Type Theory
Lecture 2: Dependent Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Type Theory — Course CM0859 (2017-1)
Universidad EAFIT, Medellin, Colombia
6-10 March 2017

Andreas Abel (GU) Type Theory EAFIT 2017 1/28

Contents

© Typed Predicate Logic
@ Formation rules
@ Proof rules

© Dependent Type Theory
@ Expressions and judgements
@ Dependent function type

© The Logical Framework

@ A type of types
@ Type conversion

Andreas Abel (GU) Type Theory EAFIT 2017 2/ 28

Typed Predicate Logic

Typed Predicate Logic

Propositional logic: only atomic statements like Socrates is a human.

(]

Predicate logic gives a finer structure by decomposing this into a
predicate is a human applied to an individual Socrates

and can express universal statements such as all humans are mortal.

Untyped vs. typed predicate logic:

untyped: Vx. Human(x) = Mortal(x)

|Human x

typed: Vx:Human. Morta

Untyped = unityped: a single type for all individuals/objects.

Typed: objects are a priori sorted into different types.

Andreas Abel (GU) Type Theory EAFIT 2017 3/ 28

Typed Predicate Logic

Typed Predicate Logic (ctd.)

o Mortal™ma" is 3 predicate that only applies to objects of type Human.
e Vy:Dog. Mortal™™a" y is an ill-formed proposition.
o What is a type, what a predicate is up to design.

Vz:LifeForm. HumantfeForm > — MortaltifeForm ,

@ Spoiler: Type theory will give us means to turn predicate into types:

HumanLifeForm = ¥ z:LifeForm. HumantifeFerm 2

Andreas Abel (GU) Type Theory EAFIT 2017 4 /28

Typed Predicate Logic Formation rules

Formula of typed predicate logic

@ We extend the grammar for propositions:

AB,C:=A=B|AANB|AVB|T|_L propositional connectives

| PTt atoms
| Vx:T. A universal quantification
| Ix:T.A existential quantification

@ Typing context A maps variables x to types T.

@ Judgement A + A prop characterizes well-formed propositions.

Andreas Abel (GU) Type Theory EAFIT 2017 5/ 28

Typed Predicate Logic Formation rules

Formation rules

o Atoms:
AFt: T
A= PTt prop atomF
@ Quantifiers:
A, x:T = A prop A, x:T = A prop
A FVx:T. A prop A F3dx:T. A prop

@ Propositional connectives:

A+ A prop A+ B prop
A+ Ax B prop

*F (x € {=,A,V})

— TF — 1F
A T prop A+ L prop

Andreas Abel (GU) Type Theory EAFIT 2017

6 /28

Typed Predicate Logic Formation rules
Examples

o Well-formed formulz:
o Vx:N. Vy:N. (<N y)) v (<N x))
e Vf:Bool — Bool. Vx:Bool. =BoexBool(f (f (f x)), f x)

o lll-formed formulze:
o }VFf:N = N.3r:R. Even"(f r) prop

o J N, <MN(x v prop

Andreas Abel (GU) Type Theory EAFIT 2017

7/ 28

Proof rules
Proof rules

o Judgement [Fa A true. (Both I and A are scoped in A.)

@ Universal quantification:

[FaxT Atrue v A VX:T. A true AFt: T
A VX:T. A true I A A[t/x] true

@ Existential quantification:

AFt:T I Fa Alt/x] true .
A dx:T. A true

[Fa 3x:T. A true [, A true Fa .1 C true

JE
N Fa C true

Andreas Abel (GU) Type Theory EAFIT 2017

8 /28

Typed Predicate Logic Proof rules

Proof examples

o Use of dl:
FO:N - Even™0 true

F Jx:N. Evenx

o 1 :=(3x:S. T true, Vy:S. A true). Prove I'1 F 3z:5. A truel
o Exercise: Show A true, Ix:T. B true - Ax:T. AN B truel

o Exercise: Show Vx:T. A= B true, A true - Vx:T. B truel
(Here, A does not depend on x.)

Andreas Abel (GU) Type Theory EAFIT 2017

9/ 28

Typed Predicate Logic Proof rules

Proof terms

Judgement ' Fao M : A. (All of I', M, and A are scoped in A.)

@ Universal quantification:
NFaxT M A v FAM:Vx:T. A ArFt: T
A XXM ¥x:T. A M A Mt: Alt/x]

Existential quantification:
AFt:T A M:A[t/x] |
MEa (8, M) :3x:T. A

FTFAM:3Ix:T.A My AkFaxT N: C

JE
MEalet{x,y)=MinN:C

New reduction:

let (x, y) = (t, M)in N —p3 N[t/x,M]y]

Andreas Abel (GU) Type Theory EAFIT 2017 10 / 28

Typed Predicate Logic Proof rules

Strong existentials

@ Proof terms would allow us to extract the witness!

A M:3Ix:T. A e A M:3x:T. A o
AFfstM:T ! §

[A snd M : Afst M/x]

@ However, this would make proving and programming (typing)
interdependent.

e Why not? ;-)

Andreas Abel (GU) Type Theory EAFIT 2017

11 / 28

Dependent Type Theory

Dependent Type Theory

@ Interpret propositions as “sets” of their proofs.
@ Rather:
proposition = type
proof of proposition = inhabitant of type

@ Abolish “set” as a primitive notion.
@ Instead: types and predicates. Example:

e set of natural numbers — type of natural numbers N

o set of primes — predicate Prime on N
@ Unify types T and propositions A.
@ Unify programs/objects ¢ and proof terms M.

Andreas Abel (GU) Type Theory EAFIT 2017

12 / 28

[BELEUTENTA SR I YAl Expressions and judgements

Expressions of Dependent Type Theory

@ We no longer distinguish between terms and types a priori.

@ There is a single grammar of expressions.

A B, C,
M,N,O = c constants
| x | Ax.M | MN lambda-calculus
| (x:A)— B dependent function type

@ Expressions are sorted into terms and types by judgements:

I = Atype in context I', expression A is a well-formed type

F'EM:A incontext I', expression M has type A

Andreas Abel (GU) Type Theory EAFIT 2017 13/ 28

[BELEUTENTA B YA Dependent function type

Dependent function type

@ Formation.
= A type I, x:AF B type

nF
M (x:A)— B type

@ Introduction.
xAFM:B

il
Fre=Ax.M:(x:A)—B

@ Elimination.

rEM:(x:A)—B Fr=N:A

nEe
[+ MN:B[N/x|

Andreas Abel (GU) Type Theory EAFIT 2017

14 / 28

[BELEUTENTA B YA Dependent function type

Dependent function type: examples

X

: N) — N: non-dependent function type N — N

X

: N) — Vec A n: properly dependent function type
:(x >2)) = x% > x: implication x > 2 = x? > x

X

: N) — x > 0: universal quantification Vx:N. x > 0.
: (x > 0)) — N: conditional value.

e 6 66 o o
~ ~ —~ —~
ie]

o

div:(x:N)—=(y:N)—=(p:(y >0)) >N

Andreas Abel (GU) Type Theory EAFIT 2017 15 / 28

[BELEUTENTA B YA Dependent function type

Function type interpretations

@ Non-dependent function type A — B.

‘ B prop ‘ B type
A prop implication A= B conditional value
A type | void universal quant. V_:A. B function
e Dependent-function type (x : A) — B.
‘ B prop ‘ B type
A prop | proof-relevant implication | proof-rel. cond. value
A type | universal quant. Vx:A. B | dependent function

Andreas Abel (GU) Type Theory EAFIT 2017

16 / 28

The Logical Framework

The Logical Framework

@ The Logical Framework (LF) is a minimal dependently typed lambda
calculus.

@ It is used to represent programming languages and logics.

@ A mature implementation is Twelf (Pfenning, Schiirmann).

Andreas Abel (GU) Type Theory EAFIT 2017 17 / 28

The Logical Framework

The Logical Framework: representing trees

@ In LF, abstract syntax (e.g., unary numbers) can be represented by
o adding new type constant(s), e.g.,

N type

o adding new term constants targeting the new type constant(s), e.g.,

zero : N
suc : N—=N
o Grammar of first order terms f(?):
Three new types Symbol, Tm, Arglist, and constructors

app : Symbol — Arglist — Tm
nil : Arglist
cons : Tm — ArglList — Arglist

Type Theory EAFIT 2017 18 / 28

The Logical Framework

The Logical Framework: representing binders

@ Trees with binders are represented by LF binders (HOAS).

o E.g., first-order logical formula: New type Form type, plus

Top, Bot : Form

And, Or, Imp : Form — Form — Form
Equal : Tm — Tm — Form
Forall, Exists : (Tm — Form) — Form

@ Given a symbol 7 : Symbol, we represent the formula Ix. x = f(x) by
the expression:

Exists Ax. Equal x (app f (cons x nil))

@ So far, we have not used dependent types.

Andreas Abel (GU) Type Theory EAFIT 2017 19 / 28

The Logical Framework A type of types

The Logical Framework: representing predicates

Besides trees, a specification language need predicates/relations.

How to represent, e.g., the predicate Even on N7

°
°
@ Even n should be a type that is inhabited iff n is even.
@ Even is a function from N to types.

°

With a constant type, a type of types, we can write

Even : N — type
ezero : Even zero
esuc : (x:N)— Even x — Even (suc(sucx))

@ What should be the rules for type?

Andreas Abel (GU) Type Theory EAFIT 2017 20 / 28

The Logical Framework A type of types

s type a type?

(]

We drop judgement A type in favor of A : type.

Tentative rules for type:

—— typeF
[- type : type ype

This rule is inconsistent! Girard's paradox [2].

We introduce a universe kind inhabited by type.

= A:type I x:A+ B : kind
= (x:A)— B:kind

!

————— typeF
I - type : kind ype

The second rule allows us to form types of predicates like N — type.

“Predicate” is an interpretation, the technical term is type family.

Andreas Abel (GU) Type Theory EAFIT 2017 21 /28

The Logical Framework A type of types

LF example: representing derivations

o LF allows us to represent judgements as types.

@ Provability of a FO formula can be stated with type family
Prf : Form — type

Prf A is the type of proofs of formula A.

@ Proof rules for conjunction:

prfAndl : (a: Form) — (b : Form) — Prf a — Prf b — Prf (And a b)
prfAndEL : (a: Form) — (b : Form) — Prf (Andab) — Prf a
prfAndER : (a: Form) — (b : Form) — Prf (And ab) — Prf b

Andreas Abel (GU) Type Theory EAFIT 2017 22 /28

The Logical Framework A type of types

LF example: representing derivations

@ Proof rules for implication:
prflmpl : (a b : Form) — (Prf a — Prf b) — Prf (Imp a b)
prflmpE : (a b : Form) — Prf (Impab) — Prfa — Prfb
@ Proof rules for universal quantification:

prfAlll = (p: Tm — Form) — ((x : Tm) — Prf (px)) — Prf (Forall p)
prfAllE : (p: Tm — Form) — Prf (Forall p) — (¢t : Tm) — Prf (pt)

Andreas Abel (GU) Type Theory EAFIT 2017 23 /28

The Logical Framework Type conversion

The need for type conversion
prfAIIE : (p: Tm — Form) — Prf (Forall p) — (¢t : Tm) — Prf (pt)

o We would expect

prfAllE (Ax. Equal xx) gt : Prf (Equaltt).

e By lE, we only get

prfAllE (Ax. Equal xx) gt : Prf ((Ax. Equal x x) t)

@ The types are [3-convertible.

Andreas Abel (GU) Type Theory EAFIT 2017 24 / 28

The Logical Framework Type conversion

Completing LF's rules

e Grammar for sorts s ::= type | kind
@ This allows us to unify the N-formation rules:

I+ A:type NxAFB:s

nr
N-(x:A)—B:s
@ We close with the infamous type conversion rule:
r-mM:A r-A=B:s
conv

Fr-m:B
@ For now, judgement ' H A = B : s is defined as

F~A:s F~B:s A=g, B
Fr'A=B:s

with =g, the least congruence over [3-reduction and 7-expansion.

Andreas Abel (GU) Type Theory EAFIT 2017

25 / 28

The Logical Framework Type conversion

Summary: LF rules

(x:A) el

A E)
Frex:A P

——— typeF
I F type : kind ype

[+ A:type xAFB:s

nr
N-(x:A)—B:s
NxAkFM:B r-M:(x:A)—B r=nN:A
Fr-XxM:(x:A)—B F'=MN: B[N/x]
Fr=M:A r'-A=B:s
conv

r'-MmM:B

Andreas Abel (GU) Type Theory EAFIT 2017 26 / 28

The Logical Framework Type conversion

LF: discussion

@ LF allows HOAS (Higher Order Abstract Syntax) encodings of
programming languages and logics with binders.

Adequacy of encodings relies on the parametricity of A-abstraction.

In particular, no case distinction. The term
Forall (Ax.if x then AA Belse AV B)

does not correspond to a formula of predicate logic.

LF admits type erasure: Each well-typed term also has a simple type.

@ Normalization can be proven by erasure to simply-typed A-calculus.

[(x:A)—B] = [Al—1B]
[[CMl...Mn]] = C

Andreas Abel (GU) Type Theory EAFIT 2017 27 / 28

The Logical Framework Type conversion

References

[§] Robert Harper, Furio Honsell, and Gordon Plotkin.
A framework for defining logics.
JACM, 40(1):143-184, 1993.

[{ Antonius J. C. Hurkens.
A simplification of Girard's paradox.
In TLCA’95, volume 902 of LNCS, pages 266-278. Springer, 1995.

[A Frank Pfenning.
Logical frameworks.
In Handbook of Automated Reasoning, volume 2, chapter 17, pages
1063-1147. Elsevier and MIT Press, 2001.

Andreas Abel (GU) Type Theory EAFIT 2017 28 / 28

	Typed Predicate Logic
	Formation rules
	Proof rules

	Dependent Type Theory
	Expressions and judgements
	Dependent function type

	The Logical Framework
	A type of types
	Type conversion

