Type Theory
Coinduction in Type Theory

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Type Theory — Course CM0859 (2017-1)
Universidad EAFIT, Medellin, Colombia
6-10 March 2017

Andreas Abel (GU) Type Theory EAFIT 2017 1/ 34

Coinduction

@ Coinduction is a technique to, e. g.:
o Define infinitely running processes.
o Define infinitely deep derivations.
e Prove properties about processes and infinite derivations.

A coinductive definition must be productive, i.e., always produce a
new piece of the output after finite time.

Agda recently supports coinduction via copatterns and sized types.

Agda's termination checker also checks productivity.

This talk: coinduction for the example of formal languages.

Andreas Abel (GU) Type Theory EAFIT 2017 2 /34

Contents

@ Formal Languages

© Coinductive Types and Copatterns
© Bisimilarity

@ Sized Coinductive Types

© Conclusions

Andreas Abel (GU) Type Theory EAFIT 2017 3/34

Formal Languages

Formal Languages

(]

A language is a set of strings over some alphabet A.

Real life examples:
o Orthographically and grammatically correct English texts (infinite set).
o Orthographically correct English texts (even bigger set).
o List of university employees plus their phone extension.
AbelAndreas1731,CoquandThierry1030,DybjerPeter1035, . ..

Programming language examples:

o The set of grammatically correct JAVA programs.
e The set of decimal numbers.
o The set of well-formed string literals.

Languages can describe protocols, e.g. file access.
o A={o,r,w,c} (open, read, write, close)
e Read-only access: orc, oc, orrrc, orcorrrcoc, . ..
o lllegal sequences: c, rr, orr, oco, ...

Andreas Abel (GU) Type Theory EAFIT 2017 4 /34

Formal Languages

Running Example: Even binary numbers

Even binary numbers: 0, 10, 100, 110, 1000, 1010, ...
Excluded: 00, 010 (non-canonical); 1, 11 (odd) ...
Alphabet A = {a, b} where a is zero and b is one.

So E = {a, ba, baa, bba, baaa, baba, . .. }.

Andreas Abel (GU) Type Theory EAFIT 2017 5/ 34

Formal Languages

Tries

An infinite trie is a node-labeled A-branching tree.
l.e., each node has one branch for each letter a € A.

A language can be represented by an infinite trie.

To check whether word a; - - - a, is in the language:

o We start at the root.

o At step /i, we choose branch a;.

o At the final node, the label tells us whether the word is in the language
or not.

Andreas Abel (GU) Type Theory EAFIT 2017 6 /34

Trie of E

Andreas Abel (GU) Type Theory EAFIT 2017 7/ 34

Formal Languages

Regular Languages

@ A trie is regular if it has only finitely many different subtrees.

@ Each node of the trie corresponds to one of these languages:

E

V4
N
£
0

Andreas Abel (GU)

even binary numbers
strings ending in a
strings not ending in b
the empty string

nothing (empty language)

Type Theory EAFIT 2017

8 /34

Formal Languages

Andreas Abel (G

Type Theory EAFIT 2017 9/ 34

Formal Languages

Cutting duplications at depth 3

Andreas Abel (GU) Type Theory EAFIT 2017 10 / 34

Bending branches . ..

Andreas Abel (GU) Type Theory EAFIT 2017 11 / 34

Formal Languages

Finite Automata

@ We have arrived at a familiar object: a finite automaton.
@ Depending on what we cut, we get different automata for E.

o If we cut all duplicate subtrees, we get the minimal automaton.

Andreas Abel (GU) Type Theory EAFIT 2017

12 / 34

Formal Languages

Removing duplicate subtrees II. ..

Andreas Abel (GU) Type Theory EAFIT 2017 13 / 34

Formal Languages

Bending branches Il ...

Andreas Abel (GU) Type Theory EAFIT 2017 14 / 34

Formal Languages

Extensional Equality of Automata

o All automata for E unfold to the same trie.
@ This gives a extensional notion of automata equality:

@ Recognizing the same language.
@ l.e., unfold to the same trie.

Andreas Abel (GU) Type Theory EAFIT 2017

15 / 34

Formal Languages

Automata, Formally

@ An automaton consists of

@ A set of states S.
@ A function v : S — Bool singling out the accepting states.
© A transition function : S —+ A — S.

seS|vs|dsal dshb
E X € Z
€ V0 0
0 X| 0 0
Z X| N Z
N V| N Z

@ Language automaton

@ State = language ¢ accepted when starting from that state.
@ v{: Language (is nullable (accepts the empty word)?
© ola={w | aw € ¢}: Brzozowski derivative.

Andreas Abel (GU) Type Theory EAFIT 2017 16 / 34

Formal Languages

Differential equations

@ Language E and friends can be specified by differential equations:
e v gives the initial value.

v = false
lx = 0

vN = true
Ve = true ONa = N
dex = 0 ONb = Z
vE = false vZ = false
0Ea = ¢ 60Za = N
JEb = Z 0Zb = Z

@ For these simple forms, solutions exist always.
What is the general story?

Andreas Abel (GU) Type Theory EAFIT 2017

17 / 34

Final Coalgebras

o (Weakly) final coalgebra.

s— T S F(5)

coit f F(coit f)

vF — _ F(uF)

o Coiteration = finality witness.

force o coit f = F (coitf) o f

e Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
Type Theory EAFIT 2017 18 / 34

Streams as Final Coalgebra

e Output automaton is coalgebra (o,t) : S — A x S.
e Final coalgebra = automaton unrolling = stream: vS. A x S.

(0,t)

S AxS
coit(o,t) id x coit(o,t)
Stream A (headtall A x Stream A
@ Termination by induction on observation depth:
head (coit (0,t)s) = os
tail (coit(o,t)s) = coit(o,t)(ts)

Andreas Abel (GU) Type Theory EAFIT 2017 19 / 34

Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output™: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x (A—S)

Andreas Abel (GU) Type Theory EAFIT 2017 20 / 34

Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

(0.t)

S Bool x (A — S)
{:= coit(o,t) idx (coit{o,t) o)
(v,0)
Lang Bool x (A — Lang)
vol = o0 “nullable”
v(ls) = os
dol = (lo)ot (Brzozowski) derivative
d (fs) = Lof(ts)
d (ls)a = ((tsa)
Type Theory EAFIT 2017

21 / 34

Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang I : Lang a:A
v | : Bool 0la:Lang
e Empty language) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 . Lang

Andreas Abel (GU) Type Theory EAFIT 2017 22 /34

Coinductive Types and Copatterns

Corecursion
e Empty language () : Lang defined by corecursion:
v = false
dha = 0
e Language union k U / is pointwise disjunction:
v(kul) = vkvuvl
d(kUla = dkaUdla

@ Language composition k - | & la Brzozowski:

vik-1) = vkAvl
(L. B (6ka-NHudla ifvk
o(k-Na = { (6ka-1) otherwise

@ Not accepted because U is not a constructor.

Andreas Abel (GU) Type Theory EAFIT 2017 23 /34

Bisimilarity

Bisimilarity

e Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with
=k =k a:A ~s
vi=vk T dlazdka
e Equivalence relation via provable =refl, =Zsym, and Ztrans.
trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(Zvp)(Zvq) - vi=vk
=) (Ztranspqg)a = Ztrans(=dpa)(=dga) : dla=oma

@ Congruence for language constructions.

k = K =N

~

kUKY=(UT)

Andreas Abel (GU) Type Theory EAFIT 2017 24 / 34

Proving bisimilarity
@ Composition distributes over union.

dist : Vkim. k-(lum)=(k-1)U(k-m)

@ Proof. Observation ¢ a, case k nullable, / not nullable.
d(k-(lum))a

= |[dka-(lUm) Uo(lum)a by definition
= (5ka-/U5ka-m)‘U(5/aU5ma) by coind. hyp. (wish)
= (dka-l1Udla)U(dka-mUdma) by union laws
= d((k-1)u(k-m))a by definition

@ Formal proof attempt.

=¢ dist a = =trans (%U U

oyarded bv constructors!
Type Theory EAFIT 2017 25 / 34

@) @) d
Andreas Abel (GU)

Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

TOF(T)2FAT)2 - 2 F(T) =) F(T)

n<w

e Naming v'F = F/(T).

N F = T
v F = F(V"F)
W F = e V"F

@ Deflationary iteration.

v'F = . F(¥F)

Andreas Abel (GU) Type Theory EAFIT 2017

26 / 34

Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V'F sized coinductive type
Size< i type of ordinals below i

@ Bounded quantification Vj<i. A = (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
foVi(Vj<i.F) — v'F
fixf :Vi.viF

Andreas Abel (GU) Type Theory EAFIT 2017 27 / 34

Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang})

I Langi I Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
o(0{i}){jta = 0{} : Langj

Note j < /.

On right hand side, () : Vj</.Lang, (coinductive hypothesis).

Andreas Abel (GU) Type Theory EAFIT 2017

28 / 34

Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi I:Langi
kUl :Langi

(kU = vkVvuvl
S(kuN{jta = o0k{jtaudl{j}a

o Composition is accepted and also guardedness-preserving:

k : Langi I: Langi

k-1:Langi
v(k-1) = vkAvl
. , (0k{jta-NHudl{jta ifvk
. 1 =
Ok-1){j}a { (0k{jta-1) otherwise

Andreas Abel (GU) Type Theory EAFIT 2017

29 / 34

Sized Coinductive Types

Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A_
v =

_ :)
vi=vk 0las dka

@ Equivalence and congruence rules are guardedness preserving.

=trans o (pi k)= (g ke m) =2 m
>y (Ztransp q) = trans (Z=v p) (Zv q) c vi=vk
=) (Ztranspq)ja Strans (20 pja)(Zdqgja) : dla= oma

@ Coinductive proof of dist accepted.

=~§ dist j a = Ztrans j (=U | (dist J) | (=refl /) ...

Andreas Abel (GU) Type Theory EAFIT 2017 30/ 34

Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns [2]
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns [1]

Andreas Abel (GU) Type Theory EAFIT 2017 31/ 34

Conclusions

References |

[3 Andreas Abel and Brigitte Pientka.
Wellfounded recursion with copatterns: A unified approach to
termination and productivity.
In ICFP’13, pages 185-196. ACM, 2013.

[3] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27-38. ACM, 2013.

[3] Robin Cockett and Tom Fukushima.
About Charity.
Technical report, Department of Computer Science, The University of
Calgary, 1992.
Yellow Series Report No. 92/480/18.

Andreas Abel (GU) Type Theory EAFIT 2017 32/ 34

Conclusions

References |l

[3 Tatsuya Hagino.
A Categorical Programming Language.
PhD thesis, University of Edinburgh, 1987.

3 John Hughes, Lars Pareto, and Amr Sabry.
Proving the correctness of reactive systems using sized types.
In POPL'96, pages 410-423. ACM, 1996.

[3] Dexter Kozen and Alexandra Silva.
Practical coinduction.
MSCS, FirstView:1-21, 2016.

Andreas Abel (GU) Type Theory EAFIT 2017 33 /34

Conclusions

References ||

[§ Jorge Luis Sacchini.

Type-based productivity of stream definitions in the calculus of
constructions.

In LICS'13, pages 233-242. IEEE CS Press, 2013.
[3 Dmitriy Traytel.
Formal languages, formally and coinductively.

In FSCD'16, volume 52 of LIPIcs, pages 31:1-31:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

Andreas Abel (GU) Type Theory EAFIT 2017 34 / 34

	Formal Languages
	Coinductive Types and Copatterns
	Bisimilarity
	Sized Coinductive Types
	Conclusions

