Type Theory

Lecture 1: Natural Deduction and Curry-Howard

Andreas Abel

Department of Computer Science and Engineering Chalmers and Gothenburg University

Type Theory – Course CM0859 (2017-1) Universidad EAFIT, Medellin, Colombia 6-10 March 2017

Contents

- Constructivism
- Natural Deduction
 - Judgements and derivations
 - Introduction and elimination
 - Hypothetical judgements
 - Disjunction and absurdity
 - Classical Logic
 - Natural deduction with explicit hypotheses
- Simply-typed Lambda-Calculus
 - Type assignment
 - Computation and normalization
- 4 The Curry-Howard Isomorphism

Constructivism

- Brouwer's intuitionism in opposition to Hilbert's formalism
- Constructive logic vs. classical logic
- Disjunction property

If the disjunction $A \lor B$ is provable, then either A is provable or B is provable.

- Drop principle of excluded middle $A \vee \neg A$
- Propositions A with $A \vee \neg A$ are called decidable
- Existence property

A proof of the existential statement $\exists x. A(x)$ includes an algorithm to compute a witness t with A(t).

Brouwer-Heyting-Kolmogorov Interpretation

Characterizing canonical proofs.

- A proof of $A \wedge B$ is a pair of a proof of A and a proof of B.
- A proof of $A \vee B$ is a proof of A or a proof of B, plus a bit indicating which of the two.
- A proof of A ⇒ B is an algorithm computing a proof of B given a proof of A.
- No canonical proof of \bot exists (consistency!).
- A proof of $\neg A$ is a proof of $A \Rightarrow \bot$.
- A proof of $\forall x.A(x)$ is an algorithm computing a proof of A(t) given any object t.
- A proof of $\exists x. A(x)$ is a pair of a witness t and a proof of A(t).

A Non-Constructive Proof

Theorem

There are irrational numbers $r, s \in \mathbb{R}$ such that r^s is rational.

Proof.

- Case $\sqrt{2}^{\sqrt{2}}$ is rational. Then $r = s = \sqrt{2}$.
- Case $\sqrt{2}^{\sqrt{2}}$ is irrational. Then $r = \sqrt{2}^{\sqrt{2}}$ and $s = \sqrt{2}$, since $r^s = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2$ is rational.

Quiz: Please give me irrational numbers r, s such that r^s is rational!

Another Non-Constructive Proof!?

Theorem (Euclid)

There are infinitely many primes.

Proof.

Assume there were only finitely many primes p_1, \ldots, p_n .

Let $q = p_1 \cdot p_2 \cdot \cdots \cdot p_n + 1$. Then q is relatively prime to p_1, \dots, p_n .

But every number has a prime factor decomposition. Contradiction!

Quiz: Please give me an infinite list of primes!

Euclid's Proof

Theorem (Euclid)

There are infinitely many primes.

Proof by Euclid.

We show that any finite list of primes p_1, \ldots, p_n can be extended by one more prime which is not yet in the list. Let $q = p_1 \cdot p_2 \cdot \cdots \cdot p_n + 1$.

- Case q is prime. Then $p_{n+1} := q$ is a new prime.
- Case q is not prime. Then q has a prime factor $r \mid q$ for some 1 < r < q. If r was already in the list, then $r \mid (q-1)$ which is impossible. Thus, $p_{n+1} := r$ is a new prime.

Quiz: Please give me an infinite list of primes!

Andreas Abel (GU) Type Theory EAFIT 2017 7 / 55

Propositional logic

Formulæ

$$\begin{array}{ll} P,\,Q & \text{atomic proposition} \\ A,\,B,\,C ::= P & \\ \mid A \Rightarrow B & \text{implication} \\ \mid A \land B \mid \top & \text{conjunction, truth} \\ \mid A \lor B \mid \bot & \text{disjunction, absurdity} \end{array}$$

- Formula = (binary) abstract syntax tree
- Subformula = subtree
- Principal connective = root label

Well-formedness vs. truth

Let

```
SH := "Socrates is a human"
FL := "Socrates has four legs"
```

- Implication $SH \Rightarrow FL$ is well-formed.
- Implication SH ⇒ FL is not necessarily true ;-).

$$SH \Rightarrow FL true$$

is a judgement which requires proof

Judgements and derivations

- Propositional logic has a single judgement form A true.
- J refers to a judgement.
- Inference rules have form

$$\frac{J_1 \dots J_n}{J}$$
 r

Derivation (trees):

$$\frac{-\frac{J_1}{J_1}r_1}{\frac{J_2}{J_0}} \frac{-\frac{r_3}{J_3}}{\frac{J_2}{J_0}} r_0$$

• $D_0 :: J_0 \text{ with } \mathcal{D}_0 = r_0^{J_0}(r_1^{J_1}, r_2^{J_2}(r_3^{J_3}, \mathcal{D}_4, \mathcal{D}_5))$

Introduction and elimination

Introduction rules: composing information

$$\frac{A true}{A \land B true} \land I$$

Elimination rules: retrieving/using information

$$\frac{A \wedge B \text{ true}}{A \text{ true}} \wedge \mathsf{E}_1 \qquad \frac{A \wedge B \text{ true}}{B \text{ true}} \wedge \mathsf{E}_2$$

• Orthogonality: define meaning of logical connective (e.g. ∧) independently of other connectives (e.g. \Rightarrow).

Local soundness

 Introductions followed immediately by eliminations are a removable detour.

$$\frac{D_{1}}{A \text{ true}} \qquad D_{2} \\
\frac{A \text{ true}}{B \text{ true}} \wedge \mathsf{E}_{1} \\
\frac{A \wedge B \text{ true}}{A \text{ true}} \wedge \mathsf{E}_{1}$$

$$\frac{D_{1}}{A \text{ true}} \qquad D_{2} \\
\frac{A \text{ true}}{B \text{ true}} \wedge \mathsf{E}_{2}$$

$$\frac{D_{2}}{B \text{ true}} \wedge \mathsf{E}_{2}$$

- Otherwise, an elimination rule is too strong (unsound).
- Exercise: Give a unsound, too strong ∧E-rule.

Local completeness

 Reconstruct a judgement by introduction from parts obtained by elimination.

- Otherwise, elimination rules are too weak (incomplete).
- Exercise: Give a set of **\E-rules** which is incomplete.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からの

Truth

Introduction of trivial proposition ⊤:

$$\frac{}{\top true}$$

- No information to obtain by elimination!
- No β -reduction.
- η -expansion:

$$\begin{array}{ccc} \mathcal{D} \\ \top \ \textit{true} & \longrightarrow_{\eta^{-}} & \frac{}{\top \ \textit{true}} \ \top \mathsf{I} \end{array}$$

Proving an implication

- How to prove $(A \land B) \Rightarrow (B \land A)$ true?
- First, construct an open derivation:

$$\frac{A \land B \text{ true}}{B \text{ true}} \qquad \frac{A \land B \text{ true}}{A \text{ true}}$$

$$B \land A \text{ true}$$

• Then, close by discharging the hypothesis $x :: A \land B$ true:

$$\frac{\overline{A \land B \text{ true}}}{B \text{ true}} \times \frac{\overline{A \land B \text{ true}}}{A \text{ true}} \times \frac{A \land B \text{ true}}{A \text$$

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ・ かへで

Rules for implication

Elimination = modus ponens

$$\frac{A \Rightarrow B \ true}{B \ true} \Rightarrow \mathsf{E}$$

 Introduction = internalizing a meta-implication (hypothetical judgement)

$$\frac{A \text{ true}}{A \text{ true}} \times \frac{X}{A}$$

$$\frac{B \text{ true}}{A \Rightarrow B \text{ true}} \Rightarrow I_X$$

• Exercise: How many different derivations of $A \Rightarrow (A \Rightarrow A)$ true exist?

Andreas Abel (GU) Type Theory EAFIT 2017 16 / 55

Substitution

• β -reduction replaces hypothesis x by derivation \mathcal{D} :

• More precise notation:

$$\mathcal{E}[\mathcal{D}/x]$$
 $\mathcal{E}[\mathcal{D}/x]$
 $\mathcal{E}[\mathcal{D}/x]$

Local completeness for implication

• η -expansion

$$\mathcal{D}$$

$$A \Rightarrow B \text{ true} \qquad \longrightarrow_{\eta^{-}} \qquad \frac{A \Rightarrow B \text{ true}}{A \Rightarrow B \text{ true}} \Rightarrow \mathsf{I}_{x}$$

$$\frac{B \text{ true}}{A \Rightarrow B \text{ true}} \Rightarrow \mathsf{I}_{x}$$

Disjunction

• Introduction: choosing an alternative

$$\frac{\textit{A true}}{\textit{A} \lor \textit{B true}} \lor \textit{I}_1 \qquad \frac{\textit{B true}}{\textit{A} \lor \textit{B true}} \lor \textit{I}_2$$

Elimination: case distinction

$$\frac{A \text{ true}}{A \text{ true}} \times \frac{B \text{ true}}{B \text{ true}} y$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C \text{ true} \qquad C \text{ true}$$

$$C \text{ true} \qquad V \in X, Y$$

Disjunction: local soundness

Disjunction: local completeness

Introduction happens in branches of elimination:

Absurdity and negation

No introduction (phew!), strongest elimination:

$$\frac{\perp true}{C true} \perp E$$

- Only global soundness (consistency).
- Negation is definable:

$$\neg A = A \Rightarrow \bot$$

So is logical equivalence:

$$A \Longleftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A)$$

◆□▶ ◆□▶ ◆불▶ ◆불▶ · 불 · 釣९○

Summary: Natural Deduction for Propositional Logic I

Implication.

$$\frac{\overline{A \text{ true}}^{X}}{\vdots} \\
\underline{B \text{ true}}^{B \text{ true}} \Rightarrow I_{X}$$

$$\frac{A \Rightarrow B \text{ true}}{B \text{ true}} \Rightarrow E$$

Conjunction and truth.

$$\frac{A \text{ true}}{A \wedge B \text{ true}} \wedge I \qquad \frac{A \wedge B \text{ true}}{A \text{ true}} \wedge E_1 \qquad \frac{A \wedge B \text{ true}}{B \text{ true}} \wedge E_2$$

$$\frac{\Box}{\Box \text{ true}} \top I \qquad \text{no } \top E$$

Summary: Natural Deduction for Propositional Logic II

Disjunction and absurdity.

$$\frac{A \text{ true}}{A \lor B \text{ true}} \lor I_{1} \qquad \frac{B \text{ true}}{A \lor B \text{ true}} \lor I_{2}$$

$$\frac{A \text{ true}}{A \text{ true}} \times \frac{B \text{ true}}{B \text{ true}} y$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C \text{ true} \qquad C \text{ true}$$

$$C \text{ true}$$

$$\frac{L \text{ true}}{C \text{ true}} \bot E$$

Classical logic

- We can regain classical reasoning by adding one more rule to the natural deduction calculus.
- There are 4 standard rules to choose from:
 - **1** Excluded middle (EM): $A \lor \neg A$.
 - 2 Reductio ad absurdum (RAA): $(\neg A \Rightarrow \bot) \Rightarrow A$.
 - **3** Reductio ad absurdum, variant (RAA'): $(\neg A \Rightarrow A) \Rightarrow A$.
 - 4 Pierce's law: $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$.
- Any of these destroys the disjunction property.
- All of them are logically equivalent.

Excluded middle

$$\frac{A \vee \neg A \ true}{\mathsf{EM}}$$

- Introduces a disjunction without explaining the choice.
- At any point in a proof, we can make a case distinction, whether a formula A or its negation $\neg A$ holds.

Reductio ad absurdum

```
\frac{\neg A \text{ true}}{\vdots}

\frac{\bot \text{ true}}{A \text{ true}} RAA_x
```

- This enables proof by contradition.
- To show A, we assume its opposite $\neg A$ and derive a contradiction.

Reductio ad absurdum (variant)

$$\frac{\neg A \text{ true}}{\vdots} \frac{A \text{ true}}{A \text{ true}} RAA'_{x}$$

- This a variation proof by contradition.
- To show A, we may always assume its opposite $\neg A$.

Pierce's law

$$\frac{A \Rightarrow B \text{ true}}{\vdots}$$

$$\frac{A \text{ true}}{A \text{ true}} \text{ Pierce}_{x}$$

- This is another variant of proof by contradition.
- To show A, we may assume that A implies an arbitrary formula B.
- In RAA', formula B is fixed to absurdity \bot .
- (Of course, ⊥ implies any other formula.)
- \bullet Pierce's law adds classical reasoning without reference to absurdity \bot or negation.

→□▶ →□▶ → □▶ → □ ● → ○○○

Proof by contradiction

- Proof by contradiction is abundant in mathematical proofs.
- Often direct, constructive proofs would be possible.
- "Proof by contradiction" for negative statements is just \Rightarrow 1:

 To show $\neg A$, we assume A and prove a contradiction.
- Sometimes we find this instance of a "proof by contradiction".

$$\frac{\neg A \text{ true}}{A \text{ true}} \times A \frac{D}{A \text{ true}} \Rightarrow E$$

$$\frac{\bot \text{ true}}{A \text{ true}} RAA_{x}$$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

A proof by contradiction?

Theorem

Let a, b,
$$c > 0$$
 and $a^2 + b^2 = c^2$. Then $a + b > c$.

In any non-degenerate right triangle the hypothenuse is shorter than the sum of the catheti.

Proof https://en.wikipedia.org/wiki/Proof_by_contradiction.

Assume
$$a+b \le c$$
. Then $(a+b)^2 = a^2 + 2ab + b^2 \le c^2$, thus, $2ab \le 0$. This contradicts $a, b > 0$.

Exercise: give a direct proof!

◆ロト ◆部ト ◆差ト ◆差ト 差 りへで

Careful with discharging!

Consider this derivation:

$$\frac{A \Rightarrow A \Rightarrow A \text{ true}}{A \Rightarrow A \text{ true}} \Rightarrow I_{x}$$

$$\frac{A \Rightarrow A \text{ true}}{A \text{ true}} \Rightarrow E \quad A \text{ true}$$

$$\frac{A \Rightarrow A \text{ true}}{A \text{ true}} \Rightarrow E$$

$$\frac{A \text{ true}}{((A \Rightarrow A) \Rightarrow (A \Rightarrow A)) \Rightarrow A \text{ true}} \Rightarrow I_{f}$$

• Does it prove $((A \Rightarrow A) \Rightarrow (A \Rightarrow A)) \Rightarrow A \text{ true}$?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からの

Explicit hypotheses

Explicitly hypothetical judgement:

$$A_1$$
 true,..., A_n true $\vdash C$ true

New rule (with Γ: list of hypotheses)

$$\frac{A \ true \in \Gamma}{\Gamma \vdash A \ true}$$
 hyp

Implication rules

$$\frac{\Gamma, A \; true \; \vdash \; B \; true}{\Gamma \; \vdash \; A \; \Rightarrow \; B \; true} \; \Rightarrow \vdash \quad \frac{\Gamma \; \vdash \; A \; \Rightarrow \; B \; true}{\Gamma \; \vdash \; B \; true} \; \Rightarrow \vdash E$$

• Exercise: adapt the remaining rules to explicit hypotheses!

Origins of lambda calculus

- Haskell Curry: untyped lambda-calculus as logical foundation (inconsistent)
- Alonzo Church: Simple Theory of Types (1936)
- Today: basis of functional programming languages

Untyped lambda-calculus

Lambda-calculus with tuples and variants:

```
\begin{array}{lll} x,y,z & \text{variables} \\ r,s,t & ::= x \mid \lambda x.t \mid rs & \text{pure lambda-calculus} \\ \mid \langle s,t \rangle \mid \text{fst } r \mid \text{snd } r & \text{pairs and projections} \\ \mid \text{inl } t \mid \text{inr } t & \text{injections} \\ \mid \text{case } r \text{ of inl } x \Rightarrow s \mid \text{inr } y \Rightarrow t & \text{case distinction} \\ \mid \langle \rangle & \text{empty tuple} \\ \mid \text{abort } r & \text{exception} \end{array}
```

• Free variables:

$$FV(x) = \{x\}$$

$$FV(\lambda x.t) = FV(t) \setminus \{x\}$$

$$FV(rs) = FV(r) \cup FV(s)$$
...

Exercise: Complete the definition of FV!

Substitution and renaming

• t[s/x] substitutes s for any free occurrence of x in t:

$$\begin{array}{lll} x[s/x] & = & s \\ y[s/x] & = & y & \text{if } x \neq y \\ (t \ t')[s/x] & = & (t[s/x]) \left(t[s/x]'\right) \\ (\lambda x. t)[s/x] & = & \lambda x. t \\ (\lambda y. t)[s/x] & = & \lambda y. t[s/x] & \text{if } x \neq y \text{ and } y \notin \mathsf{FV}(s) \\ (\lambda y. t)[s/x] & = & \lambda y'. t[y'/y][s/x] & \text{if } x \neq y \text{ and } y' \notin \mathsf{FV}(x, y, s, t) \\ \dots \end{array}$$

• Bound variables can be renamed (α -equivalence).

$$\lambda x.t =_{\alpha} \lambda x'.t[x'/x]$$
 if $x' \notin FV(t)$

Simple types

- Types rule out meaningless/stuck terms like fst $(\lambda x.x)$ and $(\lambda y. \text{ fst } y)(\lambda x. x).$
- Simple types:

• Context Γ be a finite map from variables x to types T.

Type assignment

- Judgement $\Gamma \vdash t : T$ "in context Γ , term t has type T".
- Rules for functions:

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T}$$

$$\frac{\Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x . t : S \to T} \qquad \frac{\Gamma \vdash r : S \to T \qquad \Gamma \vdash s : S}{\Gamma \vdash r s : T}$$

Rules for pairs:

$$\frac{\Gamma \vdash s : S \qquad \Gamma \vdash t : T}{\Gamma \vdash \langle s, t \rangle : S \times T} \qquad \frac{\Gamma \vdash r : S \times T}{\Gamma \vdash \mathsf{fst} \, r : S} \qquad \frac{\Gamma \vdash r : S \times T}{\Gamma \vdash \mathsf{snd} \, r : T}$$

Andreas Abel (GU)

Type Theory

EAFIT 2017 38 / 55

Type assignment (ctd.)

• Rules for variants:

$$\frac{\Gamma \vdash s : S}{\Gamma \vdash \mathsf{inl} \, s : S + T} \qquad \frac{\Gamma \vdash t : T}{\Gamma \vdash \mathsf{inr} \, t : S + T}$$

$$\frac{\Gamma \vdash r : S + T}{\Gamma \vdash \mathsf{case} \, r \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow s \mid \mathsf{inr} \, y \Rightarrow t : U}$$

Rules for unit and empty type:

$$\frac{\Gamma \vdash r : 0}{\Gamma \vdash \langle \rangle : 1} \qquad \frac{\Gamma \vdash r : 0}{\Gamma \vdash \mathsf{abort} \ r : \mathit{U}}$$

Properties of typing

- Scoping: If $\Gamma \vdash t : T$, then $FV(t) \subseteq dom(\Gamma)$.
- Inversion:
 - If $\Gamma \vdash \lambda x.t : U$ then $U = S \rightarrow T$ for some types S, T and $\Gamma, x:S \vdash t : T$.
 - If $\Gamma \vdash rs : T$ then there exists some type S such that $\Gamma \vdash r : S \to T$ and $\Gamma \vdash s : S$.
 - Exercise: complete this list!
 - Exercise: prove impossibility of $\Gamma \vdash \lambda x.(xx) : T!$
- Substitution: If $\Gamma, x:S \vdash t:T$ and $\Gamma \vdash s:S$ then $\Gamma \vdash t[s/x]:T$.

Computation

 Values of programs are computed by iterated application of these reductions:

$$(\lambda x.t)s \qquad \longrightarrow \quad t[s/x]$$

$$\operatorname{fst} \langle s, t \rangle \qquad \longrightarrow \quad s$$

$$\operatorname{snd} \langle s, t \rangle \qquad \longrightarrow \quad t$$

$$\operatorname{case} (\operatorname{inl} r) \text{ of } \operatorname{inl} x \Rightarrow s \mid \operatorname{inr} y \Rightarrow t \qquad \longrightarrow \quad s[r/x]$$

$$\operatorname{case} (\operatorname{inr} r) \text{ of } \operatorname{inl} x \Rightarrow s \mid \operatorname{inr} y \Rightarrow t \qquad \longrightarrow \quad t[r/y]$$

- Reductions can be applied deep inside a term.
- Type preservation under reduction ("subject reduction"):

If $\Gamma \vdash t : T$ and $t \longrightarrow t'$ then $\Gamma \vdash t' : T$.

Computation example

$$\begin{array}{l} (\lambda p. \operatorname{fst} p) \left(\operatorname{case inl} \left\langle \right\rangle \operatorname{of inl} x \Rightarrow \left\langle x, \, x \right\rangle \mid \operatorname{inr} y \Rightarrow y \right) \\ \longrightarrow \left(\lambda p. \operatorname{fst} p \right) \left(\left\langle x, \, x \right\rangle \left[\left\langle \right\rangle / x \right] \right) \\ = \left(\lambda p. \operatorname{fst} p \right) \left\langle \left\langle \right\rangle, \, \left\langle \right\rangle \right\rangle \\ \longrightarrow \left(\operatorname{fst} \left\langle \left\langle \right\rangle, \, \left\langle \right\rangle \right\rangle \\ \longrightarrow \left\langle \right\rangle \end{array}$$

Normal forms

- A term which does not reduce is in normal form.
- Grammar that rules out redexes and meaningless terms:

```
\begin{array}{lll} \mathsf{Nf} \ni v,w ::= u \mid \lambda x.v \mid \langle \rangle \mid \langle v,w \rangle \mid \mathsf{inl} \; v \mid \mathsf{inr} \; v \; \mathsf{normal} \; \mathsf{form} \\ \mathsf{Ne} \ni u & ::= x \mid u \; v \mid \mathsf{fst} \; u \mid \mathsf{snd} \; u \mid \mathsf{abort} \; u & \mathsf{neutral} \; \mathsf{normal} \; \mathsf{form} \\ \mid \mathsf{case} \; u \; \mathsf{of} \; \mathsf{inl} \; x \Rightarrow v \mid \mathsf{inr} \; y \Rightarrow w \end{array}
```

- Progress: If $\Gamma \vdash t : T$ then either $t \longrightarrow t'$ or $t \in Nf$.
- Type soundness:

```
If \Gamma \vdash t : T then either t reduces infinitely or there is some v \in \mathsf{Nf} such that t \longrightarrow^* v and \Gamma \vdash v : T.
```

Normalization

- Our calculus has no recursion and is terminating.
- Weak normalization:

```
If \Gamma \vdash t : T then there is some v \in \mathbb{N}f such that t \longrightarrow^* v.
```

Strong normalization:

```
If \Gamma \vdash t : T then any reduction sequence t \longrightarrow t_1 \longrightarrow t_2 \longrightarrow \dots starting with t is finite.
```

Proof of normalization is non-trivial!

Permutation reductions

• Evaluation contexts:

$$E ::= \bullet \mid E \mid t \mid fst \mid E \mid snd \mid E \mid (case \mid E \mid snd \mid E \mid snd$$

- We write E[t] for $E[t/\bullet]$.
- Permutation reductions (aka commuting conversions):

$$E[\operatorname{case} r \text{ of inl } x \Rightarrow s \mid \operatorname{inr} y \Rightarrow t]$$

$$\longrightarrow \operatorname{case} r \text{ of inl } x \Rightarrow E[s] \mid \operatorname{inr} y \Rightarrow E[t]$$

$$E[\operatorname{abort} r] \longrightarrow \operatorname{abort} r$$

• Normal forms wrt. β and permutation reductions:

Nf
$$\ni v, w ::= u \mid \lambda x. v \mid \langle \rangle \mid \langle v, w \rangle \mid \text{inl } v \mid \text{inr } v \text{ normal form}$$

$$\mid \text{ case } u \text{ of inl } x \Rightarrow v \mid \text{inr } y \Rightarrow w \mid \text{abort } u$$
Ne $\ni u ::= x \mid u v \mid \text{fst } u \mid \text{snd } u$ neutral normal form

Bidirectional Typing of Normal Forms I

$$\Gamma \vdash v \leftrightharpoons T$$
 in context Γ , normal form v checks against type T $\Gamma \vdash u \rightrightarrows T$ the type neutral normal form u is inferred to be T

$$\frac{\Gamma, x: S \vdash v \leftrightarrows T}{\Gamma \vdash \lambda x. v \leftrightarrows S \to T} \qquad \frac{\Gamma \vdash v \leftrightarrows S}{\Gamma \vdash \langle v, w \rangle} \xrightarrow{\Sigma \times T}$$

$$\frac{\Gamma \vdash v \leftrightarrows S}{\Gamma \vdash \text{inl } v \leftrightarrows S + T} \qquad \frac{\Gamma \vdash v \leftrightarrows T}{\Gamma \vdash \text{inr } v \leftrightarrows S + T}$$

$$\frac{\Gamma \vdash u \rightrightarrows T}{\Gamma \vdash u \leftrightarrows T}$$

Bidirectional Typing of Normal Forms II

$$\frac{\Gamma(x) = T}{\Gamma \vdash x \Rightarrow T} \qquad \frac{\Gamma \vdash u \Rightarrow S \to T \qquad \Gamma \vdash v \Leftarrow S}{\Gamma \vdash u v \Rightarrow T}$$

$$\frac{\Gamma \vdash u \Rightarrow S \times T}{\Gamma \vdash \text{fst } u \Rightarrow S} \qquad \frac{\Gamma \vdash u \Rightarrow S \times T}{\Gamma \vdash \text{snd } u \Rightarrow T}$$

$$\frac{\Gamma \vdash u \rightrightarrows S + T \qquad \Gamma, x:S \vdash v \leftrightharpoons U \qquad \Gamma, y:T \vdash w \leftrightharpoons U}{\Gamma \vdash \mathsf{case}\, u \; \mathsf{of} \; \mathsf{inl}\, x \Rightarrow v \mid \mathsf{inr}\, y \Rightarrow w \leftrightharpoons U}$$

$$\frac{\Gamma \vdash u \rightrightarrows 0}{\Gamma \vdash \mathsf{abort}\, u \leftrightarrows U}$$

The Curry-Howard Isomorphism

- H. Curry & W. A. Howard and N. de Bruijn
- Propositional formulæ correspond to simple types.

Proposition	Туре
$A \Rightarrow B$	$S \rightarrow T$
$A \wedge B$	$S \times T$
$A \vee B$	S+T
T	1
\perp	0

The Curry-Howard Isomorphism (ctd.)

• Inference rules correspond to terms.

Derivation	Term
\Rightarrow l $_{\scriptscriptstyle X}(\mathcal{D})$	λ x. t
${\Rightarrow} E(\mathcal{D}_1,\mathcal{D}_2)$	$t_1 \ t_2$
$\wedge I(\mathcal{D}_1,\mathcal{D}_2)$	$\langle t_1,\ t_2 angle$
$\wedge E_1(\mathcal{D})$	fst t
$\wedge E_2(\mathcal{D})$	snd t
ee l $_1(\mathcal{D})$	inl t
$\forall I_2(\mathcal{D})$	inr t
$\forall E_{x,y}(\mathcal{D}_1,\mathcal{D}_2,\mathcal{D}_3)$	case t_1 of inl $x \Rightarrow t_2 \mid \text{inr } y \Rightarrow t_3$
TI	$\langle \rangle$
\perp E (\mathcal{D})	abort t

49 / 55

• Proof reduction corresponds to computation.

Proof terms

- Judgement $\Gamma \vdash M : A$ "in context Γ , term M proves A".
- Rules for hypotheses and implication:

$$\frac{\Gamma(x) = A}{\Gamma \vdash x : A} \text{ hyp}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \Rightarrow B} \Rightarrow I \qquad \frac{\Gamma \vdash M : A \Rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B} \Rightarrow E$$

Rules for conjuction:

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash \langle M, N \rangle : A \land B} \land \mathsf{I} \quad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash \mathsf{fst} \, M : A} \land \mathsf{E}_1 \quad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash \mathsf{snd} \, M : B} \land \mathsf{E}_2$$

Proof terms (ctd.)

Rules for disjunction:

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathsf{inl}\,M : A \lor B} \lor \mathsf{I}_1 \qquad \frac{\Gamma \vdash M : B}{\Gamma \vdash \mathsf{inr}\,M : A \lor B} \lor \mathsf{I}_2$$

$$\frac{\Gamma \vdash M : A \lor B \qquad \Gamma, x : A \vdash N : C \qquad \Gamma, y : B \vdash O : C}{\Gamma \vdash \mathsf{case}\,M \;\mathsf{of}\; \mathsf{inl}\,x \Rightarrow N \;\mathsf{I}\; \mathsf{inr}\,y \Rightarrow O : C} \;\lor \mathsf{E}$$

Rules for truth and absurdity:

$$\frac{\Gamma \vdash \langle \rangle : \top}{\Gamma \vdash \langle \rangle : \top} \; \top \mathsf{I} \qquad \frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{abort} \; M : C} \; \bot \mathsf{E}$$

Normalization implies consistency

Theorem (Consistency of propositional logic)

There is no derivation of $\vdash \bot$ true.

Proof.

Suppose $\mathcal{D} :: \vdash \bot true$. By Curry-Howard, there exists a closed term $\vdash t : 0$ of the empty type. By Normalization, there exists a closed normal form $v \in \mathsf{Nf}$ of the empty type $\vdash v : 0$. By Inversion, this can only be a neutral term $v \in \mathsf{Ne}$. Every neutral term has at least one free variable. This is a contradiction to the closedness of v.

Normalization implies the disjunction property

Theorem (Disjunction property)

If $\vdash A \lor B$ true then $\vdash A$ true or $\vdash B$ true.

Proof.

Again, by Curry-Howard, Normalization, and Inversion.

Conclusion

- The Curry-Howard Isomorphism unifies programming and proving into one language (λ -calculus).
- Inspired Martin-Löf Type Theory and its implementations, e.g. Coq and Agda.
- Provides cross-fertilization between Logic and Programming Language Theory.

References

Alonzo Church.

A formulation of the simple theory of types.

JSL, 5(2):56-68, 1940.

Gerhard Gentzen.

Untersuchungen über das logische Schließen.

Mathematische Zeitschrift, 39:176–210, 405–431, 1935.

William A. Howard.

Ordinal analysis of terms of finite type.

JSL, 45(3):493-504, 1980.

🔋 Frank Pfenning.

Lecture notes on natural deduction.

Course CMU 15317: Constructive Logic, 2009.