
FICS 2010
EPTCS ??, 20??, pp. 1–11, doi:10.4204/EPTCS.??.??

c© Andreas Abel
This work is licensed under the
Creative Commons Attribution License.

Type-Based Termination, Inflationary Fixed-Points,
and Mixed Inductive-Coinductive Types

Andreas Abel
Department of Computer Science

Ludwig-Maximilians-University Munich, Germany
andreas.abel@ifi.lmu.de

Type systems certify program properties in a compositional way. From a bigger program one can
abstract out a part and certify the properties of the resulting abstract program by just using the type
of the part that was abstracted away. Termination and productivity are non-trivial yet desired pro-
gram properties, and several type systems have been put forward that guarantee termination, com-
positionally. These type systems are intimately connected to the definition of least and greatest
fixed-points by ordinal iteration. While most type systems use “conventional” iteration, we consider
inflationary iteration in this article. We demonstrate how this leads to a more principled type system,
with recursion based on well-founded induction. The type system has a prototypical implementa-
tion, MiniAgda, and we show in particular how it certifies productivity of corecursive and mixed
recursive-corecursive functions.

1 Introduction: Types, Compositionality, and Termination

While basic types like integer, floating-point number, and memory address arise on the machine-level of
most current computers, higher types like function and tuple types are abstractions that classify values.
Higher types serve to guarantee certain good program behaviors, like the classic “don’t go wrong” ab-
sence of runtime errors [Mil78]. Such properties are usually not compositional, i. e., while a function f
and its argument a might both be well-behaved on their own, their application f a might still go wrong.
This issue also pops up in termination proofs: take f = a = λx.xx, then both are terminating, but their
application loops. To be compositional, the property terminating needs to be strengthened to what is of-
ten called reducible [Gir72] or strongly computable [Tai67], leading to a semantic notion of type. While
the bare properties are not compositional, typing is.

Type polymorphism [Rey74, Gir72, Mil78] has been invented for compositionality in the opposite
direction: We want to decompose a larger program into smaller parts such that the well-typedness of
the parts imply the well-typedness of the whole program. Consider (λx.x)(λx.x) true, a simply-typed
program which can be abstracted to let id = λx.x in id id true. The two occurrences of id have different
type, namely Bool → Bool and (Bool → Bool)→ Bool → Bool, and the easiest way to type check
the new program is to just inline the definition of id. This trick does not scale, however, making type
checking infeasible and separate compilation of modules impossible. The accepted solution is to give id
the polymorphic type ∀X .X → X which can be instantiated to the two required types of id.

Termination checking, if it is to scale to software development with powerful abstractions, needs
to be compositional. Just like for other non-standard analyses, e. g., strictness, resource consumption
and security, type-based termination promises to be a model of success. Current termination check-
ers, however, like foetus [AA02, Wah00, AD10], the one of Agda [Nor07], and Coq’s guardedness
check [Gim95, Bar10b] are not type-based, but syntactic. Let us see how this affects compositionality.
Consider the following recursive program defined by pattern matching. We use the syntax of MiniAgda

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

[Abe10], in this and all following examples.

fun everyOther : [A : Set] → List A → List A

{ everyOther A nil = nil

; everyOther A (cons a nil) = nil

; everyOther A (cons a (cons a’ as)) = cons a (everyOther A as)

}

The polymorphic function everyOther returns a list consisting of every second element of the input list.
Since the only recursive call happens on sublist as of the input list cons a (cons a’ as), termination
is evident. We say that the call argument decreases in the structural order; this order, plus lexicographic
extensions, is in essence the termination order accepted by the proof assistants Agda, Coq, and Twelf
[Pie01].

The function distinguishes on the empty list, the singleton list, and lists with at least 2 elements. Such
a case distinction is used in list sorting algorithms, too, so we may want to abstract it from everyOther.

fun zeroOneMany : [A : Set] → List A → [C : Set] →
(zero : C) →
(one : A → C) →
(many : A → A → List A → C) →
C

{ zeroOneMany A nil C zero one many = zero

; zeroOneMany A (cons a nil) C zero one many = one a

; zeroOneMany A (cons a (cons a’ as)) C zero one many = many a a’ as

}

After abstracting away the case distinction, termination is no longer evident; the program is rejected by
Agda’s termination checker foetus.

fun everyOther : [A : Set] → List A → List A

{ everyOther A l = zeroOneMany A l (List A)

nil

(λ a → nil)

(λ a a’ as → cons a (everyOther A as))

}

Whether the recursive call argument as is structurally smaller than the input l depends on the definition
of zeroOneMany. In such situations, Coq’s guardedness check may inline the definition of zeroOneMany
and succeed. Yet in general, as we have discussed in the context of type checking, inlining definitions is
expensive, and in case of recursive definitions, incomplete and brittle. Current Coq [INR10] may spend
minutes on checking a single definition, and fail nevertheless.

Type-based termination can handle abstraction as in the above example, by assigning a more infor-
mative type to zeroOneMany that guarantees that the list passed to many is structurally smaller than the
list analyzed by zeroOneMany. Using this restriction, termination of everyOther can be guaranteed. To
make this work, we introduce a purely administrative type Size and let variables i, j, and k range over
Size. The type of lists is refined as List A i, meaning lists of length < i. We also add bounded size
quantification

⋂
j<i T (j), in concrete syntax [j < i] → T j, which lets j only be instantiated to sizes

strictly smaller than i. The refined type of zeroOneMany thus becomes:

Andreas Abel 3

fun zeroOneMany : [A : Set] → [i : Size] → List A i → [C : Set] →
(zero : C) →
(one : A → C) →
(many : [j < i] → A → A → List A j → C) →
C

The list passed to many is bounded by size j, which is strictly smaller than j. This is exactly the infor-
mation needed to make everyOther termination-check.

Barthe et. al. [BGP06] study type-based termination as an automatic analysis “behind the curtain”,
with no change to the user syntax of types. Size quantification is restricted to rank-1 quantifiers, known as
ML-style quantification [Mil78]. This excludes the type of zeroOneMany, which has a rank-2 (bounded)
quantification. Higher-rank polymorphism is not inferable automatically, yet without it we fall short of
our aim: compositional termination. Anyway, the prerequisite for inference is the availability of the
source code, which fails for abstract interfaces (such as parametrized modules in Agda, Coq, or ML).
Thus, we advocate a type system with explicit size information based on the structural order. It will be
presented in the remainder of this article.

2 Sizes, Iteration, and Fixed-Points

In the following, rather than syntactic we consider semantic types such as sets of terminating terms. We
assume that types form a complete lattice (T ,⊆,

⋂
,
⋃

) with least element ⊥ and greatest element >.
Further, let the usual type operators + (disjoint sum), × (Cartesian product), and→ (function type) have
a sensible definition.

Inductive types µF , such as List A, are conceived as least fixed points of monotone type constructors
F , for lists this being F X = >+ A×X . Constructively [CC79], least fixed points are obtained on a
∪-semilattice by ordinal iteration up to a sufficiently large ordinal γ . Let µαF denote the αth iterate or
approximant, which is defined by transfinite recursion on α:

µ0 F = ⊥ zero ordinal: least element of the lattice
µα+1 F = F (µαF) successor ordinal: iteration step
µλ F =

⋃
α<λ µαF limit ordinal: upper limit

For monotone F , iteration is monotone, i. e., µαF ⊆ µβ F for α ≤ β . At some ordinal γ , which we
call closure ordinal of this inductive type, we have µαF = µγF for all α ≥ γ—the chain has become
stationary, the least fixed point has been reached. For polynomial F , i. e., those expressible without a
function space, the closure ordinal is ω . The index α to the approximant µαF is a strict upper bound on
the height of the well-founded trees inhabiting this type; in the case of lists (which are linear trees) it is
a strict upper bound on the length.

Dually, coinductive types νF are constructed on a ∩-semilattice by iteration from above.

ν0 F = > zero ordinal: greatest element of the lattice
να+1 F = F (ναF) successor ordinal: iteration step
νλ F =

⋂
α<λ ναF limit ordinal: lower limit

Iteration from above is antitone, i. e., ναF ⊇ νβ F for α ≤ β . The chain of approximants starts with
the all-type > and descends towards the greatest fixed-point νF . In case of the above F this would be
CoList A, the type of possibly infinite lists over element type A. The index α in the approximant ναF

4 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

could be called the depth of the non-well-founded trees inhabiting this type. It is a lower bound on how
deep we can descend into the tree before we hit undefined behavior (>).

The central idea of type-based termination, going all the way back to Mendler [Men87], Hughes,
Pareto, and Sabry [HPS96], Giménez [Gim98], and Amadio and Coupet-Grimal [ACG98] is to introduce
syntax to speak about approximants in the type system. Common to the more expressible systems, such
as Barthe et. al. [BGR08a] and Blanqui [Bla04] is syntax for ordinal variables i, ordinal successor sa
(MiniAgda: $a), closure ordinal ∞ (MiniAgda: #) and data type approximants Da (MiniAgda: e. g.,
List A i). Hughes et. al. and the author [Abe08b] have also quantifiers ∀i.T over ordinals (MiniAgda:
[i : Size] → T).

How do we get a recursion principle from approximants? Consider the simplest example: construct-
ing an infinite repetition r of a fixed element a by corecursion. After assembling the colist-constructor
cons : A→ CoList A i→ CoList A (i + 1) on approximants, we give a recursive equation r = cons a r
with the following typing of the r.h.s.

i : Size, r : CoList A i ` cons a r : CoList A (i+1)

The types certify that each unfolding of the recursive definition of r increases the number of produced
colist elements by one, hence, in the limit we obtain an infinite sequence and, in particular, r is productive.
Our example is a special instance of the recursion principle of type-based termination, expressible as type
assignment for the fixpoint combinator:

f : ∀i. T i→ T (i+1)
fix f : ∀i. T i

(Take T = CoList A and f = λ r. cons a r to reconstruct the example.) The fixed-point rule can be justified
by transfinite induction on ordinal index i. While the successor case is covered by the premise of the rule,
for zero and limit case the size-indexed type T must satisfy two conditions: T 0 => (bottom check) and⋂

α<λ T α ⊆ T λ for limit ordinals λ [HPS96]. The latter condition is non-compositional, but has a
compositional generalization, upper semi-continuity

⋂
α<λ

⋃
α≤β<λ T β ⊆ T λ [Abe08b].

The soundness of type-based termination in different variants for different type systems has been as-
sessed in at least 5 PhD theses: Barras [Bar99] (CIC), Pareto [Par00] (lazy ML), Frade [Fra03] (STL), the
author [Abe06] (Fω), and Sacchini [Sac11] (CIC). Recently, Barras [Bar10a] has completed a compre-
hensive formal verification in Coq, by implementing a set-theoretical model of the CIC with type-based
termination.

However, type-based termination has not been integrated into bigger systems like Agda and Coq.
There are a number of reasons:

1. Subtyping.
The inclusion relation between approximants gives rise to subtyping, and for dependent types,
subtyping has not been fully explored. While there are basic theory [AC01, Che97], substantial
work on coercive subtyping [Che03, LA08] and new results on Pure Subtype Systems [Hut10],
no theory of higher-order polarized subtyping [Ste98, Abe08a] has been formulated for dependent
types yet. In practice, the introduction of subtyping means that already complicated higher-order
unification has to be replaced by preunification [QN94].

2. Erasure.
Mixing sizes into types and expressions means that one also needs to erase them after type check-
ing, since they have no computational significance. The type system must be able to distinguish

Andreas Abel 5

relevant from irrelevant parts. This is also work in progress, partial solutions have been given,
e. g., by Barras and Bernardo [BB08] and the author [Abe11].

3. Semi-continuity.
A technical condition like semi-continuity can kill a system as a candidate for the foundation of
logics and programming. It seems that it even deters the experts: Most systems for type-based ter-
mination replace semi-continuity by a rough approximation, trading expressivity for simplicity—
Pareto and the author being notable exceptions.

4. Pattern matching.
The literature on type-based termination is a bit thin when it comes to pattern matching. Pattern
matching on sized inductive types has only been treated by Blanqui [Bla04]. Pattern matching on
coinductive types is known to violate subject reduction in dependent type theory (detailed analysis
by McBride [McB09]). Deep matching on sized types can lead to a surprising paradox [Abe10].

While items 1 and 2 require more work, items 3 and 4 can be addressed by switching to a different
style of type-based termination, which we study in the next section.

3 Inflationary Iteration and Bounded Size Quantification

Sprenger and Dam [SD03] note that for monotone F ,

µ
αF =

⋃
β<α

F (µ
β F)

and base their system of circular proofs in the µ-calculus on this observation. They introduce syntax
for unbounded ∃i and bounded ∃ j < i ordinal existentials and for approximants µ i (cf. Dam and Gurov
[DG02] and Schöpp and Simpson [SS02]). Induction is well-founded induction on ordinals, and no
semi-continuity is required.

A first thing to note is that if we take above equation as the definition for µαF , the chain α 7→ µαF
is monotone regardless of monotonicity of F . This style of iteration from below is called inflationary
iteration and the dual, deflationary iteration,

ν
αF =

⋂
β<α

F (νβ F)

always produces a descending chain. While inflationary iteration of F becomes stationary at some closure
ordinal γ , the limit µγF is only a pre-fixed point of F , i. e., F (µγF)⊆ µγF . This means we can construct
elements in a inflationary fixed-point as usual, but not necessarily analyze them sensibly. Unless F is
monotone, destructing an element of µγF yields only an element of F (µβ F) for some β < γ and not
one of F (µγF). Dually, deflationary iteration reaches a post-fixed point νγF ⊆ F (νγF) giving the usual
destructor, but the constructor has type (∀β < γ. F (νβ F))→ νγF .

While we have not come across a useful application of negative inflationary fixed points in program-
ming, inflationary iteration leads to “cleaner” type-based termination. Inductive data constructors have
type (∃ j < i. F (µ jF))→ µ iF , meaning that when we pattern match at inductive type µ iF , we get a
fresh size variable j < i and a rest of type F (µ jF). This is the “good” way of matching that avoids
paradoxes [Abe10]; find it also in Barras [Bar10a]. Coinductive data has type ν iF ∼= ∀ j < i. F (ν jF),

6 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

akin to a dependent function type. We cannot match on it, only apply it to a size, preventing subject re-
duction problems mentioned in the previous section. Finally, recursion becomes well-founded recursion
on ordinals,

f : ∀i. (∀ j < i. T j)→ T i
fix f : ∀i. T i

with no condition on T . Also, just like in PiSigma [ADLO10], we can dispose of inductive and coinduc-
tive types in favor of recursion. We just define approximants recursively using bounded quantifiers; for
instance, sized streams are Stream A i = ∀ j < i. A×Stream A j, and in MiniAgda:

cofun Stream : +(A : Set) -(i : Size) → Set
{ Stream A i = [j < i] → A & Stream A j

}

MiniAgda checks that Stream A i is monotone in element type A and antitone in depth i, as specified
by the polarities + and - in the type signature. If we erase sizes to () and Size to the non-informative
type >, we obtain Stream A () =>→ A×Stream A () which is a possible representation of streams in
call-by-value languages. Thus, size quantification can be considered as type lifting, size application as
forcing and size abstraction as delaying.

let tail [A : Set] [i : Size] (s : Stream A $i) : Stream A i
= case (s i) { (a, as) → as }

Taking the tail requires a stream of non-zero depth i+1. Since s : ∀ j < (i+1). A×Stream A j, we can
apply it to i (force it) and then take its second component.

Zipping two streams sa = a0,a1, . . . and sb = b0,b1, . . . with a function f yields a stream sc =
f (a0,b0), f (a1,b1), . . . whose depth is the minimum of the depths of sa and sb. Since depths are lower
bounds, we can equally state that all three streams have a common depth i.

cofun zipWith : [A, B, C : Set] (f : A → B → C)

[i : Size] (sa : Stream A i) (sb : Stream B i) → Stream C i

{ zipWith A B C f i sa sb j =

case (sa j, sb j) : (A & Stream A j) & (B & Stream B j)
{ ((a, as), (b, bs)) → (f a b, zipWith A B C f j as bs)

}

}

Forcing the recursively defined stream zipWith A B C f i sa sb by applying it to j < i yields a head-tail
pair (f a b, zipWith A B C f j as bs) which is computed from heads a and b and tails as and bs of the
forced input streams sa j and sb j. The recursion is well-founded since j < i.

The famous Haskell one-line definition fib = 0 : 1 : zipWith (+)fib (tail fib) of the Fi-
bonacci stream 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13... can now be replayed in MiniAgda.

cofun fib : [i : Size] → |i| → Stream Nat i

{ fib i = λ j → (zero,

λ k → (one,

zipWith Nat Nat Nat add k

(fib k)

(tail Nat k (fib j))))

}

The |i| in the type explicitly states that ordinal i shall serve as termination measure (syntax due to
Xi [Xi02]). Note the two delays λ j < i and λk < j and the two recursive calls, both at smaller depth
j,k < i. Such a definition is beyond the guardedness check [Coq93] of Agda and Coq, but here the type

Andreas Abel 7

system communicates that zipWith preserves the stream depth and, thus, productivity.
While our type system guarantees termination and productivity at run-time, strong normalization, in

particular when reducing under λ -abstractions, is lost when coinductive types are just defined recursively.
Thus, equality testing of functions has to be very intensional (α-equality [ADLO10]), since testing η-
equality may loop. McBride [McB09] suggests an extensional propositional equality [AMS07] as cure.

Having explained away inductive and coinductive types, mixing them does not pose a problem any-
more, as we will see in the next section.

4 Mixing Induction and Coinduction

A popular mixed coinductive-inductive type are stream processors [GHP06] given recursively by the
equation SP A B = (A→ SP A B)+ (B×SP A B). The intention is that SP A B represents continuous
functions from Stream A to Stream B, meaning that only finitely many A’s are taken from the input
stream before a B is emitted on the output stream. This property can be ensured by nesting a least
fixed-point into a greatest one: SP A B = νX .µY.(A→ Y) + (B×X) [Abe07, GHP09]. The greatest
fixed-point unfolds to µY.(A→ Y)+ (B×SP A B), hence, whenever we chose the second alternative,
the least fixed-point is “restarted”. Thus, we can conceive SP A B by a lexicographic ordinal iteration

SP A B α β =
⋂

α ′<α

⋃
β ′<β

(A→ SP A B α β
′)+(B×SP A B α

′
∞)

where ∞ represents the closure ordinal. The nesting is now defined by the lexicographic recursion pattern,
so we do not need to represent it in the order of quantifiers. Pushing them in maximally yields an
alternative definition:

SP A B α β = (A→
⋃

β ′<β

SP A B α β
′)+(B×

⋂
α ′<α

SP A B α
′
∞)

This variant is close to the mixed data types of Agda [DA10], where recursive occurrences are inductive
unless marked with ∞:
data SP (A B : Set) : Set where

get : (A → SP A B) → SP A B

put : B → ∞ (SP A B) → SP A B

In Agda, one cannot specify the nesting order, it always considers the greatest fixed-point to be on the
outside [AD10].

Let us program with mixed types via bounded quantification in MiniAgda! The type of stream
processors is defined recursively, with lexicographic termination measure |i,j|. The bounded existential
∃ j′ < j.T has concrete syntax [j’ <j] & T, and Either X Y with constructors left: X → Either

X Y and right : Y → Either X Y is the (definable) disjoint sum type. We directly code the “mixed”
definition of SP:
cofun SP : -(A : Set) +(B : Set) -(i : Size) +(j : Size) → |i,j| → Set
{ SP A B i j = Either (A → [j’ < j] & SP A B i j’)

(B & ([i’ < i] → SP A B i’ #))

}

pattern get f = left f

pattern put b sp = right (b , sp)

We can run a stream processor of depth i and height j on an A-stream of unbounded depth (∞) to yield a

8 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

B-stream of depth i (this is also called stream eating [GHP09]). If the stream processor is a get f , we feed
the head of the stream to f , getting an new stream processor of smaller height (index j), and continue
running on the stream tail. If the stream processor is a put b sp, we produce a λ i′ < i delayed stream
whose head is b and tail is computed by running sp, which has smaller depth (index i) but unbounded
height (index j).

cofun run : [A, B : Set] [i, j : Size] → |i,j| → SP A B i j → Stream A # →
Stream B i

{ run A B i j (get f) as = case f (head A # as)
{ (j’, sp) → run A B i j’ sp (tail A # as) }

; run A B i j (put b sp) as = λi’ → (b, run A B i’ # (sp i’) as)

}

A final note on quantifier placement: For monotone F and µ
α = F (

⋃
β<α µ

β) we have µ
αF = µα+1F . In

particular µ
0F = F⊥, thus for the list generator F X =>+A×X the first approximant µ

0F is not empty
but contains exactly the empty list. Type µ

αF contains the lists of maximal length α . This encoding of
data type approximants is more suitable for size arithmetic and has been advocated by Barthe, Grégoire,
and Riba [BGR08b]; in practice, it might be superior—time will tell.

5 Conclusions

We have given a short introduction into a type system for termination based on ordinal iteration. Bounded
size quantification, inspired by inflationary fixed points, and recursion with ordinal lexicographic termi-
nation measures are sufficient to encode inductive and coinductive types and recursive and corecursive
definitions and all mixings thereof. The full power of classical ordinals is not needed to justify our recur-
sion schemes: We only need a well-founded order < that is “long enough” and has a successor operation.
I conjecture that set induction or constructive ordinals (Aczel and Rathjen [AR08]) can play this role,
leading to a constructive justification of type-based termination.

While our prototype MiniAgda lacks type reconstruction needed for an enjoyable programming ex-
perience, it is evolving into a core language for dependent type theory with termination certificates. Our
long-term goal is to extend Agda with type-based termination in a way that most termination certificates
will be constructed automatically. MiniAgda could serve as an intermediate language that double-checks
proofs constructed by Agda, erases static code, and feeds the rest into a compiler back-end.

Acknowledgements. I am grateful for discussions with Cody Roux which exposed a problem with Mini-
Agda’s pattern matching and set me on the track towards bounded quantification as basic principle for
type-based termination. Thanks to Brigitte Pientka for many discussions on sized types and the invitation
to McGill, where some ideas of this paper prospered. Finally, I thank the MiniAgda users, especially Nils
Anders Danielsson and David Thibodeau, who have coped with the user-unfriendliness of the system and
kept me busy fixing bugs.

References
[AA02] Andreas Abel & Thorsten Altenkirch (2002): A Predicative Analysis of Structural Recursion. J. Func.

Program. 12(1), pp. 1–41, doi:10.1017/S0956796801004191.
[Abe06] Andreas Abel (2006): A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D. thesis,

Ludwig-Maximilians-Universität München.

http://dx.doi.org/10.1017/S0956796801004191

Andreas Abel 9

[Abe07] Andreas Abel (2007): Mixed Inductive/Coinductive Types and Strong Normalization. In Zhong Shao,
editor: Proc. of the 5th Asian Symp. on Programming Languages and Systems, APLAS 2007, Lect.
Notes in Comput. Sci. 4807, Springer, pp. 286–301, doi:10.1007/978-3-540-76637-7 19.

[Abe08a] Andreas Abel (2008): Polarized Subtyping for Sized Types. Math. Struct. in Comput. Sci. 18, pp. 797–
822, doi:10.1017/S0960129508006853. Special issue on subtyping, edited by Healfdene Goguen and
Adriana Compagnoni.

[Abe08b] Andreas Abel (2008): Semi-continuous Sized Types and Termination. Logical Meth. in Comput. Sci.
4(2), doi:10.2168/LMCS-4(2:3)2008. CSL’06 special issue.

[Abe10] Andreas Abel (2010): MiniAgda: Integrating Sized and Dependent Types. In Ana Bove, Ekaterina
Komendantskaya & Milad Niqui, editors: Wksh. on Partiality And Recursion in Interactive Theorem
Provers (PAR 2010), Electr. Proc. in Theor. Comp. Sci. 43, pp. 14–28, doi:10.4204/EPTCS.43.2.

[Abe11] Andreas Abel (2011): Irrelevance in Type Theory with a Heterogeneous Equality Judgement. In
Martin Hofmann, editor: Proc. of the 14th Int. Conf. on Foundations of Software Science and
Computational Structures, FOSSACS 2011, Lect. Notes in Comput. Sci. 6604, Springer, pp. 57–71,
doi:10.1007/978-3-642-19805-2 5.

[AC01] David Aspinall & Adriana B. Compagnoni (2001): Subtyping dependent types. Theor. Comput. Sci.
266(1-2), pp. 273–309, doi:10.1016/S0304-3975(00)00175-4.

[ACG98] Roberto M. Amadio & Solange Coupet-Grimal (1998): Analysis of a Guard Condition in Type Theory
(Extended Abstract). In Maurice Nivat, editor: Proc. of the 1st Int. Conf. on Foundations of Software
Science and Computation Structure, FoSSaCS’98, Lect. Notes in Comput. Sci. 1378, Springer, pp.
48–62, doi:10.1007/BFb0053541.

[AD10] Thorsten Altenkirch & Nils Anders Danielsson (2010): Termination Checking in the Presence of
Nested Inductive and Coinductive Types. Short note supporting a talk given at PAR 2010, Workshop
on Partiality and Recursion in Interactive Theorem Provers, FLoC 2010. Available at http://www.
cse.chalmers.se/˜nad/publications/altenkirch-danielsson-par2010.pdf.

[ADLO10] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh & Nicolas Oury (2010): PiSigma: Depen-
dent Types without the Sugar. In Matthias Blume, Naoki Kobayashi & Germán Vidal, editors: Proc.
of the 10th Int. Symp. on Functional and Logic Programming, FLOPS 2010, Lect. Notes in Comput.
Sci. 6009, Springer, pp. 40–55, doi:10.1007/978-3-642-12251-4 5.

[AMS07] Thorsten Altenkirch, Conor McBride & Wouter Swierstra (2007): Observational equality, now! In
Aaron Stump & Hongwei Xi, editors: Proc. of the Wksh. Programming Languages meets Program
Verification, PLPV 2007, ACM Press, pp. 57–68, doi:10.1145/1292597.1292608.

[AR08] Peter Aczel & Michael Rathjen (2008): Notes on Constructive Set Theory. Available at http://www.
maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf. Draft.

[Bar99] Bruno Barras (1999): Auto-validation d’un système de preuves avec familles inductives. Ph.D. thesis,
Université Paris 7.

[Bar10a] Bruno Barras (2010): Sets in Coq, Coq in Sets. J. Formalized Reasoning 3(1). Available at http:
//jfr.cib.unibo.it/article/view/1695.

[Bar10b] Bruno Barras (2010): The syntactic guard condition of Coq. Talk at the Journée “égalité et terminai-
son” du 2 février 2010 in conjunction with JFLA 2010. Available at http://coq.inria.fr/files/
adt-2fev10-barras.pdf.

[BB08] Bruno Barras & Bruno Bernardo (2008): The Implicit Calculus of Constructions as a Programming
Language with Dependent Types. In Roberto M. Amadio, editor: FoSSaCS, Lect. Notes in Comput.
Sci. 4962, Springer, pp. 365–379, doi:10.1007/978-3-540-78499-9 26.

[BGP06] Gilles Barthe, Benjamin Grégoire & Fernando Pastawski (2006): CICˆ: Type-Based Termination
of Recursive Definitions in the Calculus of Inductive Constructions. In Miki Hermann & An-
drei Voronkov, editors: Proc. of the 13th Int. Conf. on Logic for Programming, Artificial Intel-

http://dx.doi.org/10.1007/978-3-540-76637-7_19
http://dx.doi.org/10.1017/S0960129508006853
http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.4204/EPTCS.43.2
http://dx.doi.org/10.1007/978-3-642-19805-2_5
http://dx.doi.org/10.1016/S0304-3975(00)00175-4
http://dx.doi.org/10.1007/BFb0053541
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://dx.doi.org/10.1145/1292597.1292608
http://www.maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf
http://www.maths.manchester.ac.uk/logic/mathlogaps/workshop/CST-book-June-08.pdf
http://jfr.cib.unibo.it/article/view/1695
http://jfr.cib.unibo.it/article/view/1695
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://dx.doi.org/10.1007/978-3-540-78499-9_26

10 Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

ligence, and Reasoning, LPAR 2006, Lect. Notes in Comput. Sci. 4246, Springer, pp. 257–271,
doi:10.1007/11916277 18.

[BGR08a] Gilles Barthe, Benjamin Grégoire & Colin Riba (2008): A Tutorial on Type-Based Termination. In
Ana Bove, Luı́s Soares Barbosa, Alberto Pardo & Jorge Sousa Pinto, editors: LerNet ALFA Summer
School, Lect. Notes in Comput. Sci. 5520, Springer, pp. 100–152, doi:10.1007/978-3-642-03153-3 3.

[BGR08b] Gilles Barthe, Benjamin Grégoire & Colin Riba (2008): Type-Based Termination with Sized Products.
In Michael Kaminski & Simone Martini, editors: Computer Science Logic, 22nd Int. Wksh., CSL
2008, 17th Annual Conf. of the EACSL, Lect. Notes in Comput. Sci. 5213, Springer, pp. 493–507,
doi:10.1007/978-3-540-87531-4 35.

[Bla04] Frédéric Blanqui (2004): A Type-Based Termination Criterion for Dependently-Typed Higher-Order
Rewrite Systems. In Vincent van Oostrom, editor: Rewriting Techniques and Applications (RTA 2004),
Aachen, Germany, Lect. Notes in Comput. Sci. 3091, Springer, pp. 24–39, doi:10.1007/978-3-540-
25979-4 2.

[CC79] Patrick Cousot & Radhia Cousot (1979): Constructive Versions of Tarski’s Fixed Point Theorems.
Pacific Journal of Mathematics 81(1), pp. 43–57.

[Che97] Gang Chen (1997): Subtyping Calculus of Construction (Extended Abstract). In Igor Prı́vara & Peter
Ruzicka, editors: Proc. of the 22nd Int. Symb. on Mathematical Foundations of Computer Science,
MFCS’97, Lect. Notes in Comput. Sci. 1295, Springer, pp. 189–198, doi:10.1007/BFb0029962.

[Che03] Gang Chen (2003): Coercive subtyping for the calculus of constructions. In: Proc. of the 30st ACM
Symp. on Principles of Programming Languages, POPL 2003, ACM SIGPLAN Notices 38, ACM
Press, pp. 150–159, doi:10.1145/640128.604145.

[Coq93] Thierry Coquand (1993): Infinite Objects in Type Theory. In H. Barendregt & T. Nipkow, editors:
Types for Proofs and Programs (TYPES ’93), Lect. Notes in Comput. Sci. 806, Springer, pp. 62–78,
doi:10.1007/3-540-58085-9 72.

[DA10] Nils Anders Danielsson & Thorsten Altenkirch (2010): Subtyping, Declaratively. In Claude Bolduc,
Jules Desharnais & Béchir Ktari, editors: Proc. of the 10th Int. Conf. on Mathematics of Program
Construction, MPC 2010, Lect. Notes in Comput. Sci. 6120, Springer, pp. 100–118, doi:10.1007/978-
3-642-13321-3 8.

[DG02] Mads Dam & Dilian Gurov (2002): µ-Calculus with Explicit Points and Approximations. J. Log.
Comput. 12(2), pp. 255–269, doi:10.1093/logcom/12.2.255.

[Fra03] Maria João Frade (2003): Type-Based Termination of Recursive Definitions and Constructor Subtyp-
ing in Typed Lambda Calculi. Ph.D. thesis, Universidade do Minho, Departamento de Informática.

[GHP06] Neil Ghani, Peter Hancock & Dirk Pattinson (2006): Continuous Functions on Final Coalgebras.
Electr. Notes in Theor. Comp. Sci. 164(1), pp. 141–155, doi:10.1016/j.entcs.2006.06.009.

[GHP09] Neil Ghani, Peter Hancock & Dirk Pattinson (2009): Representations of Stream Processors Using
Nested Fixed Points. Logical Meth. in Comput. Sci. 5(3), doi:10.2168/LMCS-5(3:9)2009.

[Gim95] Eduardo Giménez (1995): Codifying Guarded Definitions with Recursive Schemes. In Peter Dybjer,
Bengt Nordström & Jan Smith, editors: Types for Proofs and Programs, Int. Wksh., TYPES’94, Lect.
Notes in Comput. Sci. 996, Springer, pp. 39–59, doi:10.1007/3-540-60579-7 3.

[Gim98] Eduardo Giménez (1998): Structural Recursive Definitions in Type Theory. In K. G. Larsen, S. Skyum
& G. Winskel, editors: Int. Colloquium on Automata, Languages and Programming (ICALP’98), Aal-
borg, Denmark, Lect. Notes in Comput. Sci. 1443, Springer, pp. 397–408, doi:10.1007/BFb0055070.

[Gir72] Jean-Yves Girard (1972): Interprétation fonctionnelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII.

[HPS96] John Hughes, Lars Pareto & Amr Sabry (1996): Proving the Correctness of Reactive Systems Using
Sized Types. In: Proc. of the 23rd ACM Symp. on Principles of Programming Languages, POPL’96,
pp. 410–423, doi:10.1145/237721.240882.

http://dx.doi.org/10.1007/11916277_18
http://dx.doi.org/10.1007/978-3-642-03153-3_3
http://dx.doi.org/10.1007/978-3-540-87531-4_35
http://dx.doi.org/10.1007/978-3-540-25979-4_2
http://dx.doi.org/10.1007/978-3-540-25979-4_2
http://dx.doi.org/10.1007/BFb0029962
http://dx.doi.org/10.1145/640128.604145
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1093/logcom/12.2.255
http://dx.doi.org/10.1016/j.entcs.2006.06.009
http://dx.doi.org/10.2168/LMCS-5(3:9)2009
http://dx.doi.org/10.1007/3-540-60579-7_3
http://dx.doi.org/10.1007/BFb0055070
http://dx.doi.org/10.1145/237721.240882

Andreas Abel 11

[Hut10] DeLesley S. Hutchins (2010): Pure subtype systems. In Manuel V. Hermenegildo & Jens Palsberg,
editors: Proc. of the 37th ACM Symp. on Principles of Programming Languages, POPL 2010, ACM
Press, pp. 287–298, doi:10.1145/1706299.1706334.

[INR10] INRIA (2010): The Coq Proof Assistant Reference Manual, version 8.3 edition. INRIA. Available at
http://coq.inria.fr/.

[LA08] Zhaohui Luo & Robin Adams (2008): Structural subtyping for inductive types with functorial equality
rules. Math. Struct. in Comput. Sci. 18(5), pp. 931–972, doi:10.1017/S0960129508006956.

[McB09] Conor McBride (2009): Let’s See How Things Unfold: Reconciling the Infinite with the Intensional.
In Alexander Kurz, Marina Lenisa & Andrzej Tarlecki, editors: 3rd Int. Conf. on Algebra and Coal-
gebra in Computer Science, CALCO 2009, Lect. Notes in Comput. Sci. 5728, Springer, pp. 113–126,
doi:10.1007/978-3-642-03741-2 9.

[Men87] Nax Paul Mendler (1987): Recursive Types and Type Constraints in Second-Order Lambda Calculus.
In: Proc. of the 2nd IEEE Symp. on Logic in Computer Science (LICS’87), IEEE Computer Soc.
Press, pp. 30–36.

[Mil78] Robin Milner (1978): A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, pp.
348–375, doi:10.1016/0022-0000(78)90014-4.

[Nor07] Ulf Norell (2007): Towards a Practical Programming Language Based on Dependent Type Theory.
Ph.D. thesis, Dept of Comput. Sci. and Engrg., Chalmers, Göteborg, Sweden.

[Par00] Lars Pareto (2000): Types for Crash Prevention. Ph.D. thesis, Chalmers University of Technology.
[Pie01] Brigitte Pientka (2001): Termination and Reduction Checking for Higher-Order Logic Programs. In

Rajeev Goré, Alexander Leitsch & Tobias Nipkow, editors: Automated Reasoning, First International
Joint Conference, IJCAR 2001, Lect. Notes in Art. Intell. 2083, Springer, pp. 401–415, doi:10.1007/3-
540-45744-5 32.

[QN94] Zhenyu Qian & Tobias Nipkow (1994): Reduction and Unification in Lambda Calculi with a General
Notion of Subtype. J. of Autom. Reasoning 12(3), pp. 389–406, doi:10.1007/BF00885767.

[Rey74] John C. Reynolds (1974): Towards a Theory of Type Structure. In B. Robinet, editor: Program-
ming Symposium, Lect. Notes in Comput. Sci. 19, Springer, Berlin, pp. 408–425, doi:10.1007/3-540-
06859-7 148.

[Sac11] Jorge Luis Sacchini (2011): On Type-Based Termination and Pattern Matching in the Calculus of
Inductive Constructions. Ph.D. thesis, INRIA Sophia-Antipolis and École des Mines de Paris.

[SD03] Christoph Sprenger & Mads Dam (2003): On the Structure of Inductive Reasoning: Circular and
Tree-Shaped Proofs in the µ-Calculus. In Andrew D. Gordon, editor: Proc. of the 6th Int. Conf.
on Foundations of Software Science and Computational Structures, FoSSaCS 2003, Lect. Notes in
Comput. Sci. 2620, Springer, pp. 425–440, doi:10.1007/3-540-36576-1 27.

[SS02] Ulrich Schöpp & Alex K. Simpson (2002): Verifying Temporal Properties Using Explicit Approxi-
mants: Completeness for Context-free Processes. In Mogens Nielsen & Uffe Engberg, editors: Proc.
of the 5th Int. Conf. on Foundations of Software Science and Computational Structures, FoSSaCS
2002, Lect. Notes in Comput. Sci. 2303, Springer, pp. 372–386, doi:10.1007/3-540-45931-6 26.

[Ste98] Martin Steffen (1998): Polarized Higher-Order Subtyping. Ph.D. thesis, Technische Fakultät, Univer-
sität Erlangen.

[Tai67] William W. Tait (1967): Intensional Interpretations of Functionals of Finite Type I. J. Symb. Logic
32(2), pp. 198–212.

[Wah00] David Wahlstedt (2000): Detecting termination using size-change in parameter values. Master’s
thesis, Göteborgs Universitet.

[Xi02] Hongwei Xi (2002): Dependent Types for Program Termination Verification. J. Higher-Order and
Symb. Comput. 15(1), pp. 91–131, doi:10.1023/A:1019916231463.

http://dx.doi.org/10.1145/1706299.1706334
http://coq.inria.fr/
http://dx.doi.org/10.1017/S0960129508006956
http://dx.doi.org/10.1007/978-3-642-03741-2_9
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1007/3-540-45744-5_32
http://dx.doi.org/10.1007/3-540-45744-5_32
http://dx.doi.org/10.1007/BF00885767
http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1007/3-540-36576-1_27
http://dx.doi.org/10.1007/3-540-45931-6_26
http://dx.doi.org/10.1023/A:1019916231463

	Introduction: Types, Compositionality, and Termination
	Sizes, Iteration, and Fixed-Points
	Inflationary Iteration and Bounded Size Quantification
	Mixing Induction and Coinduction
	Conclusions

