Type Theory

Lecture 1: Natural Deduction and Curry-Howard

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

ESSLLI 2016
28th European Summer School in Logic, Language, and Information
unibz, Bozen/Bolzano, Italy
15-19 August 2016

Andreas Abel (GU) Type Theory ESSLLI 2016 1/ 40

Contents

@ Constructivism

© Natural Deduction
@ Judgements and derivations
@ Introduction and elimination
@ Hypothetical judgements
@ Disjunction and absurdity
@ Natural deduction with explicit hypotheses

© Simply-typed Lambda-Calculus
@ Type assignment
@ Computation and normalization

@ The Curry-Howard Isomorphism

Andreas Abel (GU) Type Theory ESSLLI 2016 2 /40

Constructivism

Constructivism

Brouwer's intuitionism in opposition to Hilbert's formalism

Constructive logic vs. classical logic

Disjunction property
If the disjunction AV B is provable, then either A is provable
or B is provable.

Drop principle of excluded middle AV —A
Propositions A with AV —A are called decidable

Existence property

A proof of the existential statement 3x. A(x) includes an
algorithm to compute a witness t with A(t).

Andreas Abel (GU) Type Theory ESSLLI 2016 3/ 40

Constructivism

Brouwer-Heyting-Kolmogorov Interpretation

Characterizing canonical proofs.
@ A proof of AA B is a pair of a proof of A and a proof of B.

@ A proof of AV B is a proof of A or a proof of B, plus a bit indicating
which of the two.

A proof of A = B is an algorithm computing a proof of B given a
proof of A.

No canonical proof of L exists (consistency!).

A proof of —A is a proof of A= .

A proof of Vx.A(x) is an algorithm computing a proof of A(t) given
any object t.

A proof of Ix.A(x) is a pair of a witness t and a proof of A(t).

Andreas Abel (GU) Type Theory ESSLLI 2016 4 / 40

Natural Deduction

Propositional logic

e Formulae
P,Q
AB,C:=P
|A= B
|ANB|T
|AVB| L

atomic proposition

implication
conjunction, truth
disjunction, absurdity

e Formula = (binary) abstract syntax tree

@ Subformula = subtree

@ Principal connective = root label

Andreas Abel (GU) Type Theory

ESSLLI 2016

5/ 40

Natural Deduction

Well-formedness vs. truth

o Let
SH := “Socrates is a human”

FL := "“Socrates has four legs”

@ Implication SH = FL is well-formed.

@ Implication SH = FL is not necessarily true ;-).
SH = FL true

is a judgement which requires proof

Andreas Abel (GU) Type Theory ESSLLI 2016

6 / 40

\EYOTEI BTGl Judgements and derivations

Judgements and derivations

@ Propositional logic has a single judgement form A true.
o J refers to a judgement.
@ Inference rules have form
i J,
,
J
@ Derivation (trees):
J3 Ja Js
—n r2
J1 J2
ro
Jo

J
@ Dy :: Jg with Dy = (t ry (r3 ,D4,D5))
e EeRETT

7/ 40

Natural Deduction Introduction and elimination

Introduction and elimination

@ Introduction rules: composing information

A true B true
AN B true

e Elimination rules: retrieving/using information

AN B true AN B true
A true B true

@ Orthogonality: define meaning of logical connective (e.g.)
independently of other connectives (e.g. =).

Andreas Abel (GU) Type Theory ESSLLI 2016

8 / 40

Natural Deduction Introduction and elimination

Local soundness

@ Introductions followed immediately by eliminations are a removable

detour.
D1 D>
A true B true Dy
AN —p Atrue
AN B true
— NEq
A true
D1 D>
A true B true D
Al — 38 B true
AN B true
— ANE>
B true

o Otherwise, an elimination rule is too strong (unsound).
o Exercise: Give a unsound, too strong NE-rule.

Andreas Abel (GU) Type Theory ESSLLI 2016

9/ 40

Natural Deduction Introduction and elimination

Local completeness

@ Reconstruct a judgement by introduction from parts obtained by

elimination.
D D
D A A B true A A B true
ANB true —, ——————— =1 — ABE»
A true B true
Al
AN B true

@ Otherwise, elimination rules are too weak (incomplete).

e Exercise: Give a set of AE-rules which is incomplete.

Andreas Abel (GU) Type Theory ESSLLI 2016 10 / 40

Natural Deduction Introduction and elimination

Truth

Introduction of trivial proposition T:

— Tl
T true

No information to obtain by elimination!

No [-reduction.

7-expansion:

T true —-

T true

Andreas Abel (GU) Type Theory ESSLLI 2016

11 / 40

bnetcuelliudeo e
Proving an implication

@ How to prove (AN B) = (B A A) true?
o First, construct an open derivation:

AN B true AN B true

B true A true

B A A true

@ Then, close by discharging the hypothesis x :: A A B true:

—_ X e
AN B true AN B true

B true A true

B A A true
(AAB) = (BAA) true

|x

Andreas Abel (GU) Type Theory ESSLLI 2016

12 / 40

Natural Deduction Hypothetical judgements

Rules for implication

@ Elimination = modus ponens

A = B true A true
B true

=E

@ Introduction = internalizing a meta-implication (hypothetical
judgement)

X
A true

B true
— =
A = B true

o Exercise: How many different derivations of A = (A = A) true?

Andreas Abel (GU) Type Theory ESSLLI 2016

13 / 40

Hypothetical judgements
Substitution

@ [-reduction replaces hypothesis x by derivation D:

X
A true D
E A true
B true £
— =l b :
A = B true A true B true
=E
B true
@ More precise notation:
- £[D/A]

B true

Andreas Abel (GU) Type Theory ESSLLI 2016

14 / 40

Natural Deduction Hypothetical judgements

Local completeness for implication

@ 7-expansion

D

X
D A = B true A true
A = B true — - =E
B true
— =l
A = B true

Andreas Abel (GU) Type Theory ESSLLI 2016 15 / 40

Natural Deduction Disjunction and absurdity

Disjunction

@ Introduction: choosing an alternative

A true vi B true vl
AV B true ! AV B true 2

o Elimination: case distinction

X y
A true B true
AV B true C true C true
VEx,
C true
ESSLLI 2016

Andreas Abel (GU) Type Theory

16 / 40

Natural Deduction Disjunction and absurdity

Disjunction: local soundness

X y
A true B true
D . .
- & - &
A true 1 L2 B
S——] : .
AV B true C true C true
VEx,
C true
X
A true B true
D . .
- & - &
B true e : —3
— Vb . :
AV B true C true C true
VExy
C true
Type Theory

&1[D/x]

C true

&[D)y]

C true

ESSLLI 2016

17 / 40

Natural Deduction Disjunction and absurdity

Disjunction: local completeness

Introduction happens in branches of elimination:

X y
D A true B true
AV B true —, - b Vi Vo
T AV B true AV B true AV B true
\/Ex.y
AV B true '

Andreas Abel (GU) Type Theory ESSLLI 2016 18 / 40

Natural Deduction Disjunction and absurdity

Absurdity and negation

No introduction (phew!), strongest elimination:

1 true
C true

1E

Only global soundness (consistency).

Negation is definable:

-A=A= 1

So is logical equivalence:

A< B=(A= B)A(B=A)

Andreas Abel (GU) Type Theory ESSLLI 2016

19 / 40

Natural Deduction Natural deduction with explicit hypotheses

Careful with discharging!

@ Consider this derivation:

@ Does it prove (A= A) = (A= A)) = A true?

X
A true
f =3P
(A= A)= (A= A)true A= Atrue
=E X
A = A true A true
=E
A true
:>|f
(A= A)= (A= A)) = A true
ESSLLI 2016

Andreas Abel (GU) Type Theory

20 / 40

Natural Deduction Natural deduction with explicit hypotheses

Explicit hypotheses

@ Explicitly hypothetical judgement:

A1 true, ..., A, true F C true

@ New rule (with I': list of hypotheses)

Atrue el H
M- Atue 0
@ Implication rules
I, Atrue - B true A= B true [+ A true
=1 =E
A= B true I+ B true

o Exercise: adapt the remaining rules to explicit hypotheses!

Andreas Abel (GU) Type Theory ESSLLI 2016 21 / 40

Simply-typed Lambda-Calculus

Origins of lambda calculus

@ Haskell Curry: untyped lambda-calculus as logical foundation
(inconsistent)

@ Alonzo Church: Simple Theory of Types (1936)

o Today: basis of functional programming languages

Andreas Abel (GU) Type Theory ESSLLI 2016 22 / 40

Simply-typed Lambda-Calculus

Untyped lambda-calculus

@ Lambda-calculus with tuples and variants:

X,¥,2 variables

r,s,t t=x|Ax.t|rs pure lambda-calculus
| (s, t) |fstr|sndr pairs and projections
| inlt|inrt injections
| caser of inlx = s | inry =t case distinction
| () empty tuple
| abort r exception

@ Free variables:
FV(x) = {x}
FV(Ax.t) = FV(t)\ {x}
FV(rs) = FV(r)UFV(s)

e Exercise: Complete the definition of FV!
Type Theory ESSLLI 2016 23 / 40

Simply-typed Lambda-Calculus

Substitution and renaming

o t[s/x] substitutes s for x in t:

x[s/x] = s
y[s/x] =y if x #y
(tt)[s/x] = (t[s/x])(t[s/x])

(Ax.t)[s/x] = Ax.t
(\y.t)[s/x] = Ay.t[s/x] if x# yandy & FV(s)
(Ay t)s/x] = N.tly'/ylls/x] ifx#yandy ¢FV(xy,s,t)

@ Bound variables can be renamed (a-equivalence).

Ax.t =, M .t[x'/x] if X' & FV(t)

Andreas Abel (GU) Type Theory ESSLLI 2016 24 / 40

ST IRA N EET I EREETITEM Type assignment

Simple types

@ Types rule out meaningless/stuck terms like fst (Ax.x) and
(Ay.fsty) (Ax.x).
@ Simple types:

R, S, T,U == S — T function type
| Sx T product type
| S+ T disjoint sum type
| 1 unit type

| 0

empty type

@ Context [be a finite map from variables x to types T.

Andreas Abel (GU) Type Theory ESSLLI 2016 25 / 40

ST IRA N EET I EREETITEM Type assignment

Type assignment

@ Judgement I -t : T “in context I', term ¢ has type T".

@ Rules for functions:

Nx)=T

M=x:T
MxSkEt: T Fr=r:S—>T MNs:S
FrMEXxt:S—T FFrs: T

@ Rules for pairs:

Ns:S Mt T FrEr:SxT Fr=r:SxT
M=(s,t):SxT M fstr:S MEsndr: T

Andreas Abel (GU) Type Theory ESSLLI 2016 26 / 40

ST IRA N EET I EREETITEM Type assignment

Type assignment (ctd.)

@ Rules for variants:

N+s:S Fr=t: T
M~inls: S+ T inrt: S+ T

Fr=r:S+T MxSks:U My:TkEt:U
Ntcaserofinlx=slinry =1t:U

@ Rules for unit and empty type:

M=r:0
r=(:1 [+abortr: U

Andreas Abel (GU) Type Theory ESSLLI 2016 27 / 40

ST IRA N EET I EREETITEM Type assignment

Properties of typing

@ Scoping: If [=t : T, then FV(t) C dom(I").

@ Inversion:
o If ' - Ax.t:Uthen U=S — T for some types S, T and
MxSkt:T.
o If I rs: T then there exists some type S such that ' Hr: S — T
and [Fs:S.

o Exercise: complete this list!
o Exercise: prove impossibility of T F Ax.(xx): T!

@ Substitution: If) x:S F¢t: Tandl Fs:Sthenl Ft[s/x]|: T.

Andreas Abel (GU) Type Theory ESSLLI 2016 28 / 40

SINTIRAV R EET I EREETITEM Computation and normalization

Computation

@ Values of programs are computed by iterated application of these

reductions:
(Ax.t)s t[s/x]
fst (s, t) s
snd (s, t) t

s[r/x]
tlr/yl

case(inlr)of inlx = s | inry =t
case(inrr) of inlx = s | inry =t

Ll

@ Reductions can be applied deep inside a term.
e Type preservation under reduction (“subject reduction”):
If T =t:Tandt —t' thenlT -t/ :T.

Andreas Abel (GU) Type Theory ESSLLI 2016 29 / 40

SINTIRAV R EET I EREETITEM Computation and normalization

Computation example

(Ap.fstp) (caseinl) of inlx = (x, x) | inry = y)
— (Ap-fstp) ((x, x)[()/x])

(Ap-fstp) (),))
— st ((),)

—

Andreas Abel (GU) Type Theory ESSLLI 2016 30 / 40

SINTIRAV R EET I EREETITEM Computation and normalization
Normal forms

A term which does not reduce is in normal form.

Grammar that rules out redexes and meaningless terms:

Nf > v,w = u| Ax.v | ()| (v, w)|inlv|inrv normal form
Ne>wu u=x|uv|fstu]|sndu|abortu neutral normal form
| caseuof inlx = v | inry = w

Progress: If [=t : T then either t — t’ or t € Nf.

Type soundness:

IfT =t : T then either t reduces infinitely or there is some
v € Nf such thatt —* vandl Fv: T.

Andreas Abel (GU) Type Theory ESSLLI 2016 31/ 40

SINTIRAV R EET I EREETITEM Computation and normalization
Normalization

@ Our calculus has no recursion and is terminating.

o Weak normalization:
IfT = t: T then there is some v € Nf such that t —* v.

@ Strong normalization:

IfT =t : T then any reduction sequence
t — t; —> tp —> ... starting with t is finite.

@ Proof of normalization is non-triviall

Andreas Abel (GU) Type Theory ESSLLI 2016 32 / 40

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism

@ H. Curry & W. A. Howard and N. de Bruijn

@ Propositional formula correspond to simple types.

Proposition Type
A= B S—T
AANB SxT
AV B S+T

T 1
€ 0

Andreas Abel (GU) Type Theory ESSLLI 2016 33 / 40

The Curry-Howard Isomorphism (ctd.)

@ Inference rules correspond to terms.

Derivation Term
=1,(D) Ax.t
:>E(D1,D2) ty to
/\|(D1,D2) <t1, t2>
NE1(D) fstt
NE2(D) snd t
\/|1() inl t
VI2(D) inrt
VEx,y (D1, D2, D3) casety of inlx =t | inry = t3
T 0
1E(D) abort t

@ Proof reduction corresponds to computation.

Andreas Abel (GU) Type Theory ESSLLI 2016 34 / 40

The Curry-Howard Isomorphism

Proof terms

@ Judgement ' = M : A "in context I, term M proves A".
@ Rules for hypotheses and implication:

MNxAFM:B

|
r-wM:-AsB

@ Rules for conjuction:

r-mM:A IT-N:B

r(x):Ah

Frex-A P

(-M:A=B TEN:A
F-MN:B =

FEM:AAB F-M:AAB

[(M, N):AAB

Andreas Abel (GU)

E, — " " AE
FEfsem A Y TEesndM: B 52

Type Theory ESSLLI 2016 35 / 40

The Curry-Howard Isomorphism

Proof terms (ctd.)

@ Rules for disjunction:

Fr=M:A Fr=M:B

| |
FEmlM-AvB 'Y TrmM.AvEB 2

Fr-M:AvB MxAEN:C My BFO:C
caseMof inlx= N |inry=0:C

@ Rules for truth and absurdity:

T r=m™m: L LE
r=(O:T [+ abort M: C

Andreas Abel (GU) Type Theory ESSLLI 2016 36 / 40

The Curry-Howard Isomorphism

Normalization implies consistency

Theorem (Consistency of propositional logic)

There is no derivation of = L true.

Beweis.

Suppose D ::F L true. By Curry-Howard, there exists a closed term F t: 0
of the empty type. By Normalization, there exists a closed normal form

v € Nf of the empty type F v : 0. By Inversion, this can only be a neutral
term v € Ne. Every neutral term has at least one free variable. This is a
contradiction to the closedness of v. O]

Andreas Abel (GU) Type Theory ESSLLI 2016 37 / 40

The Curry-Howard Isomorphism

Normalization implies the disjunction property

Theorem (Disjunction property)
If = AV B true then - A true or - B true.

Beweis.

Again, by Curry-Howard, Normalization, and Inversion.

Andreas Abel (GU) Type Theory ESSLLI 2016

38 / 40

The Curry-Howard Isomorphism

Conclusion

@ The Curry-Howard Isomorphism unifies programming and proving into
one language (A-calculus).

@ Inspired Martin-Lof Type Theory and its implementations, e.g. Coq

and Agda.
@ Provides cross-fertilization between Logic and Programming Language
Theory.
Type Theory ESSLLI 2016 39 / 40

The Curry-Howard Isomorphism

References

[Alonzo Church.
A formulation of the simple theory of types.
JSL, 5(2):56-68, 1940.

[3 Gerhard Gentzen.
Untersuchungen {iber das logische SchlieBen.
Mathematische Zeitschrift, 39:176—210, 405-431, 1935.

A William A. Howard.
Ordinal analysis of terms of finite type.
JSL, 45(3):493-504, 1980.

[@ Frank Pfenning.
Lecture notes on natural deduction.
Course CMU 15317: Constructive Logic, 2009.

Andreas Abel (GU) Type Theory ESSLLI 2016 40 / 40

	Constructivism
	Natural Deduction
	Judgements and derivations
	Introduction and elimination
	Hypothetical judgements
	Disjunction and absurdity
	Natural deduction with explicit hypotheses

	Simply-typed Lambda-Calculus
	Type assignment
	Computation and normalization

	The Curry-Howard Isomorphism

