, a proof assistant for constructive logic. In the following, we
will briefly introduce the syntax of Agda by example. The experienced Agda
user can safely skip the remainder of this section.

2.1. Agda as a dependently-typed functional language
The core features of Agda are inductive families (Dybjer, 1994) and func-

tions defined by pattern matching. A very simple inductive family is the
enumeration type Bool with two constructors true and false.

data Bool : Set where
true : Bool
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false : Bool

Bool itself has type Set, which is universe or a type of types, but not all types,
to avoid vicious cycles. For instance Set itself does not have type Set, but
inhabits the next universe Set1. Boolean negation can be defined by simple
pattern matching.

not : Bool → Bool
not true = false
not false = true

Agda also supports Unicode and infix and mixfix operators. For example,
we can define boolean disjunction like this:

_∨_ : (a b : Bool) → Bool
true ∨ b = true
false ∨ b = b

The notation (a b : Bool) → Bool is short for (a : Bool)(b : Bool) → Bool
or (a : Bool)→ (b : Bool)→ Bool, which is the syntax for dependent function
types. In this case, there is no actual dependency, since the bound variables
a and b are not subsequently used in the type.

Data types can be parameterized over other typesA. For instanceMaybeA
embeds an arbitrary type A via just and extends it by a new value nothing.

data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A

Data types can be recursive, such as List i A parameterized by a size i
and a type A. The size i : Size acts as an upper bound on the length of the
list. The special size ∞ : Size means unbounded length.

data List (i : Size) (A : Set) : Set where
[] : List i A
_::_ : {j : Size< i} (x : A) (xs : List j A) → List i A

A list is either empty (constructor [ ]); then any size i is an upper bound
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on its length. Or, the list is nonempty (e. g., x :: xs); then, if j is an upper
bound on the length of its tail xs and j < i, then i is an upper bound on
the length of x :: xs . Strictly speaking, the constructor _::_ takes three
arguments: j : Size< i and x : A and xs : List Aj, but the first argument j is
in {braces} and thus declared as hidden. The user does not have to write it,
and its value will be inferred by Agda if possible. Note that j occurs in the
type of xs , thus, this is a proper dependency.

It is possible to supply a hidden argument to a function by enclosing it
in braces. In case of the infix operator _::_, we have to fall back to prefix
style _::_ {j}x xs though.

The types Size and Size< i are Agda primitives that are used for termi-
nation checking. For instance, consider the mapping function on lists. Note
that the notation ∀{i AB} → . . . is short for {i : _}{A : _}{B : _} → . . .
and becomes {i : Size}{A : Set}{B : Set} → . . . after type reconstruction.

map : ∀{i A B} → (A → B) → List i A → List i B
map f [] = []
map f (x :: xs) = f x :: map f xs

Function map f takes a list of size i as input and returns a list with the same
upper bound. We say map is size preserving. As map is defined recursively,
termination is not obvious. Agda infers from pattern x :: xs : List i A, which
is short for pattern _::_ {j}x xs : List i A with a pattern variable j intro-
duced by Agda, that xs : List j A and j : Size< i. Consequently, the recursive
call map f xs—which internally expands to map {j} f xs— is justified, by the
descent in size j < i. An analogous argument assures termination of foldr,
the iteration principle for lists, which replaces in a list the [ ] constructor by
n : B and any _::_ constructor by c : A→ B → B.

foldr : ∀{i} {A B : Set} → (A → B → B) → B → List i A → B
foldr c n [] = n
foldr c n (x :: xs) = c x (foldr c n xs)

As an application of foldr and map, we define any p xs which is true if p x is
true for any element x of xs .

any : ∀{i A} → (A → Bool) → List i A → Bool
any p xs = foldr _∨_ false (map p xs)
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Finally, data types with a single constructor can alternatively be de-
fined as record types. For instance, the Cartesian product A×B can be
implemented as record type with the projections fst : A×B → A and
snd : A×B → B and constructor _,_ : A→ B → A×B.

record _×_ (A B : Set) : Set where
constructor _,_
field fst : A

snd : B

Agda allows the projections also on the left hand sides of definitions by
pattern matching. In the following, we define for a pair p : A×B is reversal
swap p : B×A by giving its value for all valid projections. This definition
form is called definition by copattern matching, since we are not matching on
a function argument, but on the possible observations on the function result
(Abel et al., 2013).

swap : ∀{A B} → A × B → B × A
fst (swap p) = snd p
snd (swap p) = fst p

This is, of course, just one possible implementation of swap, which we chose
to exemplify copattern matching. A simple clause swap (a , b) = (b , a) would
have done the job, but copattern matching will be the definition principle of
choice for coinductive structures in Section 3.

2.2. Agda as a proof assistant
Martin-Löf Type Theory allows us to reason about program via the

propositions-as-types paradigm. A proposition is seen as the type of its
proofs, for instance, the absurd proposition ⊥ (Falsehood) has no proof, and
the trivial proposition > (Truth) has a proof with no further content.

In Agda, ⊥ is modeled as a data type with no constructors. Given a proof
p : ⊥, we can prove any proposition A (populate any type A) by matching
on p. As there are no constructors of ⊥, there is nothing further to show,
indicated in Agda by the absurd pattern () which matches anything of empty
type.
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data ⊥ : Set where

⊥-elim : {A : Set} (p : ⊥) → A
⊥-elim ()

Truth > is modeled as record type with no fields. There is no information
to extract from a proof of >, a proof is simply an empty record.

record > : Set where

triv : >
triv = record {}

Implication A→ B coincides with the ordinary function space, and uni-
versal quantification ∀x→ A with the dependent function space (x : _)→ A.

We can define our own proposition, predicates, and relation as inductive
(or coinductive, see Section 4.1) families. The prime example is propositional
equality x ≡ y of objects x, y : A, which is defined as a data type with a
hidden parameter A : Set, a visible parameter x : A, and an index y : A. The
only constructor refl—which has no arguments—fixes y to be identical to x,
thus, witnesses that x and y are identical modulo Agda’s internal notion of
equality (which is called definitional equality).

data _≡_ {A : Set} (x : A) : (y : A) → Set where
refl : x ≡ x

Since defined inductively, propositional equality is the smallest relation on A
which is reflexive.

Proof of equality can be used by pattern matching. For instance, we can
prove symmetry of equality, i. e., x ≡ y implies y ≡ x by pattern matching
on the the proof of x ≡ y.

sym : ∀{A} {x y : A} → x ≡ y → y ≡ x
sym {A} {x} {.x} refl = refl

The only matching constructor refl forces y to be identical to x. This is
indicated in Agda by the inaccessible pattern .x which means that y has
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been instantiated by the term x. As a consequence, the goal becomes x ≡ x
which is simply proved by refl.

In a similar fashion, we prove transitivity of propositional equality. By
matching both the proofs of x ≡ y and y ≡ z against refl, variables y and z
become instantiated to x, and again, the goal becomes simply x ≡ x.

trans : ∀{A} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl

In general, inductively defined propositions are inhabited by proof trees
in the same way that inductive types are inhabited by trees. As an example,
consider the proposition Any i P xs which states that predicate P : A → Set
holds on some element x : A of (unbounded) list xs : List ∞A. Parameter
i : Size is an upper bound on the tree height of a proof p : Any i P xs of this
proposition.

data Any (i : Size) {A} (P : A → Set) : List ∞ A → Set where
here : ∀{x xs} (p : P x) → Any i P (x :: xs)
there : ∀{x xs} {j : Size< i} (p : Any j P xs) → Any i P (x :: xs)

Constructor here establishes the proposition for a non-empty list x :: xs given
a proof p : Px that predicate P holds on the head x of the list. The resulting
proof tree is a leaf, and any size i is an upper bound on the height of this
derivation. Constructor there takes a derivation p : Any j P xs stating that P
holds on some element of list xs , and builds a proof of Any i P (x :: xs). The
tree height of p, ordinal j, is necessarily strictly smaller than i.

Proofs in Type Theory naturally contain the necessary information to
construct witnesses for existential propositions such as Any. In this case, a
proof takes the form theren (here p) where n is the index of witnessing element
x that satisfies P , and p : P x is the evidence for the latter fact.

This concludes the short tutorial on Type Theory and Agda. In the next
section, we introduce coinductive types for the example of infinitely deep
trees. In the following, we will sometimes write List A for unbounded lists
List ∞A.
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3. Decidable Languages, Coinductively

Given an alphabet A, a word as ∈ List A is a list of characters. A language
over A is usually described as set of words, and a decidable language is one
whose characteristic function List A → Bool is computable. We will work
in the setting of Type Theory (Martin-Löf, 1975) where each function is
computable, thus, we can identify decidable languages with functions of type
List A → Bool where Bool is the two-element data type with constructors
true and false.

A set of words with decidable membership can also be represented as trie.
For our purposes, a trie is an A-branching tree whose nodes are labeled by
booleans. Any word as is a path into the tree selecting a subtree. The root
label of that subtree indicates the status of the word as . Label true means
the word is member of the set, label false means it is not a member. Even
though each word is finite, the language might be infinite, thus, tries have
infinite depth in general.

For instance, let us consider the language E of even natural numbers in
binary representation. Writing 0 as a and 1 as b, our language contains the
words a, ba, baa, bba, baaa, baba, etc. Given the alphabet A = {a, b}, the
language can be concisely described by the regular expression a+ b(a+ b)∗a.

Figure 1 shows an initial part of the trie of language E, where double-
circled nodes denote membership of the word leading to that node, and single-
circled ones non-membership. Observe that the subtree ba has only accepting
nodes along its left-most path a∗, witnessing that ba∗ is a sublanguage of E
(representing 2n for n ≥ 1). Thus, a finite trie would be insufficient to
represent E.

Generalizing Bool to B, the connection between the type T of A-branching
B-labeled tries and the type ListA → B can also be derived by calculating
type isomorphisms (Hinze, 2000; Altenkirch, 2001):

ListA→ B ∼= (1 + A× ListA)→ B
∼= (1→ B)× ((A× ListA)→ B)
∼= B × (A→ (ListA→ B))

This means that ListA→ B is a solution of the recursive equation

X ∼= B × (A→ X)

which also describes the decomposition of a trie X into its root label of type
B and its A-indexed family of subtrees A → X. Tries T are the greatest
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Figure 1: Trie of E

solution of this equation and we write T = νX.B × (A→ X). We will later
establish the isomorphism between T and ListA→ B more precisely.

3.1. Coinductive tries in Agda
In Agda, we represent the coinductive type νX.Bool× (A→ X) of tries

as a coinductive record type Lang with fields ν : Bool for the root label and
δ : A → Lang for the family of subtrees. If field ν is true then the language
contains the empty word, which is sometimes called a nullable language,
hence the field name ν.

The name δ is inspired by its role as Brzozowski derivative. Given a
decidable language f : ListA→ Bool, its a-derivative δ f a : ListA→ Bool is
defined as (δ f a)(as) = f (a :: as). This means that δ f a accepts the words
of f that start with a, minus this first letter. In terms of tries t, we obtain
the derivative δ t a simply by following the a-labeled edge from the root, thus,
the derivation function is identical with the field δ.

There is one final twist to arrive at the Agda definition: In order to
facilitate corecursive definitions of tries that are certified by Agda’s produc-
tivity checker, we equip the type of tries Lang i with an index i : Size. Index
i denotes an ordinal ≤ ω corresponding to the definedness depth of a trie
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t : Lang i. Ultimately, we are interested only in fully defined tries t : Lang∞,
where ∞ is syntax for ordinal ω. This means we can query t’s nodes at
arbitrary depth. For a finite definedness level i we can only inspect nodes up
to depth i. In particular t : Lang 0 allows us to look only at the root label
ν t, its subtrees via δ t a are undefined and Agda’s type checker will object
to such an expression.

If for an arbitrary ordinal i, a trie t : Lang i can be defined by reference
to tries of type Lang j for j < i, written j : Size< i, then t can be assigned
type ∀{i} → Lang i. We say t is defined by well-founded recursion on ordinal
i, which is our principle of corecursive definition.

record Lang i : Set where
coinductive
field ν : Bool

δ : ∀{j : Size< i} → A → Lang j

As typing of the projections from tries we get

ν : ∀{i : Size} → Lang i→ Bool
δ : ∀{i : Size} → Lang i→ ∀{j : Size< i} → A→ Lang j

with hidden size arguments which will, if type checking succeeds, be figured
out by Agda’s unifier and size constraint solver. When taking the derivative
δ {i} t {j} a we are free to choose any j strictly below i. This expresses that if
t was only defined up to depth i, then its a-subtree is less defined; and we are
allowed to waste information and chose a smaller j than necessary. Wasting
is fine since Lang i is a subtype of Lang j whenever i ≥ j, as we can always
use a more defined value t : Lang i when a value of Lang j is demanded. The
antitone subtyping chain

Lang∞ ≤ . . . ≤ Lang (↑ i) ≤ Lang i ≤ . . . Lang 0

can be justified by the equation Lang i ∼= Bool ×
⋂

j<i(A → Lang j) which
holds semantically.

The isomorphism Lang i ∼= List i A → Bool is witnessed by the following
two functions. The first, l 3 as , checks membership of word as in language
l represented as a trie. The empty word [ ] is in the language if ν l, i. e., if
the language is nullable. The composite word a :: as is accepted by l if as is
accepted by the derivative δ l a.
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_3_ : ∀{i} → Lang i → List i A → Bool
l 3 [] = ν l
l 3 a :: as = δ l a 3 as

Visually spoken, l 3 as returns the root label of the subtree selected by path
as .

The second function constructs a trie representation trie f from the func-
tional representation f of a decidable language. The trie is constructed core-
cursively by copattern matching (Abel et al., 2013).

trie : ∀{i} ( f : List i A → Bool) → Lang i
ν (trie f ) = f []
δ (trie f ) a = trie (λ as → f (a :: as))

The root label ν (trie f) is determined by whether f accepts the empty
word [ ]. The a-derivative δ (trie f) a is constructed by corecursion on the
a-derivative of f . The justification of the recursive call to trie is apparent
once we make the hidden size arguments visible:

δ {i} (trie {i} f) {j} a = trie {j} (λas → f (a :: as))

By typing of the projection δ, we have j : Size< i, thus, the definition of
trie {i} only rests on trie {j} with a smaller size index. Well-founded induction
on sizes guarantees that the equation system has a unique solution.

The corecursive definition by copattern matching is sometimes likened
to differential equations (Hansen et al., 2016). In the definition of trie, the
second equation (δ) is the differential equation, and the first equation (ν)
determines the initial value.

3.2. Constructing decidable languages by coiteration
In the following, we implement some standard constructions on formal

languages by copattern matching. These operations will allow us to compute
the trie of any regular expression. Throughout the rest of this article, we
assume a type A of characters with a decidable equality b a ?

= b c: Bool for
a, b : A.

The empty language ∅ is the trie where each node label is false. Naturally,
each subtree of ∅ is again ∅.
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∅ : ∀{i} → Lang i
ν ∅ = false
δ ∅ x = ∅

The language ε accepting only the empty word has root label true but all
other labels are false. Hence, any derivative is the empty language.

ε : ∀{i} → Lang i
ν ε = true
δ ε x = ∅

The language char a accepting the one-letter word a :: [ ] is not nullable, its
a-derivative is ε and all other derivatives are ∅.

char : ∀{i} (a : A) → Lang i

ν (char a) = false

δ (char a) x = if b a ?
= x c then ε else ∅

We obtain the language complement compl l of a language l by flipping all
labels. This is accomplished by recursing over the whole tree.

compl : ∀{i} (l : Lang i) → Lang i
ν (compl l) = not (ν l)
δ (compl l) x = compl (δ l x)

Complement compl is a special instance of mapping a function pointwise over
all tree labels.

For the union k∪ l of two languages l and k, we overlay the two tries and
perform the Boolean disjunction operation on corresponding node labels.

_∪_ : ∀{i} (k l : Lang i) → Lang i
ν (k ∪ l) = ν k ∨ ν l
δ (k ∪ l) x = δ k x ∪ δ l x

The intersection could be defined analogously, using Boolean conjunction.
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Both operations are instance of a general zipWith-function that applies a
binary operation pointwise to a pair of tries.

All recursive definitions of tries so far have followed a specific pattern:
in the right hand sides of the recursive equations, the recursive call was
outermost, i. e., the equation had the form δ (g ~y)x = g~t for some variables
x, ~y and some terms ~t. With the non-recursive equation being ν (g ~y) = o,
this form is an instance of the commutative diagram for terminal coalgebras
and sometimes called coiteration (Geuvers, 1992).

For a functor F : Set → Set, an F -coalgebra is a pair (S, t) with S : Set
and t : S → F S. An F -coalgebra morphism between coalgebras (S1, t1) and
(S2, t2) is a function f : S1 → S2 such that t2 (f s1) is equal to F f (t s1) for
all s1 : S1. An F -coalgebra is terminal if it is the target of a coalgebra mor-
phism from every F -coalgebra. Besides establishing the connection between
coiteration and coalgebras, we will not dwell on coalgebras in this article,
thus, we do not go into more details here.

Here is the diagram for a (Bool×(A→ _))-coalgebra (Γ, h) mapping into
the terminal coalgebra (Lang, 〈ν, δ〉):

Γ h //

coith

��

Bool× (A→ Γ)

id× (coith ◦_)

��
Lang

〈ν, δ〉
// Bool× (A→ Lang)

With g := coith, the commutative law

〈ν, δ〉 ◦ g = id× (g ◦_) ◦ h

can be applied to points ~y : Γ to yield

〈ν, δ〉(g ~y) = (id× (g ◦_))(h~y).

For our instance, h~y = (o, λx → ~t) with ~y:Γ ` o : Bool and ~y:Γ, x:A ` t :
Lang, thus,

〈ν, δ〉(g ~y) = (o, g ◦ (λx→ ~t)).

This can be split into the two equations

ν (g ~y) = o

δ (g ~y)x = g~t
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that form the laws of a function g = coit (λ~y → (o, λx → ~t)) defined by
coiteration (modulo some tupling and (un)currying).

The type/context Γ can be interpreted as the set of states of an automa-
ton h with a coupled presentation of the accepting state set Γ → Bool and
the transition function Γ → (A → Γ). Function coith maps a state s : Γ
to the language coith s accepted by h starting from state s. The discussed
language constructions correspond to constructions of (possibly infinite) au-
tomata with references to existing automata as oracles. The reader is invited
to confirm this by expressing the given constructions through coiteration.
Note however, that the state type Γ might involve Lang and is, thus, not
guaranteed to be finite!

3.3. Constructing decidable languages by well-founded corecursion
To complete the constructions of languages as supported by regular ex-

pressions, we are missing language concatenation and the Kleene star. These
can be constructed by corecursion up-to which can be reduced to primitive
corecursion into a trie with an extended alphabet (Traytel, 2016). However,
using sized types we can naturally define these operations by their derivative
laws, using well-founded recursion on sizes.

Language concatenation k · l is our first non-trivial operation on lan-
guages. The intuition (k 3 as) ∧ (l 3 bs) =⇒ (k · l) 3 (as ++ bs) leads to
the specification (k · l) 3 cs ⇐⇒ ∃n ∈ N. k 3 (taken cs) ∧ l 3 (dropn cs).1
However, this specification does not directly suggest a pretty implementation
of k · l (Doczkal et al., 2013).

We can instead try to understand language concatenation as an operation
on the tries k and l. If we think about accepting a word cs in k · l by
following paths in k and l, the following procedure applies: We start by
following branches in k. Whenever we reach an accepting node in k we
may decide that we have reached the boundary between the words as in k
and bs in l that make up the word cs = (as ++ bs) in k · l. Hence, we
start following branches in l. However, since we are not sure we already
reached the boundary, we simultaneously continue to follow branches in k.
At each accepting node in k we spawn off a run in l. Thus, a trie for k · l
may be constructed by the following operation on all accepting nodes of k:

1 We write as ++ bs for the concatenation of lists as and bs; we write taken cs for
the largest prefix of cs of length ≤ n, and dropn cs for the remainder. Note that cs =
taken cs ++ dropn cs for any n ∈ N.
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make the node non-accepting but then union the subtree starting here with
l. This transformation is achieved by the following corecursive definition of
concatenation:

_·_ : ∀{i} (k l : Lang i) → Lang i
ν (k · l) = ν k ∧ ν l
δ (k · l) x = let k ′l = δ k x · l in if ν k then k ′l ∪ δ l x else k ′l

The concatenation of two languages is nullable iff both are nullable. For the
x-derivative, we follow the x-branch in k via δ k x · l in any case. If the node
is accepting, i. e., ν k is true, we may in addition follow the x-branch in l
via δ l x. As before, the equations for language concatenation correspond to
the derivation laws of regular expressions (Brzozowski, 1964), but we arrived
there by the trie intuition.

The above definition is not an instance of coiteration for two reasons:
First, the outermost call is to if_then_else_ rather than the recursive call
k ′l . Even if we consider if_then_else_ to be special (rather than just an
arbitrary Agda function), there is still a recursive call k ′l in the then-branch
which is not at top-level, but under the union-operator. This problem is
usually fixed by defining a scheme for corecursion up to union. However,
looking at the involved sizes we can accept the definition in the present form
as an instance of well-founded corecursion. Crucial here is the sized typing
of the union

_∪_ : ∀{i}(k l : Lang i)→ Lang i

which asserts that the arguments are no deeper analyzed than the definedness
depth of the result. If we make all hidden size arguments visible—having to
switch to prefix operators instead of infix ones—we can see the propagation
of definedness depth levels to the recursive call k ′l .

_·_ : ∀{i} (k l : Lang i) → Lang i

δ (_·_{i} k l) {j} x =
let k ′l : Lang j

k ′l = _·_{j} (δ k {j} x) l
in if ν k then _∪_{j} k ′l (δ l {j} x) else k ′l

Since the recursive call happens at smaller index j < i, it is justified. Note
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also that in the definition of k ′l , last letter, l : Lang i is cast to Lang j which
is valid since j < i.

The iteration l∗ of a language l, aka Kleene star, can be informally de-
scribed as “zero or more repetitions of l”. If for some n ≥ 0 we have words
as1, as2, . . . asn ∈ l, then (as1 ++ as2 ++ . . . ++ asn) ∈ l. In terms of tries,
l∗ is obtained from l by making the root accepting and unioning l with any
subtree of l that has an accepting root. Intuitively, this means that at each
accepting node we may “jump back” to the root. The corecursive definition

_* : ∀{i} (l : Lang i) → Lang i
ν (l *) = true
δ (l *) x = δ l x · (l *)

relies on the sized typing of concatenation to justify the recursive call.
This concludes our set of language operations defined by well-founded

corecursion. These operations allow us to give an executable semantics for
regular expressions (leaving aside efficiency questions). It may be remarked
that, thanks to sized typing, all the definitions are concise and direct coun-
terparts of the derivative laws for regular expressions (Brzozowski, 1964).

4. Proving the Kleene Algebra Laws

In this section, we prove that decidable languages as introduced in Sec-
tion 3 form a Kleene algebra.

4.1. A family of equivalence relations over languages
Equality of tries, sometimes called strong bisimilarity, is defined coin-

ductively as follows. Two tries are strongly bisimilar if they have the same
root and corresponding subtries are strongly bisimilar in turn. In Agda, this
amounts to the following coinductive definition:

record _≅〈_〉≅_ (l : Lang ∞) i (k : Lang ∞) : Set where
coinductive
field ≅ν : ν l ≡ ν k

≅δ : ∀{j : Size< i} (a : A) → δ l a ≅〈 j 〉≅ δ k a
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For one, note that we are relating tries l, k : Lang∞ whose definedness depth
is unbounded (∞). This means that any subtrie such as δ l a is defined and
in turn has type Lang∞.

However, the relation itself is indexed by a definedness depth i. In fact we
are defining a family of types such that l∼=〈 j 〉∼= k is a subtype of l∼=〈 i 〉∼= k
whenever i ≤ j. The depth is a lower bound on how far the proof of equality of
l and k is constructed. In particular, we can only inspect the derivative ∼=δ p a
of a proof p : l∼=〈 i 〉∼= k if i > 0. As for coinductive types like Lang i, the
size index i is just a tool for the corecursive construction of derivations. Ulti-
mately, we are only interested in fully defined equality proofs p : l∼=〈∞ 〉∼= k.
In particular, our size-index relation is not to be confused with ordered fam-
ilies of equivalences (OFEs) (Gianantonio and Miculan, 2003) l ≡n k which
refine the notion of equality itself. (There, l ≡0 k would hold always and
l ≡n+1 k would hold if l and k have equal roots and their immediate sub-
tries are ≡n-related.) OFEs are a different approach to justifying corecursive
definitions.

Each of the coinductive relations forms an equivalence relation, proven
for the whole family by coiteration. For reflexivity, we have to prove that
given a trie l, we can construct a derivation that l is strongly bisimilar to
itself l, up to arbitrary depth i.

≅refl : ∀{i} {l : Lang ∞} → l ≅〈 i 〉≅ l
≅ν ≅refl = refl
≅δ ≅refl a = ≅refl

The proof ∼=refl of l∼=〈 i 〉∼= l is constructed lazily. If we are asking for its
first component ∼=ν∼=refl we get a proof that the root ν l is identical to itself,
namely refl : ν l ≡ ν l. If we are asking for the a-branch of its second compo-
nent, ∼=δ∼=refl a at depth j < i, it computes ∼=refl : l∼=〈 j 〉∼= l corecursively.

Symmetry is defined in a similar fashion. To compute a proof of k ∼= l up
to depth i, we only need a derivation of l ∼= k up to depth i; thus, the type
of ∼=sym is l∼=〈 i 〉∼= k → k∼=〈 i 〉∼= l.

≅sym : ∀{i} {k l : Lang ∞} (p : l ≅〈 i 〉≅ k) → k ≅〈 i 〉≅ l
≅ν (≅sym p) = sym (≅ν p)
≅δ (≅sym p) a = ≅sym (≅δ p a)

Transitivity is likewise depth preserving. Depth-preservation is crucial to

18



combine reasoning by transitivity and the coinductive hypothesis in a natural
way, as we will see below.

≅trans : ∀{i} {k l m : Lang ∞}
(p : k ≅〈 i 〉≅ l) (q : l ≅〈 i 〉≅ m) → k ≅〈 i 〉≅ m

≅ν (≅trans p q) = trans (≅ν p) (≅ν q)
≅δ (≅trans p q) a = ≅trans (≅δ p a) (≅δ q a)

Taken together, each _∼=〈 i 〉∼=_ is an equivalence relation, and forms a
setoid Bis i with carrier Lang∞.

≅isEquivalence : ∀(i : Size) → IsEquivalence (λ l k → l ≅〈 i 〉≅ k)
≅isEquivalence i = record { refl = ≅refl; sym = ≅sym; trans = ≅trans }

Bis : ∀(i : Size) → Setoid _ _
Setoid.Carrier (Bis i) = Lang ∞

Setoid._≈_ (Bis i) = λ l k → l ≅〈 i 〉≅ k
Setoid.isEquivalence (Bis i) = ≅isEquivalence i

Later, we will use these setoids to reason by equality chains. Equality chains
are not a built-in feature of Agda, but a module of its standard library. An
equality chain allows to write down equational reasoning in a human-readable
way, and is basically a nice interface to reasoning by transitivity. In general,
it works for any preorder, i. e., any reflexive-transitive relation.

Just for the sake of demonstration, we prove transitivity of bisimilarity
again, using the old transitivity proof in form of an equality chain.

≅trans ′ : ∀ i (k l m : Lang ∞)
(p : k ≅〈 i 〉≅ l) (q : l ≅〈 i 〉≅ m) → k ≅〈 i 〉≅ m

≅trans ′ i k l m p q = begin
k ≈〈 p 〉
l ≈〈 q 〉
m � where open EqR (Bis i)

As a prerequisite, we bring the primitives of equality chains into scope
by opening module EqR (short for EquationalReasoning) instantiated to the
setoid Bis i. A chain then starts with begin followed with the first term of
the chain (k). Then follows a justification (p : k∼=〈 i 〉∼= l) for equality with
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the second term (l). This may repeat for a while, in our case, there is only
another justification (q : l∼=〈 i 〉∼=m) and a final term (m). The chain closes
with an end-of-proof maker (�).

4.2. Laws of language union
Decidable languages form an idempotent commutative monoid under union.

The individual laws, like associativity, commutativity, idempotency, and unit,
follow from the corresponding laws of the boolean disjunction, which are
pointwise applied at all the corresponding nodes of the involved tries. In
Agda, these are direct proofs by coiteration.

union-assoc : ∀{i} (k {l m} : Lang ∞) → (k ∪ l) ∪ m ≅〈 i 〉≅ k ∪ (l ∪ m)
≅ν (union-assoc k) = ∨-assoc (ν k) _ _
≅δ (union-assoc k) a = union-assoc (δ k a)

union-comm : ∀{i} (l k : Lang ∞) → l ∪ k ≅〈 i 〉≅ k ∪ l
≅ν (union-comm l k) = ∨-comm (ν l) _
≅δ (union-comm l k) a = union-comm (δ l a) (δ k a)

union-idem : ∀{i} {l : Lang ∞} → l ∪ l ≅〈 i 〉≅ l
≅ν union-idem = ∨-idempotent _
≅δ union-idem a = union-idem

union-emptyl : ∀{i} {l : Lang ∞} → ∅ ∪ l ≅〈 i 〉≅ l
≅ν union-emptyl = refl
≅δ union-emptyl a = union-emptyl

Finally, union preserves equality, which is again proven by coiteration. The
sized typing will be crucial to apply a coinductive hypothesis under union-cong
later.

union-cong : ∀{i}{k k ′ l l ′ : Lang ∞}
(p : k ≅〈 i 〉≅ k ′) (q : l ≅〈 i 〉≅ l ′) → k ∪ l ≅〈 i 〉≅ k ′ ∪ l ′

≅ν (union-cong p q) = cong2 _∨_ (≅ν p) (≅ν q)
≅δ (union-cong p q) a = union-cong (≅δ p a) (≅δ q a)

A derived law we require later is that union distributes over itself. Now that
we have established that union fulfills the laws of an idempotent commutative
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monoid, we can use a solver to prove this law automatically by reflection.

union-union-distr : ∀{i} (k {l m} : Lang ∞) →

(k ∪ l) ∪ m ≅〈 i 〉≅ (k ∪ m) ∪ (l ∪ m)

Concretely, the solver checks that both sides of the equation have the same
set of atoms, by normalizing both sides to the set {k, l,m}. This solver is
implemented in Agda itself, but we will not describe it further here.2

4.3. Laws of language concatenation
In this section, we prove laws of language concatenation k · l. Since it

is defined by cases on whether k is nullable, we will make the same case
distinction in most proofs. To this end, we use Agda’s with construct, as for
example in:

withExample : (P : Bool → Set) (p : P true) (q : P false) →

{A : Set} (g : A → Bool) (x : A) → P (g x)
withExample P p q g x with g x
... | true = p
... | false = q

It can be roughly seen as a case distinction over g x, but it also abstracts g x
in the goal P (g x) so that we can solve it by p : P true in the first clause and
q : P false in the second clause.

Further, we use Agda’s rewrite construct, which can be applied on an
equation l ≡ r to rewrite subterms l in a goal to r. For example:

rewriteExample : {A : Set} {P : A → Set} {x : A} (p : P x)
{g : A → A} (e : g x ≡ x) → P (g x)

rewriteExample p e rewrite e = p

Here, the goal is changed from P (g x) to P x using equation e, and sub-
sequently solved by p.

Concatenation distributes over union, for instance, k · (l ∪ m) ∼= (k · l) ∪
(k · m). Naturally, we would like to prove this by coinduction. The case for

2https://github.com/agda/agda-stdlib/blob/1c78e4e/src/Algebra/
IdempotentCommutativeMonoidSolver.agda implements this solver.
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ν follows by the boolean distributivity law x∧ (y ∨ z) = (x∧ y)∨ (x∧ z). In
the case for δ, we would like to reason by the following equality chain. We
consider the subcase that k is nullable, and underline the subterms that have
changed from the last line (unless the whole expression has changed).

δ (k · (l ∪ m)) a ∼= by definition

δ k a · (l ∪ m) ∪ δ (l ∪ m) a ∼= by definition

δ k a · (l ∪ m) ∪ (δ l a ∪ δ ma) ∼= by coinduction hypothesis

(δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ ma) ∼= by union laws

(δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ ma) ∼= by definition

δ (k · l) a ∪ δ (k · m) a ∼= by definition

δ (k · l ∪ k · m) a

This proof does not follow the scheme of (primitive) coinduction. The coin-
duction hypothesis is applied under uses of transitivity (for connecting the
equations) and under the congruence law for union. This becomes especially
clear if we fully write out the justifications as in the corresponding Agda
proof in Figure 2. However, the continuity of transitivity and union-congl as
witnessed by the sized typing justifies the use of the coinduction hypothesis.

The other distributivity law is proven by coinduction and case distinction
over the nullability of l and k.

concat-union-distribl : ∀{i} (k {l m} : Lang ∞) →

(k ∪ l) · m ≅〈 i 〉≅ (k · m) ∪ (l · m)

Congruence laws for concatenation follow by coinduction and congruence of
union.

concat-congl : ∀{i} {m l k : Lang ∞}
→ l ≅〈 i 〉≅ k
→ l · m ≅〈 i 〉≅ k · m

concat-congr : ∀{i} {m l k : Lang ∞}
→ l ≅〈 i 〉≅ k
→ m · l ≅〈 i 〉≅ m · k
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concat-union-distribr : ∀{i} (k {l m} : Lang ∞) →

k · (l ∪ m) ≅〈 i 〉≅ (k · l) ∪ (k · m)

≅ν (concat-union-distribr k) = ∧-∨-distribl (ν k) _ _
≅δ (concat-union-distribr k) a with ν k

≅δ (concat-union-distribr k {l} {m}) a | true = begin
δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a)

≈〈 union-congl (concat-union-distribr (δ k a)) 〉
(δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a)

≈〈 union-swap24 〉
(δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a)

�

where open EqR (Bis _)

≅δ (concat-union-distribr k) a | false = concat-union-distribr (δ k a)

Figure 2: Concatenation distributes over union.

The coinductive proof of associativity relies on distributivity and congruence
and associativity of union.

concat-assoc : ∀{i} (k {l m} : Lang ∞) → (k · l) · m ≅〈 i 〉≅ k · (l · m)

Finally, the empty language is a zero and the language of the empty word a
unit for language composition:

concat-emptyl : ∀{i} l → ∅ · l ≅〈 i 〉≅ ∅
concat-emptyr : ∀{i} l → l · ∅ ≅〈 i 〉≅ ∅

concat-unitl : ∀{i} l → ε · l ≅〈 i 〉≅ l
concat-unitr : ∀{i} l → l · ε ≅〈 i 〉≅ l

4.4. Laws of the Kleene star
The language of the empty word is the iteration of the empty language.

star-empty : ∀{i} → ∅ * ≅〈 i 〉≅ ε
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To prove that iteration is idempotent, we first prove that concatenation of
iterated languages is idempotent.

star-concat-idem : ∀{i} (l : Lang ∞) → l * · l * ≅〈 i 〉≅ l *
≅ν (star-concat-idem l) = refl
≅δ (star-concat-idem l) a = begin

δ l a · l * · l * ∪ δ l a · l *
≈〈 union-congl (concat-assoc _) 〉
δ l a · (l * · l *) ∪ δ l a · l *

≈〈 union-congl (concat-congr (star-concat-idem _)) 〉
δ l a · l * ∪ δ l a · l *

≈〈 union-idem 〉
δ l a · l *

� where open EqR (Bis _)

This lets us prove idempotency of the Kleene star:

star-idem : ∀{i} (l : Lang ∞) → (l *) * ≅〈 i 〉≅ l *
≅ν (star-idem l) = refl
≅δ (star-idem l) a = begin
δ l a · l * · (l *) * ≈〈 concat-congr (star-idem l) 〉
δ l a · l * · l * ≈〈 concat-assoc (δ l a) 〉
δ l a · (l * · l *) ≈〈 concat-congr (star-concat-idem l) 〉
δ l a · l *
� where open EqR (Bis _)

The Kleene star obeys the following recursive equation:

star-rec : ∀{i} (l : Lang ∞) → l * ≅〈 i 〉≅ ε ∪ (l · l *)

Finally, we prove Arden’s rule (1961), which would allow us to solve linear
equations over regular expressions.

star-from-rec : ∀{i} (k {l m} : Lang ∞)
→ ν k ≡ false
→ l ≅〈 i 〉≅ k · l ∪ m
→ l ≅〈 i 〉≅ k * · m
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≅ν (star-from-rec k n p) with ≅ν p
... | b rewrite n = b

≅δ (star-from-rec k {l} {m} n p) a with ≅δ p a
... | q rewrite n = begin

(δ l a)
≈〈 q 〉
δ k a · l ∪ δ m a

≈〈 union-congl (concat-congr (star-from-rec k {l} {m} n p)) 〉
(δ k a · (k * · m) ∪ δ m a)

≈〈 union-congl (≅sym (concat-assoc (δ k a))) 〉
(δ k a · k * · m ∪ δ m a)

� where open EqR (Bis _)

All the proofs about decidable languages in this section could be carried
out rather mechanically using:

1. coinduction,
2. equality chains,
3. already proven lemmata.

We did not require any up-to techniques or creative insight such as finding
bisimulation relations to carry out our proofs. Thus, it is likely that after
initiating coinduction, standard first-order theorem provers could fill in the
remaining steps.

5. Constructing Automata

In this section, we show that deterministic automata form a Kleene alge-
bra like decidable languages do. We show how to construct union, concatena-
tion, and Kleene star of automata, in a recapitulation of the classic theory of
formal languages. Our message is that the corresponding correctness proofs
can be carried out by the same means as in the last section: coinduction and
equational reasoning.

In our presentation of deterministic automata (DA) we follow Rutten
(1998): A not necessarily finite automaton over a state set S is given by a
transition function δ : S → A→ S and a characteristic function ν : S → Bool
for the set of accepting (or final) states. These two functions could also be
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bundled as S → Bool × (A → S), making apparent that an automaton
(S : Set, da : DAS) is just a Bool× (A→ _)-coalgebra.

record DA (S : Set) : Set where
field ν : (s : S) → Bool

δ : (s : S) (a : A) → S

νs : ∀{i} (ss : List i S) → Bool
νs ss = List.any ν ss

δs : ∀{i} (ss : List i S) (a : A) → List i S
δs ss a = List.map (λ s → δ s a) ss

In anticipation of power automata we lift the coalgebra to lists of states
List i S → Bool × (A → List i S). A lists of states is accepting (νs) if it
contains at least one final state. And we step (δs) to a new list of states by
pointwise applying the transition function.

The initial state is not contained in the automaton definition; each state
s induces a language lang da s accepted by an automaton da, which can be
defined by simple coiteration:

lang : ∀{i} {S} (da : DA S) (s : S) → Lang i
Lang.ν (lang da s) = DA.ν da s
Lang.δ (lang da s) a = lang da (DA.δ da s a)

For each automaton (S, da) the function lang da : S → Lang∞ is the terminal
morphism.

S
〈DA.ν da, DA.δ da〉

//

lang da

��

Bool× (A→ S)

id× (lang da ◦_)

��
Lang∞

〈Lang.ν, Lang.δ〉
// Bool× (A→ Lang∞)

5.1. Simple constructions on automata
An automaton for the empty language can be constructed with a single

non-accepting state inhabiting Agda’s unit type >.
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∅A : DA >
ν ∅A s = false
δ ∅A s a = s • yy

To recognize the language of the empty word, we take need two states,
accepting true and non-accepting false : Bool.

εA : DA Bool
ν εA b = b
δ εA b a = false

true // false
��

For accepting a the single letter word a, we have three states: an initial
state init, an accepting state acc, and a rejecting error state err.

data 3States : Set where
init acc err : 3States

charA : (a : A) → DA 3States
ν (charA a) init = false
ν (charA a) acc = true
ν (charA a) err = false
δ (charA a) init x =

if b a ?
= x c then acc else err

δ (charA a) acc x = err
δ (charA a) err x = err

init a //

¬a
""

acc

��
err
HH

Given an automaton da, we construct the automaton complA da for the
complement language by switching accepting and non-accepting states.

complA : ∀{S} (da : DA S) → DA S
ν (complA da) s = not (ν da s)
δ (complA da) s a = δ da s a

Given an automaton da1 over state set S1 accepting language `1 and an
automaton da2 over S2 for `2, we can recognize the union `1 ∪ `2 by the
following product automaton da1 ⊕ da2 over state set S1 × S2. A state in
the product automaton is a pair of states (s1, s2), one from each original
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automaton. Transitions are done in lock-step, and for acceptance at least
one of the original automata must be in a final state.

_⊕_ : ∀{S1 S2} (da1 : DA S1) (da2 : DA S2) → DA (S1 × S2)
ν (da1 ⊕ da2) (s1 , s2) = ν da1 s1 ∨ ν da2 s2
δ (da1 ⊕ da2) (s1 , s2) a = δ da1 s1 a , δ da2 s2 a

5.2. Automaton composition for language concatenation
In preparation for automaton constructions for language concatenation

and iteration, we define the power automaton, which allows us to be in a set
of states at the same time. It is actually sufficient to consider finite sets of
states, which we represent a bit redundantly as lists.

powA : ∀{S} (da : DA S) → DA (List ∞ S)
ν (powA da) ss = νs da ss
δ (powA da) ss a = δs da ss a

If we start the power automaton in state [s1, . . . , sn], the accepted lan-
guage will be the

⋃n
i=1 lang da si. We prove this in two steps: First, if we

start out in no states, the accepted language is empty.

powA-nil : ∀{i S} (da : DA S) →

lang (powA da) [] ≅〈 i 〉≅ ∅

≅ν (powA-nil da) = refl
≅δ (powA-nil da) a = powA-nil da

If we start in the non-empty list s :: ss , we accept the union of the
accepted language of da from s and the accepted language of powA da from
ss .

powA-cons : ∀{i S} (da : DA S) {s : S} {ss : List ∞ S} →

lang (powA da) (s :: ss) ≅〈 i 〉≅ lang da s ∪ lang (powA da) ss

≅ν (powA-cons da) = refl
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≅δ (powA-cons da) a = powA-cons da

For language concatenation, given two automata da1 and da2, we will con-
struct a composition automaton composeA da1 s2 da2 such that its accepted
language from state s1 is the language concatenation lang da1 s1 · lang da2 s2.
The key insight is that whenever we reach a final state sf in da1, we non-
deterministically jump to the initial state s2 of da2. In some formulations
of non-deterministic automata this would be an ε-transition from sf to s2,
consuming no input. We will instead add transitions from sf to the successor
states of s2.

• •

da1 sf

a

bb

b
}}

ε //

a

11

b --

s2

a

==

b
!!

da2

• •

This means for the composition that we are in one state of da1 and in
zero or more states of da2 at the same time. Thus, the type of states is
S1 × List ∞S2 and we consider the power of the second automaton.

composeA : ∀{S1 S2}
(da1 : DA S1) (s2 : S2) (da2 : DA S2) → DA (S1 × List ∞ S2)

A state (s1, ss2) of the composition automation is final if any of ss2 is
final, or if s1 is final and the initial state s2 of da2 is also a final state. (The
latter means that the second language is nullable, so any word of the first
language is contained in the composition.)

ν (composeA da1 s2 da2) (s1 , ss2) =
(ν da1 s1 ∧ ν da2 s2) ∨ νs da2 ss2

To step from state (s1, ss2) we consider two cases. First, if s1 is not final,
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we simply transition pointwise, from s1 with δ da1, and from each state in
ss2 with δ da2. However, if s1 is final, we imagine us also in the initial state
s2 of da2, thus, we add to this the transition we can make from s2 in the
second automaton.

δ (composeA da1 s2 da2) (s1 , ss2) a =
δ da1 s1 a , δs da2 (if ν da1 s1 then s2 :: ss2 else ss2) a

The composition automaton is a non-trivial construction, thus, it makes
sense to look at its correctness proof. We have to generalize the correctness
statement to arbitrary initial states (s1, ss) in the composition automaton.
If ss is not empty, the accepted language of the composition automaton
contains the union of the accepted languages from each state in ss as well.

composeA-gen : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) →

∀ (s1 : S1) (s2 : S2) (ss : List ∞ S2) →

lang (composeA da1 s2 da2) (s1 , ss)
≅〈 i 〉≅

lang da1 s1 · lang da2 s2 ∪ lang (powA da2) ss

The proof is by coinduction, using lemma powA-cons in case s1 is final.

≅ν (composeA-gen da1 da2 s1 s2 ss) = refl
≅δ (composeA-gen da1 da2 s1 s2 ss) a with ν da1 s1
... | false = composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 ss a)

... | true = begin

lang (composeA da1 s2 da2)
(δ da1 s1 a , δ da2 s2 a :: δs da2 ss a)

≈〈 composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 :: ss) a) 〉

lang da1 (δ da1 s1 a) · lang da2 s2 ∪
lang (powA da2) (δs da2 (s2 :: ss) a)

≈〈 union-congr (powA-cons da2) 〉
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lang da1 (δ da1 s1 a) · lang da2 s2 ∪
(lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a))

≈〈 ≅sym (union-assoc _) 〉

lang da1 (δ da1 s1 a) · lang da2 s2 ∪
lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)

� where open EqR (Bis _)

As a corollary for empty ss , we obtain the correctness of automaton
composition:

composeA-correct : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) s1 s2 →

lang (composeA da1 s2 da2) (s1 , []) ≅〈 i 〉≅ lang da1 s1 · lang da2 s2

5.3. Automaton construction for language iteration
Finally, we construct from an automaton da accepting language ` from

state s0 : S an automaton starA da for the iterated language `∗. We do this
in two steps:

1. acceptingInitial: Add a new final state nothing : MaybeS with the same
successors as s0. State nothing will serve as the new initial state. Its
finality guarantees that the empty word is accepted.

2. finalToInitial: Add the successors of s0 to each final state. This enables
iteration. At this point, the automaton becomes “non-deterministic”,
i. e., we switch to List ∞ (MaybeS).

•

// nothing

a

11

b
++

s0

a

;;

b

��

da

a

hh

b
uu•

a

PP

b
oo
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The first step embeds states s : S of da as just s : MaybeS.

acceptingInitial : ∀{S} (s0 : S) (da : DA S) → DA (Maybe S)
ν (acceptingInitial s0 da) (just s) = ν da s
δ (acceptingInitial s0 da) (just s) a = just (δ da s a)

It adds the new accepting state nothing : MaybeS with the successors of s0.

ν (acceptingInitial s0 da) nothing = true
δ (acceptingInitial s0 da) nothing a = just (δ da s0 a)

The second step constructs the power automaton and add transitions from
the final states to the successors of the initial state.

finalToInitial : ∀{S} (da : DA (Maybe S)) → DA (List ∞ (Maybe S))
ν (finalToInitial da) ss = νs da ss
δ (finalToInitial da) ss a =

let ss ′ = δs da ss a
in if νs da ss then δ da nothing a :: ss ′ else ss ′

Composing these steps leads to the automaton for language iteration.

starA : ∀{S} (s0 : S) (da : DA S) → DA (List ∞ (Maybe S))
starA s0 da = finalToInitial (acceptingInitial s0 da)

To verify the construction, we first note some properties of the first step.
For one, embedding the states of da via just : S → MaybeS does not change
the accepted language.

acceptingInitial-just : ∀{i S} (s0 : S) (da : DA S) {s : S} →

lang (acceptingInitial s0 da) (just s) ≅〈 i 〉≅ lang da s

This lemma is proven directly by coinduction. Further, is accepted language
by the new state nothing : MaybeS is the language accepted by s0 enriched
with the empty word.

acceptingInitial-nothing : ∀{i S} (s0 : S) (da : DA S) →
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lang (acceptingInitial s0 da) nothing ≅〈 i 〉≅ ε ∪ lang da s0

The proof by coinduction uses acceptingInitial-just.
The main lemma characterizes the language accepted by starA s0 da from

an arbitrary state ss .

starA-lemma : ∀{i S} (da : DA S) (s0 : S) (ss : List ∞ (Maybe S)) →

lang (starA s0 da) ss
≅〈 i 〉≅

lang (powA (acceptingInitial s0 da)) ss · (lang da s0) *

The proof by coinduction uses powA-cons, acceptingInitial-just, and some
laws of decidable languages as proven in Section 3.

Finally, we prove correctness of the starA-construction: If we start in the
new initial state nothing (only), the recognized language is the Kleene star
of the language recognized by da from s0.

starA-correct : ∀{i S} (da : DA S) (s0 : S) →

lang (starA s0 da) (nothing :: []) ≅〈 i 〉≅ (lang da s0) *

The proof is direct, instantiating the starA-lemma, using correctness of
the powA-construction, and lemma acceptingInitial-nothing.

6. Conclusions and Too Much Related Work

In this article, we have demonstrated that well-founded coinduction com-
municated by sized types and copattern matching allows for elegant defini-
tions of decidable languages, language operations, and correctness proofs for
automata constructions. All definitions and proofs could be carried out for-
mally in the Agda proof assistant, using standard tools like equation chains
and a simple monoid solver.

Beyond the material presented in this article, we have also formalized
regular expressions and their equivalence to regular (Chomsky type 3) gram-
mars, using the same proof techniques.
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Being one of the oldest topics of computer science and taught to every
student, there is an abundance of related work we are not able to review here.
We just wish to mention a recent and comprehensive Coq formalization of
classic automata theory by Doczkal et al. (2013). In contrast to us, they
properly restrict to finite automata, using the support for finite types given
by the SSReflect library (Gonthier and Mahboubi, 2010).
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