Type Theory

Lecture 1: Natural Deduction and Curry-Howard

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Type Theory — Course CM0859 (2017-1)
Universidad EAFIT, Medellin, Colombia
6-10 March 2017

Andreas Abel (GU) Type Theory EAFIT 2017 1/55

Contents

@ Constructivism

© Natural Deduction
@ Judgements and derivations
@ Introduction and elimination
@ Hypothetical judgements
@ Disjunction and absurdity
o Classical Logic
@ Natural deduction with explicit hypotheses

© Simply-typed Lambda-Calculus
@ Type assignment
@ Computation and normalization

@ The Curry-Howard Isomorphism

Andreas Abel (GU) Type Theory EAFIT 2017 2 /55

Constructivism

Constructivism

Brouwer's intuitionism in opposition to Hilbert's formalism

Constructive logic vs. classical logic

Disjunction property
If the disjunction AV B is provable, then either A is provable
or B is provable.

Drop principle of excluded middle AV —A
Propositions A with AV —A are called decidable

Existence property

A proof of the existential statement 3x. A(x) includes an
algorithm to compute a witness t with A(t).

Andreas Abel (GU) Type Theory EAFIT 2017 3 /55

Constructivism

Brouwer-Heyting-Kolmogorov Interpretation

Characterizing canonical proofs.
@ A proof of AA B is a pair of a proof of A and a proof of B.

@ A proof of AV B is a proof of A or a proof of B, plus a bit indicating
which of the two.

A proof of A = B is an algorithm computing a proof of B given a
proof of A.

No canonical proof of L exists (consistency!).

A proof of —A is a proof of A= .

A proof of Vx.A(x) is an algorithm computing a proof of A(t) given
any object t.

A proof of Ix.A(x) is a pair of a witness t and a proof of A(t).

Andreas Abel (GU) Type Theory EAFIT 2017 4 /55

Constructivism

A Non-Constructive Proof

Theorem
There are irrational numbers r,s € R such that r° is rational.

Proof.

o Case \@ﬂ is rational. Then r = s = /2.

o Case \@ﬁ is irrational. Then r = \@ﬁ and s = /2, since
= (\@ﬁ)ﬁ = \@ﬁﬁ = \@2 = 2 is rational.

Quiz: Please give me irrational numbers r, s such that r® is rationall

Andreas Abel (GU) Type Theory EAFIT 2017 5/ 55

Constructivism

Another Non-Constructive Proof!?

Theorem (Euclid)

There are infinitely many primes.

Proof.

Assume there were only finitely many primes p1, ..., p,.

Let g=p1-p2--- - pn+ 1. Then g is relatively prime to p1,..., p,.

But every number has a prime factor decomposition. Contradiction! O

Quiz: Please give me an infinite list of primes!

Andreas Abel (GU) Type Theory EAFIT 2017 6 /55

Constructivism

Euclid's Proof

Theorem (Euclid)

There are infinitely many primes.

Proof by Euclid.

We show that any finite list of primes p1, ..., p, can be extended by one
more prime which is not yet in the list. Let g =p1-po----- p, + 1.

o Case g is prime. Then p,.1 := g is a new prime.

o Case g is not prime. Then g has a prime factor r | g for some
1 < r < q. If r was already in the list, then r | (g — 1) which is
impossible. Thus, p,1 := r is a new prime.

Quiz: Please give me an infinite list of primes!
Type Theory EAFIT 2017 7 /55

Natural Deduction

Propositional logic

e Formulae
P,Q
AB,C:=P
|A= B
|ANB|T
|AVB| L

atomic proposition

implication
conjunction, truth
disjunction, absurdity

e Formula = (binary) abstract syntax tree

@ Subformula = subtree

@ Principal connective = root label

Andreas Abel (GU) Type Theory

EAFIT 2017

8 / 55

Natural Deduction

Well-formedness vs. truth

o Let
SH := “Socrates is a human”

FL := "“Socrates has four legs”

@ Implication SH = FL is well-formed.

@ Implication SH = FL is not necessarily true ;-).
SH = FL true

is a judgement which requires proof

Andreas Abel (GU) Type Theory EAFIT 2017

9 /55

\EYOTEI BTGl Judgements and derivations

Judgements and derivations

@ Propositional logic has a single judgement form A true.
o J refers to a judgement.
@ Inference rules have form
S dy
,
J
@ Derivation (trees):
J3 Ja J5
—n r2
J1 J2
ro
Jo

J
@ Dy :: Jg with Dy = (t ry (r3 ,D4,D5))
e ERET

10 / 55

Natural Deduction Introduction and elimination

Introduction and elimination

@ Introduction rules: composing information

A true B true
AN B true

e Elimination rules: retrieving/using information

AN B true AN B true
A true B true

@ Orthogonality: define meaning of logical connective (e.g.)
independently of other connectives (e.g. =).

Andreas Abel (GU) Type Theory EAFIT 2017

11 / 55

Natural Deduction Introduction and elimination

Local soundness

@ Introductions followed immediately by eliminations are a removable

detour.
D1 D>
A true B true Dy
AN —p Atrue
AN B true
— NEq
A true
D1 D>
A true B true D,
Al —g B true
AN B true
— ANE>
B true

o Otherwise, an elimination rule is too strong (unsound).
o Exercise: Give a unsound, too strong NE-rule.

Andreas Abel (GU) Type Theory EAFIT 2017

12 / 55

Natural Deduction Introduction and elimination

Local completeness

@ Reconstruct a judgement by introduction from parts obtained by

elimination.
D D
D AN B true AN B true
ANB true —, - —————— =1 — ABE»
A true B true
Al
AN B true

@ Otherwise, elimination rules are too weak (incomplete).

e Exercise: Give a set of NE-rules which is incomplete.

Andreas Abel (GU) Type Theory EAFIT 2017 13 / 55

Natural Deduction Introduction and elimination

Truth

Introduction of trivial proposition T:

— Tl
T true

No information to obtain by elimination!

No [-reduction.

7-expansion:

T true — - m

Andreas Abel (GU) Type Theory EAFIT 2017

14 / 55

bnetcuelliudeo e
Proving an implication

e How to prove (AA B) = (B A A) true?
o First, construct an open derivation:

AN B true AN B true

B true A true

B A A true

@ Then, close by discharging the hypothesis x :: AA B true:

—_ X e
AN B true AN B true

B true A true

B A A true
(AAB) = (BAA) true

|x

Andreas Abel (GU) Type Theory EAFIT 2017

15 / 55

Natural Deduction Hypothetical judgements

Rules for implication

@ Elimination = modus ponens

A = B true A true
B true

=E

@ Introduction = internalizing a meta-implication (hypothetical
judgement)

X
A true

B true
— =
A = B true

o Exercise: How many different derivations of A = (A = A) true exist?

Andreas Abel (GU) Type Theory EAFIT 2017 16 / 55

Natural Deduction Hypothetical judgements

Substitution

@ [-reduction replaces hypothesis x by derivation D:

X
A true
- E
B frue
— =i D
A = B true A true
=E
B true
@ More precise notation:
- E[D/A]
B t;rue

Andreas Abel (GU)

Type Theory

—>ﬁ

A true

B true

EAFIT 2017

17 / 55

Natural Deduction Hypothetical judgements

Local completeness for implication

@ 7-expansion

D X
D A = B true A true
A = B true — - =E
B true
— =l
A = B true

Andreas Abel (GU) Type Theory EAFIT 2017 18 / 55

Natural Deduction Disjunction and absurdity

Disjunction

@ Introduction: choosing an alternative

A true vi B true vl
AV B true ! AV B true 2

o Elimination: case distinction

A true B true
AV B true C true C true
VEx,,
C true
EAFIT 2017

Andreas Abel (GU) Type Theory

19 / 55

Natural Deduction Disjunction and absurdity

Disjunction: local soundness

X y
A true B true
D . .
- & - &
A true 1 : B
———] : .
AV B true C true C true
\/EX7y
C true
X
A true B true
D . .
- & - &
B true e : —3
— Vi . .
AV B true C true C true
VExy
C true
Type Theory

&1[D/x]

C true

&[D)y]

C true

EAFIT 2017

20 / 55

Natural Deduction Disjunction and absurdity

Disjunction: local completeness

Introduction happens in branches of elimination:

X y
D D A true I B true I
AV Bt _ Vi Vio
v ey AV B true AV B true AV B true
\/Ex’y
AV B true

Andreas Abel (GU) Type Theory EAFIT 2017 21 /55

Natural Deduction Disjunction and absurdity

Absurdity and negation

No introduction (phew!), strongest elimination:

1 true
C true

Only global soundness (consistency).

Negation is definable:

-A=A= 1

So is logical equivalence:

A< B=(A= B)A(B=A)

Andreas Abel (GU) Type Theory EAFIT 2017

22 / 55

Natural Deduction Disjunction and absurdity

Summary: Natural Deduction for Propositional Logic |

Implication.
X
A true
: A = B true A true
. =E
B true B true
— =
A = B true
Conjunction and truth.
A true B true N AN B true N AN B true E
AN B true A true ! B true 2
TI no TE
T true

Andreas Abel (GU) Type Theory EAFIT 2017 23 /55

Natural Deduction Disjunction and absurdity

Summary: Natural Deduction for Propositional Logic I

Disjunction and absurdity.

A true Vi B true y
AV B true ! AV B true

X

y
A true B true
AV B true C t.rue C t.rue
VEx,y

C true

1 true
no LI 1E

C true

Andreas Abel (GU) Type Theory EAFIT 2017 24 / 55

Natural Deduction Classical Logic

Classical logic

@ We can regain classical reasoning by adding one more rule to the
natural deduction calculus.
@ There are 4 standard rules to choose from:

@ Excluded middle (EM): AV —A.

@ Reductio ad absurdum (RAA): (A= 1) = A

© Reductio ad absurdum, variant (RAA’): (A = A) = A.
Q Pierce’s law: ((A= B) = A) = A

@ Any of these destroys the disjunction property.

@ All of them are logically equivalent.

Andreas Abel (GU) Type Theory EAFIT 2017 25 / 55

Natural Deduction Classical Logic

Excluded middle

AV —A true
EM

@ Introduces a disjunction without explaining the choice.

@ At any point in a proof, we can make a case distinction, whether a
formula A or its negation —A holds.

Andreas Abel (GU) Type Theory EAFIT 2017 26 / 55

Natural Deduction Classical Logic

Reductio ad absurdum

— X
—A true

1 true

A true

@ This enables proof by contradition.

@ To show A, we assume its opposite —A and derive a contradiction.

Andreas Abel (GU) Type Theory EAFIT 2017 27 / 55

Natural Deduction Classical Logic

Reductio ad absurdum (variant)

— X
—A true
A frue

RAA;
A true

@ This a variation proof by contradition.

@ To show A, we may always assume its opposite —A.

Andreas Abel (GU) Type Theory EAFIT 2017

28 / 55

Natural Deduction Classical Logic

Pierce's law

—_— X
A = B true

A true

Pierce,
A true
This is another variant of proof by contradition.
To show A, we may assume that A implies an arbitrary formula B.
In RAA', formula B is fixed to absurdity L.

(Of course, L implies any other formula.)

Pierce's law adds classical reasoning without reference to absurdity L
or negation.

Andreas Abel (GU) Type Theory EAFIT 2017 29 / 55

Natural Deduction Classical Logic

Proof by contradiction

@ Proof by contradiction is abundant in mathematical proofs.
@ Often direct, constructive proofs would be possible.
@ "Proof by contradiction” for negative statements is just =I:

To show —A, we assume A and prove a contradiction.
@ Sometimes we find this instance of a “proof by contradiction”.
X D

—A true A true
=E

1 true

A true

Andreas Abel (GU) Type Theory EAFIT 2017

30 / 55

Natural Deduction Classical Logic

A proof by contradiction?

Theorem
Let a,b,c >0 and a° + b*> = . Thena+ b > c.

In any non-degenerate right triangle the hypothenuse is shorter
than the sum of the catheti.

Proof https://en.wikipedia.org/wiki/Proof_by_contradiction.

Assume a+ b < c. Then (a+ b)? = a® + 2ab + b? < c?, thus, 2ab < 0.
This contradicts a, b > 0. O

Exercise: give a direct proof!

Andreas Abel (GU) Type Theory EAFIT 2017 31 /55

https://en.wikipedia.org/wiki/Proof_by_contradiction

Natural Deduction Natural deduction with explicit hypotheses

Careful with discharging!

@ Consider this derivation:

@ Does it prove (A= A) = (A= A)) = A true?

X
A true
f =1y
(A= A)= (A= A) true A= Atrue
=E X
A= A true A true
=E
A true
:>|f
(A= A)= (A= A)) = Atrue
EAFIT 2017

Andreas Abel (GU) Type Theory

32 /55

Natural Deduction Natural deduction with explicit hypotheses

Explicit hypotheses

@ Explicitly hypothetical judgement:

A1 true, ..., A, true E C true

@ New rule (with I': list of hypotheses)

Atrue €T H
I+ A true Yp
@ Implication rules
I, Atrue = B true A= B true [+ A true
=1 =E
A= B true I+ B true

o Exercise: adapt the remaining rules to explicit hypotheses!

Andreas Abel (GU) Type Theory EAFIT 2017 33 /55

Simply-typed Lambda-Calculus

Origins of lambda calculus

@ Haskell Curry: untyped lambda-calculus as logical foundation
(inconsistent)

@ Alonzo Church: Simple Theory of Types (1936)

o Today: basis of functional programming languages

Andreas Abel (GU) Type Theory EAFIT 2017 34 / 55

Simply-typed Lambda-Calculus

Untyped lambda-calculus

@ Lambda-calculus with tuples and variants:

X,¥,2 variables

r,s,t t=x|Ax.t|rs pure lambda-calculus
| (s, t) |fstr|sndr pairs and projections
| inlt|inrt injections
| caser of inlx = s | inry =t case distinction
| () empty tuple
| abort r exception

@ Free variables:
FV(x) = {x}
FV(Ax.t) = FV(t)\ {x}
FV(rs) = FV(r)UFV(s)

e Exercise: Complete the definition of FV!
Type Theory EAFIT 2017 35 /55

Simply-typed Lambda-Calculus

Substitution and renaming

e t[s/x| substitutes s for any free occurrence of x in t:

x[s/x] = s
yls/x] =y if x £y
(tt)ls/x] = (t[s/x]) (tls/x])

(MAx.t)[s/x] = Ax.t
(\y.t)[s/x] = Ay.t[s/x] if x# yand y & FV(s)
(Ay t)s/x] = N.tly'/ylls/x] ifx#yandy €FV(xy,s,t)

@ Bound variables can be renamed (a-equivalence).

Ax.t =, M .t[x'/x] if X' & FV(t)

Andreas Abel (GU) Type Theory EAFIT 2017 36 / 55

ST IRA N EET I EREETITEM Type assignment

Simple types

@ Types rule out meaningless/stuck terms like fst (Ax.x) and
(Ay.fsty) (Ax.x).
@ Simple types:

R, S, T,U == S — T function type
| Sx T product type
| S+ T disjoint sum type
| 1 unit type

| 0

empty type

@ Context [be a finite map from variables x to types T.

Andreas Abel (GU) Type Theory EAFIT 2017 37 /55

ST IRA N EET I EREETITEM Type assignment

Type assignment

@ Judgement I -t : T “in context I', term ¢ has type T".

@ Rules for functions:

Nx)=T

M=x:T
MxSkEt: T Fr=r:S—>T MNs:S
FrMEXxt:S—T FFrs: T

@ Rules for pairs:

Ns:S Mt T FrEr:SxT Fr=r:SxT
M=(s,t):SxT M fstr:S MEsndr: T

Andreas Abel (GU) Type Theory EAFIT 2017 38 / 55

ST IRA N EET I EREETITEM Type assignment

Type assignment (ctd.)

@ Rules for variants:

N+s:S Fr=t: T
M~inls: S+ T inrt: S+ T

Fr=r:S+T MxSks:U My:TkEt:U
Ntcaserofinlx=slinry =1t:U

@ Rules for unit and empty type:

M=r:0
r=(:1 [+abortr: U

Andreas Abel (GU) Type Theory EAFIT 2017 39 / 55

ST IRA N EET I EREETITEM Type assignment

Properties of typing

@ Scoping: If I =1t : T, then FV(t) C dom(I).

@ Inversion:
o If ' - Ax.t:Uthen U=S — T for some types S, T and
MxSkt:T.
o If I rs: T then there exists some type S such that ' Hr: S — T
and [Fs:S.

o Exercise: complete this list!
o Exercise: prove impossibility of T = Ax.(xx): T!

@ Substitution: If I x:S +t:Tandl Fs:Sthenl - t[s/x]: T.

Andreas Abel (GU) Type Theory EAFIT 2017 40 / 55

SINTIRAV R EET I EREETITEM Computation and normalization

Computation

@ Values of programs are computed by iterated application of these

reductions:
(Ax.t)s t[s/x]
fst (s, t) s
snd (s, t) t

s[r/x]
tlr/yl

case(inlr)of inlx = s | inry =t
case(inrr) of inlx = s | inry =t

Ll

@ Reductions can be applied deep inside a term.
e Type preservation under reduction (“subject reduction”):
If T =t:Tandt —t' thenlT -t/ :T.

Andreas Abel (GU) Type Theory EAFIT 2017 41 / 55

SINTIRAV R EET I EREETITEM Computation and normalization

Computation example

(Ap.fstp) (caseinl) of inlx = (x, x) | inry = y)
— (Ap-fstp) ((x, x)[()/x])

(Ap-fstp) (),))
— st ((),)

—

Andreas Abel (GU) Type Theory EAFIT 2017 42 / 55

SINTIRAV R EET I EREETITEM Computation and normalization
Normal forms

A term which does not reduce is in normal form.

Grammar that rules out redexes and meaningless terms:

Nf > v,w = u| Ax.v | ()| (v, w)|inlv|inrv normal form
Ne>wu u=x|uv|fstu]|sndu|abortu neutral normal form
| caseuof inlx = v | inry = w

Progress: If [=t : T then either t — t’ or t € Nf.

Type soundness:

IfT =t : T then either t reduces infinitely or there is some
v € Nf such thatt —* vandl Fv: T.

Andreas Abel (GU) Type Theory EAFIT 2017 43 / 55

SINTIRAV R EET I EREETITEM Computation and normalization
Normalization

@ Our calculus has no recursion and is terminating.

o Weak normalization:
IfT = t: T then there is some v € Nf such that t —* v.

@ Strong normalization:

IfT =t : T then any reduction sequence
t — t; —> tp —> ... starting with t is finite.

@ Proof of normalization is non-triviall

Andreas Abel (GU) Type Theory EAFIT 2017 44 / 55

SINTIRAV R EET I EREETITEM Computation and normalization

Permutation reductions
o Evaluation contexts:

E:=e|Et|fstE|sndE | (case E of inlx = s | inry = t) | abort E
o We write E[t] for E[t/e].
@ Permutation reductions (aka commuting conversions):

Elcaser of inlx = s | inry = t]
— caserof inlx = E[s] | inry = E[t]

Elabortr] — abortr

@ Normal forms wrt. 3 and permutation reductions:

Nf > v,w = u|Ax.v | ()| (v, w)|inlv|inrv normal form
| caseuofinlx=v |inry = w|abortu
Ne > u =x|uv|fstu|sndu neutral normal form

Andreas Abel (GU) Type Theory EAFIT 2017 45 / 55

SINTIRAV R EET I EREETITEM Computation and normalization

Bidirectional Typing of Normal Forms |

FrM-veT in context I', normal form v checks against type T
FrM-u=T the type neutral normal form u is inferred to be T

MxSkFveT Fr-ve$s FrM-weT
NXxveS—T FE(v,w)&=SxT
Frve S MrMveT

r-()e=1 TrFinlveS+T TrFinmveS+T

ru=T
TFueT

Andreas Abel (GU) Type Theory EAFIT 2017 46 / 55

SINTIRAV R EET I EREETITEM Computation and normalization

Bidirectional Typing of Normal Forms |

Nx)=T NM-u=5S—-T r-ves$s
Ne=x=T uv=T

FrM~uv=8SxT FrM~u=8xT
M=fstu=3S Fsndu=T

FrM~u=585+T MxSkFveU Ny:TFwe U
Ntcasevofinlx=v |inry=we=U

Fr~u=0~0
' +abortue= U

Andreas Abel (GU) Type Theory EAFIT 2017 47 / 55

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism

@ H. Curry & W. A. Howard and N. de Bruijn

@ Propositional formula correspond to simple types.

Proposition Type
A= B S—T
AANB SxT
AV B S+T

T 1
€ 0

Andreas Abel (GU) Type Theory EAFIT 2017 48 / 55

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism (ctd.)

@ Inference rules correspond to terms.

Derivation Term
=1,(D) Ax.t
:>E(D1,D2) ty to
/\|(D1,D2) <t1, t2>
NE1(D) fstt
NE2(D) snd t
VI1(D) inl ¢
VI2(D) inrt
VEx,y (D1, D2, D3) casety of inlx =t | inry = t3
T 0
1E(D) abort t

@ Proof reduction corresponds to computation.

Andreas Abel (GU) Type Theory EAFIT 2017 49 / 55

The Curry-Howard Isomorphism

Proof terms

@ Judgement ' = M : A "in context I, term M proves A".
@ Rules for hypotheses and implication:

MNxAFM:B

|
r-wM:-AsB

@ Rules for conjuction:

r-mM:A IT-N:B

r(x):Ah

Frex-A P

(-M:A=B TEN:A
F-MN:B =

FEM:AAB F-M:AAB

[(M, N):AAB

Andreas Abel (GU)

E, — " " AE
FEfsem A Y TEesndM: B 52

Type Theory EAFIT 2017 50 / 55

The Curry-Howard Isomorphism

Proof terms (ctd.)

@ Rules for disjunction:

Fr=M:A Fr=M:B

| |
FEmlM-AvB 'Y TrmM.AvEB 2

Fr-M:AvB MxAEN:C My BFO:C
caseMof inlx= N |inry=0:C

@ Rules for truth and absurdity:

T r=m™m: L LE
r=(O:T [+ abort M: C

Andreas Abel (GU) Type Theory EAFIT 2017 51 / 55

Normalization implies consistency

Theorem (Consistency of propositional logic)

There is no derivation of = L true.

Proof.

Suppose D ::+ L true. By Curry-Howard, there exists a closed term

=t : 0 of the empty type. By Normalization, there exists a closed normal
form v € Nf of the empty type - v : 0. By Inversion, this can only be a
neutral term v € Ne. Every neutral term has at least one free variable.

This is a contradiction to the closedness of v. O,

Andreas Abel (GU) Type Theory EAFIT 2017 52 / 55

The Curry-Howard Isomorphism

Normalization implies the disjunction property

Theorem (Disjunction property)
If = AV B true then &+ A true or = B true.

Proof.

Again, by Curry-Howard, Normalization, and Inversion.

Andreas Abel (GU) Type Theory EAFIT 2017

53 / 55

The Curry-Howard Isomorphism

Conclusion

@ The Curry-Howard Isomorphism unifies programming and proving into
one language (A-calculus).

@ Inspired Martin-Lof Type Theory and its implementations, e.g. Coq

and Agda.
@ Provides cross-fertilization between Logic and Programming Language
Theory.
Type Theory EAFIT 2017 54 / 55

The Curry-Howard Isomorphism

References

[Alonzo Church.
A formulation of the simple theory of types.
JSL, 5(2):56-68, 1940.

[3 Gerhard Gentzen.
Untersuchungen {iber das logische SchlieBen.
Mathematische Zeitschrift, 39:176—210, 405-431, 1935.

A William A. Howard.
Ordinal analysis of terms of finite type.
JSL, 45(3):493-504, 1980.

[@ Frank Pfenning.
Lecture notes on natural deduction.
Course CMU 15317: Constructive Logic, 20009.

Andreas Abel (GU) Type Theory EAFIT 2017 55 / 55

	Constructivism
	Natural Deduction
	Judgements and derivations
	Introduction and elimination
	Hypothetical judgements
	Disjunction and absurdity
	Classical Logic
	Natural deduction with explicit hypotheses

	Simply-typed Lambda-Calculus
	Type assignment
	Computation and normalization

	The Curry-Howard Isomorphism

