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We propose to unify the treatment of a broad range of modalities in typed lambda calculi. We do so by

defining a generic structure of modalities, and show that this structure arises naturally from the structure

of intuitionistic logic, and as such finds instances in a wide range of type systems previously described in
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1 INTRODUCTION
In logic, modalities are qualifiers that apply to statements. In the sentence “it may rain today”,

“may” is a modality which qualifies “it rains today”. Modalities constitute a fruitful topic of research

in logic, and, through the Curry-Howard correspondence, in programming language theory as

well, where modalities qualify types. Girard [1987] famously proposed to decompose the function

type constructor into a linear function type constructor and an exponential modality named “!”.

Beside this notorious example, modalities have found plenty of varied applications, including in

privacy [Reed and Pierce 2010] and distributed computing [Murphy et al. 2005].

In this paper, we propose to unify the treatment of a broad range of modalities. We do so by

defining a generic structure of modalities (Section 2), which finds instances in a wide range of

systems (surveyed in Section 4). By framing a range of systems as instances of the same framework,

the similarities and differences between them appear more clearly. We go further, and observe that

the modality structure arises naturally from the structure of (higher-order) intuitionistic logic, or,

equivalently, lambda calculus. More precisely, the operations on modalities reflect the way contexts

are combined in the typing rules (Section 3), and the modality laws are dictated by the need to

respect cut-elimination (or substitution, see Section 5).

In addition to the substitution lemma (Theorem 5.2), we then develop the meta-theory for

the predicative polymorphic lambda calculus with modalities (hereafter called Λp
). We provide a

modality-respecting abstract machine (Section 6), and a parametric relational semantics (Section 7).

We instantiate this semantics in Section 8 to show “free theorems” for some terms and types of Λp
.

Our aim is to provide a high-utility framework while restricting the structure of modalities as

little as possible. This way, we hope that Λp
can be used as a basic framework for future work on
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modalities in programming language theory and logic. We additionally hope that our work will

inform the inclusion of modality structures in languages with types and proof assistants.

Note: The supplementary material contains a version of this paper extended with proofs.

2 THE RINGOID OF MODALITIES
The modality structure is a ring-like (ringoid) structure, which parameterises our calculus Λp

.

Definition 2.1. A modality ringoid is a 6-tuple consisting of a set 𝑀 , three binary operations:

addition (+), multiplication (·) and meet (∧); and two elements zero (0) and unit (1); with the

following structure:

• (𝑀, +, 0) forms a commutative monoid: addition is associative and commutative, with 0 as

identity element.

• (𝑀, ·, 1) forms a monoid: multiplication is associative, with 1 as identity element.

• Multiplication distributes over addition: 𝑝 (𝑞 + 𝑟 ) = 𝑝𝑞 + 𝑝𝑟 and (𝑝 + 𝑞)𝑟 = 𝑝𝑟 + 𝑞𝑟 .
• 0 is an absorbing element for multiplication: 𝑝 · 0 = 0 · 𝑝 = 0.

• (𝑀,∧) forms a semilattice: meet is associative, commutative and idempotent.

• Multiplication distributes over meet (like for addition).

• Addition distributes over meet: (𝑝 ∧ 𝑞) + 𝑟 = (𝑝 + 𝑟 ) ∧ (𝑞 + 𝑟 ).

We do not rule out 0 = 1; a one-element set is a ringoid with a trivial structure. An interesting

special case are lattices𝑀 where addition coincides with meet and multiplication is join (∨); then,
0 is absorbing for ∧ and serves as top element (Section 4.3). Yet in general, neither 0 nor 1 need to

be bounds of the semilattice.

We will detail the use of operations together with the typing rules, but it is easy to form an

intuitive understanding right away. Addition is used to combine modalities of two components of a

term which are both run, for example the function and the argument of an application. Its unit (0)

correspond to no usage. Multiplication arises from function composition and is the principal means

to combine modalities (qualifying a single type with several modalities); its unit (1) corresponds to

the identity function, or, more generally, a single (non-qualified) use, like a plain variable occurrence.

The meet can be used to match modalities between the branches of a conditional, via weakening.

Commutativity of addition means that we do not have an ordered logic [Lambek 1958; Polakow

and Pfenning 1999]. In general, the laws are those necessary to ensure preservation of modalities

under evaluation (Theorems 5.2 and 6.2).

Definition 2.2. (𝑝 ⩽ 𝑞) def

= (𝑝 = 𝑝 ∧𝑞). This is the standard partial order arising from semi-lattices.

Note that addition and multiplication are monotone with respect to (⩽), as a consequence of the
corresponding distributivity. Theorem 3.1 shows that this order entails convertibility: if 𝑝 ⩽ 𝑞 then

𝑝 is less specific than 𝑞.

Modality expressions are formed from modality variables (ranged over by𝑚), modality constants

(elements of𝑀), and formal sums, products, and meets. We overload the metasyntactic variables 𝑝 ,

𝑞 and 𝑟 to also range over modality expressions.

Definition 2.3. A modality context or usage map is defined as a map from variable names to

modality expressions. When writing a modality context, we typically omit variables mapped to zero,

and we may write 0 for the constant mapping 𝑥 ↦→ 0. Usage maps are ranged by the metasyntactic

variables 𝛾 , 𝛿 and 𝜁 . Such contexts are used qualify a whole typing context.

We lift addition, meet and scaling by 𝑞 to act pointwise on modality contexts: (𝛾 + 𝛿) (𝑥) =
𝛾 (𝑥) + 𝛿 (𝑥) and (𝛾 ∧ 𝛿) (𝑥) = 𝛾 (𝑥) ∧ 𝛿 (𝑥) and (𝑞 · 𝛾) (𝑥) = 𝑞 · 𝛾 (𝑥). Modality contexts form a left

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 90. Publication date: August 2020.



A Unified View of Modalities in Type Systems 90:3

module [McBride 2016] to ringoid𝑀 in the sense that scaling satisfies the following laws:

1 · 𝛾 = 𝛾 (𝑝 · 𝑞) · 𝛾 = 𝑝 · (𝑞 · 𝛾) 𝑝 · 0 = 0

0 · 𝛾 = 0 (𝑝 + 𝑞) · 𝛾 = 𝑝 · 𝛾 + 𝑞 · 𝛾 𝑝 · (𝛾 + 𝛿) = 𝑝 · 𝛾 + 𝑝 · 𝛿
(𝑝 ∧ 𝑞) · 𝛾 = 𝑝 · 𝛾 ∧ 𝑞 · 𝛾 𝑝 · (𝛾 ∧ 𝛿) = 𝑝 · 𝛾 ∧ 𝑝 · 𝛿

Modules are generalisations of vector spaces where the scalars 𝑞 come from rings rather than fields;

and left indicates that scaling is written as multiplication from the left.

3 PREDICATIVE POLYMORPHIC LAMBDA CALCULUS WITH MODALITIES
In this section we introduce our main object of study, a core functional programming language

named Λp
with predicative polymorphism ∀𝛼.𝐵, modal function types

𝑝𝐴 → 𝐵, modal boxing

𝑝 ⟨𝐴⟩, and modality polymorphism ∀𝑚.𝐵. The language is chosen to be as simple as possible while

being sufficient to illustrate how modalities work, and serves as a vehicle to illustrate applications

in Section 4. In particular, Λp
is lacking recursion on type and term level, but allows us to represent

some inductive data types via the usual Church encoding. It is total and strongly normalising. This

has two benefits: it simplifies the discourse—admitting a standard set-theoretic interpretation—and

it means that the system can be used as a consistent logic.

Types 𝐴, 𝐵,𝐶 ∈ Ty are given by the following grammar. Herein, modality expressions 𝑝 are

formed over a fixed modality ringoid Mod that should be considered a parameter of the language.

𝐴, 𝐵,𝐶 ::= 𝐾 | 1 | 𝛼 | ∀𝛼.𝐴 | ∀𝑚.𝐴 | 𝑝𝐴→ 𝐵 | 𝐴 + 𝐵 | 𝐴 × 𝐵 | 𝑝 ⟨𝐴⟩
Let Ty0 denote the set of monomorphic types, for short monotypes. These are types that are free of
polymorphism, i. e., contain no sub-expression of the form ∀𝛼.𝐵. Restricting type variables 𝛼 to

stand for monotypes makes Λp predicative; in particular, the instantiation order 𝐵 [𝐴/𝛼] < ∀𝛼.𝐵 is

well-founded (where 𝐴 monotype). A measure certifying well-foundedness is the lexicographic

product of first, the number of type quantifiers ∀𝛼 and second, the size of the type expression.

Well-foundedness of the instantiation order facilitates a direct set-theoretic interpretation of type

quantification as an infinite product indexed by the monotypes.

Let further Ty00 denote the set of closed monotypes, i. e., types that neither contain type quantifi-

cation nor type variables. The letter 𝐾 ranges over a set TyConst of uninterpreted base types; these
monotypes will be used in the semantics to freely interpret type variables beyond the monotypes

formed from 1, +, ×, → and 𝑝 ⟨_⟩, which have a fixed meaning. For holding specific data, the

base types 𝐾 are unusable for lack of constructors and operations, however, we can define some

data types from 1, +, and ×, and even function space and polymorphism (Church encodings). For

instance, the Boolean type is represented as Bool = 1 + 1.
The domain of function types

𝑝𝐴→ 𝐵 is qualified with an arbitrary modality expression 𝑝 . An

omitted modality implicitly stands for 1, and thus we will see that 𝐴→ 𝐵 is often a linear function

type, be we may still write 𝐴 ⊸ 𝐵 to emphasise linearity. Besides using modal function types, we

can also qualify a type directly by applying a modality to it (𝑝 ⟨𝐴⟩). It will become obvious from

the typing rules that the types
𝑝𝐴 → 𝐵 and 𝑝 ⟨𝐴⟩ → 𝐵 are isomorphic. Regardless, we chose to

include both ways to qualify types, for pedagogical purposes: they each have their advantages in

this respect. In a language with generalised algebraic data types one would instead define 𝑝 ⟨𝐴⟩
as a data type with a constructor of type

𝑝𝐴 → 𝑝 ⟨𝐴⟩. For a monotype 𝐴, the Church encoding

∀𝛼.(𝑝𝐴→ 𝛼)⊸ 𝛼 is also isomorphic to 𝑝 ⟨𝐴⟩, a fact that can be demonstrated using parametricity

(see Section 8.1).

Terms and typing. The terms of the language offer a couple of notable points. First, the eliminator

of pairs is a let, binding the components to variables. For some modalities the projections fst or
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0Γ, 𝑥 :
1𝐴 ⊢ 𝑥 : 𝐴

var

𝛿Γ ⊢ 𝑡 : 𝐴 𝛾 ⩽ 𝛿

𝛾Γ ⊢ 𝑡 : 𝐴
wk

𝛾Γ, 𝑥 :
𝑞𝐴 ⊢ 𝑡 : 𝐵

𝛾Γ ⊢ 𝜆 𝑞𝑥 .𝑡 : 𝑞𝐴→ 𝐵
abs

𝛾Γ ⊢ 𝑡 : 𝑞𝐴→ 𝐵 𝛿Γ ⊢ 𝑢 : 𝐴

(𝛾 + 𝑞𝛿)Γ ⊢ 𝑡 𝑞𝑢 : 𝐵
app

𝛾 (Γ, 𝛼) ⊢ 𝑡 : 𝐵
𝛾Γ ⊢ Λ𝛼.𝑡 : ∀𝛼.𝐵

t-abs

𝛾Γ ⊢ 𝑡 : ∀𝛼.𝐵 Γ ⊢ 𝐴
𝛾Γ ⊢ 𝑡 · 𝐴 : 𝐵 [𝐴/𝛼]

t-app

𝛾 (Γ,𝑚) ⊢ 𝑡 : 𝐵
𝛾Γ ⊢ Λ𝑚.𝑡 : ∀𝑚.𝐵

m-abs

𝛾Γ ⊢ 𝑡 : ∀𝑚.𝐵 Γ ⊢ 𝑞
𝛾Γ ⊢ 𝑡 · 𝑞 : 𝐵 [𝑞/𝑚]

m-app

0Γ ⊢ () : 1
1-intro

𝛾Γ ⊢ 𝑡 : 1 𝛿Γ ⊢ 𝑢 : 𝐶

(𝑝𝛾 + 𝛿)Γ ⊢ let () = 𝑝𝑡 in𝑢 : 𝐶
1-elim

𝛾Γ ⊢ 𝑡 : 𝐴1 +𝐴2 𝛿Γ, 𝑥𝑖 :
𝑞𝐴𝑖 ⊢ 𝑢𝑖 : 𝐶 𝑞 ⩽ 1

(𝑞𝛾 + 𝛿)Γ ⊢ case 𝑞𝑡 of {inj
1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} : 𝐶

+-elim

𝛾Γ ⊢ 𝑡 : 𝐴𝑖
𝛾Γ ⊢ inj𝑖 𝑡 : 𝐴1 +𝐴2

+-intro

𝛾Γ ⊢ 𝑡 : 𝐴 𝛿Γ ⊢ 𝑢 : 𝐵

(𝛾 + 𝛿)Γ ⊢ (𝑡,𝑢) : 𝐴 × 𝐵
×-intro

𝛾Γ ⊢ 𝑡 : 𝐴 × 𝐵 𝛿Γ, 𝑥 :
𝑞𝐴,𝑦 :

𝑞𝐵 ⊢ 𝑢 : 𝐶

(𝑞𝛾 + 𝛿)Γ ⊢ let (𝑥,𝑦) = 𝑞𝑡 in𝑢 : 𝐶
×-elim

𝛾Γ ⊢ 𝑡 : 𝐴
𝑝𝛾Γ ⊢ [𝑝𝑡] : 𝑝 ⟨𝐴⟩

𝑝 ⟨·⟩-intro
𝛾Γ ⊢ 𝑢 : 𝑝 ⟨𝐴⟩ 𝛿Γ, 𝑥 :

𝑞𝑝𝐴 ⊢ 𝑡 : 𝐶
(𝑞𝛾 + 𝛿)Γ ⊢ let [𝑝𝑥] = 𝑞𝑢 in 𝑡 : 𝐶

𝑝 ⟨·⟩-elim

Fig. 1. Typing rules of Λp

snd are definable from let, but not always (see Section 8.2). Second, we allow eliminating qualified

terms
𝑞𝑡—this is useful because it is not always possible to construct a term with an exact modality

of 1. Omitted modality annotations default to 1.

𝑡,𝑢 ::= 𝑥 | 𝜆 𝑞𝑥 .𝑡 | 𝑡 𝑞𝑢 variables; functions

| Λ𝛼.𝑡 | 𝑡 · 𝐴 | Λ𝑚.𝐴 | 𝑡 · 𝑞 polymorphism

| inj
1
𝑡 | inj

2
𝑡 | case 𝑞𝑡 of {inj

1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} sums

| () | (𝑡,𝑢) | let (𝑥,𝑦) = 𝑞𝑡 in𝑢 tuples

| [𝑝𝑡] | let [𝑝𝑥] = 𝑞𝑡 in𝑢 qualification

As usual, let the Boolean constants be true = inj
1
() and false = inj

2
().

Contexts bind free variables of all sorts:

Γ,Δ ::= [] | Γ, 𝑥 :𝐴 | Γ, 𝛼 | Γ,𝑚

The typing judgement has the form 𝛾Γ ⊢ 𝑡 : 𝐴, meaning that 𝑡 has type 𝐴 (with an implicit

modality 1) in context Γ, and 𝑡 uses the variables 𝑥 : Γ(𝑥) with modalities 𝛾 (𝑥). Let the notation
𝛾Γ, 𝑥 :

𝑞𝐴 stand for (𝛾, 𝑞𝑥) (Γ, 𝑥 : 𝐴). We write Γ ⊢ 𝑞 to mean that a modality expression 𝑞 is

well-formed in a context Γ. This means exactly that its free (modality) variables are all bound by Γ.
Likewise, a monotype 𝐴 whose free (type and modality) variables are bound by Γ is noted Γ ⊢ 𝐴.
The typing rules are shown in Fig. 1. Some comments:
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First, a variable occurrence always corresponds to usage 1. This ensures stability of usage under

variable substitution. Other rules ensure that the modalities of introduction and elimination match.

For example, abstraction introduces a variables with modality 𝑞 and application multiplies the

usage of the argument by 𝑞.

Second, we allow usage weakening: one can always use a variable in a more specific modality

than the one which is available. In fact, we always have convertibility in this direction.

Theorem 3.1 (Convertibility). If 𝑝 ⩽ 𝑞, then there is a term of type 𝑝𝐴→ 𝑞⟨𝐴⟩ for any 𝐴.

The proof can be found in the long version of the paper, provided as supplementary material.

Third, the existence of meet ensures compositionality for case branches. That is, if we have
branches with differing usages (𝛿𝑖Γ, 𝑥 :

𝑞𝐴𝑖 ⊢ 𝑢𝑖 : 𝐶), then we can always find a single modality

context 𝛿 =
∧
𝑖 𝛿𝑖 such that 𝛿 ⩽ 𝛿𝑖 for every 𝑖 , and combine the branches using weakening.

Besides, we require the scrutinee of case analysis to be available with modality 1, or more relaxed.

This constraint captures the fact that case analysis observes information contained in the scrutinee,

namely whether we have inj
1
or inj

2
, and at the same time we want irrelevance Theorem 7.10 to be

a property of our system. We further discuss this issue in Section 10.

Additionally, we imbue our system with the ability to (universally) quantify over modalities. Such

universally quantified variables may then be constrained by adding convertibility assumptions.

Any equality constraint 𝑝 ⩽ 𝑞 can be expressed instead using the type ∀𝛼. 𝑝𝛼 → 𝑞⟨𝛼⟩, and the

equality 𝑝 = 𝑞 is equivalent to the two inequalities 𝑝 ⩽ 𝑞 and 𝑞 ⩽ 𝑝 . This means that a user of

this system is able to apply the general structure to special cases; some of which we present in

Section 4.

4 APPLICATIONS
In this section we survey several systems featuring modalities, and show how they are instances of

ours (or sometimes what the difference is). By doing so we illustrate various ways to specialise

the modality ringoid structure. We do not aim for exhaustivity, but rather at showing how varied

applications can be.

As a prelude, we remark that if modalities are ignored (for example by letting all modalities be

equal to 1), then Λp
degenerates to the usual polymorphic lambda calculus (with sum and products).

4.1 Substructural Type Systems
Λp

provides a uniform calculus for substructural typing (see for example Walker [2005] for an

introduction to substructural typing).

4.1.1 Linear Types. The first obvious application of our system is linearity. Indeed, the unit modality

precisely corresponds to linear usages. In our system, a 0-qualified function is necessarily constant,

and so contrary to linear logic this modality is always supported specially. To conveniently support

all other non-linear usages, one can add single a modality for unrestricted usages, which we note

here 𝜔 instead of the traditional exclamation mark for typographical reasons. We have 𝜔 ⩽ 1,

meaning that if we have any number of allowed usages, we also have in particular one usage

allowed. When specialised this way, Λp
becomes nearly equivalent to the core language of Linear

Haskell [Bernardy et al. 2018] — with the addition of support for 0.

Most of the operations are fixed by the algebraic restrictions, but one can refer to Table 1 in case

of doubt. Instead of a table, we use a Hasse diagram to represent the meet (Fig. 2). Checking the

laws is routine, and thus we omit the proofs here (and in the rest of the section).
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0 1

𝜔

(a) Linear

0

@ = 1

𝜔

(b) Affine

0 1
+

𝜔

(c) Relevant

0 1

@ 1
+

𝜔

(d) Combined

Fig. 2. Hasse diagrams for various substructural type system lattices. The modality @ corresponds to 0 or 1
uses, 1+ corresponds to 1 use or more, 𝜔 corresponds to any number of uses.

Table 1. Addition and multiplication rules for usual substructural modalities

(+) 0 𝜔 @ 1 1
+

0 0 𝜔 @ 1 1
+

𝜔 𝜔 𝜔 𝜔 1
+

1
+

@ @ 𝜔 𝜔 1
+

1
+

1 1 1
+

1
+

1
+

1
+

1
+

1
+

1
+

1
+

1
+

1
+

(·) 0 𝜔 @ 1 1
+

0 0 0 0 0 0

𝜔 0 𝜔 𝜔 𝜔 𝜔

@ 0 𝜔 @ @ 𝜔

1 0 𝜔 @ 1 1
+

1
+

0 𝜔 𝜔 1
+

1
+

4.1.2 Affine Types. If one so wishes, the above system can be refined to support affine types by

adding a modality @ corresponding to either 0 or 1 usages. This time, @ can play the role of 1. The

semilattice is changed as in Fig. 2.

4.1.3 Relevant Types. Dually we can instead let the unit modality represent “at least one usage”,

capturing relevant type systems. If write 1
+
to minimise confusions, the characteristic equation of

this system is 1
+ + 1+ = 1

+
.

4.1.4 Combined System. Another useful setup is one where the modalities zero, linear, affine,

relevant, and unrestricted are all present (and different). In such a situation the system will keep

track of all cases simultaneously, and the operation tables are more involved (Table 1).

4.1.5 Quantitative Typing. A generalisation of all the above systems is what can be called quantita-

tive typing, where one has a modality for each set of accepted usage. That is, the set of modalities

Mod is the powerset of natural numbers, with 0 = {0}, 1 = {1} and the following operations:

𝑝 ∧ 𝑞 = 𝑝 ∪ 𝑞
𝑝 + 𝑞 = {𝑥 + 𝑦 | 𝑥 ∈ 𝑝,𝑦 ∈ 𝑞}
𝑝 · 𝑞 = {𝑥 · 𝑦 | 𝑥 ∈ 𝑝,𝑦 ∈ 𝑞}

This is the most precise substructural instance, tracking exactly which set of usages are acceptable.

It is a useful theoretical device, however, even in their simplest form modality expressions for this

structure can be large, and thus it is often preferable not to track usages so precisely.

In all the above cases 𝜔 (even under its other name N) is the extremum of the meet-lattice.

Variables associated with this modality can be used in unrestricted fashion. Conversely, to produce

a term to substitute in an 𝜔-variable, one can only use 𝜔-variables.

4.2 Sensitivity Analysis for Differential Privacy
Another application of affine-like type systems is differential privacy, where one is interested in

publishing statistically anonymised data without revealing individual secrets. Here, the role of the
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A Unified View of Modalities in Type Systems 90:7

type system is to ensure that if a certain amount of noise is introduced in the inputs of a program,

then at least the same amount is present in the outputs.

For this purpose, Reed and Pierce [2010] equip every type 𝐴 with a metric 𝑑𝐴 : 𝐴 ×𝐴→ R∞⩾0
,

where R∞⩾0
shall denote the set of non-negative reals augmented with positive infinity.

Then a function 𝑓 from 𝐴 to 𝐵 is defined to be 𝑐-sensitive if it does not increase distances

by a factor greater than 𝑐; as defined by the metrics for 𝐴 and 𝐵: 𝑑𝐵 (𝑓 (𝑥), 𝑓 (𝑦)) ⩽R 𝑐 · 𝑑𝐴 (𝑥,𝑦).
Consequently, under the assumption that distance 0means equality at all types, 0-sensitive functions

are necessarily constant. Conversely∞-sensitive functions impose no restriction on the argument.

Because of the inequality, 𝑐-sensitivity is subject to subsumption: if 𝑐 ′ ⩾R 𝑐 and 𝑓 is 𝑐-sensitive
then 𝑓 is also 𝑐 ′-sensitive.

We can cast this system into our framework by letting the modality carrier set be R∞⩾0
, with the

usual arithmetic operations and the meet be the maximum of its arguments— which implies that

the order on modalities is the opposite of the usual order on R: (⩽) = (⩾R). It is easy to check that

the obtained system is equivalent to that of Reed and Pierce, with exceptions detailed below.

Reed and Pierce then proceed to define a sensitivity-aware type system, and metrics for every

type. With this in place they show that evaluation preserve sensitivity, and they do this by using a

special-purpose step-indexed metric logical relation.

But with our general setting, we do not have to do any special preservation proof: we already

(Theorem 6.2) know that the system is type-preserving for any modality ringoid, and thus any

assignment of types to metrics will do for this purpose. All we need to do is to ensure that primitive

functions are metric-respecting on the types that they mention. For example, assuming the usual

arithmetic meaning, and the absolute value as metric for reals (Real), real addition can be typed

with Real ⊸ Real ⊸ Real and multiplication by a positive constant 𝑘 with
𝑘Real→ Real.

The instance our general framework described above departs from the Reed-Pierce system in

one respect: Reed and Pierce allow case analysis on any modality (sensitivity) 𝑟 ⩾R 0, whereas we

demand 𝑟 ⩽ 1. In consequence, they additionally sustain a function 𝑓 :
𝑟(𝐴 + 𝐵) → (𝑟 ⟨𝐴⟩ + 𝑟 ⟨𝐵⟩),

for every non-zero 𝑟 , and in particular
𝑟Bool → Bool. This apparently means that metrics are

not preserved in their system, but as we see it, they save the day by defining the metric on sum

types to be infinite when the tags differ. Thus, we can use the same metric for sum types and

safely add 𝑓 as a primitive function, recovering the equivalence between the systems. Regardless,

it unclear that this metric on sum types is useful. For example, the later system of Gaboardi et al.

[2013], concerned particularly on the relation between a linear type system and differential privacy,

features no (dynamic) sum type—the lengths of lists are tracked statically.

4.3 Informational Applications
In this section, we describe applications which we group under the loose term “informational”, in

the sense that it does not matter how many times variables are used, but rather in which context
they are used. Technically, the addition is relegated to play the same role as the meet ((+) = (∧)).
We also constrain the multiplication so that it acts as the join (dual to the meet) of the lattice. This

means that multiplication must be idempotent (𝑎 · 𝑎 = 𝑎), and absorption laws must be respected:

𝑎 · (𝑎 ∧ 𝑏) = 𝑎 (1)

𝑎 ∧ (𝑎 · 𝑏) = 𝑎 (2)

(In fact, (1) is a consequence of (2) and the other laws.) We illustrate these properties on several

examples below. In the rest of this section we may write (∨) in place of (·) to emphasise the lattice

duality of operations.
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4.3.1 Irrelevance. Irrespective of any additional modality structure, 0 represents no usage of a

variable; and thus, if 𝛾 (𝑥) = 0 and 𝛾Γ ⊢ 𝑡 : 𝐴 then 𝑡 cannot use 𝑥 .

It is however useful to analyse the role of 0 in the informational setting. Here, 0 is also the unit

of (∧), and as such the top of the lattice: 𝑝 ⩽ 0 for every 𝑝 . Consequently, we have the following

derivation, chaining 0⟨·⟩-intro and weakening with 𝛿 ⩽ 0:

𝛾Γ ⊢ 𝑡 : 𝐴
0⟨·⟩-intro

0Γ ⊢ [0𝑡] : 0⟨𝐴⟩
wk

𝛿Γ ⊢ [0𝑡] : 0⟨𝐴⟩
It says that if tasked to construct 0⟨𝐴⟩ in any usage context 𝛿 it suffices to construct 𝐴 for any

(other) usage 𝛾 . Even if 𝛾 (𝑥) = 0, we can choose 𝛿 (𝑥) to be any modality we like. Borrowing the

striking metaphor of Pfenning [2001], the variables of 𝛾Γ are resurrected inside the 0-box. In fact in

this system the modality 0 represents irrelevance, in the sense of Pfenning [2001]. The key property

of the system (equality ignores irrelevant arguments) is captured by Theorem 7.10.

4.3.2 Information-Flow Security. One application of type systems is to ensure that certain parts of

a program do not have access to private (high security) information. Several type systems have

been proposed to explicitly support this feature, notably the seminal work of Abadi et al. [1999].

The principal property of such systems is that the output of a program does not depend on secret

inputs. This a property holds for Λp
(Theorem 7.10), if we consider that any modality 𝑝 above 1 in

the lattice is secret. The simplest security lattice has a single secret level H (high) which can be

represented by 0 and a single public level L (low) represented by 1. The construction generalises

however to any lattice of informational modalities as specified above: no further specialisation is

required nor desirable.

We can convince ourselves intuitively that addition should coincide with the meet: if we need

a variable in two parts of a term, we must assume the worst and require the most public level,

given by the meet. Dually, if a function 𝑡 offers a at least a level of secrecy 𝑝 for its parameter, and

constructing its argument 𝑢 offers a level of secrecy of at least 𝑞 for a given variable 𝑥 , then the

whole application offers the maximum level of secrecy 𝑝 ∨ 𝑞 for 𝑥 .
⊢ 𝑡 : 𝑝𝐴→ 𝐵 𝑥 :

𝑞𝑋 ⊢ 𝑢 : 𝐴

𝑥 :
𝑝∨𝑞𝑋 ⊢ 𝑡 𝑝𝑢 : 𝐵

Example application

Generalising to arbitrary contexts, we obtain exactly the generic application rule with (·) = (∨) and
(+) = (∧). Contrary to the convention of much literature on information-flow security, including

Abadi et al. [1999], our security levels are relative to the level of the program under current

execution, which works at level 1. Indeed, the variable 𝑥 above appears to become more public

when constructing 𝑢. As with irrelevance before, an inaccessible variable may become accessible

again in a secret context.

We are not aware of a security type system which corresponds exactly to our the informational

instance of our framework, but some are very close [Algehed 2018]. Regardless, as further witness

of the capability of the system to support security applications, and inspired by Algehed et al.

[2019], we give an implementation of a chat server which serves as the prototype of a system which

is communicating with many agents operating at different security levels. Whether agents can

communicate is provided by a policy, which essentially takes the form of a decidable partial order

corresponding to the security lattice. In this example we use a Haskell-like syntax and also assume

that the language is extended with usual features such as data types.

We use the CanFlow c c′ type, to capture that 𝑐 ⩽ 𝑐 ′. This is done by giving the corresponding

(polymorphic) conversion function:
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type CanFlow c c′ = ∀𝛼.c⟨𝛼⟩ → c′⟨𝛼⟩

We have a number of Clients sending messages to Channels, which they can also connect to. Every

connected client receives the messages sent this way. Clients and channel types are indexed by the

modality corresponding to their security level.

data Chan (c ::M)
data Client (c ::M)

The security policy is represented by the following three functions, which are parameters of the

program. They essentially act as functions testing the modality order, but they operate on the Client
and Chan types and are given suggestive names.

canRead :: Client c → Chan c′→ Maybe (CanFlow c′ c)
canWrite :: Client c → Chan c′→ Maybe (CanFlow c c′)
testEqual :: Chan c → Chan c′→ Maybe (CanFlow c c′)

Messages are secure pieces of information, and as such are annotated with the corresponding level

c. Their type is thus c⟨String⟩. A client can only be sent messages at the correct level, which is

represented by the next (and last) parameter to the program:

clientWrite :: Client c → c⟨String⟩ → IO ()

The body of the server can then be implemented given the above primitives. A subscription of a given

channel by a given client is represented by the following data, witnessing the level compatibilities:

data Subscription where
Subscribed :: Chan c → Client c′→ CanFlow c c′→ Subscription

The server handles two kind of events: subscription and sending a message. At this stage the

compatibility between levels is not guaranteed; it is the task of the server to do so.

data Event where
SubscribeEvent :: Client c → Chan c′→ Event
WriteEvent :: Client c → Chan c′→ c⟨String⟩ → Event

The server maintains a list of Subscriptions. Its main job is to test level compatibilities and act

accordingly:

mainStep :: [Subscription] → IO [Subscription]
mainStep cs = do
ev ← readEvent
case ev of (SubscribeEvent client chan) → case canRead client chan of

Nothing → return cs -- request declined

(Just ok) → return (Subscribed chan client ok : cs)
(WriteEvent client chan msg) → case canWrite client chan of
Nothing → return cs -- request declined

(Just f1) → do forM_ cs
𝜆(Subscribed ch rcvClient f2) → case testEqual chan ch of

Nothing → return () -- not a matching channel

(Just f3) → clientWrite rcvClient ((f2 ◦ f3 ◦ f1) msg)
return cs
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Supporting security features via generic abstraction features of type systems have been proposed

before, but so far this has been done via quantification over types [Bowman and Ahmed 2015; Tse

and Zdancewic 2004]. It has additionally been shown that non-interference is a consequence of the

generic parametricity of type-theory [Algehed and Bernardy 2019].

However, modalities are in much direct correspondence to the security levels found in the

information-flow security literature [Abadi et al. 1999], and thus we believe that this is a natural

application of generic modal type system.

4.3.3 Necessity and Possibility. The necessity modality 2 can be captured in STLC by adding the

following rules:

2Γ ⊢ 𝑡 : 𝐴
2Γ ⊢ 𝑡 : 2𝐴

2-Intro
Γ ⊢ 𝑡 : 2𝐴
Γ ⊢ 𝑡 : 𝐴

2-Elim

The elimination rule says that if 𝐴 holds necessarily, it holds. This corresponds to the conversion of

2𝐴 to 1𝐴, and in turn it follows from the lattice containing the relation 2 ⩽ 1. Hence 2 acts like

an “categorically true” modality. According to the introduction rule, to hold necessarily (2𝐴), 𝐴
must hold under only necessary assumptions (no non-necessary assumptions are allowed). Recall

that our introduction rule for 2⟨𝐴⟩ is:
Γ ⊢ 𝑡 : 𝐴

2Γ ⊢ [2𝑡] : 2⟨𝐴⟩
which is a strengthening of the meaning of 2, because we forget that assumptions are necessary in

the premise, and thus, a priori fewer terms can be shown to inhabit 2𝐴 by using our rule. However,

according to our assumptions we also have 2 · 2 = 2, and thus we can derive:

2Γ ⊢ 𝑡 : 𝐴
22Γ ⊢ [2𝑡] : 2⟨𝐴⟩
2Γ ⊢ [2𝑡] : 2⟨𝐴⟩

This shows the admissibility of the introduction rule. Additionally the law2 ·2 = 2makes the type

2𝐴→ (2 · 2)⟨𝐴⟩ inhabited— an often desired property of necessity in the literature. Classically,

possibility (3) is the De Morgan dual of necessity (¬2𝐴↔ 3¬𝐴), however this does not work in

intuitionistic logic. Thus, a better option may be a specific modality 3 occupying a dual position in

the lattice wrt. to 2; starting from the calculus of Pfenning and Davies [2001].

4.3.4 Beliefs. Logical systems are sometimes used to describe the beliefs of various agents. Such

systems can be rather intricate, and we do not claim that our modality framework can capture all

the intricacies previously studied in the literature. Yet we can note that one area of application

is the ability to model agents with inconsistent beliefs, while retaining the overall consistency of

the system. We recall that information can travel in the (⩽) direction, and thus we have
𝑝𝐴 →

𝑞𝐵 → (𝑝 ∨ 𝑞)⟨𝐴 ∧ 𝐵⟩. In consequence the beliefs at level 𝑝 may contradict those at level 𝑞, but only

agents at level 𝑝 ∨ 𝑞 or above will consider this contradiction as their own belief. In particular both

the 𝑝 and 𝑞 levels can remain locally consistent.

4.3.5 Distributed Computing. Another application is to use modalities to represent the location of

code. This idea was proposed by Murphy et al. [2005], and can be imported in our framework. The

system of Murphy et al. is syntactically far from ours. While we have a type 𝑝 ⟨𝐴⟩ to represent truth
of 𝐴 at location 𝑝 , they use a different judgement altogether. Thus in this respect our system is

more general. Additionally, while our system is intuitionistic, theirs is classical (featuring first-class

continuations). Yet, the idea that modalities can represent a (set of) computers is an available
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0

1

⊥

Direction of convertibility;

increasing secrecy;

decreasing necessity;

increasing credulity of agents;

decreasing computational relevance.

Fig. 3. Hasse diagram for informational modalities. The (partial) ordering can be interpreted in various ways
depending on the application.

interpretation for our system. Additionally one can also use the logical aspect of the system, to

reason about what is true at different locations.

4.3.6 Summary of Informational Aspect. All the above aspects can be conveniently combined in

a single lattice, as shown in Fig. 3. The 1 modality represents the point of view of the program.

Modalities above it correspond to (partially) inaccessible information due to secrecy, possibility and

partial irrelevance. Modalities below it correspond to (excessively) public information and (partial)

necessity. Unrelated modalities correspond to independent agents, with whom no communication

of data (or proofs of a proposition) is possible. The various interpretations (secrecy, necessity, etc.)

can be made depending on the application.

4.4 Combining Informational andQuantitative Aspects
Having a single system supporting all possible applications yields the usual benefit of reuse: the

generic applications can be coded in generic contexts and applied in several. A somewhat more

subtle benefit is that one can combine several applications in a single program: for example one

can have an system which combines aspects of differential privacy and information-flow secrecy
1

(by, say, having several dimensions of differential privacy, themselves organised in a lattice). This

can be done using a product of modalities, as Orchard et al. [2019] suggests. This would mean

that informational and quantitative aspects are both checked, but separately; i. e., when counting

occurrences, convertibility is ignored and vice versa.
However, it is also possible to construct a more fine-grained ringoid, with modalities capturing

situations such as “one public usage or three private ones”. We can model this using a set of

generators of for secrecy (capabilities), and counting how we can use those.

This modality ringoid can be built in two stages. First, we build the structure of exact numbers of

usage at given security levels, 𝐿. This number acts as a generalisation of N in the initial quantitative

structure of Section 4.1.5. Assuming a lattice 𝐾 of capabilities/security levels as in the informational

examples, we let 𝐿 = MultiSet (𝐾) and
0𝐿 = ∅ 𝑙1 +𝐿 𝑙2 = 𝑙1 ⊎ 𝑙2
1𝐿 = {|1|} 𝑙1 ·𝐿 𝑙2 = {𝑘1 ∨ 𝑘2 | 𝑘1 ∈ 𝑙1, 𝑘2 ∈ 𝑙2}

We inductively define a partial order ⩽𝐿 on 𝐿 capturing that any single usage can be relaxed using

the underlying order on 𝐾 :

∅ ⩽𝐿 ∅
𝑘1 ⩽𝐾 𝑘2

{|𝑘1 |} ⩽𝐾 {|𝑘2 |}
𝑙1 ⩽𝐿 𝑙2 𝑚1 ⩽𝐿 𝑚2

(𝑙1 ⊎𝑚1) ⩽𝐿 (𝑙2 ⊎𝑚2)
1
broadly similar to the system of Ebadi et al. [2015]
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Finally, a modality 𝑝 is a ⩽𝐿-downward closed subset of 𝐿; each𝑚 ∈ 𝑝 presents one alternative

of exact capabilities𝑚 to assign to a variable. Formally, the modality ringoid of possible numbers of

usage𝑀 = {𝑝 ⊆ 𝐿 | (𝑙 ⩽𝐿 𝑙
′ ∧ 𝑙 ′ ∈ 𝑝) → 𝑙 ∈ 𝑝} is the powerset of 𝐿, quotiented by (⩽𝐿)-closure:

if𝑚 is allowable and 𝑙 is less restrictive, then 𝑙 is also allowable. The operations are defined as in

Section 4.1.5:

𝑝 ∧𝑀 𝑞 = 𝑝 ∪ 𝑞
0𝑀 = {0𝐿} 𝑝 +𝑀 𝑞 = {𝑙 +𝐿 𝑙 ′ | 𝑙 ∈ 𝑝, 𝑙 ′ ∈ 𝑞}
1𝑀 = {1𝐿} 𝑝 ·𝑀 𝑞 = {𝑙 ·𝐿 𝑙 ′ | 𝑙 ∈ 𝑝, 𝑙 ′ ∈ 𝑞}

5 SUBSTITUTION LEMMA
In the theory of lambda calculi, subject reduction states that term reductions (such as 𝛽 reduction)

preserve types. Subject reduction rests on the substitution lemma, which states that types are

preserved under substitution. We will prove type preservation in the setting of an abstract machine

(Theorem 6.2), but we are particularly interested in the substitution lemma, because it is the simplest

setting which shows why the modalities need to have the structure shown in Definition 2.1.

There are three substitutions in Λp
: one for modality expressions [𝑝/𝑚], one for types [𝐴/𝛼]

and one for terms [𝑢/𝑥]. The first two are straightforward and standard, and in the rest of the

section we consider only substitution on terms. Traditionally, a parallel substitution 𝜎 is a map

from a context Γ to a context Δ. There is one term 𝜎 (𝑥) for each variable 𝑥 in Δ, each of them

typeable in Γ, formally Γ ⊢ 𝜎 (𝑥) : Δ(𝑥). This can be written in compact form as Γ ⊢ 𝜎 : Δ. Then
the substitution lemma states that applying the substitution changes the typing of a term from a

context Δ to a context Γ:
Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 [𝜎] : 𝐴
In the rest of the section we show how substitutions and the substitution lemma extend to

qualified contexts. Each of the terms 𝜎 (𝑥) is typed in a different modality context, Ψ(𝑥), formally

Ψ(𝑥)Γ ⊢ 𝜎 (𝑥) : Δ(𝑥). In compact form, we can write the type of a substitution ΨΓ ⊢ 𝜎 : Δ. It is
interesting to observe that Ψ is a map of variables (in Δ) to modality contexts (for Γ). That is, we
have a matrix of modalities, whose indices are variables in Γ and Δ.

When applying substitution, every occurrence of a variable 𝑥 in Δ is replaced by 𝜎 (𝑥), and thus a
usage of 1𝑥 is replaced byΨ(𝑥). Therefore themodality for a variable𝑦 in 𝑡 [𝜎] is (∑𝑥 ∈Δ 𝛿 (𝑥)Ψ(𝑥,𝑦)).
We see that Ψ acts linearly on 𝛿 , and thus in the following we treat Ψ as a linear operator on

modality contexts [Atkey and Wood 2019]. We write Ψ : Δ ⊸ Γ to reflect this fact, and write 𝛿Ψ
for application to 𝛿 . The postfix notation witnesses that substitution acts on the right of modalities.

Lemma 5.1. Operator application is (1) associative with modality multiplication, (𝑞𝛾)Ψ = 𝑞(𝛾Ψ),
and (2) it distributes over context addition ((𝛾 + 𝛿)Ψ = 𝛾Ψ + 𝛿Ψ) and (3) meet ((𝛾 ∧ 𝛿)Ψ = 𝛾Ψ ∧ 𝛿Ψ).

Proof. (1) rests on associativity of (·) and distributivity of (·) over (+). (2) additionally relies on

(+) being associative and commutative; likewise for (3) mutatis mutandis. □

We are now ready to state and prove our result:

Theorem 5.2 (Substitution lemma). Given a modality operator Ψ : Δ ⊸ Γ, a substitution
ΨΓ ⊢ 𝜎 : Δ and a typed term 𝛿Δ ⊢ 𝑡 : 𝐴 then (𝛿Ψ)Γ ⊢ 𝑡 [𝜎] : 𝐴. (See extended material)

6 ABSTRACT MACHINE
In this section we construct an abstract call-by-name machine for Λp

. The main purpose of the

machine is to show that modalities are preserved under execution. Machine states will be presented

in the form𝛾ℎ ⊩𝑟 𝑡 · ®𝑒 whereℎ is a heap with modality context𝛾 , a head 𝑡 , and a stack of eliminations
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(𝛾 + 𝑟𝑥)ℎ ⊩𝑟 𝑥 · ®𝑒 −→ 𝛾ℎ ⊩𝑟 ℎ(𝑥) · ®𝑒
𝛾ℎ ⊩𝑟 (𝑡 𝑞𝑢) · ®𝑒 −→ 𝛾ℎ ⊩𝑟 𝑡 · 𝑞𝑢 · ®𝑒

(𝛾 + 𝑟𝑞 |𝑢 |)ℎ ⊩𝑟 𝜆 𝑞𝑥 .𝑡 · 𝑞𝑢 · ®𝑒 −→ 𝛾ℎ, 𝑥 ↦→ 𝑟𝑞𝑢 ⊩𝑟 𝑡 · ®𝑒
𝛾ℎ ⊩𝑟 let [𝑞𝑥] = 𝑞𝑡 in𝑢 · ®𝑒 −→ 𝛾ℎ ⊩𝑟𝑞 𝑡 · let [𝑞𝑥] = 𝑞

? in𝑢 · ®𝑒
(𝛾 + 𝑟𝑞 |𝑣 |)ℎ ⊩𝑟𝑞 [𝑞𝑣] · let [𝑞𝑥] = 𝑞

? in𝑢 · ®𝑒 −→ 𝛾ℎ, 𝑥 ↦→ 𝑟𝑞𝑣 ⊩𝑟 𝑢 · ®𝑒
𝛾ℎ ⊩𝑟 let () = 𝑞𝑡 in𝑢 · ®𝑒 −→ 𝛾ℎ ⊩𝑟𝑞 𝑡 · let () = 𝑞

? in𝑢 · ®𝑒
𝛾ℎ ⊩𝑟𝑞 () · let () = 𝑞

? in 𝑣 · ®𝑒 −→ 𝛾ℎ ⊩𝑟 𝑣 · ®𝑒
𝛾ℎ ⊩𝑟 (𝑡 · 𝑝) · ®𝑒 −→ 𝛾ℎ ⊩𝑟 𝑡 · (𝑝 · ®𝑒)
𝛾ℎ ⊩𝑟 Λ𝑚.𝑡 · (𝑝 · ®𝑒) −→ 𝛾ℎ ⊩𝑟 𝑡 [𝑝/𝑚] · ®𝑒
𝛾ℎ ⊩𝑟 (𝑡 · 𝐴) · ®𝑒 −→ 𝛾ℎ ⊩𝑟 𝑡 · (𝐴 · ®𝑒)
𝛾ℎ ⊩𝑟 Λ𝛼.𝑡 · (𝐴 · ®𝑒) −→ 𝛾ℎ ⊩𝑟 𝑡 [𝐴/𝛼] · ®𝑒

𝛾ℎ ⊩𝑟 let (𝑥,𝑦) = 𝑞𝑡 in𝑢 · ®𝑒
−→ 𝛾ℎ ⊩𝑟𝑞 𝑡 · let (𝑥,𝑦) = 𝑞

? in𝑢 · ®𝑒

(𝛾 + 𝑟𝑞( |𝑢 | + |𝑡 |))ℎ ⊩𝑟𝑞 (𝑡,𝑢) · let (𝑥,𝑦) = 𝑞
? in 𝑣 · ®𝑒

−→ 𝛾ℎ, 𝑥 ↦→ 𝑟𝑞𝑡,𝑦 ↦→ 𝑟𝑞𝑢 ⊩𝑟 𝑣 · ®𝑒

𝛾ℎ ⊩𝑟 case 𝑞𝑡 of {inj
1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} · ®𝑒

−→ 𝛾ℎ ⊩𝑟𝑞 𝑡 · case 𝑞
? of {inj

1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} · ®𝑒

(𝛾 + 𝑟𝑞 |𝑣 |)ℎ ⊩𝑟𝑞 (inj𝑖 𝑣) · case 𝑞
? of {inj

1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} · ®𝑒

−→ 𝛾ℎ, 𝑥𝑖 ↦→ 𝑟𝑞𝑣 ⊩𝑟 𝑢𝑖 · ®𝑒

Note: |𝑢 | denotes the modality context of 𝑢, given by the typing judgement.

Fig. 4. Machine transitions.

®𝑒 and a corresponding stack of modalities 𝑟 . Each entry 𝑒 is a function argument
𝑞𝑢 or an eliminator

whose scrutinee is replaced by a hole “?”, e. g., let (𝑥,𝑦) = 𝑞
? in𝑢. Thus, 𝑡 · ®𝑒 is a spine representation

of Λp
-terms: a head 𝑡 subsequently eliminated by the ®𝑒 , with the first elimination, the top of the

stack, applied first. We write ®𝑒 (𝑡) for the thus reconstructedΛp
-term.When 𝑡 is in weak head normal

form, it interacts with the first elimination, implementing a call-by-name weak head reduction that

adds new bindings to the heap. Besides “reduction” steps, the machine performs administrative

steps which decompose the head further into spine form, and dereferencing when the head is a

variable. (See Fig. 4.)

The annotation 𝑟 is a stack of modalities, obtained from the scrutinee qualifications
𝑞
? of each

let and case in ®𝑒 , and as such is functionally dependent on ®𝑒 . This stack may occur in modality

expressions, and then it shall be interpreted as a product of its components. This product is the

modality qualifying 𝑡 . In sum, 𝛾ℎ ⊩𝑟 𝑡 · ®𝑒 can be read as “𝛾ℎ provides what is needed to produce
𝑟𝑡 ,

and continue with ®𝑒”.
The states are well-typed, such that 𝛾Γ ⊢ ®𝑒 (𝑡) : 𝐶 . Thus, strictly speaking, machine states also

contain types and contexts. In fact 𝛾 = 𝛿 + 𝑟𝜁 , such that 𝜁 Γ ⊢ 𝑡 : 𝐴, and 𝛿Γ is the context of ®𝑒 .
When we want to emphasise typing we write the machine state in the form (ℎ : 𝛾Γ) ⊩𝑟 (𝑡 · ®𝑒 : 𝐶),
however we generally leave types implicit to avoid bloat.
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Remark 1. An alternative would be to work with intrinsically typed terms [Allais et al. 2018; Benton
et al. 2012]. This would mean there would not be a need to add explicit annotations for type and
modality contexts. In this situation the wk rule would be represented explicitly as a term constructor.

However, we introduced terms as extrinsically typed, and thus, in fact, machine states manipulate
typing derivations.

Thereby, there is an embedding-projection relation between well-typed terms and machine states.

The projection of an arbitrary state (ℎ : 𝛾Γ) ⊩𝑟 (𝑡 · ®𝑒 : 𝐶) is 𝛾Γ ⊢ ®𝑒 (𝑡) : 𝐶 . Conversely an arbitrary

term 𝛾Γ ⊢ 𝑡 : 𝐶 can be embedded into the machine state (ℎ : 𝛾Γ) ⊩1 (𝑡 · − : 𝐶) if a suitable heap ℎ
can be constructed. In particular, if Γ is empty, then the empty heap is suitable.

We work with a global (immutable) heap using variable names as pointers. This means that (1)

whenever we put variable bindings on the heap we assume fresh names and (2) importantly, the

heap uses absolute modalities. This contrasts to the relative modalities used in the typing rules,

where, for instance, irrelevant variables can be resurrected or private variables become public in

private contexts. Once pushed in the heap, a private value will stay private the rest of the run of

the program. For quantitative applications, using a resource removes exactly what is necessary

from the heap. Therefore one can clearly see that the program never over- or under-consumes the

initial budget of resources that it starts with.

We have a notion of well-typed, and in fact well-qualified, heaps. Whereas typing rules for terms

keep track of the modalities of the inputs, for heaps we track the modalities of the outputs. Thus

we write ℎ : 𝛾Γ when ℎ provides 𝛾Γ. While Γ has the form of a context, in this role it contains no

modality nor type variables, and thus has only closed types. The variables of the heap are provided

with a certain modality, but the term associated with a new provided variable may use old variables.

{} : []
ℎ : (𝑞𝛿 + 𝛾)Γ 𝛿Γ ⊢ 𝑡 : 𝐴
(ℎ, 𝑥 ↦→ 𝑡) : (𝛾Γ, 𝑥 :

𝑞𝐴)
Hence, in the heap construction rule the heap ℎ does not provide 𝑥 , but provides instead all the

variables needed to construct
𝑞𝑡 , with the appropriate modalities. Hereafter we use the 𝛾ℎ, 𝑥 ↦→ 𝑞𝑢

notation to mean (𝛾, 𝑞𝑥) (ℎ, 𝑥 ↦→ 𝑢) in a similar style to what we used for contexts.

Definition 6.1 (Machine Transitions). Depending on the head 𝑡 , the machine makes transitions as

given in Fig. 4. If the typing of a sub-term 𝑢 is such that 𝛿Δ ⊢ 𝑢 : 𝐴, then we write |𝑢 | for 𝛿 .
Additionally we have a rule for weakening: (𝜁 + 𝑟𝛾)ℎ ⊩𝑟 𝑡 · ®𝑒 −→ (𝜁 + 𝑟𝛿)ℎ ⊩𝑟 𝑡 · ®𝑒 , with the

side condition 𝛾 ⩽ 𝛿 , whose modality contexts 𝛾 and 𝛿 come from the weakening rule present on

the left-hand-side state.

Theorem 6.2 (Modality Preservation). If (ℎ : 𝛾Γ) ⊩𝑟 (𝑡 · ®𝑒 : 𝐶) −→ (ℎ′ : 𝛾 ′Γ′) ⊩𝑟 ′ (𝑡 ′ · ®𝑒 ′ : 𝐶 ′)
then
(1) 𝐶 = 𝐶 ′, and
(2) if ℎ : 𝛾Γ then ℎ′ : 𝛾 ′Γ′. (See extended material)

Because we have well-typed states (𝛾Γ ⊢ ®𝑒 (𝑡) : 𝐶), then the first item implies type preservation.

The second item implies that modalities are preserved: if we start from a state where the heap

provides what evaluating the term demands, it will remain so after a machine transition.

7 RELATIONAL SEMANTICS
We adopt the standard semantics of typed lambda-calculus, which interprets closed types as sets

and closed terms as elements. This first semantics (Section 7.1) models modality polymorphism

with modality abstraction and application, but ignores the effects of the modality on types. Such

effects will be taken into account by the relational model (Sections 7.2 to 7.8).
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7.1 Modality-Oblivious Set-Theoretic Model
The interpretation of closed types 𝐴 by sets L𝐴 M is parameterised by an interpretation L𝐾 M of the
type constants 𝐾 ∈ TyConst. On the right-hand-sides of the following equations, we refer to the

set-theoretic cartesian product A × B, the disjoint union A + B, the function space A → B and a

(possibly infinite) product

∏
𝑖:𝐼 A𝑖 of sets. The latter can be seen as a dependent function space,

thus, we eliminate it with application 𝑓 ( 𝑗) : A 𝑗 (given 𝑓 :

∏
𝑖:𝐼 A𝑖 and 𝑗 : 𝐼 ).

L 1 M = {()}
L𝐴 + 𝐵 M = L𝐴 M + L𝐵 M
L𝐴 × 𝐵 M = L𝐴 M × L𝐵 M

L 𝑝𝐴→ 𝐵 M = L𝐴 M→ L𝐵 M
L 𝑝 ⟨𝐴⟩ M = L𝐴 M
L∀𝛼.𝐵 M =

∏
𝐴:Ty00

L𝐵 [𝐴/𝛼] M
L∀𝑚.𝐵 M =

∏
𝑝 :ModL𝐵 [𝑝/𝑚] M

In the interpretation of predicative polymorphism∀𝛼.𝐵, the product ranges over all small monotypes

𝐴 : Ty00. Modality polymorphism ∀𝑚.𝐵 is interpreted by a product over all modality constants

𝑝 : Mod. Note that L𝐵 M is defined by lexicographic recursion on the pair whose first component is

the number of quantifiers in 𝐵 and the second the syntactic size of 𝐵.

Contexts Γ are interpreted as sets L Γ M of finite maps 𝜂 such that 𝜂 (𝑥) : L Γ(𝑥) [𝜂] M—which
is L𝐴[𝜂] M—for all (𝑥 :𝐴) ∈ Γ, further 𝜂 (𝑚) : Mod for all 𝑚 ∈ dom(Γ) and 𝜂 (𝛼) : Ty00 for all

𝛼 ∈ dom(Γ). In L Γ(𝑥) [𝜂] M, we mean by 𝐴[𝜂] the parallel substitution in 𝐴 of all type and modality

bindings contained in 𝜂. Similarly, 𝑞 [𝜂] shall denote the parallel substitution in 𝑞 of all modality

bindings contained in 𝜂.

Now, given 𝜂 : L Γ M, we can interpret a typed term 𝛾Γ ⊢ 𝑡 : 𝐴 as an element L 𝑡 M𝜂 : L𝐴[𝜂] M in the

standard way.

L𝑥 M𝜂 = 𝜂 (𝑥)
L 𝜆 𝑞𝑥 .𝑡 M𝜂 (𝑎 : L𝐴[𝜂] M) = L 𝑡 M𝜂 [𝑥 ↦→𝑎] L 𝑡 𝑞𝑢 M𝜂 = L 𝑡 M𝜂 (L𝑢 M𝜂)
LΛ𝛼.𝑡 M𝜂 (𝐴 : Ty00) = L 𝑡 M𝜂 [𝛼 ↦→𝐴] L 𝑡 · 𝐴 M𝜂 = L 𝑡 M𝜂 (𝐴𝜂)
L∀𝑚.𝑡 M𝜂 (𝑝 : Mod) = L 𝑡 M𝜂 [𝑚 ↦→𝑝 ] L 𝑡 · 𝑞 M𝜂 = L 𝑡 M𝜂 (𝑞𝜂)
L inj𝑖 𝑡 M𝜂 = 𝜄𝑖L 𝑡 M𝜂 L () M𝜂 = ()
L [𝑞𝑡] M𝜂 = L 𝑡 M𝜂 L (𝑡,𝑢) M𝜂 = (L 𝑡 M𝜂, L𝑢 M𝜂)

In the case for 𝜆 𝑞𝑥 .𝑡 , we assume 𝛾Γ, 𝑥 :
𝑞𝐴 ⊢ 𝑡 : 𝐵. For disjoint sum types, we make use of the

injections 𝜄𝑖 : A𝑖 → A1 + A2 and the copairing [𝑓1, 𝑓2] : A1 + A2 → B of functions 𝑓𝑖 : A𝑖 → B.
L case 𝑝𝑡 of {inj

1
𝑥1 ↦→ 𝑢1; inj2 𝑥2 ↦→ 𝑢2} M𝜂 = [𝑓1, 𝑓2]L 𝑡 M𝜂 where 𝛾Γ ⊢ 𝑡 : 𝐴1 +𝐴2 and

𝑓𝑖 (𝑎 : L𝐴𝑖𝜂 M) = L𝑢𝑖 M𝜂 [𝑥𝑖 ↦→𝑎]
L let (𝑥1, 𝑥2) = 𝑞𝑡 in𝑢 M𝜂 = L𝑢 M𝜂 [𝑥1 ↦→𝑎1 ] [𝑥2 ↦→𝑎2 ] where (𝑎1, 𝑎2) = L 𝑡 M𝜂
L let [𝑞𝑥] = 𝑡 in𝑢 M𝜂 = L𝑢 M𝜂 [𝑥 ↦→L 𝑡 M𝜂 ]

Remark 2. As for machine states, the interpretation works on typed terms, and thus the whole
typing derivation should be written, but we write only the term for concision. However in this case,
different typing derivations for the same term yield the same semantics. In term notation, the semantics
of (invisible) weakening would read L 𝑡 M𝜂 = L 𝑡 M𝜂 , and thus we omitted it above.

The model uses sets and pointwise definition of functions, but it can be easily reformulated in

point-free style and then be generalised to an arbitrary cartesian-closed category with infinite

products and distributive coproducts. Closed types and contexts would then be interpreted as

objects and terms 𝛾Γ ⊢ 𝑡 : 𝐴 as morphisms from L Γ M to L𝐴 M.

7.2 Relational Model for Parametricity and Usage-Tracking: Framework
On top of the set-theoretic interpretation, we define a logical relation to express three kinds of

program properties:
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(1) Parametricity: Programs cannot inspect types.

(2) Modality irrelevance: Programs cannot inspect modalities (Theorem 7.9).

(3) And most interestingly, program properties implied by modalities (Theorem 7.10, Section 8).

Our model combines aspects of the parametricity interpretation [Reynolds 1983], classified sets

[Abadi et al. 1999; Kavvos 2019], and resource indexing [Atkey and Wood 2018; Brunel et al. 2014].

As for Abadi et al. [1999], types are interpreted by a family of relations indexed by worlds𝑤 :𝑊

(instead of just a single relation). We let Rel(A1,A2) = P(A1 × A2) denote the set of relations
between A1 and A2, and WRel(A1,A2) denote the contravariant (𝑤 ⩽ 𝑤 ′→ 𝑅𝑤

′ ⊆ 𝑅𝑤) families

𝑊 → Rel(A1,A2).
Each type 𝐴 is interpreted as a family of relations [[𝐴]]𝜎 ;𝜌 ∈ WRel(L𝐴𝜎1 M, L𝐴𝜎2 M). Herein

𝜎 = (𝜎1, 𝜎2) is a pair of finite maps 𝜎𝑖 , each of them mapping type variables 𝛼 to closed monotypes

𝐴 : Ty00 and modality variables𝑚 to modality constants 𝑞 : Mod. The finite map 𝜌 maps each type

variable 𝛼 to a family of relations inWRel(L𝜎1 (𝛼) M, L𝜎2 (𝛼) M), and each modality variable𝑚 to a

modality constant 𝑝 which can be different from both 𝜎1 (𝑚) and 𝜎2 (𝑚).
The set of worlds 𝑊 is equipped with a preordered commutative monoid structure whose

(monotone) operation is written • and its unit 𝜀. In a first approximation, (•, 𝜀) can be thought of

as (+, 0) from the modality ringoid. To gain some intuition for the role of𝑊 , we consider how it

can be instantiated in specific cases. However, we stress that Λp
is fully generic in this respect:

every program is susceptible to be interpreted in either of the following ways, depending on the

application.

Security levels. For Abadi et al. [1999] each world 𝑤 : 𝑊 stands for a security level, and the

relation R𝑤 will identify values that an agent of clearing level𝑤 is not allowed to distinguish (“see”).

One extreme is the discrete relation that hides nothing and allows one to distinguish everything

(full information); the other extreme is the full relation that identifies any two values and thus

hides everything (no information). The index set𝑊 may be (pre)ordered, putting levels 𝑤 into

a hierarchy. The higher the clearing of an agent𝑤 , the more it is allowed to see, thus, the fewer

values become related by the indistinguishability relations. Thus R𝑤 is contravariant in 𝑤 , i. e.,

𝑤 ⩽ 𝑤 ′ implies R𝑤′ ⊆ R𝑤 .

Sensitivity. For Reed and Pierce [2010], indices𝑤 :𝑊 are non-negative reals, and 𝑎 R𝑤 𝑏 shall
mean that the distance between 𝑎 and 𝑏 is at most 𝑤 (for a suitable metric). (To avoid clutter,

we write relations infix.) Here, R𝑤 is covariant on 𝑤 in the natural order on reals. We still have

contravariance, because we set𝑤 ⩽ 𝑤 ′ to be𝑤 ⩾R 𝑤 ′, the opposite of the natural order.

Quantitative analysis. For quantitative analyses [Atkey 2018; Brunel et al. 2014; Ghica and Smith

2014], a world 𝑤 : 𝑊 in 𝑎 R𝑤 𝑏 denotes the resources needed to construct 𝑎 or 𝑏. Insufficient
resources𝑤 prevent 𝑎 R𝑤 𝑏 from holding, and excessive resources may have the same effect if we

model strict linearity rather than just affinity. A world𝑤 could be a multiset of elementary resources

that are composed to build 𝑎 (and 𝑏 would be built from another copy of the same resources). Such

multisets form indeed a commutative monoid with 𝑤 •𝑤 ′ denoting the multiset union 𝑤 ⊎𝑤 ′
and 𝜀 the empty multiset ∅. The preorder𝑤 ⩽ 𝑤 ′ may be simply equality when we insist on exact

resource consumption.

Uncertainty about resources can be expressed by letting a world𝑤 be a set of multisets𝑚. To

satisfy 𝑎 R𝑤 𝑏, we are allowed to choose one multiset𝑚 ∈ 𝑤 , but need to consume it fully to build

our object 𝑎 (and build 𝑏 from the same𝑚). The monoid structure is then given by 𝜀 = {∅} (the set
containing just the empty multiset) and 𝑤 •𝑤 ′ = {𝑚 ⊎𝑚′ | 𝑚 ∈ 𝑤 and𝑚′ ∈ 𝑤 ′}. The preorder
𝑤 ⩽ 𝑤 ′ shall be𝑤 ⊇ 𝑤 ′, meaning that going up in the preorder we eliminate alternatives. Then

R𝑤 is contravariant in𝑤 .
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7.3 Relational Interpretation of Simple Types
Let us now return to the definition of the semantics [[𝐴]]. In order to define [[𝐴]]𝜎 ;𝜌 in a concise

way, we introduce some constructions on relation families. First, observe that WRel inherits all
logical connectives by pointwise definition, for instance, we can define ⊤𝑤 to be the full relation,

yielding true if applied to any two points. Likewise, we can define finite and infinite intersection

(∩ and

⋂
) of relation families pointwise via conjunction and universal quantification, and similar

finite and infinite union (∪ and

⋃
) via disjunction and existential quantification.

Further, recall the standard product and function space on relations. Let R : Rel(A1,A2) and
S : Rel(B1,B2).

R × S : Rel(A1 × B1,A2 × B2)
= {((𝑎1, 𝑏1), (𝑎2, 𝑏2)) | (𝑎1, 𝑎2) ∈ R and (𝑏1, 𝑏2) ∈ S}

R + S : Rel(A1 + B1,A2 + B2)
= {(𝜄1𝑎1, 𝜄1𝑎2) | (𝑎1, 𝑎2) ∈ R} ∪ {(𝜄2𝑏1, 𝜄2𝑏2) | (𝑏1, 𝑏2) ∈ S}

R → S : Rel(A1 → B1,A2 → B2)
= {(𝑓1, 𝑓2) | (𝑓1 (𝑎1), 𝑓2 (𝑎2)) ∈ S for all (𝑎1, 𝑎2) ∈ R}

These constructions extend pointwise to families of relations WRel.
Then, we interpret linear type constructors as operations on relation families that actually

inspect the index𝑤 . Let R : WRel(A1,A2) and S : WRel(B1,B2). In the following, we use just 𝑎

as shorthand for the pair (𝑎1, 𝑎2); likewise for 𝑏.

1
𝑤 = {((), ()) | 𝑤 ⩽ 𝜀} : Rel(1, 1)
(R ⊗ S)𝑤 =

⋃
𝑤⩽𝑤𝑎•𝑤𝑏

(R𝑤𝑎 × S𝑤𝑏 ) : Rel(A1 × B1,A2 × B2)
(R ⊸ S)𝑤 =

⋂
𝑤𝑏⩽𝑤•𝑤𝑎

(R𝑤𝑎 → S𝑤𝑏 ) : Rel(A1 → B1,A2 → B2)

In the following, let us interpret these definitions for different analyses.

Unit. The unit set 1 contains no information, and thus its inhabitant () can be constructed in

a world 𝑤 such that: 𝑤 ⩽ 𝜀. In terms of security, the empty tuple is (by its very nature) always

indistinguishable from itself. Thus the indistinguishability relation may hold at all security levels,

as there is never a need to look into the empty tuple, regardless the capabilities an agent is equipped

with. Thus,𝑤 ⩽ 𝜀 does not place any restriction on𝑤 . This suggests that for a complete lattice𝑊

of capabilities, the unit 𝜀 should be the top element ⊤, making𝑤 ⩽ 𝜀 vacuously true. For sensitivity

analysis, any two inhabitants of the unit set have distance 0, thus, the unit 𝜀 of monoid𝑊 is the

real 0, and the condition𝑤 ⩽ 𝜀 equivalent to𝑤 ⩾R 0, is vacuously true. When worlds are sets of

multisets, as in quantitative analysis,𝑤 ⩽ 𝜀 expresses that the sets𝑤 contains the empty multiset.

This means that no resources are required, but the empty resource bag needs to be one of our

possibilities.

Tensor product. Recall that (𝑎1, 𝑏1) (R ⊗ S)𝑤 (𝑎2, 𝑏2) holds iff. there are𝑤𝑎 ,𝑤𝑏 such that 𝑎1 R𝑤𝑎

𝑎2 and 𝑏1 R𝑤𝑏 𝑏2 and𝑤 ⩽ 𝑤𝑎 •𝑤𝑏 . In the quantitative interpretation, we need to break down the

resources 𝑤 available for the construction of the pair into resources 𝑤𝑎 for the first component

and𝑤𝑏 for the second component. This is expressed by the condition𝑤 ⩽ 𝑤𝑎 •𝑤𝑏 . For security
analysis, the capability to access a pair should include the capability to access both components.

Turning this statement around, a pair is only indistinguishable from another pair if both respective

components are so. On a capability lattice, 𝑤𝑎 • 𝑤𝑏 would be the meet 𝑤𝑎 ∧ 𝑤𝑏 , breaking the

condition 𝑤 ⩽ 𝑤𝑎 ∧𝑤𝑏 into the pair of conditions 𝑤 ⩽ 𝑤𝑎 and 𝑤 ⩽ 𝑤𝑏 . In sensitivity analysis

[Reed and Pierce 2010], the distance of pairs is the sum of distances of its respective components.
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This means that two pairs are within distance𝑤 if its components are within distances𝑤𝑎 and𝑤𝑏
and𝑤 ⩾R 𝑤𝑎 +𝑤𝑏 . The composition𝑤𝑎 •𝑤𝑏 is thus addition.
Lemma 7.1 (Unit law). R ⊗ 1 is isomorphic to R. (See extended material)

Lemma 7.2 (Symmetry). R ⊗ S is isomorphic to S ⊗ R. (See extended material)

Sum. The disjoint sum (R + S)𝑤 is defined directly in terms of R𝑤 and S𝑤 at the same world𝑤 .

In this interpretation, making the choice does not cost any resources. Conversely, this correctly

models that any value of a closed (non-abstract) data type can be constructed in any modality

context, and lives at the bottom of the informational lattice.

In other words, the indistinguishability relation for the sum type only inherits the indistinguisha-

bility from the components. Put plainly, if 𝑎 and 𝑏 are identified, so are 𝜄𝑖 (𝑎) and 𝜄𝑖 (𝑏). Different
injections are always distinguished, thus, the bit of information associated to the choice of injection

is visible to all informational levels.

For sensitivity analysis, the distance of different injections is∞, thus, they are not related by any

R𝑤 since we restrict worlds to < ∞. The genericity of our semantics takes the burden of choice

from us; otherwise, we could have been tempted to include a world∞ where everything is related,

but then we would have needed a special case for sum types. In fact, a world∞ would contain no

information, thus, it is anyway redundant.

Linear function space. Recall that 𝑓1 (R ⊸ S)𝑤 𝑓2 iff for all𝑎1 R𝑤𝑎 𝑎2 and all𝑤𝑏 with𝑤𝑏 ⩽ 𝑤•𝑤𝑎
we have 𝑓1 (𝑎1) S𝑤𝑏 𝑓2 (𝑎2). Thus, the definition of R ⊸ S states that a function can be constructed

from resources𝑤 if for any argument that brings its own resources𝑤𝑎 the function result can be

constructed with resources 𝑤𝑏 with 𝑤𝑏 ⩽ 𝑤 •𝑤𝑎 . Read differently, the resources for a function

application is the composition of the resources for both function and argument. Functions stemming

from closed terms do not need own resources, thus, they start with 𝜀, but as a curried function is

applied to its arguments one after another, it accumulates the resources coming with each argument

to eventually construct a result from all the gathered resources. Technically, the construction of ⊸
can be derived from the fact that (S⊸ _) should be a right adjoint to (_ ⊗ S) to allow currying

and uncurrying.

Lemma 7.3 (Currying). R ⊗ S⊸ T is isomorphic to R ⊸ (S⊸ T). (See extended material)

From the security perspective, access to a function and access to its argument should be sufficient

to get access to the result. Thus, the definition of (⊸), invoking 𝑤𝑏 ⩽ 𝑤 •𝑤𝑎 , does the correct
thing for access control to functions.

Reed and Pierce [2010] define the distance of two 1-sensitive functions 𝑓 , 𝑓 ′ as the supremum

of their distance at each point in their domain. In our notation that would mean that (𝑓 , 𝑓 ′) ∈
(R ⊸ S)𝑤 iff (𝑓 (𝑎), 𝑓 ′(𝑎)) ∈ S𝑤 for all 𝑎. This is a consequence of the definition of ⊸ for

reflexive 𝑎, meaning (𝑎, 𝑎) ∈ R0
. Our definition requires more generally that (𝑎, 𝑎′) ∈ R𝑤𝑎

should

imply (𝑓 (𝑎), 𝑓 ′(𝑎′)) ∈ S𝑤+𝑤𝑎
. This could be equivalent to Reed and Pierce given that 1-sensitivity

implies (𝑓 (𝑎), 𝑓 (𝑎′)) ∈ S𝑤𝑎
and the triangle inequality S𝑤 ◦ S𝑤𝑎 ⊆ S𝑤+𝑤𝑎

could be proven on

homogeneous relations. However, our relations are heterogeneous, and the triangle law is ill-formed

in general. Our definition thus properly generalises the one of Reed and Pierce.

7.4 Non-idempotent Intersection
In order to characterise the interpretation of modal boxing 𝑝 ⟨𝐴⟩, we introduce the operation

R ? S for relation families R,S : WRel(A1,A2). It is similar to R ⊗ S, only that it is akin to a

non-idempotent intersection type rather than a product.

𝑎 ∈ (R ? S)𝑤 :⇐⇒ ∃𝑤𝑟 ,𝑤𝑠 . 𝑤 ⩽ 𝑤𝑟 •𝑤𝑠 ∧ 𝑎 ∈ R𝑤𝑟 ∧ 𝑎 ∈ S𝑤𝑠
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Here, we split the resources𝑤 for 𝑎 into𝑤𝑟 and𝑤𝑠 to build the same 𝑎 twice, once in R and once

in S. Another way to write the non-idempotent intersection is:

(R ? S)𝑤 =
⋃

𝑤⩽𝑤𝑟 •𝑤𝑠

(R𝑤𝑟 ∩ S𝑤𝑠 )

Non-idempotent intersection has unit ⊤ : WRel(A1,A2) defined by

𝑎 ∈ ⊤ 𝑤 ⇐⇒ 𝑤 ⩽ 𝜀.

This is similar to family 1 only that it can be used at any type, not just the unit type.

Lemma 7.4 (Distribution properties of non-idempotent intersection). (See extended
material)
(1) R ? (S ∪ T ) = (R ? S) ∪ (R ? T) and R ?

⋃
𝑖 S𝑖 =

⋃
𝑖 (R ? S𝑖 ).

(2) (R1 ∩ R2) ? (S1 ∩ S2) ⊆ (R1 ? S1) ∩ (R2 ? S2) and (
⋂
𝑖:𝐼 R𝑖 ) ? (

⋂
𝑖:𝐼 S𝑖 ) ⊆

⋂
𝑖:𝐼 (R𝑖 ? S𝑖 ).

7.5 Subexponentials
The interpretation of modalities via subexponentials

!
𝑝

𝐴1,𝐴2

: WRel(L𝐴1 M, L𝐴2 M) →WRel(L𝐴1 M, L𝐴2 M)

is a parameter to our model, however, we require thatWRel(L𝐴1 M, L𝐴2 M) is almost a left module

to ringoid Mod via action (𝑝,R) ↦→ !
𝑝

𝐴1,𝐴2

R. More precisely, the following laws must hold:

!
1 R = R !

𝑝𝑞 R ⊆ !
𝑝
!
𝑞R

!
0 R ⊆ ⊤ !

𝑝+𝑞R ⊆ !
𝑝R ? !

𝑞R
!
𝑝∧𝑞R ⊆ !

𝑝R ∩ !𝑞R !
𝑝 (R ∩ S) ⊆ !

𝑝R ∩ !𝑝S
!
𝑝 ⊤ = ⊤ !

𝑝 (R ? S) = !
𝑝R ? !

𝑝S
Note that the distribution of the meet entails monotonicity: !

𝑝R ⊆ !
𝑞R for 𝑝 ⩽ 𝑞 (which is defined

as 𝑝 ∧ 𝑞 = 𝑝).

Beside the above properties we require subexponentials to distribute over sums and products as

follows:

!
𝑝
1 = 1

!
𝑝 (R ⊗ S) = !

𝑝R ⊗ !
𝑝S

!
𝑝 (R + S) ⊆ !

𝑝R + !𝑝S if 𝑝 ⩽ 1

Finally, to model box-introduction (𝑝 ⟨·⟩-intro), we require !
𝑝
to be functorial in the following

sense:

(R ⊸ S)𝜀 ⊆ (!𝑝R ⊸ !
𝑝S)𝜀

In other words,

⋂
𝑤 (R𝑤 → S𝑤) ⊆

⋂
𝑤 ((!𝑝R)𝑤 → (!𝑝S)𝑤). In the following, we provide some

insights into the operator !
𝑝
by spelling it out for some instances of modal type systems.

7.5.1 Sensitivity Analysis. In sensitivity analysis with 𝑝 : R∞⩾0
, the scaling modality !

𝑝
inflates

distances by a factor of 𝑝; in our setting,

(!𝑝R)𝑤 = R𝑤/𝑝 for 𝑝 > 0

(!0R)𝑤 = ⊤𝑤 .

In particular, (𝑎1, 𝑎2) ∈ (!∞R)𝑤 iff (𝑎1, 𝑎2) ∈ R0
, stating that two points can only be related in !

∞R
if they had distance 0 in R. This can be interpreted that all non-identical points in R are infinitely

apart in !
∞R, thus, the space !∞R is discrete. In particular, unrestricted functions (!∞R)⊸ S are

𝑐-sensitive for any 𝑐 , and thus, devoid of any sensitivity information.
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A corner case is 𝑝 = 0 which means multiplying all distances by 0, making all finitely apart

points equal. Since𝑤 cannot be infinity, we can consistently set (𝑎1, 𝑎2) ∈ (!0R)𝑤 to be true. More

concisely, !
0R = ⊤ = ⊤ , the latter holding since𝑤 ⩽ 𝜀 is vacuously true (𝑤 ⩾R 0 is true). We see

that !
0
lumps all points together, and the space !

0R is codiscrete. One-sensitivity for a function

in (!0R) ⊸ S means that it needs to keep the lump together, thus, unless the codomain S is

codiscrete, it cannot use its argument relevantly.

Note that action !
𝑝
is contravariant in 𝑝 w. r. t. the natural order on R∞⩾0

due to 𝑝 occuring in the

denominator (and R being covariant w. r. t. the natural order). Thus !
𝑝
is covariant in 𝑝 w. r. t. the

modality order.

Lemma 7.5 (Soundness of scaling). The operator !𝑝 has the required properties. (See extended
material)

7.5.2 Security. In the security case, modalities form a distributive lattice, and so it is isomorphic

to a lattice generated by set inclusion over a carrier set 𝐶 , corresponding to capabilities. Thus

we represent a world as a subset of 𝐶 , and define !
𝑝R𝑤 = R𝑤\𝑝 , where we consider here 𝑝 as

its representation as a subset of 𝐶 . The operations on modalities are thus (∧) = (+) = (∩) and
(·) = (∩), and 0 corresponds to𝐶 and 1 to {}. As suggested above, 𝜀 = 𝐶 and (⩽) = (⊆). Intuitively,
the fewer capabilities one has, the more things become equal, according to contravariance ofWRel.

Lemma 7.6 (Soundness of capabilities). (See extended material)

7.5.3 Quantitative Analysis. In quantitative analysis, 𝑝 is a set of natural numbers. Let our worlds

𝑤 be sets of multisets of resources. Here, a multiset𝑚 ∈ 𝑤 should be one possibility of available

resources that have to be consumed exactly, but 𝑤 offers several resource bags to choose from.

Let 0𝑊 = {∅} and 𝑤1 +𝑊 𝑤2 = {𝑚1 ⊎𝑚2 | 𝑚1 ∈ 𝑤1 and 𝑚2 ∈ 𝑤2}. This allows us to define

𝑛 ·𝑤 = 𝑤 +𝑊 . . . +𝑊 𝑤︸             ︷︷             ︸
𝑛 times

for 𝑛 ∈ N.

Modalities 𝑝 act on worlds𝑤 via 𝑝 ·𝑤 =
⋃
𝑛∈𝑝 (𝑛 ·𝑤). It is easy to see that𝑊 is a left module to

ringoid𝑀 under action (𝑝,𝑤) ↦→ 𝑝 ·𝑤 :

(𝑝 ∧ 𝑞) · 𝑤 = 𝑝 ·𝑤 ∪ 𝑞 ·𝑤
1 · 𝑤 =𝑤 𝑝𝑞 · 𝑤 = 𝑝 · (𝑞 ·𝑤)
0 · 𝑤 = 0𝑊 (𝑝 + 𝑞) · 𝑤 = 𝑝 ·𝑤 +𝑊 𝑞 ·𝑤
𝑝 · 0𝑊 = 0𝑊 𝑝 · (𝑤1 +𝑊 𝑤2) = 𝑝 ·𝑤1 +𝑊 𝑝 ·𝑤2

This action allows us to define the subexponential:

(!𝑝R)𝑤 =
⋃

𝑤⩽𝑝 ·𝑤′
R𝑤′

Lemma 7.7 (Soundness of boxing). (See extended material)

7.6 Relational Interpretation of Polymorphism
Given families of sets (A𝐴)𝐴:Ty00 and (B𝐵)𝐵:Ty00 and a family of relations (R𝐴𝐵 : WRel(A𝐴,B𝐵))𝐴,𝐵:Ty00
let ©­«

∏
𝐴,𝐵:Ty00

R𝐴𝐵
ª®¬
𝑤

= {(𝑓 , 𝑔) | 𝑓 :

∏
𝐴:Ty00

A𝐴 and 𝑔 :

∏
𝐵:Ty00

B𝐵 and (𝑓 (𝐴), 𝑔(𝐵)) ∈ R𝑤𝐴𝐵}.

We use an analogous definition for Mod instead of Ty00. In fact, any index set 𝐼 could replace Ty00.
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7.7 Definition of the Relational Interpretation
The relation family [[𝐴]]𝜎 ;𝜌 : WRel(L𝐴𝜎1 M, L𝐴𝜎2 M) is defined by induction on 𝐴 as follows. Herein,

the relational interpretation [[𝐾]] of type constants 𝐾 remains a parameter.

[[𝐾 ]]𝜎 ;𝜌 = [[𝐾]]
[[𝛼 ]]𝜎 ;𝜌 = 𝜌 (𝛼)
[[1 ]]𝜎 ;𝜌 = 1

[[𝐴 × 𝐵 ]]𝜎 ;𝜌 = [[𝐴]]𝜎 ;𝜌 ⊗ [[𝐵]]𝜎 ;𝜌
[[𝐴 + 𝐵 ]]𝜎 ;𝜌 = [[𝐴]]𝜎 ;𝜌 + [[𝐵]]𝜎 ;𝜌
[[𝑝𝐴→ 𝐵]]𝜎 ;𝜌 = !

𝑝 [𝜌 ]
𝐴 [𝜎 ] [[𝐴]]𝜎 ;𝜌 ⊸ [[𝐵]]𝜎 ;𝜌

[[𝑝 ⟨𝐴⟩ ]]𝜎 ;𝜌 = !
𝑝 [𝜌 ]
𝐴 [𝜎 ] [[𝐴]]𝜎 ;𝜌

[[∀𝛼.𝐵 ]]𝜎 ;𝜌 =
∏
𝐴1,𝐴2:Ty00

⋂
R:WRel(L𝐴1 M,L𝐴2 M) [[𝐵]]𝜎 [𝛼 ↦→𝐴];𝜌 [𝛼 ↦→R]

[[∀𝑚.𝐵 ]]𝜎 ;𝜌 =
∏
𝑝1,𝑝2:Mod

⋂
𝑞:Mod [[𝐵]]𝜎 [𝑚 ↦→𝑝 ];𝜌 [𝑚 ↦→𝑞 ]

Comparing to Parametricity Semantics. If we let𝑊 = 1 the unit set of worlds, our semantics defines

a single relation for each type and is very similar to the usual parametricity interpretation of types.

However, there are important differences:

The usual identity extension lemma, which implies that [[𝐵]]𝜀 for a closed type 𝐵 is equality, fails

due to irrelevance. Given an irrelevant modality 𝑝 , we have true [[𝑝 ⟨Bool⟩]] false. Interpreting 𝑝
as secret this expresses that for the public eye, the content of the box 𝑝 ⟨Bool⟩ is unobservable.
Further, the relation [[𝐵]]𝜀 is not always reflexive. A counterexample is 𝐵 = ∀𝛼.𝛼 : If every

monotype 𝐴 : Ty00 is inhabited, we have an element ∗𝐴 : L𝐴 M for each 𝐴, thus ∗ := (∗𝐴)𝐴 : L𝐵 M.
However, ∗ [[𝐵]] ∗ can be refuted by using the empty relation ∅𝐴 : Rel(L𝐴 M, L𝐴 M) on𝐴 to instantiate

𝛼 . Then, we are obliged to show ∗𝐴 ∅𝐴 ∗𝐴, which is false by definition of the empty relation.

The counterexample to reflexivity uses a semantic element ∗ : L∀𝛼.𝛼 M that does not represent a
𝜆-term. In Section 7.8 we will show that reflexivity does hold for all elements L 𝑡 M that represent a
term.

7.8 Fundamental Lemma
To state the fundamental lemma of logical relations, which establishes the soundness of the relational

model, we need to extend the interpretation of types to contexts: for every qualified context 𝛾Γ, we
have [[𝛾Γ]]𝜎 ;𝜌 ∈ WRel(L Γ𝜎1 M, L Γ𝜎2 M). The idea is to interpret context extension in the same way

as the product of types: [[𝛾Γ, 𝑥 :
𝑝𝐴]]𝜎 ;𝜌 = [[𝛾Γ]]𝜎 ;𝜌 ⊗ !

𝑝 [[𝐴]]𝜎 ;𝜌
There is a formal mismatch by doing so: variables in Γ are accessed by name and not by index.

This issue could be solved by defining a named version of ⊗, but doing so is straightforward and

uninformative, and thus we do not go through this tedium. The introduction of modalities or types

in Γ is dealt with by demanding that 𝜎𝑖 maps all variables in Γ to monotypes (𝜎𝑖 (𝛼) ∈ Ty00), and 𝜌
to matching relations (𝜌 (𝛼) ∈ WRel(L𝜎1 (𝛼) M, L𝜎2 (𝛼) M)).

Theorem 7.8 (Fundamental lemma). If (𝜉1, 𝜉2) ∈ [[𝛾Γ]]𝑤𝜎 ;𝜌 then (L 𝑡 M(𝜎1,𝜉1) , L 𝑡 M(𝜎2,𝜉2) ) ∈ [[𝐴]]𝑤𝜎 ;𝜌 .

Proof. By induction on 𝛾Γ ⊢ 𝑡 : 𝐴. The proof relies in particular on several lemmas connecting

the qualifications of contexts to relations:

• [[(𝛾 ∧ 𝛿)Γ]]𝜎 ;𝜌 = [[𝛾Γ]]𝜎 ;𝜌 ∩ [[𝛿Γ]]𝜎 ;𝜌 .
• [[(𝛾 + 𝛿)Γ]]𝜎 ;𝜌 = [[𝛾Γ]]𝜎 ;𝜌 ? [[𝛿Γ]]𝜎 ;𝜌 .
• [[𝑝Γ]]𝜎 ;𝜌 = !

𝑝 [[Γ]]𝜎 ;𝜌 .
The first property entails soundness of weakening, as 𝛾 ⩽ 𝛿 then implies [[𝛾Γ]]𝜎 ;𝜌 ⊆ [[𝛿Γ]]𝜎 ;𝜌 .
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The functoriality of !
𝑝
ensures the soundness of 𝑝 ⟨·⟩-intro. Further, the proof utilises the

distribution properties of subexponentials in the elimination rules. E. g., for +-elim, !
𝑞 [[𝐴1 +𝐴2]] ⊆

!
𝑞 [[𝐴1]] + !𝑞 [[𝐴2]] is used to distribute the 𝑞-scaling of the eliminatee 𝑡 to the alternatives, to be

bound to variable 𝑥 :
𝑞𝐴𝑖 in the branches. Similarly, !

𝑞
needs to distribute over tensor (in ×-elim)

and !
𝑝
(in 𝑝 ⟨·⟩-elim). □

Afirst corollary of the fundamental lemma ismodality irrelevance, which states that the behaviour

of terms is independent of the modality appearing in terms.

Theorem 7.9 (Modality irrelevance). If ⊢ 𝑡 : ∀𝑚.Bool, then 𝑓 (𝑝1) = 𝑓 (𝑝2) for 𝑓 = L 𝑡 M.

Proof. The relational semantics of modality quantification gives us 𝑓 [[∀𝑚.Bool]]𝜀 𝑓 , which
yields by definition 𝑓 (𝑝1) [[Bool]]𝜀 𝑓 (𝑝2) for all modalities 𝑝1, 𝑝2. To conclude, it remains to observe

that JBoolK𝜀 is the identity relation. □

The second corollary is irrelevance to 0-qualified inputs. The term irrelevance was coined by

Pfenning [2001] for proof systems, but in the literature on security it is spoken of non-interference
for the equivalent property.

Theorem 7.10 (irrelevance and non-interference). If 𝑓 : L𝐴→ 0𝐵 → Bool M, ⊢ 𝑢 : 𝐴, and
𝑏1, 𝑏2 ∈ L𝐵 M then 𝑓 L𝑢 M𝑏1 = 𝑓 L𝑢 M𝑏2.

Proof. We use an instance of the semantics with the trivial one-point world set (𝑊 = 1).

Irrelevance comes from taking !
0𝑅 = ⊤ and !

𝑝𝑅 = 𝑅 if 𝑝 ≠ 0. (Checking the subexponential laws is

routine.) The fundamental lemma gives 𝑓 [[𝐴→ 0𝐵 → Bool]]𝜀 𝑓 and by definition 𝑓 𝑎1𝑏1 [[Bool]]𝜀
𝑓 𝑎2𝑏2, which means 𝑓 𝑎1𝑏1 = 𝑓 𝑎2𝑏2, whenever 𝑎1 [[𝐴]]𝜀 𝑎2 and 𝑏1 [[!0𝐵]]𝜀 𝑏2. By another instance

of the fundamental lemma we get L𝑢 M [[𝐴]] L𝑢 M. The definition of subexponential make the second

requirement vacuous. □

Additionally, in security applications, one often generalises non-interference to any modality 𝑝

that represents a secret security level, meaning that 𝑝 ⩽ 1 can be ruled out. For us, this generalisation

can be done at the level of Λp
programs: because such a modality 𝑝 is universally quantified at the

outside, one can always instantiate 𝑝 with 0; unless it is also constrained to be observable (𝑝 ⩽ 1) —

in which case the constraint cannot be satisfied.

Example 7.11. For example, the server of Section 4.3.2 takes as parameters a series of security

levels 𝑐1, 𝑐2, . . . , 𝑐𝑛 constrained by a policy, eventually realised as terms of type CanFlow ci cj —
itself defined as ∀𝛼.ci⟨𝛼⟩ → cj ⟨𝛼⟩. We can show that the server is secure, in the sense that it does

not observe any of the messages which it handles (but only forwards them to suitably trusted

clients). To carry out the proof, we must first check if we can substitute every 𝑐𝑖 by 0. The question

which arises is then if the policy can be realised, namely, can we construct the terms of type

ci⟨𝛼⟩ → cj ⟨𝛼⟩? The answer is yes, because the types reduce to 0⟨𝛼⟩ → 0⟨𝛼⟩.
As a negative example, we can attempt to prove that the messages coming from 𝑐1 are private to

all other clients 𝑐𝑖 , for 𝑖 ≠ 1. We substitute 𝑐1 by 0 and check if we can construct ci⟨𝛼⟩ → c1⟨𝛼⟩. This
is now impossible (because 𝑐1 = 0 and 𝑐𝑖 is arbitrary). Hence, the result holds only ifCanFlow c_i c_1
is not found in the policy, for every 𝑐𝑖 ≠ 𝑐1.

8 FREE THEOREMS
Let us apply the relational semantics to establish some properties of terms and types of Λp

.
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8.1 On Church Encodings
An application of parametricity is the adequacy of Church encodings [Böhm and Berarducci 1985].

We investigate one instance that goes back to Reynolds [1983] and also appears as one of Wadler’s

“free theorems” [1989, Section 3.8]:

𝐴 � ∀𝛽. (𝐴→ 𝛽) → 𝛽

The type on the right is the Church encoding of the not very interesting data typeWrap𝐴 that has

a single constructor wrap with a single argument of type 𝐴, basically just wraps the elements of 𝐴.

Unsurprisingly, this wrapping is not expected to make a difference, hence, the isomorphism.

A more refined picture on Church encodings makes use of linearity: First, constructors are

naturally linear functions since their intended semantics is to form a new cell containing all their

arguments exactly once. Secondly, some constructors appear exactly once in certain data structures,

e. g., the zero in Peano natural numbers or the nil in lists. In our case, there exactly one occurrence

of constructor wrap in any value of typeWrap𝐴, hence, a refined encoding of the wrapping type

is:

Wrap𝐴 = ∀𝛽. (𝐴 ⊸ 𝛽)⊸ 𝛽

We shall now demonstrate that this variant is still isomorphic to 𝐴. In fact, the original proof

[Hasegawa 1994] via parametricity carries over to our setting, with some modifications:

(1) We restrict to monotypes 𝐴 since we need to instantiate 𝛽 by 𝐴 in the proof.

(2) We have to tread more carefully since we do not have the identity extension lemma, i. e., we

cannot assume that the relation [[𝐴]] associated to a closed type 𝐴 is set-theoretic equality.

However, wewill treat [[𝐴]] as the definition of equality on type𝐴 and formulate our argument

modulo the relation [[𝐴]].
Maybe surprisingly, the proof does not require any reference to resources: we work with a single

world and thus a single relation for each type. The quantitative aspects enter the picture in that the

two directions of the isomorphism given by Wadler can be assigned linear types:

wrap : 𝐴 ⊸ Wrap𝐴
wrap 𝑎 = Λ𝛽.𝜆(𝑘 : 𝐴 ⊸ 𝛽). 𝑘 𝑎

unwrap : Wrap𝐴 ⊸ 𝐴

unwrap 𝑓 = 𝑓 𝐴 (𝜆𝑥. 𝑥)

It is easy to see that unwrap ◦ wrap is the identity, but in the other direction we have to show that

wrap (unwrap 𝑡) which is Λ𝛽.𝜆𝑘. 𝑘 (𝑡 𝐴 (𝜆𝑥. 𝑥)) has the same meaning as 𝑡 for any ⊢ 𝑡 : Wrap𝐴.
To this end, we use the abstraction theorem for 𝑡 twice.

First, since ⊢ 𝑡 𝐴 (𝜆𝑥. 𝑥) : 𝐴, the abstraction theorem gives us for 𝑎0 := L 𝑡 𝐴 (𝜆𝑥 . 𝑥) M reflexivity
𝑎0 [[𝐴]] 𝑎0. With 𝑓 := L 𝑡 M and id := L 𝜆𝑥. 𝑥 M this means reflexivity for 𝑓 (𝐴) (id) which we shall

need below.

Secondly, for our goal LΛ𝛽.𝜆𝑘. 𝑘 (𝑡 𝐴 (𝜆𝑥. 𝑥)) M = L 𝑡 M it is sufficient to show that for any closed

monotype 𝐵 and every function 𝑘 : L𝐴 M → L𝐵 M we have 𝑘 (𝑓 (𝐴) (id)) = 𝑓 (𝐵) (𝑘). We use the

abstraction theorem on ⊢ 𝑡 : ∀𝛽. (𝐴 ⊸ 𝛽)⊸ 𝛽 replacing 𝛽 by the types 𝐴 and 𝐵 and the relation

R : Rel(L𝐴 M, L𝐵 M) defined by:

𝑎 R 𝑏 :⇐⇒ ∀𝑎′. 𝑎 [[𝐴]] 𝑎′ =⇒ 𝑘 (𝑎′) = 𝑏.

The generalisation to all 𝑎′ that are related to 𝑎 replaces the identity extension lemma that would

say that [[𝐴]] is equality. The abstraction theorem can give us 𝑓 (𝐴) (id) R 𝑓 (𝐵) (𝑘) which implies

our goal 𝑘 (𝑓 (𝐴) (id)) = 𝑓 (𝐵) (𝑘) with 𝑎 = 𝑎′ = 𝑎0 = 𝑓 (𝐴) (id), exploiting reflexivity of 𝑎0. However,

the instantiation of the abstraction theorem requires us to show that id [[𝐴 ⊸ 𝛽]] 𝑘 . To this end,

assume 𝑎 [[𝐴]] 𝑎′ and conclude id(𝑎) R 𝑘 (𝑎′) by the very definition of R. □
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Instantiating type 𝐴 by 𝑝 ⟨𝐴⟩ we get the isomorphism:

𝑝 ⟨𝐴⟩ � ∀𝛽. (𝑝 ⟨𝐴⟩⊸ 𝛽)⊸ 𝛽 � ∀𝛽. (𝑝𝐴→ 𝛽)⊸ 𝛽

This would give us subexponentials via Church encoding, albeit raising the type level frommonotype

to polytype.

8.2 Permutations
Atkey and Wood [2018] show that any list transformation List𝐾 ⊸ List𝐾 with an abstract type 𝐾

is a permutation. To this end, they use lists modulo permutation as worlds, thus,𝑊 = List𝐾 with

the standard monoid structure (empty list and append) and 𝑙 ⩽ 𝑙 ′ if 𝑙 is a permutation of 𝑙 ′. The
relational semantics is induced by 𝑘1 [[𝐾]]𝑤 𝑘2 ⇐⇒ 𝑤 = [𝑘1] = [𝑘2], i. e.,𝑤 is the singleton list

containing 𝑘1 that is equal to 𝑘2.

Here, we will show the simpler fact that every term

⊢ 𝑡 : (𝐾 × 𝐾)⊸ (𝐾 × 𝐾)

implements a permutation, thus, L 𝑡 M is either identity id or a swap of the elements of the pair. We

use the same worlds, lists modulo permutation, but choose to represent them directly as multisets

(e. g., could be implemented as 𝐾 → N). The monoidal structure is multiset union, and ⩽ is just

equality. The relational semantics is constructed from 𝑘1 [[𝐾]]𝑤 𝑘2 ⇐⇒ 𝑤 = {|𝑘1 |} = {|𝑘2 |}.
The fundamental theorem for 𝑡 gives 𝑓 [[(𝐾 × 𝐾)⊸ (𝐾 × 𝐾)]] ∅ 𝑓 with 𝑓 = L 𝑡 M. Assum-

ing 𝑘1, 𝑘2 : L𝐾 M, we get 𝑓 (𝑘1, 𝑘2) [[𝐾 × 𝐾]] {|𝑘1,𝑘2 |} 𝑓 (𝑘1, 𝑘2). With (𝑘 ′
1
, 𝑘 ′

2
) = 𝑓 (𝑘1, 𝑘2) this yields

𝑘 ′𝑖 [[𝐾]]
𝑤𝑖 𝑘 ′𝑖 for 𝑖 = 1, 2 and𝑤1•𝑤2 = {|𝑘1, 𝑘2 |}. Inferring𝑤𝑖 = {|𝑘 ′𝑖 |}, we conclude {|𝑘 ′1, 𝑘 ′2 |} = {|𝑘1, 𝑘2 |},

leaving only the solutions 𝑘 ′𝑖 = 𝑘𝑖 (identity) or 𝑘
′
𝑖 = 𝑘2−𝑖 (swap). □

Small modifications of this proof show the impossibility of duplication or projection:

̸⊢ 𝑡𝑑 : 𝐾 ⊸ (𝐾 × 𝐾)
̸⊢ 𝑡𝑝 : (𝐾 × 𝐾)⊸ 𝐾

Applying the multiset semantics, we end up with absurd proof obligations like {|𝑘 |} = {|𝑘1, 𝑘2 |}. □
We have shown these results for an abstract type 𝐾 , but we can immediately generalise them to

polymorphic types:

⊢ 𝑡 : ∀𝛼. (𝛼 × 𝛼)⊸ (𝛼 × 𝛼) implies L 𝑡 M ∈ {id, swap}
̸⊢ 𝑡𝑑 : ∀𝛼. 𝛼 ⊸ (𝛼 × 𝛼)
̸⊢ 𝑡𝑝 : ∀𝛼. (𝛼 × 𝛼)⊸ 𝛼

The two applications of the fundamental theorem show just the tip of the iceberg. Many more

“free” theorems wait to be discovered.

9 RELATEDWORK
We have already extensively specific related systems in Section 4, and concentrate here on general-

ising work. The idea of generalising the structure of modalities to some ring-like structure can be

traced to bounded linear logic [Girard et al. 1992]. This idea was then refined by Lago and Hofmann

[2009] and made explicit by Ghica and Smith [2014], but, in all three cases the ring structure is

only used to place an upper bound on resource usage. The observation that the ring structure can

place more general constraints constraints is, to our knowledge, due to McBride [2016], who also

combined dependent types into the mix. According to McBride, types consume no resources, and

thus there is no constraint on the occurrences of variables bound by a type-former (such as Π).
Downstream, Atkey [2018] further refined the system and gave it categorical semantics, however

this system appears to lack interest in the weakening rule wk, which is important for us.
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The idea of further generalising the semantics comes from Atkey and Wood [2018], who suggest

using a promonoidal category for the equivalent of our set of worlds𝑊 . As we see it, this means

introducing a relation 𝑃 generalising 𝑤 ⩽ 𝑤1 •𝑤2 and a predicate 𝐽 generalising 𝑤 ⩽ 𝜀 with a

suitable axiomatisation expressing monotonicity, associativity, commutativity, and unit laws. The

use of linear operators in the substitution lemma can also be attributed to Atkey and Wood [2019],

but in later work.

Regardless, none of the above systems seems to aim at a maximal generality for the modality

structure, whereas this is our goal. Brunel et al. [2014] propose the same ringoid structure as

ours (additionally demanding a greatest element ∞). However, they leave out sum types, thus

lacking the interaction between observability and case analysis. They offer an abstract machine

interpretation, but it does not track modalities. Petricek et al. [2014] considers an even more generic

structure (structured coeffects correspond to whole modality contexts). However they also present

a specialised “flat” variant, which is closer to our ringoid. Yet it remains subtly different, requiring

𝑝 ∧ 𝑞 ⩽ 𝑝 + 𝑞 instead of the monotonicity of (+).
The present paper stands alone in the following respects. (1) It explicitly shows how the system

subsumes several others. (2) It explores lesser trodden areas of semantics for modalities: a modality-

preserving abstract machine and a modality-aware relational semantics, which implies irrelevance.

(3) It leverages quantification over modalities, so that specialised systems can be constructed within

the system, and consequently irrelevance works for any modality 𝑝 above 1.

The work of Orchard et al. [2019] is perhaps one of the pieces of work nearest to ours, and as

such deserves a detailed comparison. One of the main difference is that of focus: Orchard et al.

describe a complete system, and thus focus more on user-facing features, such as a type-checker

— which we do not present here. In contrast, we offer a more detailed meta-theory, including in

particular a relational semantics. We also analyse the interaction between observability and case

analysis (See also Section 10), which is not discussed by Orchard et al. [2019], even though their

calculus Gr features patterns.

As we do, Orchard et al. aim at using modalities for several purposes, which they support by

having builtin modality support for several purposes, with special constructors (Private and Public
for security applications, intervals for quantitative analyses, etc.) and operations (multiplication,

addition, lower and upper bounds, etc.). We argue here that so many constructors and operations

these are not needed, because the user can quantify over modalities with constraints, which can be

expressed within Λp
(Example 7.11).

Orchard et al. also describe a minimal calculus (GrMini) without all these complications. But, it

also lacks sum types as well as an ordering over modalities, and thus has much fewer applications

than Λp
.

In addition to graded necessity, supporting co-effects, (corresponding to our qualified types), Gr

also supports graded possibility
2
, to support effects, such as IO. The relationship between the two is

studied by Gaboardi et al. [2016], but we would prefer the approach taken by Bernardy et al. [2018],

who use a double-negation encoding to encode possibility, keeping the calculus simpler.

10 DISCUSSION AND CONCLUSIONS
Constraint on case analysis. A non-forced design choice in our system is witnessed by the

constraint 𝑞 ⩽ 1 in the rule for case analysis. While all other choices (including the use of 0 and 1 in

the variable rule, addition and multiplication in application in application and the use of ordering

(⩽) in weakening) are necessary for (modality-)preservation to go through, in the substitution

2
A terminology borrowed from alethic logic, see Section 4.3.3
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lemma and in the abstract machine, we could just as well remove the 𝑞 ⩽ 1 with no consequence

on this preservation.

To further analyse our design choice, let us imagine that we replace the constraint 𝑞 ⩽ 1 by

𝑞 ⩽ 𝜃 , for some fixed modality 𝜃 . Then, recall (1) that the bit of information corresponding to

which tag is present (inj
1
or inj

2
) is accessible in the branches of a case analysis, and (2) that closed

values of a closed (non-abstract) type can be constructed in empty contexts. Together (1) and (2)

mean that the calculus would allow promotion of concrete data (in particular Booleans) from 𝜃 to

any modality, by pattern matching:

promote : 𝜃 ⟨Bool⟩⊸ p⟨Bool⟩
promote [ true ] = [ true ]
promote [ false ] = [ false ]

(In contrast, 𝜆 𝜃𝑥 .[𝑝𝑥] : 𝜃𝛼 → 𝑝 ⟨𝛼⟩ would be well-typed, for any abstract type 𝛼 , only if 𝜃 ⩽ 𝑝 .)

Thus 𝜃 is the modality of data which can be duplicated (for quantitative and sensitivity application)

and revealed (for informational application).

If we let𝜃 = 0, then all (concrete) data becomes observable by the current program, and irrelevance

(Theorem 7.10) no longer holds. In general if 1 ⩽ 𝜃 (and 𝜃 ≠ 1) then the current program may

not return 𝑥 :
𝜃Bool directly, but by case analysis can observe it, promote it and then return it,

essentially bypassing the restriction. Thus we find that 1 ⩽ 𝜃 should be ruled out as a design point.

If we have 𝜃 ⩽ 1 (and 𝜃 ≠ 1), then we have a situation where the current program can return

some variable 𝑥 :
1Bool, but it cannot itself observe it by case analysis. This choice is justified for

systems where information must be strictly conserved (say quantum logic), and it does not violate

non-interference. In fact our meta-theory is fully compatible with this choice. Letting 𝜃 = ⊥, the
bottom of the lattice, may even appear the most natural choice, because it rules out any promotion.

However it would mean that the payload (𝐴𝑖 ) of a sum type 𝐴1 +𝐴2 would also be required to have

modality ⊥, restricting the usefulness of sum types. To recover their flexibility, sum types would

need to be modified and come at least with an extra modality annotation.

To avoid such complications, and following Girard [1987] who does allow the promotion Bool⊸
!Bool, we decided to simply let 𝜃 = 1.

Regardless, with 𝜃 = 1, one can qualify explicitly any bit of information with a modality 𝑝 , by

using the type 𝑝 ⟨Bool⟩. This bit will be only accessible to the current program if 𝑝 ⩽ 1.

Relative versus absolute modalities. In several systems [Atkey 2018; McBride 2016] the typing

judgement is annotated with a current modality. This has the benefit that modalities have an

absolute, fixed meaning. On the other hand, typing is less compositional: whether a term is well-

typed or not depends additionally in what context it occurs. In particular, in 0-context terms, no

modality check happens. However, even relative modalities can be given an absolute meaning for

evaluation, as our abstract machine shows. In this respect we drew inspiration from Bernardy et al.

[2018], however their development is based on a big-step evaluation relation [Launchbury 1993]

and a lot more involved than ours.

Extending to dependent types. Even though we exposed our ideas in the context of a relatively

simple system (polymorphic lambda calculus), we are confident that they can be exported to related

systems with dependent types [Barendregt 1992]. An open question is whether McBride’s idea

(allow arbitrary occurrences of variables in types) is fully compatible with our development.

Non-commutative modalities. Our metatheory does not require modality product to be commuta-

tive, but none of our examples leverages this generality. To our knowledge, the structure in not
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exploited yet in the literature. Non-commutativity could be useful to represent that several opera-

tions need to be performed in a specific order. This way, a particular protocol could be enforced

using modalities. We leave this uncharted area for future work.
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