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Coinduction

@ Coinduction is a technique to, e. g.:
o Define infinitely running processes.
o Define infinitely deep derivations.
e Prove properties about processes and infinite derivations.

A coinductive definition must be productive, i.e., always produce a
new piece of the output after finite time.

Agda recently supports coinduction via copatterns and sized types.

Agda's termination checker also checks productivity.

This talk: coinduction for the example of formal languages.
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Formal Languages

Formal Languages

(]

A language is a set of strings over some alphabet A.

Real life examples:
o Orthographically and grammatically correct English texts (infinite set).
o Orthographically correct English texts (even bigger set).
o List of university employees plus their phone extension.
AbelAndreas1731,CoquandThierry1030,DybjerPeter1035, . ..

Programming language examples:

o The set of grammatically correct JAVA programs.
e The set of decimal numbers.
o The set of well-formed string literals.

Languages can describe protocols, e.g. file access.
o A={o,r,w,c} (open, read, write, close)
e Read-only access: orc, oc, orrrc, orcorrrcoc, . ..
o lllegal sequences: c, rr, orr, oco, ...
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Formal Languages

Running Example: Even binary numbers

Even binary numbers: 0, 10, 100, 110, 1000, 1010, ...
Excluded: 00, 010 (non-canonical); 1, 11 (odd) ...
Alphabet A = {a, b} where a is zero and b is one.

So E = {a, ba, baa, bba, baaa, baba, . .. }.
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Formal Languages

Tries

An infinite trie is a node-labeled A-branching tree.
l.e., each node has one branch for each letter a € A.

A language can be represented by an infinite trie.

To check whether word a; - - - a, is in the language:

o We start at the root.

o At step /i, we choose branch a;.

o At the final node, the label tells us whether the word is in the language
or not.
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Trie of E
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Formal Languages

Regular Languages

@ A trie is regular if it has only finitely many different subtrees.

@ Each node of the trie corresponds to one of these languages:

E

V4
N
£
0
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even binary numbers
strings ending in a
strings not ending in b
the empty string

nothing (empty language)
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Formal Languages

Andreas Abel (G
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Formal Languages

Cutting duplications at depth 3
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Bending branches . ..
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Formal Languages

Finite Automata

@ We have arrived at a familiar object: a finite automaton.
@ Depending on what we cut, we get different automata for E.

o If we cut all duplicate subtrees, we get the minimal automaton.
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Formal Languages

Removing duplicate subtrees II. ..
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Formal Languages

Bending branches Il ...
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Formal Languages

Extensional Equality of Automata

o All automata for E unfold to the same trie.
@ This gives a extensional notion of automata equality:

@ Recognizing the same language.
@ l.e., unfold to the same trie.
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Formal Languages

Automata, Formally

@ An automaton consists of

@ A set of states S.
@ A function v : S — Bool singling out the accepting states.
© A transition function  : S —+ A — S.

seS|vs|dsal dshb
E X € Z
€ V0 0
0 X| 0 0
Z X| N Z
N V| N Z

@ Language automaton

@ State = language ¢ accepted when starting from that state.
@ v{: Language ( is nullable (accepts the empty word)?
© ola={w | aw € ¢}: Brzozowski derivative.

Andreas Abel (GU) Type Theory ESSLLI 2016 16 / 32



Formal Languages

Differential equations

@ Language E and friends can be specified by differential equations:
e v gives the initial value.

v = false
lx = 0

vN = true
Ve = true ONa = N
dex = 0 ONb = Z
vE = false vZ = false
0Ea = ¢ 60Za = N
JEb = Z 0Zb = Z

@ For these simple forms, solutions exist always.
What is the general story?
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Final Coalgebras

o (Weakly) final coalgebra.

s— T S F(5)

coit f F(coit f)

vF — _ F(uF)

o Coiteration = finality witness.

force o coit f = F (coitf) o f

e Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
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Streams as Final Coalgebra

e Output automaton is coalgebra (o,t) : S — A x S.
e Final coalgebra = automaton unrolling = stream: vS. A x S.

(0,t)

S AxS
coit(o,t) id x coit(o,t)
Stream A (headtall A x Stream A
@ Termination by induction on observation depth:
head (coit (0,t)s) = os
tail (coit(o,t)s) = coit(o,t)(ts)
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Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output™: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x (A—S)
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Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

(0.t)

S Bool x (A — S)
¢:=coit(o,t) idx (coit{o,t) o )
(v,0)
Lang Bool x (A — Lang)
vol = o0 “nullable”
v(ls) = os
dol = (lo )ot (Brzozowski) derivative
d (fs) = Lof(ts)
d (ls)a = ((tsa)
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Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections  and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang I : Lang a:A
v | : Bool 0la:Lang
e Empty language ) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 . Lang
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Coinductive Types and Copatterns

Corecursion
e Empty language () : Lang defined by corecursion:
v = false
dha = 0
e Language union k U / is pointwise disjunction:
v(kul) = vkvuvl
d(kUla = dkaUdla

@ Language composition k - | & la Brzozowski:

vik-1) = vkAvl
(L. B (6ka-NHudla ifvk
o(k-Na = { (6ka-1) otherwise

@ Not accepted because U is not a constructor.
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Bisimilarity

Bisimilarity

e Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with
=k =k a:A ~s
vi=vk T dlazdka
e Equivalence relation via provable =refl, =Zsym, and Ztrans.
trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(Zvp)(Zvq) - vi=vk
=) (Ztranspqg)a = Ztrans(=dpa)(=dga) : dla=oma

@ Congruence for language constructions.

k = K =N

~

kUKY=(UT)
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Proving bisimilarity
@ Composition distributes over union.

dist : Vkim. k-(lum)=(k-1)U(k-m)

@ Proof. Observation ¢  a, case k nullable, / not nullable.
d(k-(lum))a

= |[dka-(lUm) Uo(lum)a by definition
= (5ka-/U5ka-m)‘U(5/aU5ma) by coind. hyp. (wish)
= (dka-l1Udla)U(dka-mUdma) by union laws
= d((k-1)u(k-m))a by definition

@ Formal proof attempt.

~§ dist a = trans (U |dist] ...) ...

oyarded bv constructors|
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Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

TOF(T)2FAT)2 - 2 F(T) =) F(T)

n<w

e Naming v'F = F/(T).

N F = T
v F = F(V"F)
W F = e V"F

@ Deflationary iteration.

v'F = . F(¥F)
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Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V'F sized coinductive type
Size< i type of ordinals below i

@ Bounded quantification Vj<i. A = (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
foVi(Vj<i.F) — v'F
fixf :Vi.viF

Andreas Abel (GU) Type Theory ESSLLI 2016 27 / 32



Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang})

I Langi I Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
o(0{i}){jta = 0{} : Langj

Note j < /.

On right hand side, () : Vj</.Lang, (coinductive hypothesis).
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Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi I:Langi
kUl :Langi

(kU = vkVvuvl
S(kuN{jta = o0k{jtaudl{j}a

o Composition is accepted and also guardedness-preserving:

k : Langi I: Langi

k-1:Langi
v(k-1) = vkAvl
. , (0k{jta-NHudl{jta ifvk
. 1 =
Ok-1){j}a { (0k{jta-1) otherwise
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Sized Coinductive Types

Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A_
v =

_ : )
vi=vk 0las dka

@ Equivalence and congruence rules are guardedness preserving.

=trans o (pi k)= (g ke m) =2 m
>y (Ztransp q) = trans (Z=v p) (Zv q) c vi=vk
=) (Ztranspq)ja Strans (20 pja)(Zdqgja) : dla= oma

@ Coinductive proof of dist accepted.

=~§ dist j a = Ztrans j (=U | (dist J) | (=refl /) ...
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Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns [2]
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns [1]
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