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Constructivism

Constructivism

Brouwer's intuitionism in opposition to Hilbert's formalism

Constructive logic vs. classical logic

Disjunction property
If the disjunction AV B is provable, then either A is provable
or B is provable.

Drop principle of excluded middle AV —A
Propositions A with AV —A are called decidable

Existence property

A proof of the existential statement 3x. A(x) includes an
algorithm to compute a witness t with A(t).
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Constructivism

Brouwer-Heyting-Kolmogorov Interpretation

Characterizing canonical proofs.
@ A proof of AA B is a pair of a proof of A and a proof of B.

@ A proof of AV B is a proof of A or a proof of B, plus a bit indicating
which of the two.

A proof of A = B is an algorithm computing a proof of B given a
proof of A.

No canonical proof of L exists (consistency!).

A proof of —A is a proof of A= .

A proof of Vx.A(x) is an algorithm computing a proof of A(t) given
any object t.

A proof of Ix.A(x) is a pair of a witness t and a proof of A(t).
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Constructivism

A Non-Constructive Proof

Theorem
There are irrational numbers r,s € R such that r° is rational.

Proof.

o Case \@ﬂ is rational. Then r = s = /2.

o Case \@ﬁ is irrational. Then r = \@ﬁ and s = /2, since
= (\@ﬁ)ﬁ = \@ﬁﬁ = \@2 = 2 is rational.

Quiz: Please give me irrational numbers r, s such that r® is rationall
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Constructivism

Another Non-Constructive Proof!?

Theorem (Euclid)

There are infinitely many primes.

Proof.

Assume there were only finitely many primes p1, ..., p,.

Let g=p1-p2--- - pn+ 1. Then g is relatively prime to p1,..., p,.

But every number has a prime factor decomposition. Contradiction! O

Quiz: Please give me an infinite list of primes!
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Constructivism

Euclid's Proof

Theorem (Euclid)

There are infinitely many primes.

Proof by Euclid.

We show that any finite list of primes p1, ..., p, can be extended by one
more prime which is not yet in the list. Let g =p1-po----- p, + 1.

o Case g is prime. Then p,.1 := g is a new prime.

o Case g is not prime. Then g has a prime factor r | g for some
1 < r < q. If r was already in the list, then r | (g — 1) which is
impossible. Thus, p,1 := r is a new prime.

Quiz: Please give me an infinite list of primes!
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Natural Deduction

Propositional logic

e Formulae
P,Q
AB,C:=P
|A= B
|ANB|T
|AVB| L

atomic proposition

implication
conjunction, truth
disjunction, absurdity

e Formula = (binary) abstract syntax tree

@ Subformula = subtree

@ Principal connective = root label
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Natural Deduction

Well-formedness vs. truth

o Let
SH := “Socrates is a human”

FL := "“Socrates has four legs”

@ Implication SH = FL is well-formed.

@ Implication SH = FL is not necessarily true ;-).
SH = FL true

is a judgement which requires proof
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\EYOTEI BTGl Judgements and derivations

Judgements and derivations

@ Propositional logic has a single judgement form A true.
o J refers to a judgement.
@ Inference rules have form
S dy
,
J
@ Derivation (trees):
J3 Ja J5
—n r2
J1 J2
ro
Jo

J
@ Dy :: Jg with Dy = ( t ry (r3 ,D4,D5))
e ERET
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Natural Deduction Introduction and elimination

Introduction and elimination

@ Introduction rules: composing information

A true B true
AN B true

e Elimination rules: retrieving/using information

AN B true AN B true
A true B true

@ Orthogonality: define meaning of logical connective (e.g. )
independently of other connectives (e.g. =).
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Natural Deduction Introduction and elimination

Local soundness

@ Introductions followed immediately by eliminations are a removable

detour.
D1 D>
A true B true Dy
AN —p  Atrue
AN B true
— NEq
A true
D1 D>
A true B true D,
Al —g B true
AN B true
— ANE>
B true

o Otherwise, an elimination rule is too strong (unsound).
o Exercise: Give a unsound, too strong NE-rule.
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Natural Deduction Introduction and elimination

Local completeness

@ Reconstruct a judgement by introduction from parts obtained by

elimination.
D D
D AN B true AN B true
ANB true  —, - —————— =1 — ABE»
A true B true
Al
AN B true

@ Otherwise, elimination rules are too weak (incomplete).

e Exercise: Give a set of NE-rules which is incomplete.
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Natural Deduction Introduction and elimination

Truth

Introduction of trivial proposition T:

— Tl
T true

No information to obtain by elimination!

No [-reduction.

7-expansion:

T true — - m
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bnetcuelliudeo e
Proving an implication

e How to prove (AA B) = (B A A) true?
o First, construct an open derivation:

AN B true AN B true

B true A true

B A A true

@ Then, close by discharging the hypothesis x :: AA B true:

—_ X e
AN B true AN B true

B true A true

B A A true
(AAB) = (BAA) true

|x
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Natural Deduction Hypothetical judgements

Rules for implication

@ Elimination = modus ponens

A = B true A true
B true

=E

@ Introduction = internalizing a meta-implication (hypothetical
judgement)

X
A true

B true
— =
A = B true

o Exercise: How many different derivations of A = (A = A) true exist?
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Natural Deduction Hypothetical judgements

Substitution

@ [-reduction replaces hypothesis x by derivation D:

X
A true
- E
B frue
— =i D
A = B true A true
=E
B true
@ More precise notation:
- E[D/A]
B t;rue

Andreas Abel (GU)
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Natural Deduction Hypothetical judgements

Local completeness for implication

@ 7-expansion

D X
D A = B true A true
A = B true — - =E
B true
— =l
A = B true
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Natural Deduction Disjunction and absurdity

Disjunction

@ Introduction: choosing an alternative

A true vi B true vl
AV B true ! AV B true 2

o Elimination: case distinction

A true B true
AV B true C true C true
VEx,,
C true
EAFIT 2017
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Natural Deduction Disjunction and absurdity

Disjunction: local soundness

X y
A true B true
D . .
- & - &
A true 1 : B
———] : .
AV B true C true C true
\/EX7y
C true
X
A true B true
D . .
- & - &
B true e : —3
— Vi . .
AV B true C true C true
VExy
C true
Type Theory

&1[D/x]

C true

&[D)y]

C true
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Natural Deduction Disjunction and absurdity

Disjunction: local completeness

Introduction happens in branches of elimination:

X y
D D A true I B true I
AV Bt _ Vi Vio
v ey AV B true AV B true AV B true
\/Ex’y
AV B true
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Natural Deduction Disjunction and absurdity

Absurdity and negation

No introduction (phew!), strongest elimination:

1 true
C true

Only global soundness (consistency).

Negation is definable:

-A=A= 1

So is logical equivalence:

A< B=(A= B)A(B=A)
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Natural Deduction Disjunction and absurdity

Summary: Natural Deduction for Propositional Logic |

Implication.
X
A true
: A = B true A true
. =E
B true B true
— =
A = B true
Conjunction and truth.
A true B true N AN B true N AN B true E
AN B true A true ! B true 2
TI no TE
T true
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Natural Deduction Disjunction and absurdity

Summary: Natural Deduction for Propositional Logic I

Disjunction and absurdity.

A true Vi B true y
AV B true ! AV B true

X

y
A true B true
AV B true C t.rue C t.rue
VEx,y

C true

1 true
no LI 1E

C true
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Natural Deduction Classical Logic

Classical logic

@ We can regain classical reasoning by adding one more rule to the
natural deduction calculus.
@ There are 4 standard rules to choose from:

@ Excluded middle (EM): AV —A.

@ Reductio ad absurdum (RAA): (A= 1) = A

© Reductio ad absurdum, variant (RAA’): (A = A) = A.
Q Pierce’s law: ((A= B) = A) = A

@ Any of these destroys the disjunction property.

@ All of them are logically equivalent.
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Natural Deduction Classical Logic

Excluded middle

AV —A true
EM

@ Introduces a disjunction without explaining the choice.

@ At any point in a proof, we can make a case distinction, whether a
formula A or its negation —A holds.

Andreas Abel (GU) Type Theory EAFIT 2017 26 / 55



Natural Deduction Classical Logic

Reductio ad absurdum

— X
—A true

1 true

A true

@ This enables proof by contradition.

@ To show A, we assume its opposite —A and derive a contradiction.
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Natural Deduction Classical Logic

Reductio ad absurdum (variant)

— X
—A true
A frue

RAA;
A true

@ This a variation proof by contradition.

@ To show A, we may always assume its opposite —A.
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Natural Deduction Classical Logic

Pierce's law

—_— X
A = B true

A true

Pierce,
A true
This is another variant of proof by contradition.
To show A, we may assume that A implies an arbitrary formula B.
In RAA', formula B is fixed to absurdity L.

(Of course, L implies any other formula.)

Pierce's law adds classical reasoning without reference to absurdity L
or negation.

Andreas Abel (GU) Type Theory EAFIT 2017 29 / 55



Natural Deduction Classical Logic

Proof by contradiction

@ Proof by contradiction is abundant in mathematical proofs.
@ Often direct, constructive proofs would be possible.
@ "Proof by contradiction” for negative statements is just =I:

To show —A, we assume A and prove a contradiction.
@ Sometimes we find this instance of a “proof by contradiction”.
X D

—A true A true
=E

1 true

A true
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Natural Deduction Classical Logic

A proof by contradiction?

Theorem
Let a,b,c >0 and a° + b*> = . Thena+ b > c.

In any non-degenerate right triangle the hypothenuse is shorter
than the sum of the catheti.

Proof https://en.wikipedia.org/wiki/Proof_by_contradiction.

Assume a+ b < c. Then (a+ b)? = a® + 2ab + b? < c?, thus, 2ab < 0.
This contradicts a, b > 0. O

Exercise: give a direct proof!
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Natural Deduction Natural deduction with explicit hypotheses

Careful with discharging!

@ Consider this derivation:

@ Does it prove (A= A) = (A= A)) = A true?

X
A true
f =1y
(A= A)= (A= A) true A= Atrue
=E X
A= A true A true
=E
A true
:>|f
(A= A)= (A= A)) = Atrue
EAFIT 2017
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Natural Deduction Natural deduction with explicit hypotheses

Explicit hypotheses

@ Explicitly hypothetical judgement:

A1 true, ..., A, true E C true

@ New rule (with I': list of hypotheses)

Atrue €T H
I+ A true Yp
@ Implication rules
I, Atrue = B true A= B true [+ A true
=1 =E
A= B true I+ B true

o Exercise: adapt the remaining rules to explicit hypotheses!

Andreas Abel (GU) Type Theory EAFIT 2017 33 /55



Simply-typed Lambda-Calculus

Origins of lambda calculus

@ Haskell Curry: untyped lambda-calculus as logical foundation
(inconsistent)

@ Alonzo Church: Simple Theory of Types (1936)

o Today: basis of functional programming languages
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Simply-typed Lambda-Calculus

Untyped lambda-calculus

@ Lambda-calculus with tuples and variants:

X,¥,2 variables

r,s,t t=x|Ax.t|rs pure lambda-calculus
| (s, t) |fstr|sndr pairs and projections
| inlt|inrt injections
| caser of inlx = s | inry =t case distinction
| () empty tuple
| abort r exception

@ Free variables:
FV(x) = {x}
FV(Ax.t) = FV(t)\ {x}
FV(rs) = FV(r)UFV(s)

e Exercise: Complete the definition of FV!
Type Theory EAFIT 2017 35 /55



Simply-typed Lambda-Calculus

Substitution and renaming

e t[s/x| substitutes s for any free occurrence of x in t:

x[s/x] = s
yls/x] =y if x £y
(tt)ls/x] = (t[s/x]) (tls/x])

(MAx.t)[s/x] = Ax.t
(\y.t)[s/x] = Ay.t[s/x] if x# yand y & FV(s)
(Ay t)s/x] = N.tly'/ylls/x] ifx#yandy €FV(xy,s,t)

@ Bound variables can be renamed (a-equivalence).

Ax.t =, M .t[x'/x] if X' & FV(t)
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ST IRA N EET I EREETITEM Type assignment

Simple types

@ Types rule out meaningless/stuck terms like fst (Ax.x) and
(Ay.fsty) (Ax.x).
@ Simple types:

R, S, T,U == S — T function type
| Sx T product type
| S+ T disjoint sum type
| 1 unit type

| 0

empty type

@ Context [ be a finite map from variables x to types T.
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ST IRA N EET I EREETITEM Type assignment

Type assignment

@ Judgement I -t : T “in context I', term ¢ has type T".

@ Rules for functions:

Nx)=T

M=x:T
MxSkEt: T Fr=r:S—>T MNs:S
FrMEXxt:S—T FFrs: T

@ Rules for pairs:

Ns:S Mt T FrEr:SxT Fr=r:SxT
M=(s,t):SxT M fstr:S MEsndr: T
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ST IRA N EET I EREETITEM Type assignment

Type assignment (ctd.)

@ Rules for variants:

N+s:S Fr=t: T
M~inls: S+ T inrt: S+ T

Fr=r:S+T MxSks:U My:TkEt:U
Ntcaserofinlx=slinry =1t:U

@ Rules for unit and empty type:

M=r:0
r=(:1 [ +abortr: U
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ST IRA N EET I EREETITEM Type assignment

Properties of typing

@ Scoping: If I =1t : T, then FV(t) C dom(I).

@ Inversion:
o If ' - Ax.t:Uthen U=S — T for some types S, T and
MxSkt:T.
o If I rs: T then there exists some type S such that ' Hr: S — T
and [ Fs:S.

o Exercise: complete this list!
o Exercise: prove impossibility of T = Ax.(xx): T!

@ Substitution: If I x:S +t:Tandl Fs:Sthenl - t[s/x]: T.
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SINTIRAV R EET I EREETITEM Computation and normalization

Computation

@ Values of programs are computed by iterated application of these

reductions:
(Ax.t)s t[s/x]
fst (s, t) s
snd (s, t) t

s[r/x]
tlr/yl

case(inlr)of inlx = s | inry =t
case(inrr) of inlx = s | inry =t

Ll

@ Reductions can be applied deep inside a term.
e Type preservation under reduction (“subject reduction”):
If T =t:Tandt —t' thenlT -t/ :T.
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SINTIRAV R EET I EREETITEM Computation and normalization

Computation example

(Ap.fstp) (caseinl ) of inlx = (x, x) | inry = y)
— (Ap-fstp) ((x, x)[()/x])

(Ap-fstp) (), ))
— st ((), )

—
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SINTIRAV R EET I EREETITEM Computation and normalization
Normal forms

A term which does not reduce is in normal form.

Grammar that rules out redexes and meaningless terms:

Nf > v,w = u| Ax.v | ()| (v, w)|inlv|inrv normal form
Ne>wu u=x|uv|fstu]|sndu|abortu neutral normal form
| caseuof inlx = v | inry = w

Progress: If [ =t : T then either t — t’ or t € Nf.

Type soundness:

IfT =t : T then either t reduces infinitely or there is some
v € Nf such thatt —* vandl Fv: T.
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SINTIRAV R EET I EREETITEM Computation and normalization
Normalization

@ Our calculus has no recursion and is terminating.

o Weak normalization:
IfT = t: T then there is some v € Nf such that t —* v.

@ Strong normalization:

IfT =t : T then any reduction sequence
t — t; —> tp —> ... starting with t is finite.

@ Proof of normalization is non-triviall
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SINTIRAV R EET I EREETITEM Computation and normalization

Permutation reductions
o Evaluation contexts:

E:=e|Et|fstE|sndE | (case E of inlx = s | inry = t) | abort E
o We write E[t] for E[t/e].
@ Permutation reductions (aka commuting conversions):

Elcaser of inlx = s | inry = t]
— caserof inlx = E[s] | inry = E[t]

Elabortr] — abortr

@ Normal forms wrt. 3 and permutation reductions:

Nf > v,w = u|Ax.v | ()| (v, w)|inlv|inrv normal form
| caseuofinlx=v |inry = w|abortu
Ne > u =x|uv|fstu|sndu neutral normal form
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SINTIRAV R EET I EREETITEM Computation and normalization

Bidirectional Typing of Normal Forms |

FrM-veT in context I', normal form v checks against type T
FrM-u=T the type neutral normal form u is inferred to be T

MxSkFveT Fr-ve$s FrM-weT
NXxveS—T FE(v,w)&=SxT
Frve S MrMveT

r-()e=1 TrFinlveS+T TrFinmveS+T

ru=T
TFueT
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SINTIRAV R EET I EREETITEM Computation and normalization

Bidirectional Typing of Normal Forms |

Nx)=T NM-u=5S—-T r-ves$s
Ne=x=T uv=T

FrM~uv=8SxT FrM~u=8xT
M=fstu=3S Fsndu=T

FrM~u=585+T MxSkFveU Ny:TFwe U
Ntcasevofinlx=v |inry=we=U

Fr~u=0~0
' +abortue= U
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The Curry-Howard Isomorphism

The Curry-Howard Isomorphism

@ H. Curry & W. A. Howard and N. de Bruijn

@ Propositional formula correspond to simple types.

Proposition Type
A= B S—T
AANB SxT
AV B S+T

T 1
€ 0
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The Curry-Howard Isomorphism

The Curry-Howard Isomorphism (ctd.)

@ Inference rules correspond to terms.

Derivation Term
=1,(D) Ax.t
:>E(D1,D2) ty to
/\|(D1,D2) <t1, t2>
NE1(D) fstt
NE2(D) snd t
VI1(D) inl ¢
VI2(D) inrt
VEx,y (D1, D2, D3) casety of inlx =t | inry = t3
T 0
1E(D) abort t

@ Proof reduction corresponds to computation.
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The Curry-Howard Isomorphism

Proof terms

@ Judgement ' = M : A "in context I, term M proves A".
@ Rules for hypotheses and implication:

MNxAFM:B

|
r-wM:-AsB

@ Rules for conjuction:

r-mM:A IT-N:B

r(x):Ah

Frex-A P

(-M:A=B  TEN:A
F-MN:B =

FEM:AAB F-M:AAB

[ (M, N):AAB

Andreas Abel (GU)
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The Curry-Howard Isomorphism

Proof terms (ctd.)

@ Rules for disjunction:

Fr=M:A Fr=M:B

| |
FEmlM-AvB 'Y TrmM.AvEB 2

Fr-M:AvB MxAEN:C My BFO:C
caseMof inlx= N |inry=0:C

@ Rules for truth and absurdity:

T r=m™m: L LE
r=(O:T [+ abort M: C
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Normalization implies consistency

Theorem (Consistency of propositional logic)

There is no derivation of = L true.

Proof.

Suppose D ::+ L true. By Curry-Howard, there exists a closed term

=t : 0 of the empty type. By Normalization, there exists a closed normal
form v € Nf of the empty type - v : 0. By Inversion, this can only be a
neutral term v € Ne. Every neutral term has at least one free variable.

This is a contradiction to the closedness of v. O,
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The Curry-Howard Isomorphism

Normalization implies the disjunction property

Theorem (Disjunction property)
If = AV B true then &+ A true or = B true.

Proof.

Again, by Curry-Howard, Normalization, and Inversion.
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The Curry-Howard Isomorphism

Conclusion

@ The Curry-Howard Isomorphism unifies programming and proving into
one language (A-calculus).

@ Inspired Martin-Lof Type Theory and its implementations, e.g. Coq

and Agda.
@ Provides cross-fertilization between Logic and Programming Language
Theory.
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The Curry-Howard Isomorphism
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