Type Theory
Coinduction in Type Theory

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

ESSLLI 2016
28th European Summer School in Logic, Language, and Information
unibz, Bozen/Bolzano, Italy
15-19 August 2016

Andreas Abel (GU) Type Theory ESSLLI 2016 1/32

Coinduction

@ Coinduction is a technique to, e. g.:
o Define infinitely running processes.
o Define infinitely deep derivations.
e Prove properties about processes and infinite derivations.

A coinductive definition must be productive, i.e., always produce a
new piece of the output after finite time.

Agda recently supports coinduction via copatterns and sized types.

Agda's termination checker also checks productivity.

This talk: coinduction for the example of formal languages.

Andreas Abel (GU) Type Theory ESSLLI 2016 2/ 32

Contents

@ Formal Languages

© Coinductive Types and Copatterns
© Bisimilarity

@ Sized Coinductive Types

© Conclusions

Andreas Abel (GU) Type Theory ESSLLI 2016 3/32

Formal Languages

Formal Languages

(]

A language is a set of strings over some alphabet A.

Real life examples:
o Orthographically and grammatically correct English texts (infinite set).
o Orthographically correct English texts (even bigger set).
o List of university employees plus their phone extension.
AbelAndreas1731,CoquandThierry1030,DybjerPeter1035, . ..

Programming language examples:

o The set of grammatically correct JAVA programs.
e The set of decimal numbers.
o The set of well-formed string literals.

Languages can describe protocols, e.g. file access.
o A={o,r,w,c} (open, read, write, close)
e Read-only access: orc, oc, orrrc, orcorrrcoc, . ..
o lllegal sequences: c, rr, orr, oco, ...

Andreas Abel (GU) Type Theory ESSLLI 2016 4 /32

Formal Languages

Running Example: Even binary numbers

Even binary numbers: 0, 10, 100, 110, 1000, 1010, ...
Excluded: 00, 010 (non-canonical); 1, 11 (odd) ...
Alphabet A = {a, b} where a is zero and b is one.

So E = {a, ba, baa, bba, baaa, baba, . .. }.

Andreas Abel (GU) Type Theory ESSLLI 2016 5/ 32

Formal Languages

Tries

An infinite trie is a node-labeled A-branching tree.
l.e., each node has one branch for each letter a € A.

A language can be represented by an infinite trie.

To check whether word a; - - - a, is in the language:

o We start at the root.

o At step /i, we choose branch a;.

o At the final node, the label tells us whether the word is in the language
or not.

Andreas Abel (GU) Type Theory ESSLLI 2016 6 /32

Trie of E

Andreas Abel (GU) Type Theory ESSLLI 2016 7/ 32

Formal Languages

Regular Languages

@ A trie is regular if it has only finitely many different subtrees.

@ Each node of the trie corresponds to one of these languages:

E

V4
N
£
0

Andreas Abel (GU)

even binary numbers
strings ending in a
strings not ending in b
the empty string

nothing (empty language)

Type Theory ESSLLI 2016

8 /32

Formal Languages

Andreas Abel (G

Type Theory ESSLLI 2016 9 /32

Formal Languages

Cutting duplications at depth 3

Andreas Abel (GU) Type Theory ESSLLI 2016 10 / 32

Bending branches . ..

Andreas Abel (GU) Type Theory ESSLLI 2016 11 / 32

Formal Languages

Finite Automata

@ We have arrived at a familiar object: a finite automaton.
@ Depending on what we cut, we get different automata for E.

o If we cut all duplicate subtrees, we get the minimal automaton.

Andreas Abel (GU) Type Theory ESSLLI 2016

12 / 32

Formal Languages

Removing duplicate subtrees II. ..

Andreas Abel (GU) Type Theory ESSLLI 2016 13 / 32

Formal Languages

Bending branches Il ...

Andreas Abel (GU) Type Theory ESSLLI 2016 14 / 32

Formal Languages

Extensional Equality of Automata

o All automata for E unfold to the same trie.
@ This gives a extensional notion of automata equality:

@ Recognizing the same language.
@ l.e., unfold to the same trie.

Andreas Abel (GU) Type Theory ESSLLI 2016

15 / 32

Formal Languages

Automata, Formally

@ An automaton consists of

@ A set of states S.
@ A function v : S — Bool singling out the accepting states.
© A transition function : S —+ A — S.

seS|vs|dsal dshb
E X € Z
€ V0 0
0 X| 0 0
Z X| N Z
N V| N Z

@ Language automaton

@ State = language ¢ accepted when starting from that state.
@ v{: Language (is nullable (accepts the empty word)?
© ola={w | aw € ¢}: Brzozowski derivative.

Andreas Abel (GU) Type Theory ESSLLI 2016 16 / 32

Formal Languages

Differential equations

@ Language E and friends can be specified by differential equations:
e v gives the initial value.

v = false
lx = 0

vN = true
Ve = true ONa = N
dex = 0 ONb = Z
vE = false vZ = false
0Ea = ¢ 60Za = N
JEb = Z 0Zb = Z

@ For these simple forms, solutions exist always.
What is the general story?

Andreas Abel (GU) Type Theory ESSLLI 2016

17 / 32

Final Coalgebras

o (Weakly) final coalgebra.

s— T S F(5)

coit f F(coit f)

vF — _ F(uF)

o Coiteration = finality witness.

force o coit f = F (coitf) o f

e Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
Type Theory ESSLLI 2016 18 / 32

Streams as Final Coalgebra

e Output automaton is coalgebra (o,t) : S — A x S.
e Final coalgebra = automaton unrolling = stream: vS. A x S.

(0,t)

S AxS
coit(o,t) id x coit(o,t)
Stream A (headtall A x Stream A
@ Termination by induction on observation depth:
head (coit (0,t)s) = os
tail (coit(o,t)s) = coit(o,t)(ts)

Andreas Abel (GU) Type Theory ESSLLI 2016 19 / 32

Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output™: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x (A—S)

Andreas Abel (GU) Type Theory ESSLLI 2016 20 / 32

Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

(0.t)

S Bool x (A — S)
¢:=coit(o,t) idx (coit{o,t) o)
(v,0)
Lang Bool x (A — Lang)
vol = o0 “nullable”
v(ls) = os
dol = (lo)ot (Brzozowski) derivative
d (fs) = Lof(ts)
d (ls)a = ((tsa)
Type Theory ESSLLI 2016

21 / 32

Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang I : Lang a:A
v | : Bool 0la:Lang
e Empty language) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 . Lang

Andreas Abel (GU) Type Theory ESSLLI 2016 22 /32

Coinductive Types and Copatterns

Corecursion
e Empty language () : Lang defined by corecursion:
v = false
dha = 0
e Language union k U / is pointwise disjunction:
v(kul) = vkvuvl
d(kUla = dkaUdla

@ Language composition k - | & la Brzozowski:

vik-1) = vkAvl
(L. B (6ka-NHudla ifvk
o(k-Na = { (6ka-1) otherwise

@ Not accepted because U is not a constructor.

Andreas Abel (GU) Type Theory ESSLLI 2016 23 /32

Bisimilarity

Bisimilarity

e Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with
=k =k a:A ~s
vi=vk T dlazdka
e Equivalence relation via provable =refl, =Zsym, and Ztrans.
trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(Zvp)(Zvq) - vi=vk
=) (Ztranspqg)a = Ztrans(=dpa)(=dga) : dla=oma

@ Congruence for language constructions.

k = K =N

~

kUKY=(UT)

Andreas Abel (GU) Type Theory ESSLLI 2016 24 / 32

Proving bisimilarity
@ Composition distributes over union.

dist : Vkim. k-(lum)=(k-1)U(k-m)

@ Proof. Observation ¢ a, case k nullable, / not nullable.
d(k-(lum))a

= |[dka-(lUm) Uo(lum)a by definition
= (5ka-/U5ka-m)‘U(5/aU5ma) by coind. hyp. (wish)
= (dka-l1Udla)U(dka-mUdma) by union laws
= d((k-1)u(k-m))a by definition

@ Formal proof attempt.

~§ dist a = trans (U |dist] ...) ...

oyarded bv constructors|
Type Theory ESSLLI 2016 25 / 32

Not co 2
Andreas Abel (GU)

Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

TOF(T)2FAT)2 - 2 F(T) =) F(T)

n<w

e Naming v'F = F/(T).

N F = T
v F = F(V"F)
W F = e V"F

@ Deflationary iteration.

v'F = . F(¥F)

Andreas Abel (GU) Type Theory ESSLLI 2016

26 / 32

Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V'F sized coinductive type
Size< i type of ordinals below i

@ Bounded quantification Vj<i. A = (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
foVi(Vj<i.F) — v'F
fixf :Vi.viF

Andreas Abel (GU) Type Theory ESSLLI 2016 27 / 32

Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang})

I Langi I Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
o(0{i}){jta = 0{} : Langj

Note j < /.

On right hand side, () : Vj</.Lang, (coinductive hypothesis).

Andreas Abel (GU) Type Theory ESSLLI 2016

28 / 32

Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi I:Langi
kUl :Langi

(kU = vkVvuvl
S(kuN{jta = o0k{jtaudl{j}a

o Composition is accepted and also guardedness-preserving:

k : Langi I: Langi

k-1:Langi
v(k-1) = vkAvl
. , (0k{jta-NHudl{jta ifvk
. 1 =
Ok-1){j}a { (0k{jta-1) otherwise

Andreas Abel (GU) Type Theory ESSLLI 2016

29 / 32

Sized Coinductive Types

Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A_
v =

_ :)
vi=vk 0las dka

@ Equivalence and congruence rules are guardedness preserving.

=trans o (pi k)= (g ke m) =2 m
>y (Ztransp q) = trans (Z=v p) (Zv q) c vi=vk
=) (Ztranspq)ja Strans (20 pja)(Zdqgja) : dla= oma

@ Coinductive proof of dist accepted.

=~§ dist j a = Ztrans j (=U | (dist J) | (=refl /) ...

Andreas Abel (GU) Type Theory ESSLLI 2016 30 / 32

Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns [2]
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns [1]

Andreas Abel (GU) Type Theory ESSLLI 2016 31/ 32

Conclusions

References |

[3 Andreas Abel and Brigitte Pientka.
Wellfounded recursion with copatterns: A unified approach to
termination and productivity.
In ICFP’13, pages 185-196. ACM, 2013.

[3] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27-38. ACM, 2013.

[3] Robin Cockett and Tom Fukushima.
About Charity.
Technical report, Department of Computer Science, The University of
Calgary, 1992.
Yellow Series Report No. 92/480/18.

Andreas Abel (GU) Type Theory ESSLLI 2016 32 /32

Conclusions

References |l

[3 Tatsuya Hagino.
A Categorical Programming Language.
PhD thesis, University of Edinburgh, 1987.

3 John Hughes, Lars Pareto, and Amr Sabry.
Proving the correctness of reactive systems using sized types.
In POPL'96, pages 410-423. ACM, 1996.

[3] Dexter Kozen and Alexandra Silva.
Practical coinduction.
MSCS, FirstView:1-21, 2016.

Andreas Abel (GU) Type Theory ESSLLI 2016 33 /32

Conclusions

References ||

[§ Jorge Luis Sacchini.

Type-based productivity of stream definitions in the calculus of
constructions.

In LICS'13, pages 233-242. IEEE CS Press, 2013.
[3 Dmitriy Traytel.
Formal languages, formally and coinductively.

In FSCD'16, volume 52 of LIPIcs, pages 31:1-31:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

Andreas Abel (GU) Type Theory ESSLLI 2016 34 /32

	Formal Languages
	Coinductive Types and Copatterns
	Bisimilarity
	Sized Coinductive Types
	Conclusions

