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Proof assistants based on dependent type theory provide expressive languages for both programming and
proving within the same system. However, all of the major implementations lack powerful extensionality
principles for reasoning about equality, such as function and propositional extensionality. These principles
are typically added axiomatically which disrupts the constructive properties of these systems. Cubical type
theory provides a solution by giving computational meaning to Homotopy Type Theory and Univalent Foun-
dations, in particular to the univalence axiom and higher inductive types. This paper describes an extension
of the dependently typed functional programming language Agda with cubical primitives, making it into a
full-blown proof assistant with native support for univalence and a general schema of higher inductive types.
These new primitives make function and propositional extensionality as well as quotient types directly defin-
able with computational content. Additionally, thanks also to copatterns, bisimilarity is equivalent to equality
for coinductive types. This extends Agda with support for a wide range of extensionality principles, without
sacrificing type checking and constructivity.
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1 INTRODUCTION

A core idea in programming and mathematics is abstraction: the exact details of how an object is
represented should not affect its abstract properties. In other words, the implementation details
should not matter.This is exactly what the principle of univalence captures by extending the equal-
ity on the universe of types to incorporate equivalent types.1 This then gives a form of abstraction,

1For the sake of this introduction, “equivalent” may be read as “isomorphic”. In Homotopy Type Theory (HoTT), isomor-

phism coincides with equivalence for sets (in the sense of HoTT). Equivalence for types in general is a refinement of the
concept of isomorphism.
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or invariance up to equivalence, in the sense that equivalent types will share the same structures
and properties. The fact that equality is proof relevant in dependent type theory is the key to en-
abling this; the data of an equality proof can store the equivalence and transporting along this
equality should then apply the function underlying the equivalence. In particular, this allows pro-
grams and properties to be transported between equivalent types, hereby increasing modularity
and decreasing code duplication. A concrete example are the equivalent representations of natural
numbers in unary and binary format. In a univalent system it is possible develop theory about nat-
ural numbers using the unary representation, but compute using the binary representation, and
as the two representations are equivalent they share the same properties.

The principle of univalence is the major new addition in Homotopy Type Theory and Univalent
Foundations (HoTT/UF) [Univalent Foundations Program 2013]. However, these new type theo-
retic foundations add univalence as an axiom which disrupts the good constructive properties of
type theory. In particular, if we transport addition on binary numbers to the unary representation
we will not be able to compute with it as the system would not know how to reduce the univalence
axiom. Cubical type theory [Cohen et al. 2018] addresses this problem by introducing a novel rep-
resentation of equality proofs and thereby providing computational content to univalence. This
makes it possible to constructively transport programs and properties between equivalent types.
This representation of equality proofs has many other useful consequences, in particular function
and propositional extensionality (pointwise equal functions and logically equivalent propositions
are equal), and the equivalence between bisimilarity and equality for coinductive types [Vezzosi
2017].

Dependently typed functional languages such as Agda [2018], Coq [2019], Idris [Brady 2013],
and Lean [de Moura et al. 2015], provide rich and expressive environments supporting both pro-
gramming and proving within the same language. However, the extensionality principles men-
tioned above are not available out of the box and need to be assumed as axioms just as in HoT-
T/UF. Unsurprisingly, this suffers from the same drawbacks as it compromises the computational
behavior of programs that use these axioms, and even make subsequent proofs more complicated.

So far, cubical type theory has been developed with the help of a prototype Haskell implemen-
tation called cubicaltt [Cohen et al. 2015], but it has not been integrated into one of the main
dependently typed functional languages. Recently, an effort was made, using Coq, to obtain effec-
tive transport for restricted uses of the univalence axiom [Tabareau et al. 2018], because, as the
authors mention, “it is not yet clear how to extend [proof assistants] to handle univalence internally”.

This paper achieves this, and more, by making Agda into a cubical programming language with
native support for univalence and higher inductives types (HITs). We call this extension Cubical

Agda as it incorporates and extends cubical type theory. In addition to providing a fully construc-
tive univalence theorem, Cubical Agda extends the theory by allowing proofs of equality by co-
patterns, HITs as in Coquand et al. [2018] with nested pattern matching, and interval and partial
pre-types. This paper aims to provide a formal account of the extensions to the language of Agda
and its type-checking algorithm needed to accommodate the new features. In particular, as it re-
quired the most care, we will dedicate a large portion of this paper to the handling of pattern
matching.

Contributions: The main contribution of this paper is the implementation of Cubical Agda; a
fully fledged proof assistant with constructive support for univalence and HITs. This makes a
variety of extensionality principles provable and we show how these can be used for programming
and proving in Sect. 2. We explain how Agdawas extended to support cubical type theory (Sect. 3),
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in particular we describe how some primitive notions of cubical type theory are internalized as pre-
types, like the interval (Sect. 3.1), partial elements and cubical subtypes (Sect. 3.3). The technical
contributions are:

• We extend cubical type theory by records and coinductive types (Sect. 3.2.2).
• We add support for a general schema of HITs, and extend the powerful dependent pattern-

matching of Agda to also support pattern matching on HITs (Sect. 4).
• We describe an optimization to the algorithm for transport in Glue types, (Sect. 5), which

gives a simpler proof of the univalence theorem compared to Cohen et al. [2018] (Sect. 5.2).

Using the optimization to transport forGlue types we discuss an improved canonicity theorem for
cubical type theory with HITs (Sect. 6). The paper finishes with some concluding remarks and an
overview of related and future work (Sect. 7).

Acknowledgements: The authors are grateful to the anonymous reviewer’s for their helpful com-
ments on earlier versions of the paper. The second author is also grateful for the feedback from
everyone in the Agda learning group at CMU and especially to Loïc Pujet for porting the HIT in-
tegers from cubicaltt and Zesen Qian for the formalization of set quotients. We would also like
to thank Martín Escardó for encouraging us to develop the agda/cubical library and everyone
who has contributed to it since then.

2 PROGRAMMING AND PROVING IN CUBICAL AGDA

In this section, we show some examples of how the new cubical features in Agda enable inter-
esting and useful ways for both programming and proving in dependent type theory. No expert
knowledge of HoTT/UF is assumed. By using univalence and other ideas from HoTT/UF we can:

(1) Transfer programs and proofs between equivalent types. (Sect. 2.1.1)
(2) Prove properties for proof oriented datatypes using computation oriented ones. (Sect. 2.1.2)
(3) Treat bisimilar elements of coinductive types as equal. (Sect. 2.2)
(4) Define and reason about quotient types. (Sect. 2.3)
(5) Represent topological spaces as datatypes and reason about them synthetically. (Sect. 2.4)

The examples are taken from the open-source library agda/cubical hosted at https://github.
com/agda/cubical.

2.1 Unary and Binary Numbers

An example of two equivalent types that are well-suited for different tasks are unary and binary
numbers. The unary representation is useful for proving because of the direct induction principle
and the binary representation is much better for computation as it is exponentially more compact.
By utilizing computational univalence we can transfer results between the two representations in
a convenient way, this lets us get the best of both worlds without having to duplicate results.

The unary numbers, ℕ, are built into Agda and are inductively generated by the constructors
zero and suc (successor). We encode binary numbers as:

data Bin : Set where

bin0 : Bin

binPos : Pos → Bin

data Pos : Set where

pos1 : Pos

x0 : Pos → Pos

x1 : Pos → Pos

six : Bin

six = binPos (x0 (x1 (pos1)))
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A binary number is hence either zero (bin0) or a positive binary number represented as a list
of zeroes and ones with no trailing zeroes. Least significant bits come first (little-endian format),
thus, the number 6 is binary 011. This way every number has a unique binary representation and
it is straightforward to write maps to and from the unary representation (Bin→ℕ and ℕ→Bin)
with proofs that they cancel (ℕ→Bin→ℕ and Bin→ℕ→Bin). This means that the two types ℕ
and Bin are isomorphic which implies that they are equivalent, in the sense of having “contractible
fibers” following the terminology of Voevodsky [2015] and Univalent Foundations Program [2013].
Spelled out, a map f : A → B is an equivalence if the preimage of any point in B is a singleton
type.

Given types A and B we write A ≃ B for the type of equivalences between them, the univalence
theorem2 then states that

(A ≡ B) ≃ (A ≃ B).

In particular there is a function ua : A ≃ B→ A ≡ B, sending a proof that two types are equivalent
to an equality between the types. We use ua to turn the equivalence of ℕ and Bin into an equality.

ℕ≃Bin : ℕ ≃ Bin

ℕ≃Bin = isoToEquiv (iso ℕ→Bin Bin→ℕ Bin→ℕ→Bin ℕ→Bin→ℕ)

ℕ≡Bin : ℕ ≡ Bin

ℕ≡Bin = ua ℕ≃Bin

In fact, the equality in ℕ≡Bin is not really a normal type-theoretic equality à la Martin-Löf (in
the sense of being inductively generated from constructor refl for reflexivity), but rather a path
equality. The core idea of HoTT/UF is the close correspondence between proof-relevant equality,
as in type theory, and paths, as in topology. The idea that equality correspond to paths is taken
very literally in cubical type theory; by adding a primitive interval type I, paths in a type A can
be represented as functions I → A. Iterating these function types lets us represent squares, cubes,
and hypercubes; making the type theory cubical.

The interval I has two distinguished endpoints i0 and i1. Since paths are functions, we introduce
them using λ-abstraction and eliminate them using function application; by applying a path to i0
we get its left endpoint and by applying it to i1 we get the right one. We often want to specify
the endpoints of a path (or, more generally, the boundary of a cube) in its type; in Cubical Agda,
there is a special primitive for this:

PathP : (A : I → Set ℓ) → A i0 → A i1 → Set ℓ

we introduce these paths by lambda abstractions like so, λi → t : PathP A t [i0 / i] t [i1 / i], provided
that t : A i for i : I. Consequently, we can apply p : PathP A a0 a1 to an r : I to obtain p r : A r.
Also, no matter how f is given, we have that p i0 reduces to a0 and p i1 reduces to a1.

The PathP types should be thought of as heterogeneous equalities since the two endpoints are
in different types; this is similar to the dependent paths in HoTT [Univalent Foundations Program
2013, Sect. 6.2]. We can define homogeneous non-dependent path equality in terms of PathP as
follows:

_≡_ : {A : Set ℓ} → A → A → Set ℓ

_≡_ {A = A} x y = PathP (λ _ → A) x y

In the previous definition, the syntax {A = A} tells Agda to bind the hidden argument A of type
_≡_ (firstA) to a variableA (secondA) that can be used on the right hand side. Note also that some

2As the univalence “axiom” is provable in Cubical Agda we refer to it as the univalence theorem.
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definitions are polymorphic in universe level ℓ which is implicitly universally quantified. Further,
from now we will omit the explicit quantification over {A : Set ℓ}.

Viewing equalities as functions out of the interval allows us to reason elegantly about equality;
for instance, the constant path represents a proof of reflexivity.

refl : {x : A} → x ≡ x

refl {x = x} = λ i→ x

We can also directly apply a function to a path in order to prove that dependent functions respect
path equality, as shown in the definition of cong below. Simply by computation cong satisfies some
new definitional equalities compared to the corresponding definition for the inductive equality
type à la Martin-Löf [1975]. For instance, cong is functorial by definition: we can prove congId
and congComp by plain reflexivity (refl).

cong : ∀ {B : A → Set ℓ} (f : (a : A) → B a) {x y} (p : x ≡ y) → PathP (λ i→ B (p i)) (f x) (f y)

cong f p i = f (p i)

congId : ∀ {x y : A} (p : x ≡ y) → cong (λ a → a) p ≡ p

congId p = refl

congComp : ∀ (f : A→ B) (g : B→ C) {x y} (p : x ≡ y) → cong (g ∘ f ) p ≡ cong g (cong f p)

congComp f g p = refl

Path types also let us prove new things that are not provable in standard Agda with Martin-Löf
propositional equality. For example, function extensionality, stating that pointwise equal functions
are equal themselves, has an extremely simple proof:

funExt : {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g

funExt p i x = p x i

The proof of function extensionality for dependent and n-ary functions is equally direct. Since
funExt is a definable notion in Cubical Agda, it is, in contrast to Martin-Löf Type Theory, not an
axiom. This means that it has computational content: it simply swaps the arguments to p.

The facts that paths can be manipulated as functions and that we have heterogeneous path types
makes many equality proofs simpler compared to the corresponding proofs in standard Agda or
HoTT. For instance, the equality of second projections of dependent pair types is a simple instance
of cong:

Σ-eq₂ : ∀ {A : Set} {B : A → Set} {p q : Σ[ x ∈ A ] (B x)} → (e : p ≡ q) →

PathP (λ i → B (e i .fst)) (p .snd) (q .snd)

Σ-eq₂ = cong snd

The corresponding result in regular type theory has to be stated with the homogeneous notion
of equality using transport, making equality in dependent pair types notoriously difficult to work
with.

2.1.1 Univalent Transport. One of the key properties of type theoretic equality is transport.

transport : A ≡ B→ A → B

transport p a = transp (λ i→ p i) i0 a

This is defined using another primitive of Cubical Agda called transp. It is a generalization of the
regular transport principle which lets us specify where the transport is the identity function. In
particular, when the second argument to transp is i1 it will reduce to a, which let us prove that
transp A r a is always path equal to a (cf. addp later). A consequence is that whenever we have an
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equivalence e : A ≃ B we have that transport (λ i → F (ua e i)) is an equivalence as well. This
ability to lift equivalences through arbitrary type operators F is an easily overlooked benefit of a
language with computational univalence.

The substitution principle is obtained as an instance of transport.

subst : (B : A → Set ℓ) {x y : A} → x ≡ y → B x→ B y

subst B p b = transport (λ i→ B (p i)) b

Function subst invokes transport with a proof of B x ≡ B y; this proof λ i → B (p i) is an inlining
of cong, stating that families B respect equality p.

After this digression about path types, let us revisit the ℕ≡Bin path. Using transport, we can
transfer zero along ℕ≡Bin, and since univalence is a theorem with computational content in
Cubical Agda, this will reduce to bin0. In contrast, if we were working in a systemwith axiomatic
univalence, we could still define ℕ≡Bin, but the transport of zero along that equality would be
stuck; the system would not know how to transport with the ua constant.

Having computational univalence lets us do a lot more than just transporting constructors. We
can for example transport the addition function from binary to unary numbers in order to get a
more efficient addition function on unary numbers. However, as we do not want to prove proper-
ties about the more complex binary addition function, we instead transport the unary one with its
properties to binary.

_+Bin_ : Bin → Bin → Bin

_+Bin_ = transport (λ i →ℕ≡Bin i→ℕ≡Bin i→ ℕ≡Bin i) _+_

In this case, the path that we transport along is between the function types ℕ → ℕ → ℕ and
Bin → Bin → Bin. This way, we obtain an addition function on binary numbers and the fact that
ua has computational content lets us run it:

_ : (binPos (x0 (x0 pos1))) +Bin (binPos pos1) ≡ binPos (x1 (x0 pos1))

_ = refl

In order to reduce the left hand side Cubical Agda will convert all of the arguments to the
unary representation, add them using _+_ and then convert the result back to binary. This is of
course a very inefficient way of adding binary numbers. However, we could now prove that the
efficient addition function on binary numbers is equal to _+Bin_ using function extensionality
and as the functions are equal they will share the same properties. The main reason for defining
_+Bin_ as above is that it lets us transport results about the unary addition function. For example,
we transport the proof of associativity as follows:

addp : PathP (λ i→ ℕ≡Bin i →ℕ≡Bin i→ℕ≡Bin i) _+_ _+Bin_

addp i = transp (λ j → ℕ≡Bin (i ∧ j) → ℕ≡Bin (i ∧ j) → ℕ≡Bin (i ∧ j)) (~ i) _+_

+Bin-assoc : (m n o : Bin) → m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o

+Bin-assoc

= transport (λ i→ (m n o : ℕ≡Bin i) → addp i m (addp i n o) ≡ addp i (addp i m n) o)

+-assoc

In addp we utilize the interval operators minimum (_∧_) and reversal (∼_); further, Cubical
Agda features themaximum operator (_∨_). The intuition is that elements of I correspond to points
in the real unit interval [0, 1]. The _∧_ and _∨_ operations take the minimum and maximum of i, j
: I while the reversal operation computes 1 − i . These operations satisfy the laws of a De Morgan
algebra. This means, for one, that the min/max operations form a bounded distributive lattice,
with i0 and i1 as bottom and top elements. Further, the reversal is a De Morgan involution, so, for
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instance, ∼ (i ∧ j) = ∼ i ∨ ∼ j. Note that this is still not a Boolean algebra, since i ∧ ∼ i = i0 and i ∨ ∼
i = i1 are not valid for points of the unit interval, except for the endpoints.

Let us assert the well-typedness of addp: When i is i0, the first argument to transp in addp
is constantly ℕ → ℕ → ℕ, since i0 ∧ i is then just i0 and ℕ≡Bin i0 reduces to ℕ. The second
argument ~ i becomes i1 so that the left endpoint of the path is _+_, exploiting that transp (…) is
the identity function when applied to i1. On the other hand, when i is i1, then addp i reduces to
transp (λ j → ℕ≡Bin j→ℕ≡Bin j→ℕ≡Bin j) i0 _+_which is exactly the definition of _+Bin_. This
establishes that addp indeed constitutes a path from _+_ to _+Bin_. Note that the path type of
addp is heterogeneous as the two addition functions have different types.

The desired result is then obtained by transporting the proof that unary addition is associative
along a path from

(m n o : ℕ) → m + (n + o) ≡ (m + n) + o

to

(m n o : Bin) → m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o .

Another very useful consequence of being able to transport proofs between types is that we can
prove some result by computation for binary numbers and then transport the proof to the unary
representation where the computation might have been infeasible.

2.1.2 Univalent Program and Data Refinements. Sometimes concrete computations are necessary
in proofs. For example one could imagine a situationwhere one needs to check an equality between
two terms that are expensive to compute like:

220 · 210 = 25 · 215 · 210 .

As this is part of a proof it is likely that one is using a unary representation of natural numbers,
however this makes it impossible to verify the above equation by computation. One way to resolve
this would be to redo the formalization using binary numbers, but this could involve a complete
rewrite of the formalization. Another alternative would be to use algebraic manipulations to prove
the above equality manually, however sometimes this is not feasible as the computation might be
very complicated.

This kind of issue can be resolved by what we call univalent program and data refinements
following Cohen et al. [2013]. As binary numbers are equivalent to unary numbers we can prove
the property for binary numbers by computation and then transport the proof to unary numbers.
To do this we define a “doubling structure” in which we can express the above equation, and
instantiate with unary and binary numbers. We omit the concrete definitions, but as expected the
doubling function is of linear complexity for unary numbers and constant for binary.

record Double (A : Set) : Set where

constructor doubleStruct

field

double : A → A

elt : A

Doubleℕ : Double ℕ

Doubleℕ = doubleStruct doubleℕ 1024

DoubleBin : Double Bin

DoubleBin = doubleStruct doubleBin bin1024
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The equality between binary and unary numbers lifts to an equality of doubling structures. We
omit the details of this definition as they are quite technical, however the whole definition is only 7
lines of code so it is not particularly difficult to write once one is familiar with all of the features of
Cubical Agda. Note that, unlike for sucℤ, we are using the inverse of the above path from unary
to binary numbers as we are going the opposite direction compared to the previous examples.

DoubleBin≡Doubleℕ : PathP (λ i→ Double (Bin≡ℕ i)) DoubleBin Doubleℕ

We can now formulate the equation that we originally wanted to verify. We put this in a record
and use copattern matching when proving it for DoubleBin so that Agda won’t eagerly try to
unfold the unary instance of it (more about this in the next section) when we transport the proof
over to unary numbers along the equality of doubling structures.

doubles : {A : Set} (D : Double A) → ℕ→ A → A

doubles D n x = iter n (double D) x

record propDouble {A : Set} (D : Double A) : Set where

field

proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D))

propDoubleBin : propDouble DoubleBin

proof propDoubleBin = refl

propDoubleℕ : propDouble Doubleℕ

propDoubleℕ = transport (λ i → propDouble (DoubleBin≡Doubleℕ i)) propDoubleBin

The fact that equivalences of types lift to equivalences of structures is called the structure identity
principle in HoTT/UF [Univalent Foundations Program 2013, Sect. 9.8]. This has been formalized
in Agda for algebraic structures and isomorphisms in Coquand and Danielsson [2013]. Combining
this with univalence lets us lift equalities of types to equalities of structures on these types.

2.2 Univalence for Coinductive Types

Coinductive types allow the direct manipulation of infinite structures without breaking the con-
sistency of the language. However, in their treatment in Coq and Agda, reasoning about them was
impeded by the inability to prove two elements equal whenever they have the same unfolding,
rather than when they are the same by definition [McBride 2009]. Cubical Agda solves this by
exploiting the interaction between path and projection copatterns [Abel et al. 2013].

The prototypical example of a coinductive type is infinite streams, which can be declared in
Agda as a coinductive record type with two fields: .head and .tail. A function returning a stream
is then defined by explaining how it computes when applied to the projections. For example, here
we define mapS which applies a function to every element of a stream.

record Stream (A : Set) : Set where

coinductive; constructor _,_

field

head : A

tail : Stream A

mapS : (A → B) → Stream A → Stream B

mapS f xs .head = f (xs .head)

mapS f xs .tail = mapS f (xs .tail)
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The result is that mapS f xs by itself will not unfold further and the termination checker is happy
to accept this definition as productive as it always reaches a weak head normal form in finite
time when applied to projections. As shown in the following proof of the identity law for mapS,
Cubical Agda extends the notion of productivity by allowing the same recursion pattern also for
paths between streams.

mapS-id : (xs : Stream A) → mapS (λ x → x) xs ≡ xs

mapS-id xs i .head = xs .head

mapS-id xs i .tail = mapS-id (xs .tail) i

To define a path between (mapS (λ x → x) xs) and xs we introduce an interval variable i and then
are left to define (mapS-id xs i) of type StreamA, so we can proceed by copatterns and corecursion.

To convince ourselves thatmapS-id defines the required path, we note that ifmapS-id xs is sup-
posed to be a path betweenmapS (λ x → x) xs and xs , then the type of (λ i → mapS-id xs i .head)
should be mapS (λ x → x) xs .head ≡ xs .head. This type in turn reduces to xs .head ≡ xs .head,
by definition of mapS, and so the constant path suffices. A similar reasoning applies to the tail
case, this time using the tail clause of mapS to realize that we need a path between mapS (λ x →

x) (xs.tail) and xs.tail, which we provide with a corecursive call. We give a systematic description
of how we compute such boundary constraints from the left hand sides of clauses in Sect. 4.

More generally, we can define bisimilarity as a coinductive record and show that two bisimilar
streams are equal.

record _≈_ (xs ys : Stream A) : Set where

coinductive

field

≈head : xs .head ≡ ys .head

≈tail : xs .tail ≈ ys .tail

bisim : ∀ {xs ys : Stream A} → xs ≈ ys→ xs ≡ ys

bisim xs≈ys i .head = xs≈ys .≈head i

bisim xs≈ys i .tail = bisim (xs≈ys .≈tail) i

Finally we note that bisim is actually an equivalence, and so equality of streams is indeed bisimi-
larity.

path≡bisim : ∀ {xs ys : Stream A} → (xs ≡ ys) ≡ (xs ≈ ys)

The agda/cubical library contains the complete proof, see https://github.com/agda/cubical/Cubical/
Codata/Stream/Properties.agda, as well as a proof of the universal property of indexed M-types
[Ahrens et al. 2015], see https://github.com/agda/cubical/Cubical/M-types.agda

2.3 Quotient Types as Higher Inductive Types

Another major new addition in HoTT are higher inductive types (HITs). These are datatypes in
which we can specify “higher” constructors representing non-trivial paths of the type (represent-
ing identifications of elements), in addition to the normal “point” constructors. These types enable
many interesting constructions in type theory, in particular quotient types.

The addition of HITs in systems like Agda or Coq is usually done by postulating their existence,
however this suffer from the same issues, in terms of computation, as postulating the univalence
axiom. Cubical Agda extends the datatype declarations of Agda to also support a general schema
of HITs so that it is not necessary to postulate their existence axiomatically.
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In this section, we illustrate how we can use HITs to define quotient types in Cubical Agda.
The first example of a quotient type is a very simple encoding of the integers—while this example
might seem rather trivial it will help us showcase quite a few interesting possibilities of working
with HITs. The second example is a general formulation of quotient types and set quotients.

2.3.1 Integers as a HIT. The integers are often represented as ℕ +ℕ, however this has the draw-
back that there are two zeroes (inl 0 and inr 0). This is usually resolved by shifting one of them
by 1 (so that for example inl 0 represents −1, etc.), however this can easily lead to confusion and
off-by-one errors. A better solution is to identify the two zeroes. This can be achieved with the
following HIT.

data ℤ : Set where

pos : (n : ℕ) → ℤ

neg : (n : ℕ) → ℤ

posneg : pos 0 ≡ neg 0

sucℤ : ℤ → ℤ

sucℤ (pos n) = pos (suc n)

sucℤ (neg zero) = pos 1

sucℤ (neg (suc n)) = neg n

sucℤ (posneg i) = pos 1

This type is similar toℕ+ℕ, except that there is also a path constructor posnegwhich identifies
the two zeroes. For an element i of the interval type, posneg i is an integer which reduces to pos 0
in case i = i0 and neg 0 in case i = i1. These so-called boundary conditions of posneg have to be
respected by any function on ℤ. For example, the successor function on ℤ can be written as above.
The final case maps the path constructor constantly to pos 1 which is accepted by Cubical Agda

as the following equations hold definitionally:

sucℤ (pos 0) = sucℤ (neg 0) = pos 1.

It is direct to define an inverse to sucℤ (i.e., the predecessor function) and hence get an equiv-
alence from ℤ to ℤ which, combined with ua, gives a non-trivial path from ℤ to ℤ. Transporting
along this path applies the successor function.

sucPathℤ : ℤ ≡ ℤ

sucPathℤ = isoToPath (iso sucℤ predℤ sucPredℤ predSucℤ)

We can also define addition and prove that addition with a fixed number is an equivalence,
however this takes a bit of work as we need to define subtraction and prove that they are inverse.
Using univalencewe can take a shortcut and define an alternative addition function so that addition
with a fixed number is automatically an equivalence. Consider the following path equality that
composes sucPathℤ with itself n times.

addEq : ℕ → ℤ ≡ ℤ

addEq zero = refl

addEq (suc n) = addEq n ∙ sucPathℤ

The ∙ operation is binary composition of paths which will be discussed in detail in Sect. 3.4.
Similarly we can define a path composing the predecessor path with itself n times. By transporting
along these paths we get an addition function.
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addℤ : ℤ → ℤ → ℤ

addℤ m (pos n) = transport (addEq n) m

addℤ m (neg n) = transport (subEq n) m

addℤ m (posneg _) = m

By using that transporting along a path is an equivalence we get that addition by a fixed number
is an equivalence.

isEquivAddℤ : (m : ℤ) → isEquiv (λ n→ addℤ n m)

isEquivAddℤ (pos n) = isEquivTransport (addEq n)

isEquivAddℤ (neg n) = isEquivTransport (subEq n)

isEquivAddℤ (posneg i) = isEquivTransport refl

2.3.2 General Quotient Types and Set Quotients. Quotient types have so far been a possibility in
Agda and other dependently typed programming languages only axiomatically. Here we show how
to define them as a HIT in Cubical Agda.

A first attempt is the following definition.

data _/_ (A : Set ℓ) (R : A→ A → Set ℓ) : Set ℓ where

[_] : A → A / R

eq : (a b : A) → R a b → [ a ] ≡ [ b ]

This type has a constructor for mapping elements of A to the quotient by R and an equality identi-
fying the image of each pair of related elements. However this is not exactly what we want as the
resulting quotient type might have a too complex notion of equality. For example, if we use this
construction to quotientUnit by the total relation, then we will get a type with a point [ tt ] and an
identification of this point with itself. We would expect this to be equivalent to Unit, however it is
in fact equivalent to the HIT circle that we will discuss in Sect. 2.4.1. As Unit and the circle do not
satisfy the same properties, they are not equivalent; the loop space of Unit, here the type of paths
from the only element to itself, is contractible while the loop space of the circle is Z [Univalent
Foundations Program 2013].

We get the expected notion of quotients if we switch to set quotients. We add another higher
constructor that eliminates all of the higher-dimensional structure from the quotient type, in other
words, we set truncate the type.

data _/_ (A : Set ℓ) (R : A→ A → Set ℓ) : Set ℓ where

[_] : A → A / R

eq : (a b : A) → (r : R a b) → [ a ] ≡ [ b ]

trunc : (x y : A / R) → (p q : x ≡ y) → p ≡ q

This makes the quotient into a recursive HIT as the trunc constructor quantifies over elements
of the type that we are constructing. It forces the quotient to be a set in the sense of satisfying the
uniqueness of identity proofs (UIP) principle, in other words, any two proofs of equality of members
of A / R are equal. Thanks to trunc, we can prove the universal property of set quotients:

setQuotUniversal : {A B : Set ℓ} {R : A → A → Set ℓ} → isSet B →

(A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b))

This says that maps out of the set quotient is the same as maps sending related elements to equal
elements in the quotient (assuming that the image satisfies UIP). If we furthermore assume that R
is an equivalence relation then the set quotients are effective, in the sense that if [ a] ≡ [ b] then
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also R a b. As an interesting application, we could for example define the positive fractions as a
quotient of ℕ × ℕ by relating (n1,d1) and (n2,d2) if (n1·(1 + d2) ≡ n2·(1 + d1)).

2.4 Synthetic Homotopy Theory in Cubical Agda

One of the main applications of HITs in HoTT is the ability to reason synthetically about topo-
logical spaces inside type theory. This means that we can define topological spaces (like spheres,
tori, etc.) as datatypes and reason about them using functional programming. The semantic jus-
tification for this is the standard model in Kan simplicial sets, a combinatorial representation of
topological spaces [Kapulkin and Lumsdaine 2012; Lumsdaine and Shulman 2017]. In this section,
we illustrate how we can do synthetic homotopy theory in Cubical Agda by proving that the
torus is equivalent to two circles.

2.4.1 The Torus and Two Circles. We can define the circle and the torus as the following higher
inductive types.

data S¹ : Set where

base : S¹

loop : base ≡ base

data Torus : Set where

point : Torus

line1 : point ≡ point

line2 : point ≡ point

square : PathP (λ i→ line1 i ≡ line1 i) line2 line2

The idea is that the circle, S¹, is generated by a base point and a non-trivial path constructor loop
connecting base to itself. The Torus on the other hand also has a base point with two non-trivial
path constructors connecting it to itself and a square relating the two paths. This square can be
illustrated by:

point point

point point

square

line1

line2 line2

line1

The idea is that the square constructor identifies line2 with itself over an identification of line1
with itself. This has the effect of identifying the opposite sides of the square, making it into a torus
(imagine the square being a sheet of soft paper that one folds so that the opposite sides match).

As we demonstrate in the following, a torus is equivalent to the product of two circles.

t2c : Torus → S¹ × S¹

t2c point = (base , base)

t2c (line1 i) = (loop i , base)

t2c (line2 j) = (base , loop j)

t2c (square i j) = (loop i , loop j)

c2t : S¹ × S¹ → Torus

c2t (base , base) = point

c2t (loop i , base) = line1 i

c2t (base , loop j) = line2 j

c2t (loop i , loop j) = square i j
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The functions back and forth are directly definable by pattern-matching. As a consequence, proving
that they are mutually inverse is trivial, and we get an equality between the two types.

c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t

c2t-t2c point = refl

c2t-t2c (line1 _) = refl

c2t-t2c (line2 _) = refl

c2t-t2c (square _ _) = refl

t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p

t2c-c2t (base , base) = refl

t2c-c2t (base , loop _) = refl

t2c-c2t (loop _ , base) = refl

t2c-c2t (loop _ , loop _) = refl

Torus≡S¹×S¹ : Torus ≡ S¹ × S¹

Torus≡S¹×S¹ = isoToPath (iso t2c c2t t2c-c2t c2t-t2c)

This is a rather elementary result in topology. However, it had a surprisingly non-trivial proof in
HoTT because of the lack of definitional computation for higher constructors [Licata and Brunerie
2015; Sojakova 2016]. With the additional definitional computation rules of Cubical Agda this
proof is now almost entirely trivial.

2.4.2 Further Synthetic Homotopy Theory in Cubical Agda. The agda/cubical library contains
several further results from synthetic homotopy theory. For instance, we have a direct proof that
the fundamental group of the circle is ℤ, inspired by Licata and Shulman [2013]. Combined with
the above characterization of the torus it proves that the fundamental group of the Torus is ℤ ×
ℤ. The fact that univalence and HITs compute in Cubical Agda lets us then compute winding
numbers of iterated loops around the circle and torus.

The library also features more substantial results: a proof that S3, i.e., the four dimensional
sphere, is equivalent to the join of two circles, and a proof that the total space of the Hopf fibration
is S3. We also ave a definition of the “Brunerie number”: a numbern ∈ Z such that π4(S3) ≃ Z/nZ.3

However, despite considerable efforts we have not been able to reducen to a normal form yet (even
though the absolute value of the expected result is just 2 as proved by Brunerie [2016]).

3 MAKING AGDA CUBICAL

In the remainder of the paper we will describe how Agdawas extended to become cubical. The key
additions to Agda are:

(1) The interval and path types (Sect. 3.1).
(2) Generalized transport, transp (Sect. 3.2).
(3) Partial elements (Sect. 3.3).
(4) Homogeneous composition, hcomp (Sect. 3.4).
(5) Higher inductive types (Sect. 4).
(6) Glue types (Sect. 5).

We have already discussed the first two points in some detail in the examples, however, the
implementation of the transp operation is especially interesting as it is what makes Cubical Agda

compute. This operation is defined by cases on the type formers of Agda; a contribution of this
paper is the extension of these to types that are present in Agda but not covered by Cohen et al.
[2018], namely, record and coinductive types. Furthermore, the way the hcomp operation works in
Cubical Agda differs from Coquand et al. [2018] in a subtle way which enables us to optimize the
transp operation for Glue types. These types are what allows us to give computational content to
univalence. By optimizing how their composition operation compute we obtain simpler and more

3For details see https://github.com/agda/cubical/blob/master/Cubical/Experiments/Brunerie.agda#L268.
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efficient proofs of univalence. As discussed in Sect. 6, this also has metatheoretical consequences
for the canonicity theorem for HITs.

3.1 The Interval and Path Types

The first thing Cubical Agda add is an interval type I. Then, we add the PathP types that behave
like function types out of the interval, but with fixed endpoints. Note that the interval in Cubical

Agda is not inductively defined, so we cannot pattern match on it. This follows from the intuition
that path types are continuous functions from the interval into a space so that they cannot provide
arbitrarily different results for i0 and i1.

3.2 Generalized Transport

The next key thing that Cubical Agda adds is the generalized transport operation.

transp : (A : I → Set ℓ) → I → A i0 → A i1

Given a type line A : I → Set ℓ and an element at end A i0, the transp operation gives an element
at A i1, the other end of the line. This is generalized compared to regular transport in the sense
that transp lets us specify where it should behave as the identity function. In particular there is
an additional side condition to be satisfied for transp A r a to type check, which is that A should
be a constant function whenever the constraint r = i1 is satisfied. When r is equal to i1 the transp
function will compute as the identity function,

transp A i1 a = a.

and this would not be sound in general if A was allowed to be a more complex line that is non-
constant when r = i1. In case r = i0 there is nothing to check, thus, transp A i0 a is well-formed
for any A, as in the definition of transport A a.

Internally, the transp operation computes differently for each of the type formers of Agda. We
will show how this works in the special case of transport, but the general transp operation is not
much more complicated. For a detailed type theoretic presentation of these definitions see Huber
[2017]. This formulation of the computation rules for cubical type theory is based on a variation
of the comp operation of Cohen et al. [2018] that was introduced in Coquand et al. [2018] in order
to support HITs.

3.2.1 Function Types. Given two type lines A B : I → Set we seek to transport a function f : A i0
→ B i0 to a function A i1 → B i1. To this end, we compose backward transport A i1 → A i0 along
A, function f , and forward transport B i0 → B i1 along B.

transportFun : (A B : I → Set) → (A i0 → B i0) → (A i1 → B i1)

transportFun A B f = transport (λ i → B i) ∘ f ∘ transport (λ i → A (~ i))

By evaluating transport (λ i → A i → B i) f we can see that the definition of transportFun A B
f is definitionally the same as the internal definition for how transp computes in Cubical Agda.

transportFunEq : (A B : I → Set) → (f : A i0 → B i0) →

transportFun A B f ≡ transport (λ i → A i→ B i) f

transportFunEq A B f = refl

The definition for dependent functions is very similar, except that some extra work is required
to correct the type in the outer transport. This definition clarifies why we need to consider transp
and not just the simpler transport operation.

transportPi : (A : I → Set) (B : (i : I) → A i→ Set)

→ ((x : A i0) → B i0 x)
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→ ((x : A i1) → B i1 x)

transportPi A B f = λ (x : A i1) → transport (λ j → B j (transp (λ i→ A (j ∨ ~ i)) j x))

(f (transport (λ i→ A (~ i)) x))

If we would have used the same definition as for non-dependent functions the outer transport
would have been ill-typed. The reason is that f has a dependent type, meaning that f x ′ has type
B x ′ for x ′ := transport (λ i → A (∼ i)) x. The first argument of the outer transport must hence
be a line between B i0 x ′ and B i1 x. This line is constructed by abstracting over j and considering
B j (transp (λ i → A (j ∨ ∼ i)) j x). When j is i0 this is indeed B i0 x’ and when j is i1 this is B i1 x by
virtue of transp being the identity function when applied to i1.

3.2.2 Records and Coinductive Types. Since record types are a generalization ofΣ-types, the trans-
port operation is computed pointwise, i.e. independently for every field. The only subtlety is when
the record is dependent, in which case a similar type correction has to be done as for dependent
functions.

As coinductive types in Agda are just record types these are handled the same way. In this case,
however, we have to consider the issue of productivity, which is taken care of by how transport for
record types unfolds only when projected from. Analogously to the Stream example from Sect. 2.2,
we have that transport (λ i → Stream A) xswill not reduce further, while if we apply .tail to it we
get transport (λ i → Stream A) (xs .tail).4 Such controlled unfolding generally leads to smaller
normal forms so Cubical Agda adopts it for record types in general. The same kind of controlled
unfolding is also implemented for other “negative” types like function and path types.

3.2.3 Datatypes. The transport operation for inductive datatypeswithout parameters, for instance,
the natural numbers, is trivial as they cannot vary along the interval.

transport (λi → ℕ) x = x

This would not work for inductive types with parameters like the disjoint union A + B for which
the transport operation would need to reduce to the transport operation in A or B depending on
the argument.

transportSum : (A B : I → Set) → A i0 + B i0 → A i1 + B i1

transportSum A B (inl x) = inl (transport (λ i → A i) x)

transportSum A B (inr x) = inr (transport (λ i→ B i) x)

The transp operation for HITs is a bit more involved. It also computes by cases on the argument,
but for the higher constructors some extra care has to be taken. In particular, complicated param-
eterized HITs, like pushouts, require additional endpoint corrections [Coquand et al. 2018, Sect.
3.3.5].

3.2.4 Path Types. For path types we will need a new operation to provide the computation rules
for transport as we need some way to record the endpoints of the path after transporting it. Indeed,
consider the following naïve definition:

transportPath : (A : I → Set) (x y : (i : I) → A i) → x i0 ≡ y i0 → x i1 ≡ y i1

transportPath A x y p = λ i → transport (λ j → A j) (p i)

This might look plausible as a definition, but the resulting path does not have the correct bound-
ary. When i is i0, for instance, the left boundary is transport (λ j→ A j) (x i0) and not just x i1. Note
that these elements are equal up to a path (using λ k→transp (λ j→ A (j ∨ k) k (x k)), so what we

4Productivity for the case of dependent records then relies on the type of later fields only being able to depend on earlier
fields.
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need is a way to compose the result with this path in order to correct the endpoints. To do this we
introduce the homogeneous composition operation (hcomp) that generalizes binary composition
of paths to n-ary composition of higher dimensional cubes.

3.3 Partial Elements

In order to describe the homogeneous composition operation we need to be able to write partially
specified n-dimensional cubes, i.e., cubes where some faces are missing. Given an element of the
interval r : I there is a new primitive predicate IsOne r which represents the constraint r = i1.
This comes with a proof 1=1 that i1 is in fact equal to i1, i.e., 1=1 : IsOne i1. The type IsOne (i
∨ ∼ i) corresponds to the formula (i = i1) ∨ (i = i0) which represents the two endpoints of
the line specified by i, so by considering formulas made out of more variables we can specify the
boundary of cubes. The type IsOne r is also proof-irrelevant, meaning that any two of its elements
are definitionally equal.

Building on IsOne we have extended Cubical Agda with partial cubical types, written Par-
tial r A. The idea is that Partial r A is the type of cubes in A that are only defined when IsOne r
holds.5 Concretely, Partial r A is a special version of the function space IsOne r → A with a more
extensional equality: two of its elements are considered judgmentally equal if they represent the
same subcube of A. Concretely they are equal whenever they reduce to equal terms for all the
possible assignment of variables that make r equal to i1.

Elements of these partial cubical types are introduced using pattern matching lambdas. For this
purpose Cubical Agda supports a new form of patterns, here (i = i0) and (i = i1), that specify
the cases where IsOne (i ∨ ~ i) is true. Similarly to pattern matching on an inductive family, some
variables from the context might get refined, in this case i , even if otherwise we would not be able
to pattern match on them.

partialBool : ∀ i→ Partial (i ∨ ~ i) Bool

partialBool i = λ { (i = i0) → true ; (i = i1) → false }

The term partialBool should be thought of as a boolean with different values when i is i0 and
when i is i1. This is hence just the endpoints of a line and there is no way to connect them, since
true is not equal to false. The pattern-matching cases must match the interval expression in the
type (under the image of IsOne) and if there are overlapping cases then they must agree up to
definitional equality. Furthermore, IsOne i0 is actually absurd and lets us define an empty partial
element (also known as an “empty system” [Cohen et al. 2018, Sect. 4.2]).

empty : Partial i0 A

empty = λ { () }

Cubical Agda also has cubical subtypes as in Cohen et al. [2018]; given A : Set ℓ, r : I and
u : Partial r A we can form the type A [ r ↦ u ]. A term v of this type is a term of type A that is
definitionally equal to u when IsOne r is satisfied.6 Any term u : A can be seen as a term of type
A [ r↦ u ] that agrees with itself when IsOne r.

inS : {r : I} (a : A) → A [ r↦ (λ _→ a) ]

We can also forget that a partial element agrees with u when IsOne r holds:

outS : {r : I} {u : Partial r A} → A [ r↦ u ] → A

5Partial is somewhat analogous to constrained set P ⇒ A = {a ∈ A | P } where P = IsOne r , only that the proof of P
matters.
6 In the set-theoretic analogy, A [ r ↦ u ] = {a ∈ A | if r then (a = u)} ⊆ A, given u ∈ (r ⇒ A). We have
a ∈ A [ r ↦ λ _→a ] always for a ∈ A.
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We have that both outS (inS v) = v and inS (outS v) = v hold if well typed. Moreover, outS v

will reduce to u 1=1 when r = i1.
With all of this cubical infrastructure we can now describe the hcomp operation.

3.4 Homogeneous Composition

The homogeneous composition operation generalizes binary composition of paths so that we can
compose multiple composable cubes.

hcomp : {r : I} (u : I → Partial r A) (u₀ : A [ r↦ u i0 ]) → A

When calling hcomp u u₀, Cubical Agdamakes sure that u₀ agreeswith u i0 on r; this is specified
in the type of u₀. The idea is that u₀ is the base and u specifies the sides of an open box where the
side opposite of u₀ is missing. The hcomp operation then gives us the missing side opposite of
u₀, which we refer to as the lid of the open box. For example binary composition of paths can be
written as:

_∙_ : {x y z : A} → x ≡ y → y ≡ z→ x ≡ z

_∙_ {x = x} p q i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i))

Pictorially we are given p : x ≡ y and q : y ≡ z, and the composite of the two paths is obtained
by computing the dashed lid at the top of the following square.

x z

x y

x q j

inS (p i)

j

i

As we are constructing a path from x to z along i we have i : I in context and put inS (p i) as
bottom. The direction j is abstracted in the first argument to hcomp and we use pattern-matching
to specify the sides.

We can also define homogeneous filling of open boxes as

hfill : {r : I} (u : I → Partial r A) (u₀ : A [ r ↦ u i0 ]) → I → A

hfill {r = r} u u₀ i = hcomp (λ j → λ { (r = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u₀ }) (inS (outS u₀))

When i is i0 this is outS u₀ and when i is i1 it is hcomp (λ j → λ { (r = i1) → u j 1=1 } u₀ as the
absurd faces (i0 = i1) gets filtered out. By the extensionality of partial elements this hence gives a
line along i between outS u₀ and hcomp u u₀ which geometrically corresponds to the filling of an
open box as it connects the base with the lid computed using hcomp. In the special case when q
is refl the filler of the above square gives us a direct cubical proof that composing p with refl is p.

compPathRefl : {x y : A} (p : x ≡ y) → p ∙ refl ≡ p

compPathRefl {x = x} {y = y} p j i = hfill (λ _ → λ { (i = i0) → x ; (i = i1) → y }) (inS (p i)) (~ j)

This way we can hence do even more equality reasoning by directly working with higher di-
mensional cubes.

By combining hcomp and transp we can define the heterogeneous composition operation of
Cohen et al. [2018].

comp : (A : I → Set ℓ) {r : I} (u : (i : I) → Partial r (A i)) (u0 : A i0 [ r ↦ u i0 ]) → A i1

comp A {r = r} u u0 = hcomp (λ i→ λ { (r = i1) → transp (λ j→ A (i ∨ j)) i (u _ 1=1) })

(inS (transport (λ i → A i) (outS u0)))
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With the comp operation we can then finally give the definition of transp for path types.

transportPath : (A : I → Set) (x y : (i : I) → A i) → x i0 ≡ y i0 → x i1 ≡ y i1

transportPath A x y p = λ i→ comp A (λ j → λ { (i = i0) → x j ; (i = i1) → y j}) (inS (p i))

The computation rules for hcomp are also defined by cases on the type formers of Agda, just like
for transp. These are all quite direct to define and we refer the interested reader to Huber [2017] for
details. We will note, however, that for HITs hcomp (λ i → λ { (r = i1) → u}) u0 only reduces to
u[i1 / i] when r = i1, and is to be considered a canonical element otherwise. Therefore, functions
defined by pattern matching on a HIT also have to make progress when provided an element built
with hcomp. We will often refer to such an element as hcomp r u u0 for ease of notation. The next
section describes how this can be achieved, in the context of a core type theory for Cubical Agda.

4 HIGHER INDUCTIVE TYPES AND PATTERN MATCHING

Our main technical contribution is an elaboration algorithm for (co)pattern matching definitions
in the presence of HITs and path applications. Following Cockx and Abel [2018] we formulate our
algorithm as a translation from (co)pattern matching clauses to case trees. The main challenges
are generating the computational behavior on hcomp elements of HITs and making sure clauses
for path constructors agree with what the function does at the endpoints of the path.

4.1 Elaboration by Example

Herewe illustrate howwe can handle the case for hcompwhen patternmatching using an example.
Consider the function c2t from Sect. 2.4.1, it is defined by four clauses, which pattern match on a
pair of elements of the circle. Recalling that hcomp r u u0 is also a canonical element of the circle,
we can see that we additionally have to cover the following cases:

c2t (hcomp r u u0 ,y) = ?0
c2t (base , hcomp r u u0) = ?1
c2t (loop i , hcomp r u u0) = ?2

We can cover the first by setting ?0 := hcomp (λ{j (r = i1) → c2t (u j 1=1, y)}) (c2t (u0, y))
which not only produces an element of the right type, but also satisfies ?0 = c2t (u i 1=1, y)when
r = i1, which is required to preserve the equality hcomp i1 u u0 = u i 1=1. The case ?1 can be
solved analogously, while ?2, since it matches on loop, has additional constraints: ?2 should be
equal to c2t (base, hcomp r u u0) whenever i = i0 or i = i1. We can satisfy all of these constraints
at once by including them in the composition, i.e. setting

?2 := hcomp (λ j → λ




(r = i1) → c2t (loop i, u j 1=1)
(i = i0) → c2t (base, hcomp r u u0)
(i = i1) → c2t (base, hcomp r u u0)



) (c2t (loop i, u0))

where all the components of the partial element match up because they are all different special-
izations of c2t (loop i, hcomp r u u0) under the different boundary conditions. In the general case
the return type of the function can depend on the HIT argument, so a heterogeneous composition
will be necessary.

4.2 Syntax of the Core Type Theory

We recall some definitions from Cockx and Abel [2018], extended to allow for the new cubical
primitives.

Expressions (Fig. 1) are given in spine-normal form, so that the head symbol of an application is
easily accessible. Rather than adding the cubical types and operations described in Sect. 3 as new
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x , i variables
ℓ ::= n | ω universe levels
A,B,u,v ::= w weak head normal form

| f ē defined function or primitive applied to eliminations
| x ē variable applied to eliminations
| c ēc constructor applied to eliminations

W ,w ::= (x : A) → B dependent function type
| Setℓ universe ℓ
| D ū datatype fully applied to parameters
| R ū record type fully applied to parameters
| λx .u lambda abstraction

e ::= ec elimination for constructors
| .π projection

ec ::= u application
| @u0,u1

v path application

Fig. 1. Syntax of Terms.

expression formers, we subsume them under f ē . This happens also in the implementation of Agda,
thanks to the pre-existing support for builtins and primitives.

We include a universe level ω for types like I which do not support transp or hcomp. Elimi-
nations e include, beyond function application to u and projections .π , path applications @u0,u1

v .
Path applications to interval elementv are annotated by the endpointsu0 andu1 used for reduction,
in case v becomes i0 or i1.

In contrast to ordinary applications, path applications of stuck terms can reduce; for instance,
x @u0,u1

i0 reduces to u0. Thus, variable eliminations x ē are not necessarily in weak head normal
form. Thanks to HITs, this is not even the case for constructor applications; c ē might also reduce!

Binary application u e is defined as a partial function on the syntax, by β reduction (λx .u) v =
u[v /x ] in case of abstractions, or by accumulating eliminations (x ē) e = x (ē, e), (f ē) e = f (ē, e),
(c ē) ec = c (ē, ec), and otherwise it is undefined.

Patterns are augmented with path application copatterns, also in the spine for constructors.

p ::= x variable pattern
| c q̄c fully applied constructor pattern
| ⌊c⌋ q̄c forced constructor pattern
| ⌊u⌋ forced argument
| ∅ absurd pattern

q ::= qc copattern for constructors
| .π projection copattern

qc ::= p application copattern
| @u0,u1

i path application copattern

Note that we retain the boundary annotations of path applications even in patterns, since we
convert patterns to expressions during type and coverage checking for case trees.

We write PV(q̄) for the set of variables appearing as variable patterns x or as i in a path

application copattern. We will also often drop the subscript from ec and qc.
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s ::= ⊖ status: unchecked
| ⊕ status: checked

decls ::= data D ∆ : Setn where con datatype declaration

| record self : R ∆ : Setn where field record declaration

| definition f : A where clss function declaration

con ::= c ∆ [ī | b] constructor declaration
b ::= ϵ | (u0,u1) b boundary terms

field ::= π : A field declaration

cls⊖ ::= q̄ ֒→ rhs unchecked clause
cls⊕ ::= ∆ ⊢ q̄ ֒→ u : B checked clause

rhs ::= u clause body: expression
| impossible empty body for absurd pattern

Σ ::= decl⊕ signature

Fig. 2. Declarations.

The theory is parameterized by a list of declarationsΣwhose grammar is shown in Fig. 2. Decla-
ration forms are due to Cockx and Abel [2018] except for datatype constructors c ∆ [ī | b]. These
take a telescope of arguments ∆, i.e. a list of variable typings (x : A), but now also a boundary
[ī | b], which specifies the dimensions ī and endpoints b of path constructors. For example, posneg

from Sect. 2.3.1 would be specified by posneg ϵ [i | (pos 0, neg 0)]. We will write ∆[ī | b] → A

for the iterated function and path type defined by the following equations:

[] → A = A

[i ī | (u0,u1) b] → A = PathP (λi . [ī | b] → A) (λī .u0) (λī .u1)

(x : B)∆[ī | b] → A = (x : B) → ∆[ī | b] → A

Further, we write ∆̂[ī | b] for the appropriate sequence of function and path applications. A con-
structor c ∆′ [ī | b] for a datatype D ∆ will then have type ∆∆′[j̄ | b] → D ∆̂.

The core definition of Cockx and Abel [2018] is the elaboration judgment Σ;Γ ⊢ P | f q̄ := Q :
C { Σ′ which performs type and coverage checking for the user supplied clauses of f represented
by the problem set P . It further computes the corresponding case tree Q and checked clauses cls⊕

inΣ′. Case treesQ are previously specified by a typing judgmentΣ;Γ ⊢ f q̄ := Q : C { Σ′ which
follows the same structure but takes the case tree as input. In the following, we only present the
rules for the case tree typing judgement and refer to the supplemental material for the elaboration
judgement.

4.3 Case Trees

Fig. 3 describes the case tree typing judgment Σ;Γ ⊢ f q̄ := Q : C | Θ { Σ′ . In our version, the

judgment takes an extra input Θ which is a possibly empty list of boundary assignments α , which

in turn are a list of assignments of interval variables to either i0 or i1. We denote with [α ] the

substitution implied by the equalities in α itself. The list Θ is used to keep track of which faces of
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the current definition have accumulated some boundary constraints, due to the rules to introduce
a path (CॺIॴॺॸॵP१ॺh), a partial element (CॺSॶliॺP१ॸॺi१l), or to pattern match on an higher
inductive type (CॺSॶliॺCॵॴHIT).

CtD࢚࢛e A leaf of a case tree consists of a term v of the expected type C . Moreover v has to
fulfill the boundary constraints on the faces specified by Θ: for every αi we require that f q̄
andv agree when substituted with [αi ], i.e., when restricted to the face in question. Note that
we impose the boundary constraints in the signature Σ where we have not added the clause

f q̄ ֒→ v yet, so they are non-trivial to satisfy. We use Γα to denote the context obtained
by removing the variables in α from Γ and substituting their occurrences with the specified
values.

CtI࢚tr࢛Path If the expected typeC is a path type PathP B u0 u1 then we can extend the left
hand side to f q̄ @u0,u1

i . We also extend the list of boundary assignments to include the two
faces (i = i0) and (i = i1), which will in CॺDॵॴ५ ensure that Q produces an element that
connectsu0 andu1. To see this, note thatu0 is judgmentally equal to expression f q̄ @u0,u1

i0
and u1 to f q̄ @u0,u1

i1, because of equality for path applications.
CtS࢜litPartial If the expected type is equal to PartialP r A,7 then we can proceed by

splitting on the faces α1, . . . ,αn as long as they together cover all the ways in which we can

have r = i1. This is ensured by the premise r =
∨

i

∧
αi , where

∧
α is defined by mapping

(i = i1) to i and (i = i0) to ∼ i , and combining the resulting elementswith ∧. For each face, the
left hand side is first refined to f q̄[αi ] so that the variables in the copatterns q̄ match their
assignment, and then extended by ⌊1=1⌋ which is the right elimination for PartialP r A

as we have r = i1 in Γαi . Additionally, since the faces αi can have overlaps we need to
make sure that the different case trees Qi agree on the intersections, this is accomplished
by extending Θ with the assignments of the previous cases. Finally when substituting into

a list of assignments, as in Θ[α ] , any trivial equalities get removed and any contradictory

ones cause the whole assignment in which they appear to be removed.
CtS࢜litC࢚࢛HIT If the left-hand side f q̄ contains a variable x of a data type D v̄ , then we

can pattern match on x , building a casex {. . .} node that covers all the alternatives. In this
rule we deal with the case in which D v̄ is an HIT, as at least one of the ci has a non-empty
boundary. For each of the constructors ci we check the case tree Qi . To do so we (1) refine
f q̄ by replacing xwith ci fully applied to variable and path application copatterns according
to its type; and (2) expand the list of assignments with both (j = i0) and (j = i1) for each

j in j̄i , which is what २ॵॻॴ४१ॸy(j̄i ) denotes. Moreover we need to consider the case for

hcomp r u u0: we check Qhc by (1) replacing x by the pattern hcomp r u u0 in the left-hand
side and (2) extending Θ with (r = i1) since that is the face where hcomp r u u0 computes
to u i1 1=1.

The remaining rules do not directly involve any of the new features of Cubical Agda, so we ask
the reader to refer back to the corresponding judgment in Cockx and Abel [2018].

4.3.1 Inferring Right-Hand Side of hcomp r u u0 Cases. In the examples given in Sect. 2 we have
never given a clause for the hcomp constructor when pattern matching on an element of a higher
inductive type.That is because Cubical Agda generates a suitable clause for us during elaboration.
How to deal with the hcomp case was already explained in Cohen et al. [2018], but only for the
respective induction principle, while in our case we have to deal with user clauses that include
multiple-argument and nested pattern matching.

7PartialP is a dependent version of Partial where A is a partial element as well, i.e., A : Partial r Setn .
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Σ;Γ ⊢ f q̄ := Q : C | Θ { Σ′ Presupposes: Σ;Γ ⊢ f ⌈q̄⌉ : C and dom(Γ) = PV(q̄) and

Θ = α1; . . . ;αn where α ::= ϵ | (i = i0)α | (i = i1)α such that Σ;Γ ⊢ i : I.
Checks case tree Q and outputs an extension Σ′ of Σ by the clauses represented by “f q̄ ֒→ Q”.

Σ;Γ ⊢ v : C Θ = α1; . . . ;αn
(Σ; Γαi ⊢ f q̄[αi ] = v[αi ] : C[αi ])i=1...n

Σ;Γ ⊢ f q̄ := v : C | Θ { Σ, (clause Γ ⊢ f q̄ ֒→ v : C)
CॺDॵॴ५

Σ;Γ ⊢ C = (x : A) → B : Setℓ Σ;Γ(x : A) ⊢ f q̄ x := Q : B | Θ { Σ′

Σ;Γ ⊢ f q̄ := λx . Q : C | Θ { Σ′
CॺIॴॺॸॵ

Σ;Γ ⊢ C = PathP B u0 u1 : Setn Θ′ = (i = 0); (i = 1);Θ
Σ; Γ(i : I) ⊢ f q̄ @u0,u1

i := Q : B i | Θ′
{ Σ′

Σ;Γ ⊢ f q̄ := λi . Q : C | Θ { Σ′
CॺIॴॺॸॵP१ॺh

Σ0; Γ ⊢ C = PartialP r A : Setω Σ0; Γ ⊢ r =
∨

i

∧
αi : I

(Σi−1; Γαi ⊢ (f q̄[αi ] ⌊1=1⌋) := Qi : (A 1=1) | (α1; . . . ;αi−1; Θ)[αi ] { Σi )i=1...n

Σ0; Γ ⊢ f q̄ := split{α1 7→ Q1; . . . ;αn 7→ Qn} : C | Θ { Σn

CॺSॶliॺP१ॸॺi१l

Σ0; Γ ⊢ C = R v̄ : Setn record self : R ∆ : Setn where πi : Ai ∈ Σ0

σ = [v̄ /∆, f ⌈q̄⌉ / self ] (Σi−1; Γ ⊢ f q̄ .πi := Qi : Aiσ | Θ { Σi )i=1...n

Σ0; Γ ⊢ f q̄ := record{π1 7→ Q1; . . . ;πn 7→ Qn} : C | Θ { Σn

CॺCॵॹॶliॺ

Σ0; Γ1 ⊢ A = D v̄ : Setn data D ∆ : Setn where ci ∆i [] ∈ Σ0

(∆′
i = ∆i [v̄ /∆])i=1...n (ρi = 1Γ1

⊎ [ci ∆̂
′
i /x ] ρ ′i = ρi ⊎ 1Γ2

)i=1...n

(Σi−1; Γ1∆
′
i (Γ2ρi ) ⊢ f q̄ρ ′i := Qi : Cρ

′
i | Θ { Σi )i=1...n

Σ0; Γ1(x : A)Γ2 ⊢ f q̄ := casex {c1 ∆̂
′
1
7→ Q1; . . . ; cn ∆̂′

n 7→ Qn} : C | Θ { Σn

CॺSॶliॺCॵॴ

Σ0; Γ1 ⊢ A = D v̄ : Setn Γ = Γ1(x : A)Γ2

data D ∆ : Setn where ci ∆i [j̄i | bi ] ∈ Σ0 ∃k . [j̄k | bk ] , []

©«

∆′
i = ∆i (j̄i : I)[v̄ /∆] q̄i = ∆̂i [j̄i | bi ][v̄ /∆]

ρi = 1Γ1
⊎ [ci q̄i /x ] ρ ′i = ρi ⊎ 1Γ2

Θi = २ॵॻॴ४१ॸy(j̄i ); Θ
Σi−1; Γ1∆

′
i (Γ2ρi ) ⊢ f q̄ρ ′i := Qi : Cρ

′
i | Θi { Σi

ª®®®¬i=1...n

∆hc = (r : I)(u : I→ Partial r (D v̄))(u0 : D v̄ [ r ↦u i0 ])
ρhc = 1Γ1

⊎ [hcomp r u u0 /x ] ρ ′
hc

= ρhc ⊎ 1Γ2

Σn ; Γ1∆hc(Γ2ρhc) ⊢ f q̄ρ ′
hc

:= Qhc : Cρ
′
hc

| (r = 1);Θ { Σn+1

Σ0; Γ ⊢ f q̄ := casex

{
c1 q̄1 7→ Q1; . . . ; cn q̄n 7→ Qn

hcomp r u u0 7→ Qhc

}
: C | Θ { Σn+1

CॺSॶliॺCॵॴHIT

Fig. 3. The typing rules for case trees.
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Σ;Γ(x : D v̄)∆ ⊢ f q̄ : C | Θ ⇒ h३-ॸhॹ(rhs)

Θ = α1; . . . ;αn ∆hc = (r : I)(u : I→ Partial r (D v̄))(u0 : D v̄ [ r ↦u i0 ])

∆i = ∆[hfill u u0 i /x ]

δ i : ∆i = ॺॸ१ॴॹॶ-ॺ५l (j .∆∼ j ∨ i ) i ∆̂i1

sys = λi .




(r = i1) → f q̄[u i 1=1 /x ,δ i /∆i ]

α1 → f q̄[hfill u u0 i /x ,δ
i /∆i ][α1]

...

αn → f q̄[hfill u u0 i /x ,δ
i /∆i ][αn ]




rhs = comp (λi .C[hfill u u0 i /x ,δ
i /∆i ]) sys (f q̄[outS u0 /x ,δ

i0 /∆])

Derivable typing: Γ∆hc∆[hcomp u u0 /x ] ⊢ rhs : C[hcomp u u0 /x ]

Σ; Γ(x : D v̄)∆ ⊢ f q̄ : C | Θ ⇒ h३-ॸhॹ(rhs)

Fig. 4. Computing the right hand side of a hcomp match.

Fortunately in the context of the rule CॺSॶliॺCॵॴHIT we have the right information available
to construct a term that would be suitable for Qhc. This is accomplished in Fig. 4 by the only rule
of the judgment Σ;Γ(x : D v̄)∆ ⊢ f q̄ : C | Θ ⇒ h३-ॸhॹ(rhs). If we had only to handle the
case Σ; (x : D v̄) ⊢ f x : C | ϵ we could apply the strategy from Cohen et al. [2018] and set
rhs to comp (λi .C[hfill u u0 i /x ]) (λi .{(r = i1) → f (u i 1=1)}) (f (outS u0)), because that
satisfies the expected constraint for the case (r = i1). The extra complication comes from the
variables in ∆, since their type might depend on x, and the extra constraints to satisfy because
of Θ. Let us first look at the type argument for comp, since here C[hfill u u0 i /x ] depends on
∆i = ∆[hfill u u0 i /x ] we need to transport the variables of type ∆[hcomp u u0 /x ], thankfully
∆∼ j ∨ i connects the two telescopes and we can use a version of transp generalized to telescopes,
ॺॸ१ॴॹॶ-ॺ५l , to construct the terms, δ i , to substitute. A complication is that the telescope might
contain types in the universe ω: ॺॸ१ॴॹॶ-ॺ५l will fail if those types actually mention j, otherwise
that component of δ i will be the corresponding variable from ∆̂i . If ॺॸ१ॴॹॶ-ॺ५l succeeds we can
then use δ i to correct the calls to f aswell, given that∆i0 = ∆[x /u0] and∆i [i1 / r ] = ∆[u i 1=1 /x
by the computation behavior of hfill u u0 i . Finally whenever all the assignments in αi are satisfied
we want rhs = f q̄[hcomp u u0 /x ] [αi ], but that follows because the comp call will reduce to the
corresponding case of syswith i replaced by i1 and hfill u u0 i1 = hcomp u u0 and [(δ/i1∆i1)]will
just be the identity substitution because ॺॸ१ॴॹॶ-ॺ५l (j .∆∼ j ∨ i1) i1 ∆̂i1 will compute to the last
argument, like transp would.

During elaboration we can then run the algorithm expressed by this judgment and generate
internally a clause for hcomp r u u0.

5 GLUE TYPES IN CUBICAL AGDA

Glue types are the key contribution of Cohen et al. [2018] for equipping the univalence principle
with computational content. Given that a type in cubical type theory stands for a higher dimen-
sional cube,Glue types let us construct a cube where some faces have been replaced by equivalent
types. This is analogous to how hcomp lets us replace some faces of a cube by composing it with
other cubes, however for Glue types we can compose with equivalences instead of paths. This im-
plies the univalence principle and it is what lets us transport along paths built out of equivalences.
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5.1 Glue Types and Univalence

As everything in Cubical Agda has to work up to higher dimensions the Glue types take a partial
family of types A that are equivalent to the base type B. The idea is then that these types get glued
onto B so that the equivalence data gets packaged up into a new datatype.

Glue : (B : Set ℓ) {r : I} → Partial r (Σ[ A ∈ Set ℓ ] (A ≃ B)) → Set ℓ

When r is i1 the type Glue B Ae reduces to Ae 1=1 .fst.
Using Glue types we can turn an equivalence of types into a path and hence define ua.

ua : {A B : Set ℓ} → A ≃ B → A ≡ B

ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) })

The idea is that we glue A onto B when i is i0 using e and B onto itself when i is i1 using the
identity equivalence. The term ua e is a path from A to B as the Glue type reduces when the face
conditions are satisfied, so when i is i0 this reduces to A and when i is i1 it reduces to B. Pictorially
we can describe ua e as the dashed line in:

A B

B B

e ∼ ∼ idEquiv B

B

The transp operation for Glue types is the most complicated part of the internals of Cubical
Agda. The algorithm closely follows Huber [2017, Sect. 3.6], which is a variation of the origi-
nal algorithm from Cohen et al. [2018, Sect. 6.2]. We will focus on the special case of trans-
port (λ i → ua e i ) a for simplicity. This will transport a from A to B by going through the three
fully filled lines in the above picture.

Unfolding ua gives

transport (λ i →Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) }) a

By the boundary equations for Glue types we get that a : A (as it is in the i = i0 face of the Glue
type). The algorithm then applies the function of e (i.e., e .fst : A → B) to a giving an element in
B. As B is constant along i we could now be done, however for the general algorithm there is no
reason for the base to be constant along i; it could for example be another Glue type! We must
hence transport along (λ i → B) to get an element in the bottom-right B in the diagram. In order
to go up to the top-right corner we then use the inverse of the identity equivalence.8 Since this is
the identity function we end up with:

transport (λ i→ B) (e .fst a)

Using the same path as in the definition of transport for path types we can prove that this is
equal to e .fst a up to a path:

uaβ : {A B : Set ℓ} (e : A ≃ B) (a : A) → transport (ua e) a ≡ e .fst a

uaβ {B = B} e a = λ i→ transp (λ _→ B) i (e .fst a)

Transporting along the path that we get from applying ua to an equivalence is, thus, the same
as applying the equivalence. This makes it possible to use the univalence axiom computationally
in Cubical Agda: we can package up equivalences as paths, do equality reasoning using these
paths, and in the end transport along the paths to compute with the equivalences. Furthermore,

8In general this might not be the identity function, thus, this step might actually do something.
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the combination of ua and uaβ is sufficient to prove that ua is an equivalence which gives the full
univalence theorem, i.e., an equivalence between paths and equivalences.9

univalence : ∀{ℓ}{A B : Set ℓ} → (A ≡ B) ≃ (A ≃ B)

5.2 General Case of transp for Glue Types and the ghcomp Operation

While the special case of transp for Glue types above is quite simple the general case is a lot more
complex. The reason is that the input might depend on many more variables than just i. When
considering

transport (λ i →Glue B (λ { (r = i1) → (A , e) }) a

the interval element r might be quite complex and its disjunctive normal form might contain
clauses that do not involve i. On these parts the transp function should compute like the transp
function for A by the boundary rules forGlue types.This in turn means that additional corrections
have to be made compared to the ua case. In Cohen et al. [2018] the part of r that does not mention
i is written ∀i.r (as this operation corresponds to universal quantification on the interval).10

One of the modifications we have to do in the general case of transp for Glue types is that the
simple transport in B has to be a comp with suitable corrections for the ∀i.r faces. While this is
easily achieved it has some unfortunate consequences in the case of transporting along ua. In this
particular case r is i ∨ ∼ i so that (∀i.r) = i0 as there is no part that does not mention i. This means
that the comp correction will introduce an empty system which implies that our simple proof of
uaβ does not work anymore. In order to fix this we have to extend the proof of uaβwith a suitable
hfill in order to compensate for the additional empty system.

Luckily there is a simple trick in Cubical Agda that lets us adapt the correction to eliminate
the empty system. The problem with the above sketched definition is that the comp does not
reduce when ∀i.r is i0, however if we add a clause mapping to the base for this case the issue with
the empty system goes away. This relies on a subtle difference between the hcomp operation in
Cubical Agda and the one in Coquand et al. [2018]. In the latter the boundary constraints were
elements of the face lattice F generated by formal generators (i = i0) and (i = i1) subject to
the relation (i = i0) ∧ (i = i1) = ⊥. In Cubical Agda on the other hand the hcomp operation
takes a family of partial elements that are specified by some r : I. This means that we in Cubical

Agda can add a face when (r = i0) which was not possible in Coquand et al. [2018] as there is no
corresponding operation for F.

The reason that F in Coquand et al. [2018] does not admit such an operation is that while every
ϕ : F is expressible as r = i1 the choice of r is not unique. In particular for ϕ = 0F we can choose
either i0 or i ∧ ¬i which would give different results when equated to i0. Using r : I to specify
boundaries in Cubical Agda avoids the need to make such a choice, and in particular (r = i0) is
represented by ¬r. It would be tempting to instead extend F with a negation operation, however
that would allow us to represent new kinds of boundaries, like the open interval (0, 1] as ¬(i = i0),
and it is not clear how they would impact decidability of typechecking. Modifying hcomp and
transp to take a r : I is semantically justified by the fact that it is not necessary for boundaries
to be specified by a subobject of the subobject classifier Ω in the presheaf topos of cubical sets in
order to obtain a model of univalent type theory.11

9For details see https://github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda#L63.
10Technically speaking the ∀ operation in Cohen et al. [2018] is not an operation on the interval, but rather on the face
lattice F. However it is direct to define an analogous operation on the interval and it is this one we use here.
11This generalization has been formally verified in Agda in https://github.com/mortberg/gen-cart/.
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Inspired by Angiuli et al. [2017, Page 53] we call the homogeneous version of this operation
generalized homogeneous composition, ghcomp. The heterogeneous version used above can be im-
plemented by using ghcomp in the definition of comp. We can write the ghcomp operation as:

ghcomp : {r : I} (u : I → Partial r A) (u₀ : A [ r ↦ u i0 ]) → A

ghcomp {r = r} u u₀ = hcomp (λ j → λ { (r = i1) → u j 1=1 ; (r = i0) → outS u₀ } ) (inS (outS u₀))

By using this in all of the places where the ∀ correction has to be made in the general algorithm
for transp for Glue we obtain a better algorithm which does not produce any new empty systems.
This way the proof of uaβ can stay as simple as above and no additional corrections has to be made.
This is an improvement compared to the algorithm in Cohen et al. [2018] (that is implemented in
cubicaltt) which produced a surprisingly large number of empty systems even in simple cases.

6 METATHEORY OF CUBICAL TYPE THEORY AND CUBICAL AGDA

The original formulation of cubical type theory as in Cohen et al. [2018] has a model in Kan cubical
sets with connections and reversals, that is, presheaves on a suitable cube categorywhere types has
structure corresponding to the comp operation. This model has been formally verified in both the
NuPRL proof assistant [Bickford 2018] and using Agda as the internal language of the presheaf topos
of cubical sets [Licata et al. 2018; Orton and Pitts 2016]. This hence provides semantic consistency
proofs for the cubical type theory that Cubical Agda is based on. A syntactic consistency proof,
using Tait’s computability method, for this cubical type theory was given in Huber [2016] by
defining an operational semantics and proving that any term of natural numbers type computes
to a numeral.

The syntax and semantics of HITs in cubical type theory were studied in Coquand et al. [2018].
The canonicity proof has been shown to extend to the circle and propositional truncation in Huber
[2016, Sect. 5]. One technical consequence of the way the system in Coquand et al. [2018] is de-
signed is that there are closed terms of the circle in an empty context that are not base, for example
hcomp (λ i → empty) base. These degenerate elements were a serious problem in cubicaltt as
they complicated both programming and proving, affecting the efficiency of the system.

These elements arose from the way comp reduces forGlue types in Cohen et al. [2018], but with
the optimization discussed in Sect. 5.2 using ghcomp we can eliminate them. This requires us to
impose a “validity” constraint on partial elements (following Angiuli et al. [2018, Def. 12]) which
says that Partial r A is valid if it cannot become empty from a dimension substitution (a concrete
condition is that r is a classical tautology). Validity combined with ghcomp eliminates all of the
ways that a partial element can become empty in the system. As Cubical Agda implement the
ghcomp optimization we expect it to be possible to prove a refinement of the canonicity theorem
stating that the point constructors are the only elements of HITs in the empty context.

While the comp operation is complicated a recent result by Coquand et al. [2019] shows that
for the Cohen et al. [2018] cubical type theory any implementation of the comp operation yield
the same result for natural numbers up to a path. As Cubical Agda is based on this cubical type
theory the result also applies, so even though the implementation of comp differs from the way
comp was defined in Cohen et al. [2018] the result for closed terms of type natural numbers will
be the same up to a path.

7 CONCLUSION

In this paper we presented Cubical Agda, an extension of Agda with features from cubical type
theory. This brings to a proof assistant both a fully computational univalence principle and HITs.
Moreover, induction on HITs and construction of paths are integrated into Agda’s very expressive
pattern matching, providing support for more idiomatic definitions than direct use of eliminators.
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We expect that such a development environment will lead to more widespread use and experi-
mentation not only of cubical type theory but also of HoTT/UF, in particular for programming
applications.

7.1 Related Work

This work is based on the work on cubical type theory of Cohen et al. [2018] and Coquand et al.
[2018] and the cubicaltt prototype implementation [Cohen et al. 2015]. However, that imple-
mentation did not have support for many of the features of a modern proof assistant (implicit
arguments, type inference, powerful pattern-matching, etc.) so Cubical Agda can be seen as its
successor.

The most closely related cubical proof assistant to Cubical Agda is redtt [The RedPRL De-
velopment Team 2018], which also supports computable univalence and HITs. It is based on a
variation of cubical type theory called cartesian cubical type theory. This has models in cartesian
cubical sets [Angiuli et al. 2019] and cartesian cubical computational type theory [Angiuli et al.
2018; Cavallo and Harper 2019]. The redtt system has been developed from scratch in order to
be a proof assistant for cubical type theory and it has some features that are not in Cubical Agda

yet, like pre-type universes and extension types inspired by Riehl and Shulman [2017].
The work of Tabareau et al. [2018] extends Coq with the ability to transport programs and prop-

erties along equivalences using what the authors call univalent parametricity. While this achieves
some consequences of constructive univalence it does not provide computational content to the
full univalence axiom, in particular to neither function nor propositional extensionality. There is
also no support for HITs.

The computation rules for equality are also defined by cases on the type in Observational Type
Theory (OTT) [Altenkirch and McBride 2006; Altenkirch et al. 2007]. This type theory also proves
function and propositional extensionality without sacrificing typechecking and constructivity,
however it satisfies UIP. Recently, the XTT type theory has been developed [Sterling et al. 2019]
to reconstruct OTT’s exact equality using cubical methods, satisfying UIP rather than univalence.
Languages like XTT and OTT can be used as an extensional substrate for a two-level type theory
[Annenkov et al. 2017; Voevodsky 2013], which would have both equality and path types.

Examples of ideas from HoTT/UF in computer science include [Angiuli et al. 2016] where the
authors use univalence and HITs to model Darcs style patch theory. This work envisioned what
could be done if these notions were computing, but at the time it was unknown how to make
this happen. However, now that Cubical Agda supports this, it would be interesting to redo the
examples as the implementation would now compute. Another example is HoTTSQL [Chu et al.
2017] which defines a formal SQL style language. The use of HoTT/UF is restricted to reasoning
about cardinal numbers and it is not clear how much would be gained from doing this cubically.

7.2 Future Work

Interesting further directions would be to study meta-theoretical properties of cubical type theory,
including a proof of decidability of type-checking and a complete correctness proof of the conver-
sion checking algorithm with respect to a declarative specification of equality. We believe this can
be done by extending the canonicity proof of Huber [2016] using ideas from Abel et al. [2017].

We would also like to extend Cubical Agda with more cubical features, like cubical extension
types inspired by Riehl and Shulman [2017] and inductive families following Cavallo and Harper
[2019]. An important open problem in the area of constructive synthetic homotopy theory is to
compute the Brunerie number [Brunerie 2016] which so far has proved to be infeasible using
cubicaltt and Cubical Agda. It would hence be interesting to study compilation and efficient
closed term evaluators of cubical languages in order to be able to do this kind of computations.
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