
1

Normalization by Evaluation for Sized
Dependent Types

ANDREAS ABEL, Gothenburg University

ANDREAS VEZZOSI, Chalmers

THEO WINTERHALTER, École Normale Supérieure de Cachan

Sized types have been developed to make termination checking more perspicuous, more powerful, and more

modular by integrating termination into type checking. In dependently-typed proof assistants where proofs

by induction are just recursive functional programs, the termination checker is an integral component of the

trusted core, as validity of proofs depend on termination. However, a rigorous integration of full-fledged sized

types into dependent type theory is lacking so far. Such an integration is non-trivial, as explicit sizes in proof

terms might get in the way of equality checking, making terms appear distinct that should have the same

semantics.

In this article, we integrate dependent types and sized types with higher-rank size polymorphism, which is

essential for generic programming and abstraction. We introduce a size quantifier ∀ which lets us ignore sizes

in terms for equality checking, alongside with a second quantifier Π for abstracting over sizes that do affect the

semantics of types and terms. Judgmental equality is decided by an adaptation of normalization-by-evaluation

for our new type theory, which features type shape-directed reflection and reification. It follows that subtyping

and type checking of normal forms are decidable as well, the latter by a bidirectional algorithm.

CCS Concepts: • Theory of computation→ Type theory; Type structures; Program verification; Opera-
tional semantics;

Additional Key Words and Phrases: dependent types, eta-equality, normalization-by-evaluation, proof irrele-

vance, sized types, subtyping, universes.

ACM Reference format:
Andreas Abel, Andreas Vezzosi, and TheoWinterhalter. 2017. Normalization by Evaluation for Sized Dependent

Types. Proc. ACM Program. Lang. 1, 1, Article 1 (January 2017), 36 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Dependently-typed programming languages and proof assistants, such as Agda [2017] and Coq [IN-

RIA 2016], require programs to be total, for two reasons. First, for consistency: since propositions

are just types and proofs of a proposition just programs which inhabit the corresponding type,

some types need to be empty; otherwise, each proposition would be true. However, in a partial

language with general recursion, each type is inhabited by the looping program f = f . Secondly,
totality is needed for decidability of type checking. Since types can be the result of a computation,

we need computation to terminate during type checking, even for open terms, i. e., terms with free

variables.

Consequently, the aforementioned languages based on Type Theory come with a termination

checker, which needs to reject all non-terminating programs, and should accept sufficiently many

terminating programs to allow the user to express her algorithms. In current termination checkers,

programs are required to terminate by structural descent [Giménez 1995]; the structural order may

be extended to a lexicographic [Abel and Altenkirch 2002] or size-change termination criterion

2017. 2475-1421/2017/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://hackage.haskell.org/package/Sit
http://icfp17.sigplan.org/track/icfp-2017-Artifacts
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

[Lee et al. 2001; Wahlstedt 2007]. This is not a fundamental limitation, since Type Theory allows

many functions to be expressed in a structurally recursive manner, if needed by the help of a

well-founded relation [Nordström 1988], inductive domain predicates [Bove and Capretta 2005],

or inductive descriptions of the function graph [Bove 2009]. However, the syntactic termination

check is very sensitive to reformulations of the program and hostile to abstraction [Abel 2012].

Sized types [Hughes et al. 1996] delegate the checking for structural descent to the type system

by annotating data types with a size parameter. The type checker can then ensure that in recursive

calls the size goes down, certifying termination. In the simplest setting [Abel 2008; Barthe et al.

2004], the size is just an upper bound on the tree height of the data structure; however, more

sophisticated size annotations have also been considered [Blanqui 2004; Xi 2002]. Most sized type

systems are non-dependent [Abel and Pientka 2016; Amadio and Coupet-Grimal 1998; Barthe

et al. 2008a,b; Blanqui and Riba 2006; Lago and Grellois 2017], yet the combination of sized and

dependent types has been studied as well [Barthe et al. 2006; Blanqui 2005; Grégoire and Sacchini

2010; Sacchini 2013, 2014]. However, to the best of our knowledge, no study combines higher-rank
size polymorphism with full-fledged dependent types.

1

Higher-rank size quantification takes termination checking to the next level; it is necessary for

abstraction and generic programming. For instance, it allows us to write a generic tree traversal

which applies a user-given preprocessor on subtrees before recursively descending into these trees,

and a postprocessor after surfacing from the descent. The condition is that preprocessing does

not increase the size of the subtree; otherwise, termination could not be guaranteed. Concretely,

assume a type T i of trees of size < i with a constructor node : ∀i . List (T i) → T (i + 1) which takes

a finite list of subtrees to form a new tree. In the following definition of trav, the preprocessing
pre : ∀i . T i → T i can be safely applied to input tree t because the type of pre bounds the size of
pre t by the size of t . In case pre t = node ts, the trees in the list ts are still guaranteed to be of

strictly smaller size than t , thus, the recursive call to trav, communicated via the map function for

lists, is safe.

trav : (pre : ∀i . Ti → Ti) (post : T∞ → T∞) → ∀i . T i → T∞
trav pre post t = post (case pre t of { node ts → node (map (trav pre post) ts) })

The display shows the Curry-style program as provided by the user, but state-of-the-art type

checkers elaborate the program from surface syntax into an internal Church-style syntax with

explicit type abstractions and type applications.
2
With implicit type and size applications elaborated,

trav would look as follows:

trav pre post i t = post (case pre i t of { node j ts → node∞ (map (T j) (T∞) (trav pre post j) ts)})

Church-style syntax is the basis for all program analyses and transformations to follow and

should be considered as the true syntax. However, from a dependent-type perspective, explicit size

applications in terms can be problematic when the type checker compares terms for equality—which

is necessary as types can depend on values. Inferred sizes may not be unique, as we have subtyping

T i ≤ T j for i ≤ j: we can always weaken an upper bound. For instance, given ts : List (T i), any of

the terms node i ts, node (i + 1) ts, . . . , node∞ ts has type T∞. Yet semantically, all these trees are

equal, thus, the syntactic equality check should ignore the size argument to node. Similarly, in the

application pre i t the size argument i should be ignored by the equality check. Yet pre i : T i → T i
and pre j : T j → T j have different types for i , j , and moreover these function types are not in the

subtyping relation due to the mixed-variant occurrence of the size parameter. It seems that during

equality checking we have to consider terms of different types, at least for a while. Once we apply

1
Xi [2002] has first-class size polymorphism, but only indexed types, no universes or large eliminations.

2
Agda, Coq, Idris [Brady 2013], and Haskell [Sulzmann et al. 2007] all have Church-style internal languages.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:3

pre i and pre j to the same tree t : Tk , which determines i = j = k , we are back to safety. However,

allowing types to differ during an equality check needs special consideration, especially when the

equality-check is type directed.

Consider the analogous situation for the polymorphic lambda calculus System F, be it the

predicative variant or not, extended by a unit type 1. For Church-style, we can give a type-directed

βη-equality test which equates all terms at the unit type. The most interesting rules are the η-rules
for unit and function type and the congruence rule for type application:

Γ ⊢ t = t ′ : 1
Γ,x :A ⊢ t x = t ′ x : B

Γ ⊢ t = t ′ : A→ B

Γ ⊢ t = t ′ : ∀X .B

Γ ⊢ t A = t ′A : B[A/X]

The Curry-style version replaces the last conclusion by Γ ⊢ t = t ′ : B[A/X] where the type

A to instantiate X has to be guessed. However, in Curry-style more terms are equated than in

Church-style, as for instance the Church-style terms t A (λx : A. x) and t B (λx : B. x) map to

the same Curry-style term t (λx . x). How would we adapt the algorithm for Church-style such

that it equates all terms that are equal in Curry-style? The conclusion of the last rule could be

changed to Γ ⊢ t A = t ′A′ : B[A/X], but then the second term t ′A′ does not have the ascribed
type B[A/X], and η-laws applied to this term would be unsound. For instance, the algorithm

would yield t 1x = t (A → A)y even for x , y. We could also consider a heterogeneous check

(Γ ⊢ t : A) = (Γ′ ⊢ t ′ : A′) where each term is paired with its own type and context, but this leaves

us with the dilemma of explaining the meaning of this judgement when A and A′ are incompatible.

Does the literature offer a solution to this problem? In fact, a Church-style calculus with Curry-

style equality has been studied before, it is ICC
∗
[Barras and Bernardo 2008; Mishra-Linger and

Sheard 2008] based on Miquel’s Implicit Calculus of Constructions [2001]. In ICC
∗
, equality is

checked by erasing all type abstractions and applications, and comparing the remaining untyped

terms for βη-equality. While this works for η-laws that can be formulated on untyped terms, such as

η-contraction of functions λx . t x −→η t (when x not free in t), it does not extend to type-directed

η-laws such as extensionality for the unit type. Further, ICC
∗
is not a type theory formulated with

a typed equality judgement, which makes it hard to define its models [Miquel 2000]—we wish not

to go there, but stay within the framework of Martin-Löf Type Theory [1975].

Now, if the types of compared Curry-style terms are not equal, can they be sufficiently related

to give a proper meaning to the algorithmic equality judgement? It has already been observed

that for a type-directed equality check the precise type is not necessary, a shape or skeleton is

sufficient. The skeleton informs the algorithm whether the terms under comparison are functions,

inhabitants of the unit type, or something else, to possibly apply the appropriate η-law. For the
Logical Framework (LF), the simplest dependent lambda-calculus, the skeletons are simple types

that can be obtained from the original dependent types by erasing the dependencies: dependent

function types map to non-dependent ones and indexed data types to simple data types. Harper

and Pfenning [2005] present such an equality check for LF which is directed by simple types, and

their technique should scale to other type theories that admit dependency erasure.
3

By large eliminations [Werner 1992] we refer to types computed by case distinction over values;

they occur in type theories that feature both universes and data types. In the presence of large

eliminations, dependency erasure fails, and it is not clear what the skeleton of a dependent type

should be. For instance consider the type (n :N) → A→ · · · → A︸ ︷︷ ︸
n

→ A of n-ary functions; its shape

3
For instance, the types of the Calculus of Constructions erase to F

ω
-types [Geuvers 1994], and the latter could be used to

direct the equality check. Lovas and Pfenning [2010] consider also refinement types for logical frameworks which can be

erased to simple types.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

is dependent on the value of n, thus cannot be determined statically. Thus, the “skeleton” idea is

also not directly applicable.

Going beyond the standard syntax-directed equality check, there is a technique that can deal

with dynamic η-expansion. It is a type-directed normalization function inspired by normalization-

by-evaluation (NbE) that computes η-long normal forms [Berger and Schwichtenberg 1991; Danvy

1999]. We can check the computed normal forms for identity and, thus, decide definitional equality.

NbE has proven to be a robust method to decide equality in powerful type theories with non-trivial

η-laws. It scales to universes and large eliminations [Abel et al. 2007], topped with singleton types

or proof irrelevance [Abel et al. 2011], and even impredicativity [Abel 2010]. At its heart there

are reflection ↑T and reification ↓T functions directed by type T and orchestrating just-in-time

η-expansion. Reflection ↑Tx maps variables x into the realm of values of typeT and lets us compute

with open terms. Reification ↓Ta takes a value a of type T and computes its long normal form. For

instance, the normal form of a closed function f : U → T would be λx . ↓T (f (↑U x)), and for its

dependently-typed variant f : (x :U) → T [x] it would be λx . ↓T [↑
U x] (f (↑U x)).

The central technical observation is that reflection and reification do not need the precise type

T , they work the same for any shape S of T . We managed, while not introducing a new syntax

for shapes, to define a relation T ⊏
∼ S on type values stating that type S qualifies as shape for

type T . Shapes unfold dynamically during reflection and reification. For example, when reflecting

a variable x into the polymorphic function type ∀i . F i where F i = Nat i → Nat i , we obtain

(↑∀i .F ix) i = ↑F i (x i) for size i and (↑∀i .F ix) j = ↑F j (x j) for size j. The new types F i and F j we
reflect at are no longer equal (and they are not subtypes of each other), but they still have the

same shape, Nat _→ Nat _. This means they will still move in lock-step in respect to η-expansion,
which is sufficient to prove NbE correct for judgmental equality. We call the enabling property of F
shape irrelevance, meaning that for any pair i , j of legal arguments, F i and F j have the same shape.

Whenever we form a irrelevant function type ∀x :U .T [x], we require T [x] to be shape-irrelevant

in x . This is the middle ground between ICC
∗
, where no restriction is placed on T but η for unit

types is out of reach (at least for the moment), and Pfenning’s [2001] irrelevance modality, adapted

to full dependent types by Abel and Scherer [2012], which requiresT to be irrelevant in x and, thus,

has type equality T [i] = T [j].
For the time being, we do not (and cannot) develop a general theory of shape irrelevance. We

confine ourselves to size-irrelevant function types ∀i .T [i]. This relieves us from defining a special

shape-irrelevance modality, since all size-indexed typesT [i] are shape irrelevant in i , simply because

there is no case distinction on size, and sizes appear relevantly only under a sized type constructor

such as Nat. Our technique would not extend to the polymorphic types ∀X . B[X] of System F. Even

though there is no case distinction on types, shape irrelevance of B[X] fails in general, as X could

appear as a type on the top-level, e.g. in B[X] = X → X , and then B[1] and B[A→ A] would have

distinct shapes.

To summarize, this article makes the following novel contributions:

(1) We present the first integration of a dependent type theory with higher-rank size polymor-

phism. Concretely, we consider a type theory à la Martin-Löf with dependent function types,

cumulative universes, subtyping, a judgmental equality with η-laws, a sized type of natural

numbers and two size quantifiers: an irrelevant one (∀) for binding of sizes in irrelevant

positions, and a relevant one (Π) for binding of sizes in shape-irrelevant positions (Section 3).

Judgmental equality features a “Curry-style” rule for irrelevant size application which ignores

the size arguments, and consequently, the corresponding typing rule will also ignore the size

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:5

argument. (In the following rules, a, a′, and b stand for arbitrary size expressions.)

Γ ⊢ t = t ′ : ∀i .T

Γ ⊢ t a = t ′ a′ : T [b/i]

Γ ⊢ t : ∀i .T

Γ ⊢ t a : T [b/i]

Γ ⊢ t = t ′ : Πi .T

Γ ⊢ t a = t ′ a : T [a/i]

Γ ⊢ t : Πi .T

Γ ⊢ t a : T [a/i]

Our substitution theorem distinguishes term- from type-side substitutions.

(2) We adapt normalization-by-evaluation (NbE) to sized types and size quantification and show

that it decides judgmental equality (sections 4 and 5). The novel technical tool is a relation

T ⊏
∼ S which relates a type T to its possible shapes S . This approximation relation allows

reflection and reification at size-polymorphic types ∀i .T . As usual for the meta-theory of

Type Theory with large eliminations, the machinery is involved, but we just require the

usual two logical relations: First, a PER model to define the semantics of types and prove the

completeness of NbE (Section 4). Secondly, a relation between syntax and semantics to prove

soundness of NbE (Section 5).

(3) We present an bidirectional type checking algorithm [Coquand 1996] which takes the irrele-

vant size argument as reliable hint for the type checker (sections 6 and 7). It is complete for

normal forms which can be typed with the restricted rule for ∀-elimination:

Γ ⊢ t : ∀i .T

Γ ⊢ t a : T [a/i]

The algorithm employs the usual lazy reduction for types, i. e., just-in-time weak-head

evaluation, in type and sub-type checker [Huet 1989]. In this, it improves on Fridlender and

Pagano [2013] which instruments full normalization (NbE) at every step.

This article is accompanied by a prototypical type checker Sit which implements the type system

and type checking algorithm as described in the remainder of the paper. But before going into the

technical details, we will motivate our type system from a practical perspective: reasoning about

programs involving sized types in Agda.

2 SIZE IRRELEVANCE IN PRACTICE
In this section, we show how the lack of size irrelevance prevents us from reasoning naturally

about programs involving sized types in Type Theory. We focus on Agda, at the time of writing the

only mature implementation of Type Theory with an experimental integration of sized types.

The problem of the current implementation of sized types in Agda can be demonstrated by a

short example. Consider the type of sized natural numbers.

data Nat : Size→ Set where
zero : ∀ i→ Nat (i + 1)
suc : ∀ i→ Nat i→ Nat (i + 1)

The predecessor function is size preserving, i. e., the output can be assigned the same upper

bound i as the input. In the code to follow, the dot on the left hand side, preceding (i + 1), marks

an inaccessible pattern. Its value is determined by the subsequent match on the natural number

argument, no actual matching has to be carried out on this argument.

pred : ∀ i→ Nat i→ Nat i
pred .(i + 1) (zero i) = zero i
pred .(i + 1) (suc i x) = x

Note that in the second clause, we have applied subtyping to cast x from Nat i to Nat (i + 1).
We now define subtraction x .

− y on natural numbers, sometimes called the monus function,
which computes max(0,x − y). It is defined by induction on the size j of the second argument y,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://hackage.haskell.org/package/Sit

1:6 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

while the output is bounded by size i of the first argument x . The input-output relation of monus
is needed for a natural implementation of Euclidean divison.

There are several ways to implementmonus, we have chosen a tail-recursive variant which treats

the first argument as accumulator. It computes the result by applying the predecessor function y
times to x .

monus : ∀ i→ Nat i→∀ j→ Nat j→ Nat i
monus i x .(j + 1) (zero j) = x
monus i x .(j + 1) (suc j y) = monus i (pred i x) j y

To document subgoals in proof terms, we introduce a mixfix version of the identity function

with a visible type argument:

prove_by_ : (A : Set)→ A→ A
prove A by x = x

We now wish to prove that subtracting x from itself yields 0, by induction on x . The case x = 0

should be trivial, as x .
− 0 = x by definition, hence, 0

.
− 0 = 0. As simple proof by reflexivity should

suffice. In case x + 1, the goal 0 ≡ (x + 1) .
− (x + 1) should reduce to 0 ≡ x .

− x , thus, an application

of the induction hypothesis should suffice. The following display shows that partial proofs, leaving

holes {! ... !} already filled with the desired proof terms.

monus-diag : ∀ i→ (x : Nat i)→ zero∞ ≡ monus i x i x
monus-diag .(i + 1) (zero i) = prove zero∞ ≡ zero i by {! refl !}
monus-diag .(i + 1) (suc i x) = prove zero∞ ≡ monus (i + 1) x i x by {! monus-diag i x !}

Unfortunately, in Agda our proof is not accepted, as sizes get in the way. In the first goal, there

is a mismatch between size ∞ and size i , the latter coming from the computation of monus (i +
1) (zero i) (i+1) (zero i). In the second goal, there is a mismatch between size i+1 in termmonus (i+
1) x i x of the reduced goal and size i of the respective term monus i x i x from the induction

hypothesis we wish to apply.

The proof would go through if Agda ignored sizes where they act as type argument, i. e., in
constructors and term-level function applications, but not in types where they act as regular

argument, e. g., in Nat i .
The solution we present in this article already works in current Agda,

4
but the implementation

is not perfect. Thus, it is hidden under a scarcely documented flag:

{-# OPTIONS --experimental-irrelevance #-}

We mark the size argument of Nat as shape irrelevant by preceding the binder with two dots. In

a future implementation, we could treat all data type parameters as shape irrelevant by default.

In the types of the constructors, we mark argument i as irrelevant by prefixing the binder with a

single dot. This is sound because i occurs in subsequent parts of the type only in shape-irrelevant

positions.

data Nat : ..(i : Size)→ Set where
zero : ∀ .i→ Nat (i + 1)
suc : ∀ .i→ Nat i→ Nat (i + 1)

Similarly, “type” argument i to pred is irrelevant. Agda checks that it only occurs shape-

irrelevantly in the type and irrelevantly in the term. The latter is the case since i is also an

irrelevant argument to the constructors zero and suc; otherwise, we would get a type error.

4
https://github.com/agda/agda, development version of 2017-02-27.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://github.com/agda/agda

NbE for Sized Types 1:7

pred : ∀ .i→ Nat i→ Nat i
pred .(i + 1) (zero i) = zero i
pred .(i + 1) (suc i x) = x

The two size arguments i and j tomonus are also irrelevant. In this case, type checking succeeds

since the size argument to pred has been declared irrelevant.

monus : ∀ .i→ Nat i→∀ .j→ Nat j→ Nat i
monus i x .(j + 1) (zero j) = x
monus i x .(j + 1) (suc j y) = monus i (pred i x) j y

Now, with sizes being ignored in the involved terms, we can complete the proof of our lemma:

monus-diag : ∀ .i→ (x : Nat i)→ zero∞ ≡ monus i x i x
monus-diag .(i + 1) (zero i) = prove zero∞ ≡ zero i by refl
monus-diag .(i + 1) (suc i x) = prove zero∞ ≡ monus (i + 1) x i x by monus-diag i x

3 A TYPE SYSTEMWITH IRRELEVANT SIZE APPLICATION
In this section, we give the syntax and the declarative typing, equality, and subtyping judgements.

The typing relation Γ ⊢ t : T will not be decidable; instead, we present algorithmic typing

Γ ⊢ t ⇔ T in Section 7. However, equality and subtyping will be decidable for well-formed input,

see sections 4–6.

We present our type theory as (domain-free) pure type system [Barendregt 1991] with extra

structure. The sorts s are drawn from an infinite predicative hierarchy of universes Setℓ for ℓ ∈ N.
Universes provide us with polymorphism and the capability to define types by recursion on values.

Whether we have just two universes Set0 and Set1 or infinitely many, does not matter for the

technical difficulty of the meta theory. The present setup have the advantage that every sort has

again a sort since Setℓ : Setℓ+1, thus, we do not have to introduce a separate judgement Γ ⊢ T for

well-formedness of types, we can define it as ∃s . Γ ⊢ T : s .

Sort ∋ s ::= Setℓ (ℓ ∈ N) sort (universe)

Ann ∋ ⋆ ::= ÷ | : annotation (irrelevant, relevant)

Exp ∋ t ,u,T ,U ::= w | t e expressions

Whnf ∋ w,W ::= n | s | Size | Π⋆U T | λt | Nata | c weak head normal forms

Data ∋ c ::= zero⟨a⟩ | suc⟨a⟩t constructed data

NeExp ∋ n ::= vi | n e neutral expressions

Elim ∋ e ::= t | a | ⟨a⟩ | caseℓ T tz ts | fixℓ T t eliminations

SizeExp ∋ a,b ::= ∞ | o | vi + o (o ∈ N) size expressions

Cxt ∋ Γ,∆ ::= () | Γ.:T | Γ.÷Size contexts

Subst ∋ η, ρ,σ ,τ , ξ ::= () | (σ , t) substitutions

Fig. 1. Syntax.

For the expression syntax (see Fig. 1), we use de Bruijn [1972] indices vi to represent variables. The
index i ∈ N points to the ith enclosing binder of variable vi . Binders are lambda abstraction λt and
dependent function types Π⋆U T , which bind the 0th index in t and T , resp. For instance, the term
λx . x (λz. z) (λy. x y) with named variables x ,y, z has de Bruijn representation λ. v0 (λ. v0) (λ. v1 v0).
The notation Π⋆U T is an umbrella for three kinds of function types, where ⋆ ∈ {÷, :} is a

relevance annotation borrowed fromPfenning [2001].Π:U T is the ordinary dependent function type,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Π:SizeT is relevant size quantification, andΠ÷SizeT is irrelevant size quantification.We omit the “:”-

markers from Π by default (and also in contexts Γ) and write ∀T for Π÷SizeT . Examples for relevant

size quantification Π SizeT are Π Size Set0 and Π SizeΠ (Nat v0) Set0. In a syntax with named

variables and non-dependent function type they could be written as Size→ Set0 and (z :Size) →
Nat z → Set0, resp. An instance of irrelevant quantification ∀T would be ∀.Π (Nat v0) (Nat v1)
which is ∀z.Nat z → Nat z in a named syntax. Herein, Nat z denotes the type of natural numbers

below z. The expression Size is a possible instance ofU in Π⋆U T , or a possible type of a variable in
a typing context Γ, but not a first-class type, i. e., we cannot construct our own functions on sizes.

Canonical natural numbers c are constructed by zero⟨a⟩ and suc⟨a⟩t . A size expression a is either

a constant o ∈ N, a variable vi + o possibly with increment o, or the limit ordinal∞ which stands

for ω. The size argument a in the constructors zero and suc is a suggestion for the type checker but

bears no semantic significance. For example, in the declarative typing presented here, we can have

⊢ zero⟨5⟩ : Nat 1. In the algorithmic typing however, ⊢ zero⟨5⟩ ⇔ Nat 1 will be an error. Note,

however, that ⊢ zero⟨a⟩ : Nat 0 is impossible for any a, as zero is not strictly below 0 (when both

term and size are interpreted as natural numbers).

Regular application t u, relevant size application t a, and irrelevant size application t ⟨a⟩ eliminate

functions t and are subsumed under the form t e with e ::= u | a | ⟨a⟩. We have two further

eliminations, which make sense when t stands for a natural number. These are case distinction

e = caseℓ T tz ts and recursive function application e ′ = fixℓ′ T ′ t ′. Application of case distinction

zero⟨a⟩ e will reduce to the zero-branch tz , and application (suc⟨a⟩t) e to the instantiation ts t of
the successor branch. The type annotation T in case allows us to infer the type of the whole

case statement t e as T t . The function call c e ′ for a canonical number c and elimination e ′ =
fixℓ′ T ′ t ′ reduces to t ′ (λx . x e ′) c where we allowed ourselves the use of a named abstraction in

the presentation to the reader. The unfolding of fixed-points is thus restricted to application to

canonical numbers; this is the usual reduction strategy which converges for terminating functions

[Barthe et al. 2004].

For ordinary β-reduction we employ substitutions σ . These are simply lists of terms that provide

one term as replacement for each free de Bruijn index in a term t . We write tσ for the appli-

cation of substitution σ to term t which is defined as usual. Let lifting �km be the substitution

(vk+m−1, . . . , vk+1, vk) which accepts a term withm free indices and increases each of them by k . We

write �m for the lifting �1m and idm for the identity substitution �0m . In general, we refer to liftings

by letter ξ . The substitution [u]m = (idm ,u) replaces free index v0 by term u and decrements the

otherm free indices by 1. We drop subscriptm from liftings and substitutions when clear from the

context. Substitution composition στ is the pointwise application of substitution τ to the list of

terms σ . In the proofs to follow, we freely use the following identities:

t id ≡ t (tσ)τ ≡ t (στ) σ id ≡ σ idτ ≡ τ (ρσ)τ ≡ ρ (στ)

v0 (σ , t) ≡ t �(σ , t) ≡ σ [t]σ ≡ (σ , tσ) �[t] ≡ id

As already done in some examples, we may use a named dependent function type notation as

syntactic sugar for the corresponding de Bruijn representation. For instance, (z :Size) → Nat z →
Setℓ is sugar for Π SizeΠ (Nat v0) Setℓ . We abbreviate this type by FixK ℓ , and let FixTT stand

for ∀z. ((x : Nat z) → T z x) → (x : Nat (z + 1)) → T (z + 1) x . Similarly to for Π, we use named

lambda abstraction as sugar for de Bruijn abstraction. Named abstraction takes care of proper

lifting of de Bruijn indices, for instance, λx . tx = λ.(t�) v0 if t is outside the scope of x . We may

also use names when we construct concrete contexts, for instance, if T is well-formed in context Γ,
we may write T z x in context Γ.z :Size.x :Nat z to mean T�2 v1 v0 in context Γ.Size.Nat v0.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:9

Inductively defined judgements (mutual).

⊢ Γ context Γ is well-formed

Γ(i) = ⋆T in context Γ, de Bruijn index i has type T and annotation ⋆
Γ ⊢ a : Size in context Γ, size expression a is well-formed

Γ ⊢ t : T in context Γ, term t has type T
Γ ⊢ t = t ′ : T in context Γ, terms t and t ′ are equal of type T
Γ ⊢ T ≤ T ′ in context Γ, type T is a subtype of T ′

Γ ⊢ σ : ∆ σ is a valid substitution for ∆
Γ ⊢ σ = σ ′ ≓ τ : ∆ σ /σ ′/τ are a equal term/term/type-level substitutions for ∆

Derived judgements.

Γ ⊢ T :⇐⇒ Γ ⊢ T : s for some s
Γ ⊢ T = T ′ :⇐⇒ Γ ⊢ T = T ′ : s for some s
Γ ⊢ a = b : Size :⇐⇒ Γ ⊢ a : Size and a = b
Γ ⊢ a ≤ b : Size :⇐⇒ Γ ⊢ a : Size and Γ ⊢ b : Size and a ≤ b
Γ ⊢ T : Adm ℓ :⇐⇒ Γ ⊢ T : FixK ℓ and Γ.z :Size.x :Nat z ⊢ T z x ≤ T ∞x
ξ : Γ ≤ ∆ :⇐⇒ Γ ⊢ ξ : ∆ and ξ = �km withm = |∆| and k = |Γ | −m

Fig. 2. Judgements.

In typing contexts Γ, we distinguish relevant (:) and irrelevant (÷) bindings. When type checking

a variable, it needs to be bound in the context relevantly. However, when entering an irrelevant

position, for instance when checking sizea in term suc⟨a⟩t we declare previously irrelevant variables
as relevant. This operation on the context has been coined resurrection by Pfenning [2001]; formally

Γ⊕ removes the “÷”-markers from all bindings in Γ, i. e., replaces them by “:”-markers. Note that,

trivially, resurrection is idempotent: Γ⊕⊕ = Γ⊕ .

Size increment a + o′ for o′ ∈ N extends addition by∞+o′ = ∞ and (vi +o) +o′ = vi + (o +o′).

Sizes are partially ordered; size comparison a ≤ b holds as expected if either b = ∞ or o ≤ o′

where either a = o and b = o′ or a ∈ {o, vi + o} and b = vi + o′. Different size variables are

incomparable.

Fig. 2 lists the inductive and derived judgements of our type theory and figures 3 and 4 the

inference rules. We have boxed the rules dealing with irrelevant size application. Fig. 5 adds

the typing and equality rules for case distinction and recursion on natural numbers. Judgement

Γ ⊢ T : Adm ℓ characterizes the valid type annotationsT in recursion fixℓ T t . The type constructor
T has to be monotone in the size argument; this is a technical condition for type-based termination

[Barthe et al. 2004]. We will make use of it in Section 4.7. We write D :: J to express that D is a

derivation of judgement J .
In the typing judgement Γ ⊢ t : T , the term t is in scope of Γ, i. e., may not mention irrelevant

variables in relevant positions. However, the typeT is in scope of the resurrected context Γ⊕ , hence,
can mention all variables declared in Γ. The other judgements are organized similarly. To understand

this distinction, consider judgement z ÷ Size ⊢ Nat z. This would mean that z is irrelevant in Nat z
and thus, Γ ⊢ Nata = Nata′ for all sizes Γ⊕ ⊢ a,a′ : Size. But this is exactly wrong! However,

judgement z ÷ Size ⊢ zero⟨z⟩ : Nat (z + 1) is fine, it implies Γ ⊢ zero⟨a⟩ = zero⟨a′⟩ : Nat (b + 1) for
all Γ⊕ ⊢ a,a′,b : Size.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

⊢ Γ (implies ⊢ Γ⊕) and Γ(i) = ⋆T (implies Γ⊕ ⊢ T if ⊢ Γ).

⊢ ()

⊢ Γ Γ⊕ ⊢ T

⊢ Γ.T

⊢ Γ

⊢ Γ.⋆Size (Γ.⋆T) (0) = ⋆T�
Γ(i) = ⋆T

(Γ._) (i + 1) = ⋆T�

Γ ⊢ a : Size (implies ⊢ Γ and Γ⊕ ⊢ a : Size).

⊢ Γ

Γ ⊢ ∞ : Size

⊢ Γ

Γ ⊢ o : Size
o ∈ N

⊢ Γ Γ(i) = :Size

Γ ⊢ vi + o : Size
o ∈ N

Γ ⊢ t : T (implies ⊢ Γ and Γ⊕ ⊢ T [and Γ⊕ ⊢ t : T]. Note: no rule for Γ ⊢ Size : s .)

⊢ Γ

Γ ⊢ Setℓ : Setℓ′
ℓ<ℓ′

Γ ⊢ U : s Γ.U ⊢ T : s

Γ ⊢ ΠU T : s

Γ.Size ⊢ T : s

Γ ⊢ Π⋆SizeT : s

Γ ⊢ a : Size

Γ ⊢ Nata : Set0

⊢ Γ Γ(i) = :T

Γ ⊢ vi : T
T , Size

Γ.⋆U ⊢ t : T

Γ ⊢ λt : Π⋆U T

Γ ⊢ t : ΠU T Γ ⊢ u : U

Γ ⊢ t u : T [u]

Γ ⊢ t : Π SizeT Γ ⊢ a : Size

Γ ⊢ t a : T [a]

Γ ⊢ t : ∀T Γ⊕ ⊢ a,b : Size

Γ ⊢ t⟨a⟩ : T [b]

Γ⊕ ⊢ a,b : Size

Γ ⊢ zero⟨a⟩ : Nat (b + 1)

Γ⊕ ⊢ a : Size Γ ⊢ t : Natb

Γ ⊢ suc⟨a⟩t : Nat (b + 1)

Γ ⊢ t : T Γ⊕ ⊢ T ≤ T ′

Γ ⊢ t : T ′

Γ ⊢ T ≤ T ′ (implies Γ ⊢ T ,T ′)

⊢ Γ ℓ≤ℓ′

Γ ⊢ Setℓ ≤ Setℓ′
Γ ⊢ a ≤ b : Size

Γ ⊢ Nata ≤ Natb

Γ ⊢ T = T ′

Γ ⊢ T ≤ T ′

Γ ⊢ U ′ ≤ U Γ.U ′ ⊢ T ≤ T ′

Γ ⊢ ΠU T ≤ ΠU ′T ′
Γ.Size ⊢ T ≤ T ′

Γ ⊢ Π⋆SizeT ≤ Π⋆SizeT ′
Γ ⊢ T1 ≤ T2 Γ ⊢ T2 ≤ T3

Γ ⊢ T1 ≤ T3

Γ ⊢ τ : ∆ (implies ⊢ Γ and ⊢ ∆ [and Γ⊕ ⊢ τ : ∆] and Γ⊕ ⊢ τ : ∆⊕).

⊢ Γ

Γ ⊢ () : ()

Γ ⊢ τ : ∆ ∆⊕ ⊢ T Γ ⊢ t : Tτ

Γ ⊢ (τ , t) : ∆.T

Γ ⊢ τ : ∆ Γ ⊢ a : Size

Γ ⊢ (τ ,a) : ∆.Size

Γ ⊢ τ : ∆ Γ⊕ ⊢ a : Size

Γ ⊢ (τ ,a) : ∆.÷Size

Γ ⊢ σ = σ ′ ≓ τ : ∆ (implies ⊢ Γ and ⊢ ∆ and Γ ⊢ τ : ∆ and Γ ⊢ σ ′ = σ ≓ τ : ∆).

⊢ Γ

Γ ⊢ () = () ≓ () : ()

Γ ⊢ σ = σ ′ ≓ τ : ∆ ∆⊕ ⊢ T Γ ⊢ u = u ′ = t : Tτ

Γ ⊢ (σ ,u) = (σ ′,u ′) ≓ (τ , t) : ∆.T

Γ ⊢ σ = σ ′ ≓ τ : ∆ Γ ⊢ a = a′ = b : Tτ

Γ ⊢ (σ ,a) = (σ ′,a′) ≓ (τ ,b) : ∆.Size

Γ ⊢ σ = σ ′ ≓ τ : ∆ Γ⊕ ⊢ a,a′,b : Tτ

Γ ⊢ (σ ,a) = (σ ′,a′) ≓ (τ ,b) : ∆.÷Size

Fig. 3. Typing, subtyping, and substitution judgements.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:11

Computation rules.

Γ.U ⊢ t : T Γ ⊢ u : U

Γ ⊢ (λt)u = t[u] : T [u]

Γ.Size ⊢ t : T Γ ⊢ a : Size

Γ ⊢ (λt) a = t[a] : T [a]

Γ.÷Size ⊢ t : T Γ⊕ ⊢ a,b : Size

Γ ⊢ (λt) ⟨a⟩ = t[a] : T [b]

Extensionality rules.

Γ ⊢ t : ΠU T

Γ ⊢ t = λx .t x : ΠU T

Γ ⊢ t : ∀T Γ⊕ .Size ⊢ a : Size

Γ ⊢ t = λx .t⟨a⟩ : ∀T

Congruence rules.

⊢ Γ

Γ ⊢ Setℓ = Setℓ : Setℓ′
ℓ<ℓ′

Γ ⊢ a : Size

Γ ⊢ Nata = Nata : Set0

Γ ⊢ U = U ′ : s Γ.U ⊢ T = T ′ : s

Γ ⊢ ΠU T = ΠU ′T ′ : s

Γ.Size ⊢ T = T ′ : s

Γ ⊢ Π⋆SizeT = Π⋆SizeT ′ : s

⊢ Γ Γ(i) = :T

Γ ⊢ vi = vi : T
T , Size

Γ.⋆U ⊢ t = t ′ : T

Γ ⊢ λt = λt ′ : Π⋆U T

Γ ⊢ t = t ′ : ΠU T Γ ⊢ u = u ′ : U

Γ ⊢ t u = t ′u ′ : T [u]

Γ ⊢ t = t ′ : Π SizeT Γ ⊢ a : Size

Γ ⊢ t a = t ′ a : T [a]

Γ ⊢ t = t ′ : ∀T Γ⊕ ⊢ a,a′,b : Size

Γ ⊢ t⟨a⟩ = t ′⟨a′⟩ : T [b]

Γ⊕ ⊢ a,a′,b : Size

Γ ⊢ zero⟨a⟩ = zero⟨a′⟩ : Nat (b + 1)

Γ⊕ ⊢ a,a′ : Size Γ ⊢ t = t ′ : Natb

Γ ⊢ suc⟨a⟩t = suc⟨a′⟩t ′ : Nat (b + 1)

Γ ⊢ t = t ′ : T Γ⊕ ⊢ T ≤ T ′

Γ ⊢ t = t ′ : T ′

Equivalence rules.

Γ ⊢ t : T

Γ ⊢ t = t : T

Γ ⊢ t = t ′ : T

Γ ⊢ t ′ = t : T

Γ ⊢ t1 = t2 : T Γ ⊢ t2 = t3 : T

Γ ⊢ t1 = t3 : T

Fig. 4. Definitional equality Γ ⊢ t = t ′ : T (implies Γ⊕ ⊢ T and Γ ⊢ t , t ′ : T [and Γ⊕ ⊢ t = t ′ : T]).

Our substitution theorem needs to reflect the distinct scope of things left of the colon vs. things

right of the colon. In the last example we have applied the substitution triple Γ ⊢ [a] = [a′] ≓ [b] :
(z ÷ Size) to judgement z ÷ Size ⊢ zero⟨z⟩ : Nat (z + 1). The first two substitutions apply to the

term side while the third substitution applies to the type side. The fact that we replace an irrelevant

variable z allows a,a′,b to refer to irrelevant variables from Γ, thus, they are in scope of Γ⊕ .
Typing requires from annotations ⟨a⟩ in a term only that they are well-scoped size expressions,

i. e., just mention relevant size variables. Let t∞ denote the erasure of term t , meaning that we

replace all annotations ⟨a⟩ in t by ⟨∞⟩. Let t ≈ u relate terms that only differ in their annotations,

i. e., t ≈ u :⇐⇒ t∞ = u∞. Erasure does not change the term modulo judgmental equality:

Lemma 3.1 (Erasure and similarity).

(1) If Γ ⊢ t : T then Γ ⊢ t = t∞ : T .
(2) If Γ ⊢ t ,u : T and t ≈ u then Γ ⊢ t = u : T .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Case distinction.

Γ⊕ ⊢ T : Nat (a+1) → Setℓ
Γ ⊢ u : Nat (a+1) Γ ⊢ tz : T (zero⟨a⟩) Γ ⊢ ts : (x : Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts : T u

Γ⊕ ⊢ T = T ′ : Nat (a + 1) → Setℓ
Γ ⊢ u = u ′ : Nat (a + 1) Γ ⊢ tz = t ′z : T (zero⟨a⟩) Γ ⊢ ts = t ′s : (x : Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts = u ′ caseℓ T ′ t ′z t ′s : T u

Γ⊕ ⊢ a,b : Size Γ⊕ ⊢ T : Nat (b + 1) → Setℓ
Γ ⊢ tz : T (zero⟨b⟩) Γ ⊢ ts : (x : Natb) → T (suc⟨b⟩x)

Γ ⊢ (zero⟨a⟩) caseℓ T tz ts = tz : T zero⟨b⟩

Γ⊕ ⊢ a : Size Γ ⊢ t : Natb Γ⊕ ⊢ T : Nat (b + 1) → Setℓ
Γ ⊢ tz : T (zero⟨b⟩) Γ ⊢ ts : (x : Natb) → T (suc⟨b⟩x)

Γ ⊢ (suc⟨a⟩t) caseℓ T tz ts = ts t : T (suc⟨b⟩t)
Recursion.

Γ ⊢ u : Nata Γ⊕ ⊢ T : Adm ℓ Γ ⊢ t : FixTT

Γ ⊢ u fixℓ T t : T au

Γ ⊢ u = u ′ : Nata Γ⊕ ⊢ T = T ′ : Adm ℓ Γ ⊢ t = t ′ : FixTT

Γ ⊢ u fixℓ T t = u ′ fixℓ T ′ t ′ : T au

Γ ⊢ c : Natb Γ⊕ ⊢ a : Size Γ⊕ ⊢ T : Adm ℓ Γ ⊢ t : FixTT

Γ ⊢ c fixℓ T t = t⟨a⟩(λx .x fixℓ T t) c : T b c

Fig. 5. Rules for case distinction and recursion.

We should remark here that we have neither type unicity nor principal types due to the irrelevant

size application rule. In the following, we list syntactic properties of our judgements. To this end,

let J match a part of a judgement.

Lemma 3.2 (Context well-formedness).

(1) If ⊢ Γ.∆ then ⊢ Γ
(2) If Γ ⊢ J then ⊢ Γ.

All types in a context are considered in the resurrected context, which justifies the first statement

of the following lemma. A resurrected context is more permissive, as it brings more variable into

scope. As such, it is comparable to an extended context or a context where types have been replaced

by subtypes. This intuition accounts for the remaining statements but (4). The latter is a defining

property of substitutions: only replacement for irrelevant sizes may refer to irrelevant size variables.

Lemma 3.3 (Resurrection).

(1) ⊢ Γ iff ⊢ Γ⊕ . Then Γ⊕ ⊢ id : Γ, which can be written id : Γ⊕ ≤ Γ.
(2) If Γ ⊢ J then Γ⊕ ⊢ J .
(3) If Γ ⊢ σ : ∆⊕ then Γ ⊢ σ : ∆.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:13

(4) If Γ ⊢ σ : ∆ then Γ⊕ ⊢ σ : ∆⊕ .

Lemma 3.4 (Substitution).

(1) If Γ ⊢ σ : ∆ and ∆ ⊢ J then Γ ⊢ Jσ .
(2) If Γ ⊢ σ = σ ′ ≓ τ : ∆ and ∆ ⊢ t : T then Γ ⊢ tσ : Tτ and Γ ⊢ tσ ′ : Tτ .

Lemma 3.5 (Specific substitutions).

(1) If ⊢ Γ.∆ then Γ.∆ ⊢ � |∆ |
|Γ |

: Γ. If ⊢ Γ.T then Γ.T ⊢ � : Γ.
(2) If ⊢ Γ then Γ ⊢ id : Γ.
(3) If Γ ⊢ u : U then Γ ⊢ [u] : Γ.U .

The relation Γ ⊢ σ = σ ′ ≓ τ : ∆ is a partial equivalence relation (PER) on term-side substitutions

σ ,σ ′. Note that usually we cannot resurrect this judgement to Γ⊕ ⊢ σ = σ ′ ≓ τ : ∆⊕ . For instance,
z1÷Size. z2÷Size ⊢ [z1] = [z2] ≓ [∞] : z÷Size holds but z1:Size. z2:Size ⊢ [z1] = [z2] ≓ [∞] :

z:Size clearly not.

Lemma 3.6 (Substitution eqality).

(1) Conversion: If Γ ⊢ σ = σ ′ ≓ τ1 : ∆ and Γ⊕ ⊢ τ1 = τ2 ≓ τ : ∆⊕ then Γ ⊢ σ = σ ′ ≓ τ2 : ∆.
(2) Reflexivity: If Γ ⊢ σ : ∆ then Γ ⊢ σ = σ ≓ σ : ∆.
(3) Symmetry: If Γ ⊢ σ = σ ′ ≓ τ : ∆ then Γ ⊢ σ ′ = σ ≓ τ : ∆.
(4) Transitivity: If Γ ⊢ σ1 = σ2 ≓ τ : ∆ and Γ ⊢ σ2 = σ3 ≓ τ : ∆ then Γ ⊢ σ1 = σ3 ≓ τ : ∆.
(5) Functionality: Let Γ ⊢ σ = σ ′ ≓ τ : ∆.
(a) If ∆ ⊢ t : T then Γ ⊢ tσ = tσ ′ : Tτ .
(b) If ∆ ⊢ t = t ′ : T then Γ ⊢ tσ = t ′σ ′ : Tτ .
(c) Corollary: If ∆ ⊢ T ≤ T ′ then Γ ⊢ Tσ ≤ Tσ ′.

Corollary 3.7 (Partial resurrection for substitution eqality). If Γ ⊢ σ = σ ′ ≓ τ : ∆
then Γ⊕ ⊢ τ = τ ≓ τ : ∆⊕ .

Lemma 3.8 (Inversion of typing).

(1) If Γ ⊢ Nata : T ′ then Γ ⊢ a : Size and Γ⊕ ⊢ Set0 ≤ T ′.
(2) If Γ ⊢ Setℓ : T ′ then Γ⊕ ⊢ Setℓ+1 ≤ T ′.
(3) If Γ ⊢ ΠU T : T ′ then Γ ⊢ U : s and Γ.U ⊢ T : s and Γ⊕ ⊢ s ≤ T ′ for some s .
(4) If Γ ⊢ Π⋆SizeT : T ′ then Γ.Size ⊢ T : s and Γ⊕ ⊢ s ≤ T ′.
(5) If Γ ⊢ vi : T ′ then Γ(i) = :T and Γ⊕ ⊢ T ≤ T ′ for some T .
(6) If Γ ⊢ λt : T ′ then either Γ.U ⊢ t : T and Γ⊕ ⊢ ΠU T ≤ T ′ for some U ,T or Γ.⋆Size ⊢ t : T

and Γ⊕ ⊢ Π⋆SizeT ≤ T ′ for some T .
(7) If Γ ⊢ t u : T ′ then Γ ⊢ t : ΠU T and Γ ⊢ u : U and Γ⊕ ⊢ T [u] ≤ T ′ for someU , T .
(8) If Γ ⊢ t a : T ′ then Γ ⊢ t : Π SizeT and Γ ⊢ a : Size and Γ⊕ ⊢ T [a] ≤ T ′ for some T .
(9) If Γ ⊢ t ⟨a⟩ : T ′ then Γ ⊢ t : ∀T and Γ⊕ ⊢ a,b : Size and Γ⊕ ⊢ T [b] ≤ T ′ for some T , b.
(10) If Γ ⊢ zero⟨a⟩ : T ′ then Γ⊕ ⊢ a,b : Size and Γ⊕ ⊢ Nat (b + 1) ≤ T ′ for some b.
(11) If Γ ⊢ suc⟨a⟩t : T ′ then Γ⊕ ⊢ a,b : Size and Γ ⊢ t : Natb and Γ⊕ ⊢ Nat (b + 1) ≤ T ′.
(12) If Γ ⊢ u caseℓ T tz ts : T ′ then Γ ⊢ u : Nat (a + 1) and Γ ⊢ T : Nat (a + 1) → Setℓ and

Γ ⊢ tz : T (zero⟨a⟩) and Γ ⊢ ts : (x :Nata) → T (suc⟨a⟩x) and Γ⊕ ⊢ T u ≤ T ′ for some a.
(13) If Γ ⊢ u fixℓ T t : T ′ then Γ ⊢ u : Nata and Γ ⊢ T : Adm ℓ and Γ ⊢ t : FixTT and

Γ⊕ ⊢ T au ≤ T ′.

Proof. Each by induction on the typing derivation, gathering applications of the conversion

rule via transitivity of subtyping. □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

4 SEMANTICS AND COMPLETENESS OF NORMALIZATION BY EVALUATION
In this section we present an operational semantics of our language, define the NbE algorithm,

construct a PER model, and demonstrate that NbE is complete for definitional equality, i. e., if

Γ ⊢ t = t ′ : T , then t and t ′ have the same normal form up to annotations.

Ne ∋ m ::= vi | mv | ma | m ⟨a⟩ | m caseℓ V vz vs | m fixℓ V v neutral n.f.

Nf ∋ v ::= m | λv | zero⟨a⟩ | suc⟨a⟩v | Setℓ | Nata | ΠVu Vt | Π
⋆SizeV normal form

For the operational semantics, instead of defining a separate language of values, we extend the

syntax of expressions by de Bruijn levels xk to be used as generic values (unknowns), and type

annotations ↑An and ↓At for lazy realizations of the reflection and reification operations of NbE.

Terms are expressions that do not contain these new expression forms. Values f ,д,A,B, F ∈ D
are expressions with no free de Bruijn indices, where each neutral n is under a reflection marker

↑An. The types A that direct reflection ↑An and reification ↓A f also live in the value world.

NeExp ∋ n ::= · · · | xk de Bruijn level k
Up ∋ N ::= ↑An reflection of neutral term n as value of type A
Whnf ∋ w ::= · · · | N reflected neutral is weak head normal

Exp ∋ t ::= · · · | ↓A f reification of value f at type A

De Bruijn levels are the mirror images of de Bruijn indices. While de Bruijn indices index the context

from the right, i. e., v0 refers the last type that entered the context, de Bruijn levels index it from

the left, i. e., x0 refers to the first type in the context. This way, de Bruijn levels are stable under

context extensions, and suitable to represent unknowns.

Size values α , β ∈ Size are size expressions that use de Bruijn levels instead of de Bruijn indices.

Comparison of size values α ≤ β is analogous to comparison of size terms a ≤ b. In the following,

we will reuse letter a for a value if it cannot be confused for a size term.

Finally, we identify two expression classes for NbE. Neutralsn ∈ DNe are the ones that will appear
in values under the reflection marker ↑A. Reified values d ∈ DNf are values under a reification
marker ↓A.

DNe ∋ n ::= vi | nd | n α | n ⟨α⟩ | n caseℓ Ddz ds | n fixℓ Dd unreflected neutral value

DNf ∋ d ::= ↓A f reified value

Figure 6, adapted from Abel [2013] summarized the syntactic categories and main operations

involved in NbE in what is called locally nameless style. The red path Exp → D → Dnf → Nf
decomposes βη-normalization into three steps.

(1) First, we close the term t with an environment η that maps the free de Bruijn indices of t
to reflected de Bruijn levels. Reflection of de Bruijn levels follows the blue path Level →
DNe → D: Levels embed via constructor x into semantic neutrals DNe which are labeled

with their type A ∈ D to become an element ↑Axj ∈ D.
(2) Then, we label value tη ∈ D with its type A to obtain ↓Atη ∈ DNf.
(3) Finally, read back Rk↓Atη produces a long normal form v ∈ Nf, converting de Bruijn levels

back to indices. Herein, k should be the length of the context the original term t lived in. If

this is the case, each de Bruijn level encountered during read back is below k and can be

safely converted to a de Bruijn index.

4.1 Weak head reduction
We define the operational semantics of our language by the weak head evaluation relation t ↘ w

which is defined on expressions, thus works on values as well as on terms. It is defined mutually

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:15

Semantics (β) f ∈ D

↓A

��
Semantics (βη) d ∈ DNf

Rk

��

n ∈ DNe

Rne
k

��

↑A

cc

j ∈ Level
xoo

OO

k .
−(1+_)

��
Syntax t ∈ Exp

_η

@@

v ∈ Nf
⊇oo m ∈ Ne

⊇oo i ∈ Index
voo

Fig. 6. Type-assignment NbE in locally nameless style.

with auxiliary relation w @ e ↘ w ′ stating that weak head normal formw is eliminated by e into

weak head normal formw ′.
t ↘ w and w @ e ↘ w ′

w ↘ w

t ↘ w w @ e ↘ w ′

t e ↘ w ′

t[u]↘ w

(λt) @ u ↘ w

t[α]↘ w

(λt) @ α ↘ w

t[α]↘ w

(λt) @ ⟨α⟩ ↘ w

tz ↘ w

(zero⟨α⟩) @ caseℓ T tz ts ↘ w

ts t ↘ w

(suc⟨α⟩t) @ caseℓ T tz ts ↘ w

t ⟨α⟩ (λx . x fixℓ T t) c ↘ w

c @ fixℓ T t ↘ w
c ∈ {zero⟨α⟩, suc⟨α⟩u}

For NbE, we add evaluation rules that deal with elimination of delayed reflection:

A′ ↘ ΠAB

(↑A′n) @ u ↘ ↑B[u] (n ↓Au)

A↘ Π SizeB

(↑An) @ α ↘ ↑B[α] (n α)

A↘ ∀B

(↑An) @ ⟨α⟩ ↘ ↑B[α] (n⟨α⟩)

(↑An) @ caseℓ B fz fs ↘ ↑B (↑An) n caseℓ (↓Nat∞→SetℓB) (↓B zero⟨∞⟩ fz) (↓(x :Nat∞)→B (suc⟨∞⟩x) fs)

(↑An) @ fixℓ B f ↘ n fixℓ (↓FixKB) (↓FixT B f)

4.2 Read back
The read back phase of NbE [Grégoire and Leroy 2002] transforms a reified value d into a normal

form v . It is specified via an inductively defined relation Rk d ↘ v and several auxiliary relations.

The number k , will be instantiated by the length of the context Γ later. It allows us to transform

a de Bruijn level l into a de Bruijn index i , via the law i + l + 1 = k . At this point, we do not

ensure that the k is large enough to accommodate the de Bruijn levels in d . Levels l ≥ k which are

to big will simply be mapped to de Bruijn index 0. The correct k is later ensured by our logical

relation (Section 5). Even though read back operates on values in practice, formally it is defined on

expressions.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Rk d ↘ v Read back reified value d .

U ↘ s Rty
k T ↘ V

Rk ↓UT ↘ V

U ↘ Natα Rnat
k u ↘ v

Rk ↓Uu ↘ v

U ↘ N Rup
k u ↘m

Rk ↓Uu ↘m

U ↘ ΠAB Rk+1 ↓B[↑
Axk] (f ↑Axk) ↘ v

Rk ↓U f ↘ λv

U ↘ Π SizeB Rk+1 ↓B[xk] (f xk) ↘ v

Rk ↓U f ↘ λv

U ↘ ∀B Rk+1 ↓B[xk] (f ⟨xk ⟩) ↘ v

Rk ↓U f ↘ λv

Rup
k t ↘m Read back neutrals under annotation. (The annotation is ignored.)

t ↘ ↑Tn Rne
k n ↘m

Rup
k t ↘m

Rnat
k t ↘ v Read back natural number value.

Rup
k t ↘m

Rnat
k t ↘m

t ↘ zero⟨α⟩ Rsize
k α ↘ a

Rnat
k t ↘ zero⟨a⟩

t ↘ suc⟨α⟩u Rsize
k α ↘ a Rnat

k u ↘ v

Rnat
k t ↘ suc⟨a⟩v

Rsize
k α ↘ a Read back size value α .

Rsize
k ∞ ↘ ∞ Rsize

k o ↘ o Rsize
k xj + o ↘ vk .

−(1+j) + o

Rne
k n ↘m and Relim

k e ↘ ev Read back unreflected neutral.

Relim
k ei ↘ evi for all i

Rne
k xj e⃗ ↘ vk .

−(1+j) e⃗v
Rk d ↘ v

Relim
k d ↘ v

Rsize
k α ↘ b

Relim
k α ↘ b

Rsize
k α ↘ b

Relim
k ⟨α⟩ ↘ ⟨b⟩

Rk D ↘ V Rk dz ↘ vz Rk ds ↘ vs

Relim
k (caseℓ Ddz ds) ↘ caseℓ V vz vs

Rk D ↘ V Rk d ↘ v

Relim
k (fixℓ Dd) ↘ fixℓ V v

Rty
k T ↘ V Read back type value.

T ↘ Setℓ

Rty
k T ↘ Setℓ

T ↘ Natα Rsize
k α ↘ b

Rty
k T ↘ Natb

Rup
k T ↘m

Rty
k T ↘m

T ↘ ΠAB Rty
k A↘ Va Rty

k+1 B ↘ Vb

Rty
k T ↘ ΠVa Vb

T ↘ Π⋆SizeB Rty
k+1 B ↘ V

Rty
k T ↘ Π⋆SizeV

4.3 Partial equivalence relations
A typeT will be interpreted as a partial equivalence relation (PER)Aon terms, i. e., a relation which

is symmetric and transitive. The domain dom(A) of the relation can be thought of as the set of

terms which denotes the extension of the type; on dom(A) = {a | ∃a′. (a,a′) ∈ A} the relation A is

in fact an equivalence relation. We write a = a′ ∈ A for relatedness in Aand a ∈ A if a ∈ dom(A).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:17

The PERsNe andNf characterize (neutral) normalizing values. For instance, two values n and n′

are related in Ne if at any k ∈ N they can be read back to neutral normal formsm andm′ which
are identical up to annotations.

n = n′ ∈ Ne :⇐⇒ Rne
k n ↘m and Rne

k n′ ↘m′ and m ≈m′ for all k

d = d ′ ∈ Nf :⇐⇒ Rk d ↘ v and Rk d ′ ↘ v ′ and v ≈ v ′ for all k

e = e ′ ∈ Elim :⇐⇒ Relim
k e ↘ ev and Relim

k e ′ ↘ e ′v and ev ≈ e
′
v for all k

A = A′ ∈ Ty :⇐⇒ Rty
k A↘ V and Rty

k A′ ↘ V ′ and V ≈ V ′ for all k

Oncewe have established useful closure properties of these PERs, they abstract most of the reasoning

about the read-back relation from our proofs. This idea is due to Coquand [Abel et al. 2009].

Lemma 4.1 (Closure properties of Ne).

(1) xk = xk ∈ Ne.
(2) If n = n′ ∈ Ne and e = e ′ ∈ Elim then n e = n′ e ′ ∈ Ne.

Lemma 4.2 (Closure properties of Elim).

(1) If d = d ′ ∈ Nf then d = d ′ ∈ Elim.
(2) If α ∈ Size then α = α ∈ Elim.
(3) If α ,α ′ ∈ Size then ⟨α⟩ = ⟨α ′⟩ ∈ Elim.
(4) If A = A′ ∈ Ty and dz=d ′z ∈ Nf and ds=d ′s ∈ Nf then caseℓ Adz ds = caseℓ A′d ′z d

′
s ∈ Elim.

(5) If D = D ′ ∈ Nf and d = d ′ ∈ Nf then fixℓ Dd = fixℓ D ′d ′ ∈ Elim.

Now we define some PERs and PER constructors on values. All these PERs Aare closed under

weak head equality, meaning if a = b ∈ Aand a′ has the same weak head normal form as a, then
a′ = b ∈ A. (By symmetry, A is also closed under weak head equality on the second argument.)

PER NE interprets all neutral types.

t = t ′ ∈ NE :⇐⇒ t ↘ ↑Tn and t ′ ↘ ↑T
′

n′ and n = n′ ∈ Ne.

Nat (α) interprets Natα and is defined inductively by the following rules.

t = t ′ ∈ NE

t = t ′ ∈ Nat (β)

t ↘ zero⟨α⟩
t ′ ↘ zero⟨α ′⟩

t = t ′ ∈ Nat (β + 1)

t ↘ suc⟨α⟩u t ′ ↘ suc⟨α ′⟩u ′

u = u ′ ∈ Nat (β)
t = t ′ ∈ Nat (β + 1)

Size interprets Size and is a discrete PER of size values:

∞ = ∞ ∈ Size o = o ∈ Size xk + o = xk + o ∈ Size

Let A be a PER (including A = Size) and Fa family of PERs over A such that F(u) = F(u ′)
whenever u = u ′ ∈ A. We define∏

AF :⇐⇒ {(t , t ′) | t u = t ′u ′ ∈ F(u) for all u = u ′ ∈ A}.

For a family Fover Size we also have the irrelevant function space

∀F :⇐⇒ {(t , t ′) | t⟨α⟩ = t ′⟨α ′⟩ ∈ F(β) for all α ,α ′, β ∈ Size}.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

T = T ′ ∈ NE

T = T ′ ∈ Setℓ
Eℓℓ (T) =NE

T ↘ Nat α T ′ ↘ Nat α

T = T ′ ∈ Setℓ
Eℓℓ (T) =Nat (α)

T ↘ Setℓ′ T ′ ↘ Setℓ′

T = T ′ ∈ Setℓ
ℓ′<ℓ Eℓℓ (T) = Setℓ′

T ↘ ΠAB T ′ ↘ ΠA′ B′ A = A′ ∈ Setℓ
B[u] = B′[u ′] ∈ Setℓ for all u = u ′ ∈ Eℓℓ (A)

T = T ′ ∈ Setℓ
Eℓℓ (T) =

∏
(Eℓℓ (A), u 7→ Eℓℓ (B[u]))

T ↘ Π SizeB T ′ ↘ Π SizeB′

B[α] = B′[α] ∈ Setℓ for all α ∈ Size
T = T ′ ∈ Setℓ

Eℓℓ (T) =
∏
(Size, α 7→ Eℓℓ (B[α]))

T ↘ ∀B T ′ ↘ ∀B′

B[α] = B′[α] ∈ Setℓ for all α ∈ Size
T = T ′ ∈ Setℓ

Eℓℓ (T) = ∀(α 7→ Eℓℓ (B[α]))

Fig. 7. Semantic types and their interpretation.

4.4 PER model
Semantic types and their interpretation as PERs are now defined via a family of inductive-recursive

definitions [Dybjer 2000], one for each universe level ℓ. The construction follows Abel et al. [2007].

By induction on ℓ ∈ Nwe define the PER family _ = _ ∈ Setℓ of types together with the extension
EℓℓT (forT = T ′ ∈ Setℓ) which is a PER of values of typeT . The rules for T = T ′ ∈ Setℓ are listed

in Fig. 7. All relations involved here are closed under weak head equality.

Lemma 4.3 (Well-definedness). Let D :: T1 = T2 ∈ Setℓ .
(1) Symmetry: T2 = T1 ∈ Setℓ .
(2) Transitivity: If T2 = T3 ∈ Setℓ then T1 = T3 ∈ Setℓ .
(3) Extension: Eℓℓ (T1) = Eℓℓ (T2) and “both” are PERs.

Proof. Simultaneously by induction on D. □

Lemma 4.4 (Derivation independence of extension). If D1 :: T = T1 ∈ Setℓ1 and D2 :: T2 =
T ∈ Setℓ2 then Eℓℓ1 (T) = Eℓℓ2 (T).

Proof. By induction on D1 and cases on D2. □

Since Eℓℓ (T) does not depend on ℓ nor the derivation that introduced T = T ′ ∈ Setℓ , we may

simply write t = t ′ ∈ Eℓ (T) or even t = t ′ ∈ T .

4.5 Subtyping
The semantic types (PERs) admit subsumption:

Lemma 4.5 (Subsumption).

(1) If α ≤ β then Nat (α) ⊆ Nat (β).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:19

(2) If F(α) ⊆ F′(α) for all α ∈ Size, then ∀F⊆ ∀F′.
(3) If A′ ⊆ Aand F(u) ⊆ F′(u) for all u ∈ A′, then

∏
AF⊆

∏
A′F′.

(4) If ℓ ≤ ℓ′ then Setℓ ⊆ Setℓ′ .

Proof. Propositions (1–3) are clear. For (4), prove T = T ′ ∈ Setℓ′ by induction on T = T ′ ∈ Setℓ .
For the base types this is direct, let us look at the function space.

T ↘ ΠAB T ′ ↘ ΠA′ B′ A = A′ ∈ Setℓ B[u] = B′[u ′] ∈ Setℓ for all u = u ′ ∈ Eℓℓ (A)

T = T ′ ∈ Setℓ
By induction hypothesis, A = A′ ∈ Setℓ′ , and we have Eℓℓ′ (A) = Eℓℓ (A) by Lemma 4.4. Assuming

u = u ′ ∈ Eℓ (A), we get B[u] = B′[u ′] ∈ Setℓ′ by induction hypothesis on B[u] = B′[u ′] ∈ Setℓ . □

We define subtyping of type values T ≤ T ′ ∈ Type by induction on T ∈ Setℓ and T ′ ∈ Setℓ′ .
Simultaneously, we need to prove correctness, namely thatT ≤ T ′ ∈ Type implies Eℓ (T) ⊆ Eℓ (T ′).
The correctness follows from Lemma 4.5 and we do not spell it out here.

T = T ′ ∈ NE

T ≤ T ′ ∈ Type
T ↘ Natα T ′ ↘ Natα ′ α ≤ α ′

T ≤ T ′ ∈ Type

T ↘ Setℓ0 T ′ ↘ Setℓ′
0

ℓ0 ≤ ℓ
′
0

T ≤ T ′ ∈ Type

T ↘ ΠAB T ′ ↘ ΠA′ B′ A′ ≤ A ∈ Type B[u] ≤ B′[u ′] ∈ Type for all u = u ′ ∈ A′

T ≤ T ′ ∈ Type

T ↘ Π⋆SizeB T ′ ↘ Π⋆SizeB′ B[α] ≤ B′[α] ∈ Type for all α ∈ Size
T ≤ T ′ ∈ Type

Lemma 4.6 (Subtyping is a preorder).

(1) If T = T ′ ∈ Setℓ then T ≤ T ′ ∈ Type.
(2) If T1 ≤ T2 ∈ Type and T2 ≤ T3 ∈ Type then T1 ≤ T3 ∈ Type.

4.6 Type shapes
Reflection and reification perform η-expansion so that we arrive at an η-long β-normal form. To

perform the η-expansion, the precise type is not needed, just the approximate shape, in particular,

whether it is a function type (do expand) or a base type (do not expand). For the logical framework,

the shape of a dependent type is just its underlying simple type [Harper and Pfenning 2005].

However, in the presence of universes and large eliminations, there is no underlying simple type.

Of course, we can take a type as its own shape, but we want at least that Natα and Nat β have the

same shape even for different α , β . Also all neutral types can be summarized under a single shape.

We make our intuition precise by defining a relation T ⊏∼ S between type values, to express that

S is a possible shape of type T . The asymmetry of this relation stems from the case for function

types. At function types ΠAB ⊏∼ Π R S , we take S to be a family over domain A, not R! We cannot

take R since we have to compare families B and S at a common domain, and A and R are not equal.

Fig. 8 defines T ⊏∼ S for T ∈ Setℓ . We call T the template and S one of its possible shapes. Note
that T ∈ Setℓ and T ⊏∼ S do not imply S ∈ Setℓ . Type shapes are not well-defined types in general.

For instance, assume a term F : Nat 0→ Set0 which diverges if applied to a successor term. Then

T := (x :Nat 0) → F x is a well-defined type; we haveT ∈ Set0. Now consider S := (x :Nat∞) → F x .
We have T ⊏∼ S , but S is not well-defined; S < Set0.

Lemma 4.7 (Types are their own shapes). If T = T ′ ∈ Setℓ then T ⊏∼ T ′.

Lemma 4.8 (Templates are up to eqality). If T = T ′ ∈ Setℓ and T ′ ⊏∼ S then T ⊏∼ S .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

T ↘ N S ↘ N ′

T ⊏∼ S

T ↘ ΠAB S ↘ ΠA′ B′ A ⊏∼ A′ B[u] ⊏∼ B′[u ′] for all u = u ′ ∈ A

T ⊏∼ S

T ↘ Setℓ S ↘ Setℓ
T ⊏∼ S

T ↘ Π SizeB S ↘ Π SizeB′ B[α] ⊏∼ B′[α] for all α ∈ Size
T ⊏∼ S

T ↘ Natα S ↘ Nat β

T ⊏∼ S

T ↘ ∀B S ↘ ∀B′ B[α] ⊏∼ B′[α ′] for all α ,α ′ ∈ Size
T ⊏∼ S

Fig. 8. Type shapes T ⊏∼ S .

However, templates are not closed under subtyping in either direction because subtyping is

contravariant for function type domains but the shape relation is covariant.

Further, it is not true that equal types make equally good shapes. We do not have that T ⊏
∼ S

and S = S ′ ∈ Setℓ imply T ⊏∼ S ′. This property fails for function types. Given ΠU T ⊏∼ Π R S and

Π R S = Π R′ S ′ ∈ Setℓ we would need to show that T [u] ⊏∼ S ′[u ′] for all u = u ′ ∈ U , but we only

have S[u] = S ′[u ′] ∈ Setℓ for all u = u ′ ∈ R, thus the induction does not go through. The fact that

U ⊏
∼ R does not give us a handle on their inhabitants, we would need a stronger relation such as

U ≤ R ∈ Type. It is possible to construct an actual counterexample, usingΠ R′ S ′ = (x :Nat 0) → F x
from above and Π R S = (x :Nat 0) → G x such that G is defined on all of Nat∞ but agrees with F
only on x ∈ Nat 0. Then ΠU T = (x :Nat∞) → G x gives the desired counterexample.

Shapes are used to direct η-expansion when we reflect neutrals into semantic types and reify

semantic values to long normal forms. The following theorem is the heart of our technical develop-

ment.

Theorem 4.9 (Reflection and reification). Let T ∈ Setℓ and T ⊏∼ S1 and T ⊏∼ S2.
(1) If n1 = n2 ∈ Ne then ↑S1n1 = ↑S2n2 ∈ T .
(2) If t1 = t2 ∈ T then ↓S1t1 = ↓S2t2 ∈ Nf .

Proof. By induction on T ∈ Setℓ and cases on T ⊏∼ S1 and T ⊏∼ S2.
Case T ↘ ΠAB with A ∈ Setℓ and B[u] = B[u ′] ∈ Setℓ for all u = u ′ ∈ A

S1 ↘ ΠA1 B1 A ⊏∼ A1 B[u] ⊏∼ B1[u
′
] for all u = u ′ ∈ A

T ⊏∼ S1

S2 ↘ ΠA2 B2 A ⊏∼ A2 B[u] ⊏∼ B2[u
′
] for all u = u ′ ∈ A

T ⊏∼ S2

(1) To show ↑S1n1 = ↑
S2n2 ∈ T assume arbitrary u1 = u2 ∈ A. Let di = ↓

Aiui . By induction

hypothesis (2) with shapesA ⊏∼ A1 andA ⊏∼ A2 we getd1 = d2 ∈ Nf . Thus,n1 d1 = n2 d2 ∈ Ne
by Lemma 4.1, and by induction hypothesis (1) with shapes B[u1] ⊏∼ B1[u1] and B[u1] ⊏∼
B2[u2] we obtain ↑

B1[u1] (n1 d1) = ↑
B2[u2] (n2 d2) ∈ B[u1]. With (↑Sini)ui ↘ ↑

Bi [ui] (ni di) we
are done by definition of Eℓ (T).

(2) We assume k ∈ N and show Rk ↓Si ti ↘ λvi for some normal forms v1 ≈ v2. Let ui = ↑
Ai xk .

Note that u1 = u2 ∈ A by induction hypothesis, since xk = xk ∈ Ne by Lemma 4.1. It is

sufficient to show Rk+1 ↓Bi [ui] (ti ui) ↘ vi . By definition of Eℓ (T) we have t1 u1 = t2 u2 ∈
B[u1], thus, by induction hypothesis, ↓B1[u1] (t1 u1) = ↓

B2[u2] (t2 u2) ∈ Nf , which delivers v1
and v2 for k + 1.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:21

Case T ↘ ∀B with B[α] ∈ Setℓ for all α ∈ Size

S1 ↘ ∀B1 B[α] ⊏∼ B1[α
′
] for all α ,α ′ ∈ Size

T ⊏∼ S1

S2 ↘ ∀B2 B[α] ⊏∼ B2[α
′
] for all α ,α ′ ∈ Size

T ⊏∼ S2

(1) To show ↑S1n1 = ↑
S2n2 ∈ T assume arbitrary α1,α2 ∈ Size. Since n1⟨α1⟩ = n2⟨α2⟩ ∈ Ne by

Lemma 4.1, we obtain ↑B1[α1] (n1⟨α1⟩) = ↑
B2[α2] (n2⟨α2⟩) ∈ B[α1] by induction hypothesis.

Thus, (↑S1n1)⟨α1⟩ = (↑S2n2)⟨α2⟩ ∈ B[α1] by weak head expansion, which entails the goal

by definition of Eℓ (T).
(2) Assume k ∈ N and note that xk = xk ∈ Size, hence, t1 ⟨xk ⟩ = t2 ⟨xk ⟩ ∈ B[xk]. Thus, by

induction hypothesis, Rk+1 ↓Bi [xk] (ti ⟨xk ⟩) ↘ vi with v1 ≈ v2, and finally Rk ↓Si ti ↘ λvi
by definition of read back. □

Corollary 4.10. Let T ∈ Setℓ .
(1) If n = n′ ∈ Ne then ↑Tn = ↑Tn′ ∈ T .
(2) If t = t ′ ∈ T then ↓T t = ↓T t ′ ∈ Nf .

4.7 Computation with natural numbers
In this section we show that the eliminations for natural numbers are accurately modeled.

Lemma 4.11 (Case). If a = a′ ∈ Nat (α + 1) and B = B′ ∈ Nat (α + 1) → Setℓ and fz = f ′z ∈
B (zero⟨β⟩) and fs = f ′s ∈ (x :Natα) → B (suc⟨γ ⟩x) then a caseℓ B fz fs = a′ caseℓ B′ f ′z f ′s ∈ B a.

Proof. By induction on a = a′ ∈ Nat (α + 1).
Case a ↘ zero⟨β⟩ and a′ ↘ zero⟨β ′⟩. Since our PERs are closed under weak head equality, and,

for instance, a caseℓ B fz fs has the same weak head normal form as fz , it suffices to show

fz = f ′z ∈ B (zero⟨β⟩), which is one of our assumptions.

Case a ↘ suc⟨β⟩b and a′ ↘ suc⟨β ′⟩b ′ with b = b ′ ∈ Natα . Again, it suffices to show fs b =
f ′s b

′ ∈ B (suc⟨β⟩b), which is an instance of our last assumption.

Case a ↘ ↑Tn and a′ ↘ ↑T
′

n′ with n = n′ ∈ Ne. Let D = ↓Nat∞→SetℓB and dz = ↓
B (zero⟨∞⟩) fz and

ds = ↓
(x :Nat ∞)→B (suc⟨∞⟩x) fs and e = caseℓ Ddz ds . Let D

′,d ′z ,d
′
s , e
′
be defined analogously

from B′, f ′z , f
′
s . It suffices to show e = e ′ ∈ Elim, since then we have n e = n′ e ′ ∈ Ne by

the closure properties of Ne (Lemma 4.1), and ↑B[a] (n e) = ↑B
′
[a′] (n′ e ′) ∈ B[a] by reflection

(Theorem 4.9). The remaining goal caseℓ Ddz ds = caseℓ D ′d ′z d
′
s ∈ Elim follows by the

closure properties for eliminations (Lemma 4.2), since D = D ′ ∈ Nf and dz = d
′
z ∈ Nf and

ds = d
′
s ∈ Nf all hold by reification (Theorem 4.9). □

Lemma 4.12 (Nat is cocontinuous). Nat (∞) =
⋃

α<∞Nat (α).

Proof. By induction on a = a′ ∈ Nat (∞), we can easily show a = a′ ∈ Nat (α) for some α < ∞.
For instance, α could be the number of uses of the successor rule plus one. □

As the semantic counterpart of judgement Γ ⊢ T : Adm ℓ, let us write B = B′ ∈ Adm ℓ iff B = B′ ∈
FixK ℓ and for all β ∈ Size and a ∈ Nat β we have B β a ≤ B∞a ∈ Type and B′ β a ≤ B′∞a ∈ Type.

Lemma 4.13 (Fix). Let д = a fixℓ B f and д′ = a′ fixℓ B′ f ′. If a = a′ ∈ Natα and B = B′ ∈ Adm ℓ
and f = f ′ ∈ FixTB then д = д′ ∈ B α a.

Proof. By well-founded induction on α .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Case α < ∞ and a ↘ ↑Tn and a′ ↘ ↑T
′

n′ and n = n′ ∈ Ne. In this case д and д′ evaluate to
neutral applications of fix. The proof proceeds analogously to Lemma 4.11.

Case α < ∞ and a ↘ c and a′ ↘ c ′. Then α = β + 1 with β < ∞. The weak head normal

form of д equals the weak head normal form of h := f ⟨γ ⟩ (λx . x fixℓ B f) c where γ is the

size annotation of c . It suffices to show h = h′ ∈ B α a for h′ defined analogously from

B′, f ′, c ′. This follows from the assumption on f , f ′ if we manage to show (λx . x fixℓ B f) =
(λx . x fixℓ B′ f ′) ∈ (x : Nat β) → B β x . To this end, assume b = b ′ ∈ Nat β and show

b fixℓ B f = b ′ fixℓ B′ f ′ ∈ B β b. However, this is an instance of the induction hypothesis

thanks to β < α .
Case α = ∞. Note that a = a′ ∈ Natα for some α < ∞ by Lemma 4.12. By induction hypothesis,

д = д′ ∈ B α a. Since B α a ≤ B∞a by admissibility of B, the goal д = д′ ∈ B∞a follows by

subsumption. □

4.8 Fundamental Theorem
In this section we show that the declarative judgements are sound, in particular, well-formed

syntactic types map to semantic types, and definitionally equal terms map to related values in the

PER model. The proof runs the usual course. First, we define inductively a PER of substitutions

η = η′ ≓ ρ ∈ Γ .

() = () ≓ () ∈ ()

η = η′ ≓ ρ ∈ Γ Tρ ∈ Setℓ u = u ′ = t ∈ Tρ

(η,u) = (η′,u ′) ≓ (ρ, t) ∈ Γ.T

η = η′ ≓ ρ ∈ Γ α ∈ Size
(η,α) = (η′,α) ≓ (ρ,α) ∈ Γ.Size

η = η′ ≓ ρ ∈ Γ α ,α ′, β ∈ Size
(η,α) = (η′,α ′) ≓ (ρ, β) ∈ Γ.÷Size

We write ρ ∈ Γ for ρ = ρ ≓ ρ ∈ Γ.

Lemma 4.14 (Resurrection). If η = η′ ≓ ρ ∈ Γ then ρ ∈ Γ⊕ .

Then, in Fig. 9, we define semantic counterparts of our declarative judgements by recursion on the

length of the context.

Theorem 4.15 (Fundamental theorem).

(1) If ⊢ Γ then |= Γ.
(2) If Γ ⊢ J then Γ |= J .

Proof. Simultaneously, by induction on the derivation.

Case ∀-introduction.
Γ.÷Size ⊢ t = t ′ : T

Γ ⊢ λt = λt ′ : ∀T
First |= Γ follows from the induction hypothesis |= Γ.÷Size. To show Γ⊕ |= ∀T , assume

η = η′ ≓ ρ ∈ Γ⊕ and show (∀T)η = (∀T)η′ ∈ Setℓ for some ℓ. To this end, assume α ∈ Size
and showT (η,α) = T (η′,α) ∈ Setℓ . Note that (η,α) = (η′,α) ≓ (ρ,α) ∈ Γ.÷Size⊕ = Γ⊕ .Size,
thus, we can instantiate the induction hypothesis and obtain our goal.

For the main goal, assume η = η′ ≓ ρ ∈ Γ and show (λt)η = (λt ′)η′ ∈ (∀T)ρ. To this

end, assume arbitrary α ,α ′, β ∈ Size and show t (η,α) = t ′(η′,α ′) ∈ T (ρ, β). Since (η,α) =
(η′,α ′) ≓ (ρ, β) ∈ Γ.÷Size, we conclude by induction hypothesis.

Case ∀-elimination.

Γ ⊢ t = t ′ : ∀T Γ ⊢ a,a′ : Size Γ⊕ ⊢ b : Size

Γ ⊢ t⟨a⟩ = t ′⟨a′⟩ : T [b]

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:23

|= () :⇐⇒ true

|= Γ.⋆Size :⇐⇒ |= Γ
|= Γ.s :⇐⇒ |= Γ
|= Γ.T :⇐⇒ |= Γ and Γ⊕ |= T

Γ |= s :⇐⇒ |= Γ
Γ |= T :⇐⇒ Γ |= T = T
Γ |= T = T ′ :⇐⇒ Γ |= T = T ′ : s for some s

Γ |= T : Adm ℓ :⇐⇒ Γ |= T : FixK ℓ and Tη = T ′η′ ∈ Adm ℓ for all η = η′ ≓ ρ ∈ Γ
Γ |= T ≤ T ′ :⇐⇒ Γ |= T and Γ |= T ′ and Tη ≤ T ′η′ ∈ Type for all η = η′ ≓ ρ ∈ Γ

Γ |= t : T :⇐⇒ Γ |= t = t : T
Γ |= t = t ′ : T :⇐⇒ |= Γ.T and tη = t ′η′ ∈ Tρ for all η = η′ ≓ ρ ∈ Γ

Γ |= σ : ∆ :⇐⇒ Γ |= σ = σ ≓ σ : ∆
Γ |= σ = σ ′ ≓ τ : ∆ :⇐⇒ |= Γ and |= ∆ and ση = σ ′η′ ≓ τ ρ ∈ ∆ for all η = η′ ≓ ρ ∈ Γ

Fig. 9. Semantic judgements.

First, |= Γ follows by induction hypothesis. For goal Γ⊕ |= T [b], assume η = η′ ≓ ρ ∈ Γ⊕

and show T [b]η = T [b]η′ ∈ Setℓ for some ℓ. By induction hypothesis, bη = bη′ ∈ Size. By
another induction hypothesis, (∀T)η = (∀T)η′ ∈ Setℓ , which by definition entails our goal

T (η,bη) = T (η′,bη′) ∈ Setℓ .
For the remaining main goal, assume η = η′ ≓ ρ ∈ Γ and show t⟨a⟩η = t ′⟨a′⟩η′ ∈ T [b]ρ.
By definition of substitution, it suffices to show tη⟨aη⟩ = t ′η′⟨a′η′⟩ ∈ T (ρ,bρ). By induction

hypothesis, tη = t ′η′ : (∀T)ρ, thus, by definition of this PER, tη⟨α1⟩ = t ′η′⟨α2⟩ ∈ T (ρ,b
′) for

any size values α1, α2, and b
′
. We conclude by choosing α1 = aη and α2 = a′η′ and b ′ = bρ.

We now argue that this choice is possible, namely that aη,a′η,bρ ∈ Size. Note that the

induction hypothesis gives us aη = aη′ ∈ Size and a′η = a′η′ ∈ Size. By resurrection

(Lemma 4.14) we have ρ ∈ Γ⊕ , thus, by induction hypothesis, bρ ∈ Size. □

4.9 Completeness of NbE
From the fundamental theorem, we harvest completeness of NbE in this section, i. e., we show that

definitionally equal terms have the same normal form. We may write simply Γ for its length |Γ |
when there is no danger of confusion, for instance in de Bruijn level xΓ or in read back RΓ . We

define the identity environment ρΓ by induction on Γ, setting ρ () = () and ρΓ.⋆Size = (ρΓ, xΓ) and

ρΓ.T = (ρΓ,↑
T ρΓxΓ).

Lemma 4.16 (Identity environment). If ⊢ Γ then ρΓ ∈ Γ.

Proof. By induction on ⊢ Γ.
Case ⊢ Γ Γ⊕ ⊢ T

⊢ Γ.T
By induction hypothesis ρΓ ∈ Γ. By resurrection (Lemma 4.14) ρΓ ∈ Γ

⊕
. By the fundamental

theorem (Thm. 4.15) we have A := TρΓ ∈ Setℓ for some ℓ. By reflection (Cor. 4.10) it follows

that ↑AxΓ ∈ A, thus (ρΓ,↑AxΓ) ∈ Γ.T .
Case ⊢ Γ

⊢ Γ.⋆Size

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

By induction hypothesis ρΓ ∈ Γ. Since xΓ ∈ Size we conclude (ρΓ, xΓ) ∈ Γ.⋆Size. □

We now define the normalization relation nbeTΓ t ↘ v :⇐⇒ RΓ ↓
T ρΓ (tρΓ) ↘ v . Whenever

nbeTΓ t ↘ v , we may write nbeTΓ t for v .

Theorem 4.17 (Completeness of NbE). If Γ ⊢ t = t ′ : T then there are normal forms v ≈ v ′ such
that nbeTΓ t ↘ v and nbeTΓ t

′ ↘ v ′.

Proof. By the fundamental theorem,TρΓ ∈ Setℓ for some ℓ and tρΓ = t ′ρΓ ∈ TρΓ . By reification
(Cor. 4.10) we have ↓T ρΓ (tρΓ) = ↓

T ρΓ (t ′ρΓ) ∈ Nf which implies the theorem by read back with

k = |Γ |. □

5 SOUNDNESS OF NORMALIZATION BY EVALUATION
In this section, we show that NbE is sound for judgmental equality, i.e., that same normal form
implies definitional equality. The proof follows Abel et al. [2007] and Fridlender and Pagano [2013]

and defines a Kripke logical relation Γ ⊢ t : T ® f ∈ A between a well-typed term Γ ⊢ t : T and a

value f ∈ A. However, in contrast to the cited works, the logical relation defined in the following

will also yield a weak head normalization theorem.

First, let us define some auxiliary judgements that relate a well-formed syntactic object to a value,

via read back. They will constitute the logical relation for base types, but need to be strengthened

for function types.

Γ ⊢ a � Rsize α :⇐⇒ ∀ξ : Γ′ ≤ Γ. Rsize
Γ′ α ↘ aξ

Γ ⊢ T � RtyA : s :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃V . Rty
Γ′ A↘ V and Γ′ ⊢ Tξ = V : s

Γ ⊢ t � Rd : T :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃v . RΓ′ d ↘ v and Γ′ ⊢ tξ = v : Tξ

Γ ⊢ t � Rne n : T :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃m. Rne
Γ′ n ↘m and Γ′ ⊢ tξ =m : Tξ

By definition, these relations are closed under subsumption and weakening, e.g., if Γ ⊢ t � Rd : T
and Γ ⊢ T ≤ T ′ then Γ ⊢ t � Rd : T ′, and if ξ : Γ′ ≤ Γ then Γ′ ⊢ tξ � Rd : Tξ .

Lemma 5.1 (Fresh variable readback). If Γ ⊢ U then Γ.U ⊢ v0 � Rne xΓ : U �.

Proof. Assume ξ : Γ′ ≤ Γ.U . Note that Rne
Γ′ xΓ ↘ vi where i = |Γ′ | − |Γ.U | is the length of the

context extension. Since v0ξ = vi , we conclude Γ′ ⊢ v0ξ = vi : U �ξ by weakening of the judgement

Γ.U ⊢ v0 = v0 : U �. □

Lemma 5.2 (Closure properties for neutrals).

(1) If Γ ⊢ t � Rne n : ΠU T and Γ ⊢ u � Rd : U then Γ ⊢ t u � Rne nd : T [u].
(2) If Γ ⊢ t � Rne n : Π SizeT and Γ ⊢ a � Rsizeα then Γ ⊢ t a � Rne n α : T [a].
(3) If Γ ⊢ t � Rne n : ∀T and Γ⊕ ⊢ a,b : Size and α ∈ Size then Γ ⊢ t ⟨a⟩ � Rne n ⟨α⟩ : T [b].

Proof. For (3), assume ξ : Γ′ ≤ Γ. We have to show that there exists a neutral normal form

m′ such that Rne
Γ′ n ⟨α⟩ ↘ m′ and Γ′ ⊢ (t ⟨a⟩)ξ = m′ : T [b]ξ . Sizes can always be read back, thus,

let Rsize
Γ′ α ↘ a0, which guarantees Γ′⊕ ⊢ a0 : Size. By assumption Γ ⊢ t � Rne n : ∀T , there

is an m with Rne
Γ′ n ↘ m and Γ′ ⊢ tξ = m : (∀T)ξ . The latter equation implies Γ′ ⊢ tξ ⟨aξ ⟩ =

m⟨a0⟩ : T (ξ ,bξ) by irrelevant size application to Γ′⊕ ⊢ aξ ,a0,bξ : Size, thus we are done with
m′ :=m⟨a0⟩. □

Let Γ ⊢ T ↘W : s denote the conjunction of T ↘W and Γ ⊢ T =W : s . We simultaneously

define Γ ⊢ T ′ ® A′ ∈ s for Γ ⊢ T ′ : s and Γ ⊢ t : T ′ ® f ∈ A′ for Γ ⊢ t : T ′ and f ∈ A′ by

induction on A′ ∈ s .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:25

Case A′ ↘ N neutral.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ n : s for some neutral n and Γ ⊢ T ′ � RtyA′ : s .
Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ ⊢ t � R↓A

′

f : T ′.

Case A′ ↘ Natα .

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Nata : s for some a and Γ ⊢ a � Rsizeα .
Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ⊕ ⊢ T ′ ↘ Nata : s for some a and Γ⊕ ⊢ a � Rsizeα

and Γ ⊢ t � R↓A
′

f : Nata.

Case A′ ↘ Setℓ′ .

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Setℓ′ : s .
Γ ⊢ U : T ′ ® B ∈ A′ :⇐⇒ Γ⊕ ⊢ T ′ ↘ Setℓ′ : s and Γ ⊢ U ® B ∈ Setℓ′ .

Case A′ ↘ ΠAB.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ ΠU T : s for someU ,T and Γ ⊢ U ® A ∈ s
and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ u : Uξ ® a ∈ A =⇒ Γ′ ⊢ T (ξ ,u) ® B[a] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ⊕ ⊢ T ′ ↘ ΠU T : s for someU ,T and Γ⊕ ⊢ U ® A ∈ s
and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ u : Uξ ® a ∈ A =⇒ Γ′ ⊢ tξ u : T (ξ ,u) ® f a ∈ B[a].

Case A′ ↘ Π SizeB.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Π SizeT : s for some T
and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ a � Rsizeα =⇒ Γ′ ⊢ T (ξ ,a) ® B[α] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ⊕ ⊢ T ′ ↘ Π SizeT : s for some T
and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ a � Rsizeα =⇒ Γ′ ⊢ tξ a : T (ξ ,a) ® f α ∈ B[α].

Case A′ ↘ ∀B.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ ∀T : s for some T
and ∀ξ : Γ′ ≤ Γ, Γ′ ⊢ b : Size, β ∈ Size. Γ′ ⊢ b � Rsizeβ =⇒ Γ′ ⊢ T (ξ ,b) ® B[β] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ⊕ ⊢ T ′ ↘ ∀T : s for some T
and ∀ξ : Γ′ ≤ Γ, Γ′⊕ ⊢ a,b : Size, α , β ∈ Size.

Γ′⊕ ⊢ b � Rsizeβ =⇒ Γ′ ⊢ tξ ⟨a⟩ : T (ξ ,b) ® f ⟨α⟩ ∈ B[β].

We may prove theorems “by induction on Γ ⊢ T ® A ∈ s”, even if in reality this will be proofs by

induction on A ∈ s and cases on Γ ⊢ T ® A ∈ s . We write Γ ⊢ T ® A if Γ ⊢ T ® A ∈ s for some

sort s .

Lemma 5.3 (Weakening). Let ξ : Γ′ ≤ Γ.
(1) If Γ ⊢ T ® A ∈ s then Γ′ ⊢ Tξ ® A ∈ s .
(2) If Γ ⊢ t : T ® f ∈ A then Γ′ ⊢ tξ : Tξ ® f ∈ A.

Theorem 5.4 (Into and out of the logical relation). Let Γ ⊢ T ® A ∈ s and A ⊏∼ S . Then:
(1) If Γ ⊢ t � Rne n : T then Γ ⊢ t : T ® ↑Sn ∈ A.
(2) If Γ ⊢ t : T ® f ∈ A then Γ ⊢ t � R↓S f : T .
(3) Γ ⊢ T � RtyA : s .

Proof. We prove the propositions for A′, S ′, and T ′ (instead of A, S , and T) simultaneously by

induction on A′ ∈ s .
Case A′ ↘ ΠAB and S ′ ↘ Π R S and Γ⊕ ⊢ T ′ = ΠU T .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

(1) The premise is, after type conversion, Γ ⊢ t � Rne n : ΠU T . To demonstrate Γ ⊢ t : T ′ ®
↑S
′

n ∈ A′ we assume ξ : Γ′ ≤ Γ and Γ′ ⊢ u : Uξ ® a ∈ A and show Γ′ ⊢ (tξ u) : T (ξ ,u) ®
↑S[a] (n ↓Aa) ∈ B[a]. By induction hypothesis (2) we have Γ′ ⊢ u � R↓Ra : Uξ , and together
with the weakened premise Γ′ ⊢ tξ � Rne n : (ΠU T)ξ we get Γ′ ⊢ tξ u � Rne (n ↓Ra) :
T (ξ ,u). The goal follows by induction hypothesis (1) for Γ′ ⊢ T (ξ ,u) ® B[a] ∈ s .

(2) The premise is Γ ⊢ t : T ′ ® f ∈ A′, which means that for all ξ : Γ′ ≤ Γ and Γ′ ⊢ u : Uξ ®

a ∈ A we have Γ′ ⊢ tξ u : T (ξ ,u) ® f a ∈ B[a].
To show Γ ⊢ t � R↓S

′

f : T ′ we assume ξ : Γ′ ≤ Γ and produce a normal form v such

that RΓ′ ↓
S ′ f ↘ λv and Γ′ ⊢ tξ = λv : T ′ξ . Induction hypothesis (1) on Γ′.Uξ ⊢ v0 �

Rne xΓ′ : Uξ� gives us Γ′.Uξ ⊢ v0 : Uξ� ® a ∈ A with a := ↑RxΓ′ . Thus, we can instantiate

the assumption Γ ⊢ t : T ′ ® f ∈ A′ to obtain Γ′.Uξ ⊢ (tξ�) v0 : T (ξ�, v0) ® f a ∈ B[a].
Now induction hypothesis (2) yields a normal form v such that RΓ′ .U ξ ↓

S[a] (f a) ↘ v and

Γ′.Uξ ⊢ (tξ�) v0 = v : T (ξ�, v0). Since a is the semantic version of the last bound variable,

RΓ′ ↓
S ′ f ↘ λv follows by definition of reification. For the final goal, we λ-abstract the

definitional equality to Γ′ ⊢ λ. (tξ�) v0 = λv : Π (Uξ) (T (ξ�, v0)) and with η-equality and

the substitution laws we get Γ′ ⊢ tξ = λv : (ΠU T)ξ .
Case A′ ↘ ∀A and S ′ ↘ ∀S and Γ⊕ ⊢ T ′ = ∀T .

(1) We assume ξ : Γ′ ≤ Γ and Γ′⊕ ⊢ a,b : Size and α , β ∈ Size with Γ′⊕ ⊢ b � Rsizeβ and show

Γ′ ⊢ tξ ⟨a⟩ : T (ξ ,b) ® (↑S
′

n)⟨α⟩ ∈ A[β]. By the evaluation rules for reflection, it is sufficient

to show Γ′ ⊢ tξ ⟨a⟩ : T (ξ ,b) ® ↑S[α] (n⟨α⟩) ∈ A[β]. This follows by induction hypothesis

(1) if Γ′ ⊢ T (ξ ,b) ® A[β] ∈ s and A[β] ⊏∼ S[α] and Γ′ ⊢ tξ ⟨a⟩ � Rne n⟨α⟩ : T (ξ ,b). The
first two of these subgoals are immediate. The third follows by Lemma 5.2 (3) from the

weakened assumption Γ′ ⊢ tξ � Rne n : T ′ξ .
(2) To show Γ ⊢ t � R↓S

′

f : T ′ we assume ξ : Γ′ ≤ Γ and produce a normal form v such that

RΓ′ ↓
S ′ f ↘ λv and Γ′ ⊢ tξ = λv : T ′ξ . It is sufficient to show RΓ′ .÷Size ↓

S[xΓ′] (f ⟨xΓ′⟩) ↘ v
and Γ′.÷Size ⊢ (tξ�) v0 = v : T (ξ�, v0). These goals, in turn, follow by induction hypothesis

(2) on Γ′.÷Size ⊢ (tξ�) v0 : T (ξ�, v0) ® f ⟨xΓ′⟩ ∈ A[xΓ′] which is an instance of our

assumption Γ ⊢ t : T ′ ® f ∈ A′. □

Corollary 5.5 (Fresh variable). If ⊢ Γ.T and Γ ⊢ T ® A then Γ.T ⊢ v0 : (T�) ® (↑AxΓ) ∈ A.

Proof. Since Γ.T ⊢ v0 � Rne xΓ : T� by Lemma 5.1, the goal follows from Thm. 5.4 part (1). □

Corollary 5.6 (One-to-one).

(1) If Γ ⊢ a � Rsizeα and Γ ⊢ a′ � Rsizeα then a = a′.
(2) If Γ ⊢ T ® A ∈ Setℓ and Γ ⊢ T ′ ® A ∈ Setℓ′ then Γ ⊢ T = T ′.

Lemma 5.7 (Semantic implies judgmental subtyping [Fridlender and Pagano 2013]).

(1) If Γ ⊢ a � Rsizeα and Γ ⊢ b � Rsizeβ and α ≤ β then a ≤ b.
(2) If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ T ≤ T ′.

Proof. The proof is analogous to the one for algorithmic subtyping to come (Lemma 6.2). □

Lemma 5.8 (Subsumption for the logical relation [Fridlender and Pagano 2013]). If
Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ t : T ® f ∈ A implies Γ ⊢ t : T ′ ® f ∈ A′.

Fig. 10 defines a logical relation for substitutions Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ .Wewrite Γ ⊢ τ : ∆ ® ρ

for Γ ⊢ τ ≓ τ : ∆ ® ρ ≓ ρ.

Lemma 5.9 (Properties of the logical relation for substitutions).

Let Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ. Then:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:27

⊢ Γ

Γ ⊢ () ≓ () : () ® () ≓ ()

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ Γ ⊢ a : Size Γ ⊢ a � Rsizeα

Γ ⊢ (σ ,a) ≓ (τ ,a) : ∆.Size ® (η,α) ≓ (ρ,α)

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ Γ⊕ ⊢ a,b : Size α , β ∈ Size Γ⊕ ⊢ b � Rsizeβ

Γ ⊢ (σ ,a) ≓ (τ ,b) : ∆.÷Size ® (η,α) ≓ (ρ, β)

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ ∆⊕ ⊢ T Γ ⊢ u = t : Tτ Γ ⊢ t : Tτ ® f ∈ Tρ f = д ∈ Tρ

Γ ⊢ (σ ,u) ≓ (τ , t) : ∆.T ® (η, f) ≓ (ρ,q)

Fig. 10. Logical relation for substitutions Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ .

(1) Well-typedness: Γ ⊢ σ : ∆ and Γ ⊢ σ = σ ≓ τ : ∆ [which in turn implies Γ ⊢ τ : ∆].
(2) Weakening: If ξ : Γ′ ≤ Γ then Γ′ ⊢ σξ ≓ τξ : ∆ ® η ≓ ρ.
(3) Resurrection: Γ⊕ ⊢ τ : ∆⊕ ® ρ.
(4) Size substitution: If ∆⊕ ⊢ a : Size then aη ∈ Size.

Proof. For part (4), the only interesting case a = vi + o can be proved by observing that

η(i) ∈ Size. □

The following judgements are used to state the fundamental theorem of typing.

Γ ⊩ t : T :⇐⇒ Γ′ ⊢ tσ : Tτ ® tη ∈ Tρ for all Γ′ ⊢ σ ≓ τ : Γ ® η ≓ ρ

Γ ⊩ σ0 : ∆ :⇐⇒ Γ′ ⊢ σ0σ ≓ σ0τ : ∆ ® σ0η ≓ σ0ρ for all Γ′ ⊢ σ ≓ τ : Γ ® η ≓ ρ

Theorem 5.10 (Fundamental theorem of typing).

(1) If Γ ⊢ t : T then Γ ⊩ t : T .
(2) If Γ ⊢ σ : ∆ then Γ ⊩ σ : ∆.

Proof. Each by induction on the derivation.

Case ∀-introduction.
Γ.÷Size ⊢ t : T

Γ ⊢ λt : ∀T
Assume ∆ ⊢ σ ≓ τ : Γ ® η ≓ ρ and show ∆ ⊢ (λt)σ : (∀T)τ ® (λt)η ∈ (∀T)ρ. To this end,

assume a weakening ξ : ∆′ ≤ ∆ and size expressions ∆′⊕ ⊢ a,b : Size and size values α , β
with ∆′⊕ ⊢ b � Rsizeβ and show ∆′ ⊢ (λt)σξ ⟨a⟩ : T (τ�, v0) (ξ ,b) ® (λt)η⟨α⟩ ∈ T (ρ�, v0)[β].
It suffices to show (weak head reduction, substitution laws) that ∆′ ⊢ t (σξ ,a) : T (τξ ,b) ®
t (η,α) ∈ T (ρ, β). This follows from the induction hypothesis, since ∆′ ⊢ (σξ ,a) ≓ (τξ ,b) :
Γ.÷Size ® (η,α) ≓ (ρ, β) by Lemma 5.9 and substitution extension.

Case ∀-elimination.

Γ ⊢ t : ∀T Γ⊕ ⊢ a,b : Size

Γ ⊢ t⟨a⟩ : T [b]

Assume ∆ ⊢ σ ≓ τ : Γ ® η ≓ ρ and show ∆ ⊢ t⟨a⟩σ : T [b]τ ® t⟨a⟩η ∈ T [b]ρ. By induction

hypothesis we have ∆ ⊢ tσ : (∀T)τ ® tη ∈ (∀T)ρ. It suffices to show the following:

(1) ∆⊕ ⊢ aσ : Size: follows from Γ⊕ ⊢ a : Size via ∆ ⊢ σ : Γ and ∆⊕ ⊢ σ : Γ⊕ and substitution.

(2) aη ∈ Size: follows from Γ⊕ ⊢ a : Size by Lemma 5.9, part (4).

(3) ∆⊕ ⊢ bτ � Rsizebρ: follows from induction hypothesis on Γ⊕ ⊢ b : Size via ∆⊕ ⊢ τ ≓ τ :

Γ⊕ ® ρ ≓ ρ (from Lemma 5.9). □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:28 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Lemma 5.11 (Identity environment). If ⊢ Γ then Γ ⊢ id : Γ ® ρΓ .

Proof. By induction on ⊢ Γ. Consider case:

⊢ Γ Γ⊕ ⊢ T

⊢ Γ.T

Let f = ↑T ρΓxΓ . We have to show Γ.T ⊢ id : Γ.T ® (ρΓ, f). Note that id = (�, v0), thus it remains

to show that Γ.T ⊢ � : Γ ® ρΓ and Γ.T ⊢ v0 : T� ® f ∈ TρΓ . The first goal follows by weakening

from the induction hypothesis Γ ⊢ id : Γ ® ρΓ . Since ρΓ ∈ Γ
⊕
, we get TρΓ ∈ Setℓ for some ℓ by the

first fundamental theorem (Thm. 4.15). Thus, the second goal follows by Cor. 5.5. □

Corollary 5.12 (Soundness of NbE).

(1) If Γ ⊢ t : T then Γ ⊢ t = nbeTΓ t : T .
(2) If Γ ⊢ t , t ′ : T and nbeTΓ t ≈ nbeTΓ t

′ then Γ ⊢ t = t ′ : T .

Proof. (1) For the identity environment Γ ⊢ id : Γ ® ρΓ (Lemma 5.11) the Fundamental Theorem

for Typing gives Γ ⊢ t : T ® tρΓ ∈ TρΓ . This impliesRΓ ↓
(T ρΓ) (tρΓ) ↘ v for some normal formv and

Γ ⊢ t = v : T by Thm. 5.4. Then (2): From (1), using Lemma 3.1: Γ ⊢ t = nbeTΓ t = nbeTΓ t
′ = t ′ : T . □

Corollary 5.13 (Decidability of judgemental eqality). If Γ ⊢ t , t ′ : T then the test whether
nbeTΓ t ≈ nbeTΓ t

′ terminates and decides Γ ⊢ t = t ′ : T .

Proof. Follows directly from soundness (including termination) and completeness of NbE. □

For normalization of types, we introduce NbeΓT via the relation NbeΓT ↘ V :⇐⇒ Rty
Γ TρΓ ↘

V . Analogously, we show that the test NbeΓT ≈ NbeΓT ′ decides type equality Γ ⊢ T = T ′.

Corollary 5.14 (Type weak head normalization). If Γ ⊢ T then T ↘W for someW .

Proof. By the fundamental theorem of typing, Γ ⊢ T ® TρΓ , which impliesT ↘W by definition

of the logical relation. □

Corollary 5.15 (Type constructor injectivity).

(1) If Γ ⊢ Setℓ = Setℓ′ : s then ℓ = ℓ′.
(2) If Γ ⊢ Nata = Natb : s then a = b.
(3) If Γ ⊢ ΠU T = ΠU ′T ′ : s then Γ ⊢ U = U ′ : s and Γ.U ⊢ T = T ′ : s .
(4) If Γ ⊢ Π⋆SizeT = Π SizeT ′ : s then Γ.Size ⊢ T = T ′ : s .

Proof. Statement (1) follows by inversion on Setℓ = Setℓ′ ∈ s , which is a direct consequence of

the fundamental theorem (Thm. 4.15).

For (2), observe that Nat (aρΓ) = Nat (bρΓ) ∈ s by the fundamental theorem (Thm. 4.15), which

by definition implies aρΓ = bρΓ . By the fundamental theorem of typing (Thm. 5.10), Γ ⊢ Nata ®

Nat (aρΓ) ∈ s which by definition implies Γ ⊢ a � RsizeaρΓ . Analogously, we get Γ ⊢ b � RsizebρΓ .
By Cor. 5.6, a = b.
Last, we prove statement (3), the last statement follows analogously. By the fundamental the-

orem, (ΠU T)ρΓ = (ΠU ′T ′)ρΓ ∈ s which by definition means UρΓ = U ′ρΓ ∈ s and T (ρΓ,u) =

T ′(ρΓ,u
′) ∈ s for all u = u ′ ∈ s . By reification (Thm. 4.9), Rty

Γ UρΓ ↘ V and Rty
Γ U ′ρΓ ↘ V ′ for

some normal forms V ≈ V ′. Since by inversion we have Γ ⊢ U ,U ′ : s we get Γ ⊢ U = U ′ : s by
soundness of NbE. Now, choosing u := u ′ := ↑U ρΓxΓ ∈ U , we obtain TρΓ.U = T

′ρΓ.U ∈ s , which
analogously gives us Γ.U ⊢ T = T ′ : s . □

Lemma 5.16 (Type constructor discrimination). Different type constructors are not related by
subtyping. For instance, Γ ⊢ Nata ≤ ΠU T and Γ ⊢ Π÷SizeT ≤ Π SizeT ′ are both impossible.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:29

Proof. Follows directly by the fundamental theorem (Thm. 4.15) and inversion on semantic

subtyping. □

Lemma 5.17 (Inversion of subtyping [Fridlender and Pagano 2013]).

(1) If Γ ⊢ Setℓ ≤ Setℓ′ : s then ℓ ≤ ℓ′.
(2) If Γ ⊢ Nata ≤ Natb : s then a ≤ b.
(3) If Γ ⊢ ΠU T ≤ ΠU ′T ′ : s then Γ ⊢ U ′ ≤ U : s and Γ.U ′ ⊢ T ≤ T ′ : s .
(4) If Γ ⊢ Π⋆SizeT ≤ Π SizeT ′ : s then Γ.Size ⊢ T ≤ T ′ : s .

Proof. Similar to the proof of Cor. 5.15, using Lemma 5.7. We recapitulate the proof for (3).

By the fundamental theorems, we get Γ ⊢ ΠU T ® (ΠU T)ρΓ and Γ ⊢ ΠU ′T ′ ® (ΠU ′T ′)ρΓ
and (ΠU T)ρΓ ≤ (ΠU ′T ′)ρΓ ∈ Type. By inversion, first Γ ⊢ U ® UρΓ and Γ ⊢ U ′ ® U ′ρΓ and
U ′ρΓ ≤ UρΓ ∈ Type which imply Γ ⊢ U ′ ≤ U by Lemma 5.7. Recall that ρΓ.U ′ = (ρΓ,u) where
u = ↑U

′ρΓxΓ ∈ U ′ρΓ and Γ.U ′ ⊢ v0 : U ′� ® u ∈ U ′ρΓ by Cor. 5.5. From Γ.U ′ ⊢ T ® T (ρΓ.U ′) ∈ s and
Γ.U ′ ⊢ T ′ ® T ′(ρΓ.U ′) ∈ s andT (ρΓ.U ′) ≤ T

′(ρΓ.U ′) ∈ s , again by Lemma 5.7, Γ.U ′ ⊢ T ≤ T ′ : s . □

Lemma 5.18 (Strong inversion for abstraction).

(1) If Γ ⊢ λt : ΠU T then Γ.U ⊢ t : T .
(2) If Γ ⊢ λt : Π⋆SizeT then Γ.⋆Size ⊢ t : T .

Proof. By inversion of typing (Lemma 3.8), type constructor discrimination (Lemma 5.16) and

inversion of subtyping (Lemma 5.17).

For instance, inversion on Γ ⊢ λt : ΠU T gives us Γ.U ′ ⊢ t : T ′ with Γ ⊢ ΠU ′T ′ ≤ ΠU T (the

other case, Π⋆SizeT is excluded by discrimination). By inversion of subtyping, Γ ⊢ U ≤ U ′ and
Γ.U ⊢ T ′ ≤ T . Since id : Γ.U ≤ Γ.U ′, we have Γ.U ⊢ t : T ′ by weakening, and our goal follows by

subsumption. □

Lemma 5.19 (Strong inversion of redexes).

(1) If Γ ⊢ (λt)u : T ′ then Γ.U ⊢ t : T and Γ ⊢ u : U and Γ ⊢ T [u] ≤ T ′ for someU ,T .
(2) If Γ ⊢ (λt) a : T ′ then Γ.Size ⊢ t : T and Γ ⊢ a : Size and Γ ⊢ T [a] ≤ T ′ for some T .
(3) If Γ ⊢ (λt) ⟨a⟩ : T ′ then Γ.÷Size ⊢ t : T and Γ⊕ ⊢ a : Size and Γ ⊢ T [a] ≤ T ′ for some T .

Proof. For (3), from Γ ⊢ (λt)⟨a⟩ : T ′ we get Γ ⊢ λt : ∀T and Γ⊕ ⊢ a,b : Size and Γ ⊢ T [b] ≤ T ′.
Strong inversion for abstraction gives us Γ.÷Size ⊢ t : T . Since Γ ⊢ [a] = [a] ≓ [b] : Γ.÷Size, the
substitution lemma yields Γ ⊢ t[a] : T [b], thus Γ ⊢ t[a] : T ′ by subsumption. □

Theorem 5.20 (Subject reduction).

(1) If D :: Γ ⊢ t : T and D′ :: t ↘ w then Γ ⊢ t = w : T .
(2) If D :: Γ ⊢ w e : T and D′ :: w@e ↘ w ′ then Γ ⊢ w e = w : T .

Proof. Simultaneously by induction on D′ using inversion (Lemma 3.8) and strong inversion

(Lemma 5.19) on the typing derivation D. □

6 ALGORITHMIC SUBTYPING
Fig 11 defines an incremental subtyping algorithm Γ ⊢ T <: T ′ . Neutral types are subtypes iff
they are equal, which is checked using NbE.

Lemma 6.1 (Soundness of algorithmic subtyping). If Γ ⊢ T <: T ′ then Γ ⊢ T ≤ T ′.

Proof. By induction on Γ ⊢ T <: T ′, soundness of NbE, and subject reduction (Thm. 5.20). □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:30 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

T ↘ n T ′ ↘ n′ NbeΓn ≈ NbeΓn′

Γ ⊢ T <: T ′
T ↘ Setℓ T ′ ↘ Setℓ′

Γ ⊢ T <: T ′
ℓ ≤ ℓ′

T ↘ Nata T ′ ↘ Nata′

Γ ⊢ T <: T ′
a ≤ a′

T ′
1
↘ Π⋆SizeT1 T ′

2
↘ Π⋆SizeT2 Γ.Size ⊢ T1 <: T2
Γ ⊢ T ′

1
<: T ′

2

T ′
1
↘ ΠU1T1 T ′

2
↘ ΠU2T2 Γ ⊢ U2 <: U1 Γ.U2 ⊢ T1 <: T2

Γ ⊢ T ′
1
<: T ′

2

Fig. 11. Algorithmic subtyping Γ ⊢ T <: T ′ .

Lemma 6.2 (Semantic subtyping implies algorithmic subtyping).

If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ T <: T ′.

Proof. By induction on Γ ⊢ T ′
1
® A′

1
∈ s1 and Γ ⊢ T ′

2
® A′

2
∈ s2 and cases on A′

1
≤ A′

2
∈ Type

we prove Γ ⊢ T ′
1
<: T ′

2
.

Case A′i ↘ Ni and T
′
i ↘ ni and N1 = N2 ∈ Ne and Γ ⊢ ni � Rty Ni : si . By Cor. 5.6 Γ ⊢ n1 = n2,

thus, by completeness of NbE, NbeΓn1 ≈ NbeΓn2, which entails Γ ⊢ T ′
1
<: T ′

2
.

Case A′i ↘ ΠAi Bi and T
′
i ↘ ΠUi Ti . From Γ ⊢ Ui ® Ai ∈ si and A2 ≤ A1 ∈ Type we get Γ ⊢

U2 <: U1 by induction hypothesis on Ai ∈ si . Let a := ↑A2xΓ . With Γ.U2 ⊢ v0 : (U2�) ® a ∈ A2

we get Γ.U2 ⊢ Ti ® Bi [a] ∈ s and B1[a] ≤ B2[a] ∈ Type. Thus by induction hypothesis on

Bi [a] ∈ si we obtain Γ.U2 ⊢ T1 ≤ T2, together Γ ⊢ T
′
1
<: T ′

2
. □

Corollary 6.3 (Completeness of algorithmic subtyping). If Γ ⊢ T ≤ T ′ then Γ ⊢ T <: T ′.

Proof. By the fundamental theorems Γ ⊢ T ® TρΓ and Γ ⊢ T ′ ® T ′ρΓ and TρΓ ≤ T
′ρΓ ∈ Type.

By Lemma 6.2, Γ ⊢ T <: T ′. □

Since the algorithmic subtyping relation is equivalent to the declarative one, we can freely swap

one relation for the other.

Lemma 6.4 (Termination of algorithmic subtyping). If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ then the
query Γ ⊢ T <: T ′ terminates.

Proof. By induction on A ∈ s and A′ ∈ s ′ and cases on Γ ⊢ T ® A and Γ ⊢ T ′ ® A′. □

Theorem 6.5 (Decidability of subtyping). If Γ ⊢ T ,T ′, then Γ ⊢ T ≤ T ′ is decided by the query
Γ ⊢ T <: T ′.

Proof. By the fundamental theorem of typing, Γ ⊢ T ® A and Γ ⊢ T ′ ® A′, thus, the query
Γ ⊢ T <: T ′ terminates by Lemma 6.4. If successfully, then Γ ⊢ T ≤ T ′ by soundness of algorithmic

equality. Otherwise Γ ⊢ T ≤ T ′ is impossible by completeness of algorithmic equality. □

7 TYPE CHECKING
In this section, we show that type checking for normal forms is decidable, and succeeds for those

which can be typed via the restricted rule for size polymorphism elimination:

Γ ⊢s t : ∀T Γ⊕ ⊢ a : Size

Γ ⊢s t ⟨a⟩ : T [a]

We refer to the restricted typing judgement as Γ ⊢s t : T , and obviously, if Γ ⊢s t : T then Γ ⊢ t : T .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:31

Checking Γ ⊢ t ⇔ T . Input: Γ, t ,T . Output: yes/no.

T ′ ↘ s Γ ⊢ a : Size

Γ ⊢ Nata ⇔ T ′
T ′ ↘ Setℓ′ ℓ < ℓ′

Γ ⊢ Setℓ ⇔ T ′

T ′ ↘ s Γ ⊢ U ⇔ s Γ.U ⊢ T ⇔ s

Γ ⊢ ΠU T ⇔ T ′
T ′ ↘ s Γ.Size ⊢ T ⇔ s

Γ ⊢ Π⋆SizeT ⇔ T ′

T ′ ↘ Natb Γ⊕ ⊢ a + 1 ≤ b : Size

Γ ⊢ zero⟨a⟩⇔ T ′
T ′ ↘ Natb Γ⊕ ⊢ a + 1 ≤ b : Size Γ ⊢ t ⇔ Nata

Γ ⊢ suc⟨a⟩t ⇔ T ′

T ′ ↘ Π⋆U T Γ.⋆U ⊢ t ⇔ T

Γ ⊢ λt ⇔ T ′
Γ ⊢ t ⇒ T Γ ⊢ T <: T ′

Γ ⊢ t ⇔ T ′

Inference Γ ⊢ t ⇒ T . Input: Γ, t . Output: T or no.

Γ(i) = :T

Γ ⊢ vi ⇒ T

Γ ⊢ t ⇒ T ′ T ′ ↘ ΠU T Γ ⊢ u ⇔ U

Γ ⊢ t u ⇒ T [u]

Γ ⊢ t ⇒ T ′ T ′ ↘ Π SizeT Γ ⊢ a : Size

Γ ⊢ t a ⇒ T [a]

Γ ⊢ t ⇒ T ′ T ′ ↘ Π÷SizeT Γ⊕ ⊢ a : Size

Γ ⊢ t ⟨a⟩⇒ T [a]

Γ ⊢ u ⇒ Nat (a + 1)
Γ⊕ ⊢ T ⇔ Nat (a + 1) → Setℓ Γ ⊢ tz ⇔ T (zero⟨a⟩) Γ ⊢ ts ⇔ (x :Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts ⇒ T u

Γ ⊢ u ⇒ Nata Γ⊕ ⊢ T ⇔ FixK ℓ Γ ⊢ t ⇔ FixTT

Γ ⊢ u fixℓ T t ⇒ T au

Fig. 12. Bidirectional type-checking of normal forms.

Figure 12 displays the rules for bidirectional typing of normal forms. Note that we could go

beyond normal forms, by adding inference rules for the Nat -constructors:

Γ⊕ ⊢ a : Size

Γ ⊢ zero⟨a⟩⇒ Nat (a + 1)

Γ⊕ ⊢ a : Size Γ ⊢ t ⇔ Nata

Γ ⊢ suc⟨a⟩t ⇒ Nat (a + 1)

Theorem 7.1 (Soundness of type checking). Let ⊢ Γ.
(1) If Γ⊕ ⊢ T and D :: Γ ⊢ t ⇔ T then Γ ⊢s t : T .
(2) If D :: Γ ⊢ t ⇒ T then Γ⊕ ⊢ T and Γ ⊢s t : T .

Proof. Simultaneously by induction on D, using subject reduction (Thm. 5.20) and soundness

of algorithmic subtyping (Lemma 6.1). □

Lemma 7.2 (Weak head reduction of subtypes). Let D :: Γ ⊢ T <: T ′.
(1) If T ′ ↘ Nata′ then T ↘ Nata and Γ ⊢ a <: a′ : Size.
(2) If T ′ ↘ Setℓ′ then T ↘ Setℓ and ℓ <: ℓ′.
(3) If T ′ ↘ ΠA′ B′ then T ↘ ΠAB and Γ ⊢ A′ <: A and Γ.A′ ⊢ B <: B′.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:32 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

(4) If T ′ ↘ Π⋆SizeB′ and T ↘ Π⋆SizeB and Γ.Size ⊢ B <: B′.

Proof. By cases on D, since weak head evaluation is deterministic. □

This lemma also holds in the other direction of subtyping, i. e., when T <: T ′ and T weak head

evaluates, then T ′ weak head evaluates to a type of the same form.

Lemma 7.3 (Weak head reduction of supertypes). Let D :: Γ ⊢ T <: T ′.
(1) If T ↘ Nata then T ′ ↘ Nata′ and Γ ⊢ a <: a′ : Size.
(2) If T ↘ Setℓ then T ′ ↘ Setℓ′ and ℓ <: ℓ′.
(3) If T ↘ ΠAB then T ′ ↘ ΠA′ B′ and Γ ⊢ A′ <: A and Γ.A′ ⊢ B <: B′.
(4) If T ↘ Π⋆SizeB and T ′ ↘ Π⋆SizeB′ and Γ.Size ⊢ B <: B′.

Proof. By cases on D, since weak head evaluation is deterministic. □

Lemma 7.4 (Subsumption for type checking). Let id : Γ′ ≤ Γ.
(1) If D :: Γ ⊢ t ⇔ T and Γ⊕ ⊢ T ≤ T ′ then Γ′ ⊢ t ⇔ T ′.
(2) If D :: Γ ⊢ t ⇒ T then Γ′ ⊢ t ⇒ T ′ and Γ′⊕ ⊢ T ≤ T ′.

Proof. Simultaneously by induction on D, using lemmata 7.2 and 7.3, and soundness and

completeness of algorithmic subtyping. □

Theorem 7.5 (Completeness of type checking for normal terms).

(1) If D :: Γ ⊢s v : T then Γ ⊢ v ⇔ T .
(2) If D :: Γ ⊢s m : T then Γ ⊢m ⇒ U and Γ⊕ ⊢ U ≤ T .

Proof. Simultaneously by induction on D, using (strong) inversion and Lemma 7.4. □

Lemma 7.6 (Termination of type checking). Let ⊢ Γ.
(1) The query Γ ⊢ t ⇒ ? terminates.
(2) If Γ⊕ ⊢ T then the query Γ ⊢ t ⇔ T terminates.

Proof. By induction on t , using type weak head normalization and soundness of type checking,

to maintain well-formedness of types. And, of course, decidability of subtyping. □

Theorem 7.7 (Decidability of type checking for normal terms). Let ⊢ Γ and Γ⊕ ⊢ T . Then
Γ ⊢s v : T is decided by Γ ⊢ v ⇔ T .

8 DISCUSSION AND CONCLUSIONS
In this article, we have described the first successful integration of higher-rank size polymorphism

into a core type theory with dependent function types, a sized type of natural numbers, a predicative

hierarchy of universes, subtyping, andη-equality. This is an important stepping stone for the smooth

integration of sized types into dependently-typed proof assistants. In these final paragraphs, we

discuss some questions and insights that follow from our work and go beyond it.

It is now straightforward to add a unit type 1 with extensional equality t = ∗ : 1 for all t : 1. We

simply extend reification such that ↓1a = ∗. Further, 1 is a new type shape with rule 1 ⊏∼ 1.
In the long run, we wish for a type-directed equality check that does not do normalization in

one go, but interleaves weak head normalization with structural comparison. Such an equality test

is at the heart of Agda’s type checker and it generates constraints for meta variables involved in

type reconstruction [Norell 2007]. However, the usual bidirectional construction [Abel and Scherer

2012] does not seem to go through as we lack uniqueness of types (and even principal types).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

NbE for Sized Types 1:33

For now, we have only exploited shape-irrelevance of sized types, but this directly extends

to universe levels. If we consider all universes as a single shape Setℓ1 ⊏∼ Setℓ2 , we can quantify

over levels irrelevantly, as Set is a shape-irrelevant type constructor. This is a stepping stone for
integrating universe cumulativity with Agda’s explicit universe-polymorphism. If levels are no

longer unique (because of subsumption), they will get in the way of proofs, analogously to sizes.

With an irrelevant quantifier we can ignore levels where they do not matter. We will still respect

them where they matter, thus, we keep consistency.

Our reflections on level irrelevance lead us to the question: can a type theory T with a stratified

universe hierarchy be understood as a sort of refinement of the inconsistent SystemU (Type:Type)?

Intuitively, when checking two terms of T for equality, could we ignore the stratification in the

type A which directs the equality check (thus, consider A coming from U)? Such a perspective

would put stratification in one pot with size assignment: Size annotations and levels are both just

annotations for the termination checker, but do not bear semantic relevance. We could switch the

universe checker temporarily off as we do with the termination checker—cf. the work of Stump

et al. [2010] on termination casts.
Finally, we would like a general theory of shape-irrelevance that extends beyond size-indexed

types. For instance, any data type constructor could be considered shape-irrelevant in all its indices,

with the consequence that index arguments in the data constructors could be declared irrelevant.

However, our notion of judgmental equality does not support irrelevant arguments of dependent

type. It works for the non-dependent type Size, but we also relied on having a closed inhabitant∞

in Size. More research is needed to tell a more general story of shape-irrelevance.

ACKNOWLEDGMENTS
This material is based upon work supported by the Swedish Research Council (Vetenskapsrådet)

under Grant No. 621-2014-4864 Termination Certificates for Dependently-Typed Programs and Proofs
via Refinement Types. The first author is grateful for recent discussions with Thierry Coquand, Nils

Anders Danielsson, and Sandro Stucki which helped clarifying the thoughts leading to this work.

He also acknowledges past discussions with Christoph-Simon Senjak. The incentive to write this

article came during the EU Cost Action CA15123 EUTYPES meeting in Ljubljana in January 2017;

thanks to Andrej Bauer for organizing it.

REFERENCES
Andreas Abel. 2008. Semi-continuous Sized Types and Termination. Logical Methods in Computer Science 4, 2:3 (2008), 1–33.

https://doi.org/10.2168/LMCS-4(2:3)2008

Andreas Abel. 2010. Towards Normalization by Evaluation for the βη-Calculus of Constructions. In Functional and
Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings (Lecture
Notes in Computer Science), Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.), Vol. 6009. Springer, 224–239.

https://doi.org/10.1007/978-3-642-12251-4_17

Andreas Abel. 2012. Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types. In

Proceedings of the 8th Workshop on Fixed Points in Computer Science (FICS 2012) (Electronic Proceedings in Theoretical
Computer Science), Dale Miller and Zoltán Ésik (Eds.), Vol. 77. 1–11. http://dx.doi.org/10.4204/EPTCS.77.1

Andreas Abel. 2013. Normalization by Evaluation: Dependent Types and Impredicativity. Unpublished. http://www.tcs.ifi.

lmu.de/~abel/habil.pdf

Andreas Abel and Thorsten Altenkirch. 2002. A Predicative Analysis of Structural Recursion. Journal of Functional
Programming 12, 1 (2002), 1–41. https://doi.org/10.1017/S0956796801004191

Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007. Normalization by Evaluation for Martin-Löf Type Theory with

Typed Equality Judgements. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,
Poland, Proceedings. IEEE Computer Society Press, 3–12. https://doi.org/10.1109/LICS.2007.33

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2009. A Modular Type-Checking Algorithm for Type Theory with

Singleton Types and Proof Irrelevance. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.2168/LMCS-4(2:3)2008
https://doi.org/10.1007/978-3-642-12251-4_17
http://dx.doi.org/10.4204/EPTCS.77.1
http://www.tcs.ifi.lmu.de/~abel/habil.pdf
http://www.tcs.ifi.lmu.de/~abel/habil.pdf
https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1109/LICS.2007.33

1:34 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

2009, Brasilia, Brazil, July 1-3, 2009, Proceedings (Lecture Notes in Computer Science), Pierre-Louis Curien (Ed.), Vol. 5608.

Springer, 5–19. https://doi.org/10.1007/978-3-642-02273-9_3

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2011. A Modular Type-Checking Algorithm for Type Theory with

Singleton Types and Proof Irrelevance. Logical Methods in Computer Science 7, 2:4 (2011), 1–57. https://doi.org/10.2168/
LMCS-7(2:4)2011

Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional
Programming 26 (2016), 61. https://doi.org/10.1017/S0956796816000022

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical
Methods in Computer Science 8, 1:29 (2012), 1–36. https://doi.org/10.2168/LMCS-8(1:29)2012

AgdaTeam. 2017. The Agda Wiki. (2017). http://wiki.portal.chalmers.se/agda

Roberto M. Amadio (Ed.). 2008. Foundations of Software Science and Computational Structures, 11th International Conference,
FoSSaCS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29 - April 6, 2008. Proceedings. Lecture Notes in Computer Science, Vol. 4962. Springer. https://doi.org/10.

1007/978-3-540-78499-9

Roberto M. Amadio and Solange Coupet-Grimal. 1998. Analysis of a Guard Condition in Type Theory (Extended Abstract)..

In Foundations of Software Science and Computation Structure, First International Conference, FoSSaCS’98, Held as Part of
the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings (Lecture Notes in Computer Science), Maurice Nivat (Ed.), Vol. 1378. Springer, 48–62. https://doi.org/10.1007/

BFb0053541

Henk Barendregt. 1991. Introduction to Generalized Type Systems. Journal of Functional Programming 1, 2 (1991), 125–154.

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent

Types, See [Amadio 2008], 365–379. https://doi.org/10.1007/978-3-540-78499-9_26

Gilles Barthe, Maria João Frade, Eduardo Giménez, Luís Pinto, and Tarmo Uustalu. 2004. Type-Based Termination of Recursive

Definitions. Mathematical Structures in Computer Science 14, 1 (2004), 97–141. https://doi.org/10.1017/S0960129503004122
Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. 2006. CICˆ: Type-Based Termination of Recursive Definitions in

the Calculus of Inductive Constructions. In Logic for Programming, Artificial Intelligence, and Reasoning, 13th International
Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings (Lecture Notes in Computer Science),
Miki Hermann and Andrei Voronkov (Eds.), Vol. 4246. Springer, 257–271. https://doi.org/10.1007/11916277_18

Gilles Barthe, Benjamin Grégoire, and Colin Riba. 2008a. A Tutorial on Type-Based Termination. In LerNet ALFA Summer
School (Lecture Notes in Computer Science), Ana Bove, Luís Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto (Eds.),

Vol. 5520. Springer, 100–152. https://doi.org/10.1007/978-3-642-03153-3_3

Gilles Barthe, Benjamin Grégoire, and Colin Riba. 2008b. Type-Based Termination with Sized Products. In Computer Science
Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19,
2008. Proceedings (Lecture Notes in Computer Science), Michael Kaminski and Simone Martini (Eds.), Vol. 5213. Springer,

493–507. https://doi.org/10.1007/978-3-540-87531-4_35

Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse to the Evaluation Functional for Typed λ-calculus. In Sixth
Annual Symposium on Logic in Computer Science (LICS ’91), July, 1991, Amsterdam, The Netherlands, Proceedings. IEEE
Computer Society Press, 203–211. https://doi.org/10.1109/LICS.1991.151645

Frédéric Blanqui. 2004. A Type-Based Termination Criterion for Dependently-Typed Higher-Order Rewrite Systems. In

Rewriting Techniques and Applications, 15th International Conference, RTA 2004, Aachen, Germany, June 3 – 5, 2004,
Proceedings (Lecture Notes in Computer Science), Vincent van Oostrom (Ed.), Vol. 3091. Springer, 24–39. https://doi.org/10.

1007/978-3-540-25979-4_2

Frédéric Blanqui. 2005. Decidability of Type-Checking in the Calculus of Algebraic Constructions with Size Annotations..

In Computer Science Logic, 19th International Workshop, CSL 2005, 14th Annual Conference of the EACSL, Oxford, UK,
August 22-25, 2005, Proceedings (Lecture Notes in Computer Science), C.-H. Luke Ong (Ed.), Vol. 3634. Springer, 135–150.
https://doi.org/10.1007/11538363_11

Frédéric Blanqui and Colin Riba. 2006. Combining Typing and Size Constraints for Checking the Termination of Higher-

Order Conditional Rewrite Systems. In Logic for Programming, Artificial Intelligence, and Reasoning, 13th International
Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings (Lecture Notes in Computer Science),
Miki Hermann and Andrei Voronkov (Eds.), Vol. 4246. Springer, 105–119. https://doi.org/10.1007/11916277_8

Ana Bove. 2009. Another Look at Function Domains. Electronic Notes in Theoretical Computer Science 249 (2009), 61–74.
https://doi.org/10.1016/j.entcs.2009.07.084

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in type theory. Mathematical Structures in Computer
Science 15, 4 (2005), 671–708. https://doi.org/10.1017/S0960129505004822

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal
of Functional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/S095679681300018X

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/978-3-642-02273-9_3
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.2168/LMCS-8(1:29)2012
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1007/BFb0053541
https://doi.org/10.1007/BFb0053541
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1017/S0960129503004122
https://doi.org/10.1007/11916277_18
https://doi.org/10.1007/978-3-642-03153-3_3
https://doi.org/10.1007/978-3-540-87531-4_35
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/978-3-540-25979-4_2
https://doi.org/10.1007/978-3-540-25979-4_2
https://doi.org/10.1007/11538363_11
https://doi.org/10.1007/11916277_8
https://doi.org/10.1016/j.entcs.2009.07.084
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S095679681300018X

NbE for Sized Types 1:35

Thierry Coquand. 1996. An Algorithm for Type-Checking Dependent Types, In Mathematics of Program Construction.

Selected Papers from the Third International Conference on the Mathematics of Program Construction (July 17–21, 1995,

Kloster Irsee, Germany). Science of Computer Programming 26, 1-3, 167–177. https://doi.org/10.1016/0167-6423(95)00021-6
Olivier Danvy. 1999. Type-Directed Partial Evaluation. In Partial Evaluation – Practice and Theory, DIKU 1998 International

Summer School, Copenhagen, Denmark, June 29 - July 10, 1998 (Lecture Notes in Computer Science), John Hatcliff, Torben Æ.

Mogensen, and Peter Thiemann (Eds.), Vol. 1706. Springer, 367–411. https://doi.org/10.1007/3-540-47018-2_16

N. G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. Indagationes Mathematicae 34 (1972), 381–392.
Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory. The Journal of

Symbolic Logic 65, 2 (2000), 525–549. https://doi.org/10.2307/2586554
Peter Dybjer, Bengt Nordström, and Jan M. Smith (Eds.). 1995. Types for Proofs and Programs, International Workshop

TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Papers. Lecture Notes in Computer Science, Vol. 996. Springer.

https://doi.org/10.1007/3-540-60579-7

Daniel Fridlender and Miguel Pagano. 2013. A Type-Checking Algorithm for Martin-Löf Type Theory with Subtyping

Based on Normalisation by Evaluation. In Typed Lambda Calculi and Applications, 11th International Conference, TLCA
2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings (Lecture Notes in Computer Science), Masahito Hasegawa

(Ed.), Vol. 7941. Springer, 140–155. https://doi.org/10.1007/978-3-642-38946-7_12

Herman Geuvers. 1994. A short and flexible proof of Strong Normalization for the Calculus of Constructions, See [Dybjer

et al. 1995], 14–38. https://doi.org/10.1007/3-540-60579-7_2

Eduardo Giménez. 1995. Codifying Guarded Definitions with Recursive Schemes, See [Dybjer et al. 1995], 39–59. https:

//doi.org/10.1007/3-540-60579-7_3

Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong reduction. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6,
2002 (SIGPLAN Notices), Vol. 37. ACM Press, 235–246. https://doi.org/10.1145/581478.581501

Benjamin Grégoire and Jorge Luis Sacchini. 2010. On Strong Normalization of the Calculus of Constructions with Type-Based

Termination. In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings (Lecture Notes in Computer Science), Christian G. Fermüller and

Andrei Voronkov (Eds.), Vol. 6397. Springer, 333–347. https://doi.org/10.1007/978-3-642-16242-8_24

Robert Harper and Frank Pfenning. 2005. On Equivalence and Canonical Forms in the LF Type Theory. ACM Transactions
on Computational Logic 6, 1 (2005), 61–101. https://doi.org/10.1145/1042038.1042041

Gérard P. Huet. 1989. The Constructive Engine. In A Perspective in Theoretical Computer Science - Commemorative Volume
for Gift Siromoney, R. Narasimhan (Ed.). World Scientific Series in Computer Science, Vol. 16. World Scientific, 38–69.

https://doi.org/10.1142/9789814368452_0004

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In

Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and

Guy L. Steele Jr. (Eds.). ACM Press, 410–423. https://doi.org/10.1145/237721.240882

INRIA. 2016. The Coq Proof Assistant Reference Manual (version 8.6 ed.). INRIA. http://coq.inria.fr/

Ugo Dal Lago and Charles Grellois. 2017. Probabilistic Termination by Monadic Affine Sized Typing. In Programming
Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes
in Computer Science), Hongseok Yang (Ed.), Vol. 10201. Springer, 393–419. https://doi.org/10.1007/978-3-662-54434-1_15

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-Change Principle for Program Termination. In

Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001, Chris Hankin and Dave Schmidt (Eds.). ACM Press, 81–92. https://doi.org/10.1145/

360204.360210

William Lovas and Frank Pfenning. 2010. Refinement Types for Logical Frameworks and Their Interpretation as Proof

Irrelevance. Logical Methods in Computer Science 6, 4 (2010). https://doi.org/10.2168/LMCS-6(4:5)2010

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ‘73, H. E. Rose and J. C.

Shepherdson (Eds.). North-Holland, 73–118.

Alexandre Miquel. 2000. A Model for Impredicative Type Systems, Universes, Intersection Types and Subtyping. In 15th
Annual IEEE Symposium on Logic in Computer Science (LICS 2000), 26-29 June 2000, Santa Barbara, California, USA,
Proceedings. IEEE Computer Society Press, 18–29. https://doi.org/10.1109/LICS.2000.855752

Alexandre Miquel. 2001. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, 5th International
Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings (Lecture Notes in Computer Science), Samson Abramsky

(Ed.), Vol. 2044. Springer, 344–359. https://doi.org/10.1007/3-540-45413-6_27

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1007/3-540-47018-2_16
https://doi.org/10.2307/2586554
https://doi.org/10.1007/3-540-60579-7
https://doi.org/10.1007/978-3-642-38946-7_12
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1145/581478.581501
https://doi.org/10.1007/978-3-642-16242-8_24
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1142/9789814368452_0004
https://doi.org/10.1145/237721.240882
http://coq.inria.fr/
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.2168/LMCS-6(4:5)2010
https://doi.org/10.1109/LICS.2000.855752
https://doi.org/10.1007/3-540-45413-6_27

1:36 Andreas Abel, Andreas Vezzosi, and Theo Winterhalter

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems, See [Amadio 2008], 350–364.

https://doi.org/10.1007/978-3-540-78499-9

Bengt Nordström. 1988. Terminating General Recursion. BIT 28, 3 (1988), 605–619.

Ulf Norell. 2007. Towards a Practical Programming Language Based on Dependent Type Theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden.

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In 16th IEEE Symposium
on Logic in Computer Science (LICS 2001), 16-19 June 2001, Boston University, USA, Proceedings. IEEE Computer Society

Press, 221–230. https://doi.org/10.1109/LICS.2001.932499

Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Definitions in the Calculus of Constructions. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer

Society Press, 233–242. https://doi.org/10.1109/LICS.2013.29

Jorge Luis Sacchini. 2014. Linear Sized Types in the Calculus of Constructions. In Functional and Logic Programming - 12th
International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture Notes in Computer Science),
Michael Codish and Eijiro Sumii (Eds.), Vol. 8475. Springer, 169–185. https://doi.org/10.1007/978-3-319-07151-0_11

Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. 2010. Termination Casts: A Flexible Approach to Termination with

General Recursion. In Workshop on Partiality And Recursion in Interactive Theorem Provers, PAR 2010, Satellite Workshop
of ITP’10 at FLoC 2010 (Electronic Proceedings in Theoretical Computer Science), Ana Bove, Ekaterina Komendantskaya,

and Milad Niqui (Eds.), Vol. 43. 76–93. https://doi.org/10.4204/EPTCS.43.6

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. 2007. System F with type

equality coercions. In Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation, Nice, France, January 16, 2007, François Pottier and George C. Necula (Eds.). ACM Press, 53–66.

https://doi.org/10.1145/1190315.1190324

David Wahlstedt. 2007. Dependent Type Theory with Parameterized First-Order Data Types and Well-Founded Recursion. Ph.D.
Dissertation. Chalmers University of Technology.

Benjamin Werner. 1992. A Normalization Proof for an Impredicative Type System with Large Eliminations over Integers. In

Proceedings of the 1992 Workshop on Types for Proofs and Programs, Båstad, Sweden, June 1992, Bengt Nordström, Kent

Petersson, and Gordon Plotkin (Eds.). 341–357. http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps

Hongwei Xi. 2002. Dependent Types for ProgramTermination Verification. Journal of Higher-Order and Symbolic Computation
15, 1 (2002), 91–131. https://doi.org/10.1023/A:1019916231463

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/978-3-319-07151-0_11
https://doi.org/10.4204/EPTCS.43.6
https://doi.org/10.1145/1190315.1190324
http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps
https://doi.org/10.1023/A:1019916231463

	Abstract
	1 Introduction
	2 Size Irrelevance in Practice
	3 A Type System With Irrelevant Size Application
	4 Semantics and Completeness of Normalization by Evaluation
	4.1 Weak head reduction
	4.2 Read back
	4.3 Partial equivalence relations
	4.4 PER model
	4.5 Subtyping
	4.6 Type shapes
	4.7 Computation with natural numbers
	4.8 Fundamental Theorem
	4.9 Completeness of NbE

	5 Soundness of Normalization by Evaluation
	6 Algorithmic Subtyping
	7 Type Checking
	8 Discussion and Conclusions
	Acknowledgments
	References

