
A Polymorphic Lambda-Calculus
with Sized Higher-Order Types

Andreas Abel

June 19, 2006

2

Contents

1 Introduction 7
1.1 Why Termination? . 8
1.2 Approaches to Termination . 9
1.3 Why Type-Based Termination Matters 10
1.4 Informal Account of Type-Based Termination 12

1.4.1 A Semantical Account of Type-Based Termination 12
1.4.2 From Semantics to Syntax 14

1.5 Contribution . 15

2 Sized Higher-Order Subtyping 19
2.1 Constructors and Polarized Kinds 19

2.1.1 Polarities . 19
2.1.2 Kinds . 20
2.1.3 Constructors . 21
2.1.4 Kinding . 24
2.1.5 Equality . 27

2.2 Higher-Order Subtyping . 28
2.3 Semantics and Soundness . 29

2.3.1 Interpretation of Kinds . 30
2.3.2 Semantics of Constructors 32

3 Type-Based Termination 37
3.1 Specification . 37

3.1.1 The Language . 37
3.1.2 Typing . 38
3.1.3 Operational Semantics . 41

3.2 Examples . 45
3.2.1 Fibonacci Numbers . 46
3.2.2 Co-Natural Numbers . 46
3.2.3 Some Pathological Cases 46
3.2.4 Huffman Trees . 47
3.2.5 Prime Numbers . 50
3.2.6 Sorting by Merging . 50
3.2.7 A Heterogeneous Data Type of Lambda Terms 52

3

4 CONTENTS

3.2.8 Substitution for Finite and Infinite Lambda-Terms 54
3.3 Limits, Iteration, and Fixed-Points 56

3.3.1 Limits . 56
3.3.2 Operator Iteration . 57
3.3.3 Fixed points . 59
3.3.4 Inductive and Coinductive Constructors 60
3.3.5 Soundness of λ-Dropping 61

3.4 Semantical Types . 61
3.4.1 Saturation . 64
3.4.2 Admissible Types for Recursion 65
3.4.3 Refined Saturation . 66
3.4.4 Admissible Types for Corecursion 68
3.4.5 Lattice of Saturated Sets 69

3.5 Soundness of Typing . 72
3.5.1 Admissible Types for Recursion, Syntactically 72
3.5.2 Admissible Types for Corecursion, Syntactically 73
3.5.3 Soundness Proof . 74

3.6 Strong Normalization . 77
3.6.1 A Few Remarks on the Method 77
3.6.2 Inductive Characterization 78
3.6.3 Soundness of the Inductive Characterization 81

4 Embeddings into Fω̂ 85
4.1 An Iso-Recursive Version of Fω̂ 85
4.2 Some Systems for Termination 87
4.3 Some Systems For Productivity 88
4.4 Iteration and Primitive Recursion 89

5 Continuity 93
5.1 On the Necessity of Criterion 2 94
5.2 Semi-Continuity . 95
5.3 Type Constructors and Semi-Continuity 97

5.3.1 Function Space . 99
5.3.2 Universal Quantification 100
5.3.3 Coinductive Types . 101
5.3.4 Inductive Types . 103
5.3.5 Product and Sum Types 107

5.4 A Kinding System for Semi-Continuity 107
5.5 Semantical Soundness of Continuity Derivations 110
5.6 Type-Based Termination with Continuous Types 114
5.7 Related and Future Work . 114

CONTENTS 5

6 Examples 117
6.1 Breadth-First Tree Traversal . 117
6.2 Continuous Normalization of Infinite De Bruijn Terms 121
6.3 Normalization of Simply-Typed De Bruijn Terms 123
6.4 Data Types with Higher-Order Parameters 126
6.5 Generic Programming . 128
6.6 Impredicative Data Types . 133
6.7 Inductive Proofs as Recursive Functions 134

7 Extensions 137
7.1 Mutual Recursion . 137
7.2 More Admissible Types . 140

8 Conclusion 143
8.1 Related Work . 144

8.1.1 Termination Proofs . 144
8.1.2 Termination Checking . 146
8.1.3 Sized Types . 148

A Summary of Fω̂ 151
A.1 Kinds and Constructors . 151
A.2 Terms, Typing and Reduction . 153

A.2.1 Static Semantics . 154
A.2.2 Admissible Recursion Types 154
A.2.3 Dynamic Semantics . 155

A.3 Semi-Continuous Types for Recursion 155

B Iso-Coinductive Constructors 157
B.1 Syntax . 157
B.2 Soundness . 158
B.3 Strong Normalization . 162

C Galois Connections 167

Bibliography 169

Index 183

6 CONTENTS

Chapter 1

Introduction

This thesis is on termination of computer programs. By termination we mean
that the task given to a computer is processed in a certain amount of time, as
opposed to taking infinitely long. Termination is the expected behavior of a
computer; it does not make sense to wait infinitely long for its response. Some
tasks take longer, e. g., booting, or calculating an airline schedule. Some take
shorter, like, after a key press in a word processing program, displaying the
new letter on the screen. Some take a variable time, like executing a command
at the command prompt. Some tasks might indeed never end, like producing
an even number greater or equal to four which is not the sum of two prime
numbers. This task, call it goldbach, will run forever, if, as Goldbach con-
jectured,1 there exists no such number. Since the Goldbach conjecture is nei-
ther proven correct nor refuted,2 with our current knowledge we cannot judge
whether goldbach will terminate or not.

Of course, we would like to know whether a computer program terminates
before we start it. Otherwise we might sit there and wait for termination like one
waits for a late bus, which will, by Murphy’s law, arrive exactly the minute
after one has taken a taxi instead. The only way to tell whether a program
will terminate without running it is to look at its internal structure, e. g., the
sequence of instructions which make up the program. Compare this to a biolo-
gist who cuts up a frog in order to understand its behavior. Although a frog is
magnitudes more complex in functionality3 than the biggest information sys-
tem ever constructed, this analogy gives some intuition on what it means to
grasp the meaning of a large computer program. In this light, the following
negative solution to the Halteproblem, which is as old as the first computers,
does not surprise:

There is no computer program which can take any (other) computer
program and decide whether it terminates on some given input.

1The “Goldbach conjecture” in this form is actually due to Euler, see MathWorld [Wei05].
2As of today, the Goldbach conjecture has been confirmed for number up to 2× 1017 [Wei05].
3The reader may excuse my comparison of a higher living being to something entirely mechan-

ical like a computer program.

7

8 CHAPTER 1. INTRODUCTION

This theorem has a simple proof by contradiction: Suppose there is such a
program D. Then we can write a program E which takes the code of some
program P as input, asks D whether P terminates on input P, and enters an
infinite loop if D says “yes”. Now run E on its own code. If E terminates on
E, then D says “yes”, hence E does not terminate on E. Otherwise, if E does
not terminate on E, D will say “no”, hence E will terminate on E. This is a
contradiction, 4 and thus, program D cannot exist.

The negative solution to the Halteproblem destroys the hope of finding a
automated termination checker which works on any kind of program. There
are two escapes from this dilemma:

1. Use human intuition and reasoning to check termination.

2. Write a termination checker which works on a certain, restricted class of
programs.

In practice, both methods are indispensable. In this thesis, we describe some
class of terminating programs. But however big one may make the class, there
will always be an interesting program whose termination cannot be verified
completely automatically but requires at least some hint by a human who un-
derstands the program.

1.1 Why Termination?

But is termination really interesting? Would we not rather want to know how
long the execution of a program takes? This is certainly true in real-time and
embedded systems, like the hard- and software assisting the navigation of au-
tomobiles and planes. There, the system must react instantaneously, e. g., within
milliseconds; termination is surely not sufficient. But there are other applica-
tions for termination:

1. Verified termination increases the chance that the program is correct. This
argument has been put forward by Xi [Xi01] and has an analogy in static
typing. Empirically, programs in strongly typed languages like Haskell
and ML often work correctly already after they passed the compiler. The
type checker spots many bugs, which would—in the absence of type
checking— have surfaced one after another at runtime. In the same way,
a termination checker could spot additional bugs which cannot be de-
tected by the type checker. 5

4The propositions A =⇒ ¬A and ¬A =⇒ A are contradictory even in intuitionistic logics.
5For example, I had written the following ML function.

fun fromto (from, to) = if from > to then [] else from :: fromto (from*1, to)

This program should output a list of integers starting with from and ending in to. The type infer-
ence of ML assigns it the expected type int * int -> int list, but upon execution, e. g., fromto
(2, 641), it loops. It is supposed to return the empty list if from is greater or equal to to, and,
otherwise, the element from plus the sequence from+1..to which is computed recursively. Here

1.2. APPROACHES TO TERMINATION 9

2. It is agreeable that compilers and program generators should terminate.
However, to optimize the target program, they might have to partially
evaluate the source code. Partial evaluation has to be restricted to these
parts of the source which terminate; hence, termination has to be checked
before evaluation. This is the motivation for Neil Jones’ research on ter-
mination. [JG02]

3. Program verification has been traditionally separated into two parts: prov-
ing partial correctness, meaning “if the program terminates then it sat-
isfies its specification”, and proving termination. If termination can be
established in a canonical way, a proof of partial correctness implies total
correctness.

4. Interactive theorem provers with inductive types like Agda [CC99], Coq
[BC04], Lego [Pol94] and Twelf [PS99] make use of the Curry-Howard
isomorphism and allow proofs by induction to be written as recursive
functions. But only terminating functions correspond to valid proofs,
hence, termination is vital to maintain soundness of the proof system.
This is the original motivation for my continuing research on termination
and strong normalization.

In the following we consider systems—these could be programming lan-
guages, abstract calculi or logics—which have an expression language or a term
language and a notion of computation.

1.2 Approaches to Termination

There are two fundamental kinds of systems: systems with partiality and total
systems. In the first class, each expression has a meaning, even those expres-
sions whose computation does not terminate. This class covers most program-
ming languages, but also, e. g., the Logic of Computable Functions (LCF) and
logics with undefinedness (Beeson [Bee04], Farmer [Far04]). The fact that an
expression terminates (i. e., is defined) has to be proven in the logics.

In total systems, each valid expression is terminating. We can distinguish
systems with or without recursion. For example, the simply-typed λ-calculus
is a system without recursion. So is Girard’s [Gir72] System Fω, but a limited
form of recursion, iteration, is definable in it [GLT89, chap. 11] [BB85, RP93,
PDM89, Geu92, Mat98, AMU05]. In HOL, even well-founded recursion is de-
finable [Sli96]. Other systems have explicit recursion, which has to be tamed by
some formalism to preserve termination of all expressions. Most notably, there
are term rewriting systems (TRS). For TRS, many criteria have been developed

we spot the bug: I had typed an asterix * instead of a plus + who are only a shift apart on a Ger-
man keyboard. To locate this error in a bigger program took me more than an hour, since I had
not expected the slip in such a simple function. A termination checker could have warned me that
there might be a problem.

10 CHAPTER 1. INTRODUCTION

for termination: polynomial interpretations, the recursive-path ordering, sim-
plification orderings [Ste95], and dependency pairs [AG00]. These criteria are
syntactical, as opposed to type-based; they work on untyped rewrite rules. Syn-
tactical methods have also been applied to termination of logic programs and
higher-order logic programs [Pie01]. The Fixpoint declaration of Coq, which
introduces dependently-typed recursive functions, uses as of today a syntac-
tical termination check, and Agda uses an implementation of the termination
checker foetus [AA02].

This thesis investigates type-based termination; by this we mean that termi-
nation checking is integrated with type checking: a program which passes the
type-checker is guaranteed to terminate on all inputs.

1.3 Why Type-Based Termination Matters

I am convinced that the types paradigm is fruitful also for termination. The
integration of termination checking into type checking has the following ad-
vantages.

Communication. The idea that each wellformed program fragment has a cer-
tain type seems still to be spreading in computing. Most firmly rooted is this
view in strongly typed functional programming: in ML, each program must
have a type which is inferable by the compiler. In practical software devel-
opment, it has been fruitful to write down types as a documentation for the
programmer. The type of a program gives an abstract idea which operation
it implements, and this type, since checked by the compiler, is documentation
which is always up-to-date. JAVA is a success story for a strongly typed lan-
guage. Its design is quite contrary to ML, however: The type system is rather
simple. It lacks higher-order functions, and subtyping is based on names, not
on structure. The type of each variable has to be written down by the pro-
grammer and each exception a method can throw has to be declared, which
makes JAVA a bit bureaucratic. A good compromise has been found in the de-
sign of Haskell: not each type must be inferable, but also not each type must
be declared. Haskell’s type system not only features higher-order functions,
higher-order and nested data types, and type classes, but also polymorphic re-
cursion and higher-rank polymorphism with explicit quantification. Through
programming practice, a Haskell programmer learns to think in a quite com-
plex type language.

Once a programmer has learned to think in types, type-based termination
of a program can be easily communicated to him. Once a program can be
given a certain type, its termination ensues. The main thing a programmer
needs to understand in order to master type-based termination as presented in
this thesis, is that each data structure carries an upper bound for its size in its
type, and that in a recursive call, this size must decrease.

1.3. WHY TYPE-BASED TERMINATION MATTERS 11

Certification. Besides communicating termination to a human there is the
problem of communicating termination to a machine, or more precisely, pro-
viding a machine-checkable certificate that a program terminates. For type-
based termination, this question is already answered: a correct typing derivation
for a program certifies its termination. The proof of this fact for a polymorphic
functional language with higher-order data types, which we call Fω̂, is the main
technical contribution of this thesis.

A simple theoretical justification. Type-based termination can be reduced to
a simple concept: induction on the size parameter. For polynomial datatypes
like lists and binary search trees, natural numbers suffice as size indices, for
infinitely branching trees, streams, and processes we need ordinal indices and
transfinite induction. However, even in this case the programmer does not
need ordinal notations and can continue to think of sizes as natural numbers.

Orthogonality. Type-based termination rests on the principle of sized data
types and requires subtyping and restricted use of recursion. But these are the
only parts of a purely functional language which are affected.6 Other language
constructs, like higher-order functions, tuples and records, variants and dis-
joint sums, native types and operations like integers and reals can be added
without having to change the termination machinery. All one has to do is
to extend type checking and subtyping for the language—and this has to be
done anyway. This is not true if termination checking is a separate module,
e. g., some syntactic method. Then each extension of the language requires an
extension of the termination checker, or even new research how termination
checking can be extended to the new language constructs.

Robustness. A consequence of orthogonality is that the soundness of type-
based termination is robust with regard to language extensions. As we show in
this thesis, it is compatible with impredicative polymorphism. This does not hold
for certain syntactic methods based on structural term orderings, as already
pointed out by Coquand [Coq92] [AA02, page 3].

Higher-order functions. As another consequence of orthogonality, type-based
termination plays its strength when applied to higher-order functions or higher-
rank polymorphism. Since sizes are integrated into types, one can specify that
a higher-order argument of a function should be a non size-increasing opera-
tion, which can be safely applied to the recursion argument without destroying
size information important for termination. In Section 6.5 we will see an exam-
ple where typing with rank-2 polymorphism will be crucial for the termination
of a generic merge function.

6It is well-known that higher-order references can simulate recursion, see, e. g., Xi [Xi02, sec-
tion 4.6]. I/O and process communication can also be a source of non-termination, for instance, in
form of deadlocks. Such impure language features are not treated in this thesis.

12 CHAPTER 1. INTRODUCTION

1.4 Informal Account of Type-Based Termination

What do we mean by type-based termination? In its broadest sense, the phrase
refers to any type system which ensures that well-typed programs terminate.
Very basic representatives of such systems are the simply or the polymorphi-
cally typed lambda-calculus. We want be more specific and refer only to lan-
guages with recursion (or, on the imperative side, loops), whose use is restricted
by a type system such that it cannot introduce non-termination. Again, there
are different ways to implement this idea. This thesis is about about type-based
termination as coined by Barthe et al. [BFG+04], which builds on work by
Mendler [Men87, Men91], Giménez [Gim98], and Amadio and Coupet-Grimal
[ACG98], and has independently been invented by Hughes, Pareto, and Sabry
[HPS96]. To simplify the following explanation of type-based termination, we
will first refer to types in an informal, semantical fashion as sets of terms, but
later we will be more precise and use types as syntactical objects, which are
interpreted as sets of terms.

1.4.1 A Semantical Account of Type-Based Termination

General recursion can be implemented by adding a fixed-point combinator fix to
a functional language based on a typed λ-calculus. This combinator is axiom-
atized as follows:

f ∈ A→ A
fix f ∈ A

fix f = f (fix f)

That means: If f is a endo-function on type A, then fix f inhabits A; and fix f
behaves as f (fix f). General recursion makes a language inconsistent as a logic,
since every type is inhabited, and introduces non-termination, if the equation is
read as a computation rule. (For both claims, take f to be the identity function.)
To maintain termination, the use of fix has to be restricted in some way.

Keeping only the axiom fix f = f (fix f), we make the following observa-
tion. Let i and n range over natural numbers, and Ai be some type dependent
on i. Further let> denote the all-type, i. e., each program is of this type without
further requirements. Then the following typing rule for fix is admissible, i. e.,
provable using just the typing rules of λ-calculus:

A0 = > f ∈ Ai → Ai+1 for all i
fix f ∈ An

The proof proceeds by induction on n: If n = 0, then fix f ∈ > = A0. Now
assume fix f ∈ An. Since f ∈ An → An+1 by assumption, f (fix f) = fix f ∈
An+1. Now the rough idea behind the work of Hughes, Pareto, and Sabry
[HPS96] is: if

⋂
n∈N An is “interesting” [Par00, p. 129], then fix f has interesting

properties, like termination or productivity. Interesting types are, e.g., An =
{m | m < n} → N; then

⋂
n∈N An = N→ N, and we can use the typing rule for

fix to introduce total functions over natural numbers.

1.4. INFORMAL ACCOUNT OF TYPE-BASED TERMINATION 13

A typical application would be the following. Let Ln denote the type of
lists of natural numbers of length < n and L∞ =

⋃
n∈N Ln the type of all nat-

ural number lists. Using the type An := Ln → L∞, we can define a recursive
function which eliminates all zeros from a list. Since L0 is empty, A0 is iso-
morphic to the all-type (under the standard semantics of the function type,
A→ B = { f | f a ∈ B for all a ∈ A}). Using pattern matching notation we can
define the following functional f .

f ∈ ⋂
i((Li → L∞)→ Li+1 → L∞)

f := λfilter0λl. match l with
nil 7→ nil
cons 0 t 7→ filter0 t
cons h t 7→ cons h (filter0 t)

Then filter0 := fix f ∈ ⋂
n(Ln → L∞) is the desired filtering function which can

be applied to lists of any length. Of course, we need to make sure f is well-
typed. For example, if the input list l = cons h t ∈ Li+1 has length < i + 1, then
the length of the tail t is certainly below i, which implies that the recursive call
filter0 t is well-typed and, thus, justified.

Lists are a special case of an inductive type; list of bounded length are a
special case of a sized inductive type. In general, if F is an isotone operator on
term sets, then µ∞F denotes the inductive type which is the least fixed point
of F. In case of lists of natural numbers, we have F(X) = {nil} ∪ {cons h t | h ∈
N and t ∈ X}. A sized inductive type is obtained by ordinal iteration of F:

µ0F = ⊥ (the empty type)
µα+1F = F(µαF)
µλF =

⋃
α<λ µαF (λ limit ordinal)

It is easy to see that µnF, for the list-specific F given above, contains exactly
the lists of length < n, hence Ln = µnF. Since all lists have finite length, the
least fixed point L∞ =

⋃
n∈N Ln =

⋃
n<ω µnF = µωF is reached at the smallest

infinite ordinal ω. However, there are inductive types with a higher closure
ordinal, for example, the second number class with the generating operator
F(X) = {ozero} ∪ {osucc o | o ∈ X} ∪ {olim f | f ∈ N → X}. If Ordα de-
notes the α-iterate of this operator, then the constructors have the following
types:

ozero ∈ ⋂
α Ordα+1

osucc ∈ ⋂
α(Ordα → Ordα+1)

olim ∈ ⋂
α((N→ Ordα)→ Ordα+1)

If h ∈ N → Ordω is given by h(0) = ozero and h(n + 1) = osucc(h(n)), then
olim h ∈ Ordω+1 appears for the first time at the iterate ω + 1, hence, there are
terms of transfinite height in the second number class.

Consequently, a recursive function over elements of type Ord must treat
also transfinite iterates Ordα for α ≥ ω. To account for the limit iterates, we

14 CHAPTER 1. INTRODUCTION

extend our introduction rule for recursive functions as follows:

A0 = > f ∈ Aα → Aα+1 for all α
⋂

α<λ Aα ⊆ Aλ for all limits λ > 0
fix f ∈ Aβ

Again, this rule is provable, this time by transfinite induction on β: Base and
step case work as before, for the limit case we need to show fix f ∈ Aλ under
the induction hypothesis fix f ∈ Aα for all α < λ. But exactly this is given by
the new assumption. Now, if we summarize the two conditions on the type A,

1. A0 = >, and

2.
⋂

α<λ Aα ⊆ Aλ for all limits λ,

into the predicate A adm, we get a rule which looks quite similar to the rule for
general recursion:

f ∈ Aα → Aα+1 for all α
fix f ∈ Aβ

A adm

1.4.2 From Semantics to Syntax

The goal of this thesis is to turn the semantical recursion rule into syntax, i. e.,
into a typing rule, and show that all well-typed programs are strongly normal-
izing. If we take a close look at the syntactical components of the semantical
types we used in the constructors and the recursion rule in the last section, we
find the following elements:

• types indexed by ordinal variables α, their successor α + 1 or the closure
ordinal ∞,

• function types→,

• infimum
⋂

α of a family of types indexed by α, and

• a condition A adm on types for recursion.

Surprisingly, there are only these few elements and they can be turned into syn-
tax directly. To the type language of a simple or polymorphic lambda-calculus
we add a language of size expressions a : ord composed from size variables ı,
successor +1, and ∞, which denotes a large ordinal at which the iteration pro-
cesses for all inductive types of the system close. The infimum

⋂
α is expressed

by size polymorphism ∀ı. Finally, we formulate a syntactic criterion on types
A adm which entails the semantic one. This leads to the syntactic recursion rule

f : ∀ı. Aı → Aı+1 a : ord

fix f : Aa A adm.

There is natural order on size expressions a induced by a ≤ a + 1 and
a ≤ ∞. Since the approximation stages of an inductive type are ordered as-
cendingly by inclusion, we get a natural subtype relation µaF ≤ µbF for a ≤ b.

1.5. CONTRIBUTION 15

The first part of this thesis deals with the subtyping induced by sizes in the
presence of co- and contravariant type constructors.

The distinguished feature of our approach is that we speak about ordinal
indices in our type system without requiring an ordinal notation system, like
Cantor normal forms. The user can think of sizes as natural numbers instead
of ordinals without making mistakes.

1.5 Contribution

This thesis is not the first one on typed-based termination. Pareto [Par00] has
explored this paradigm in the area of functional programming. He developed
Synchronous Haskell, the core of a functional language with type-based termina-
tion and productivity checking, which is summarized in Hughes et al. [HPS96].
He proves the soundness of his system by non-standard denotational seman-
tics, interpreting types as upward-closed sets of values. Pareto considers only
ordinals up to ω, and, thus only inductive data types without embedded func-
tion spaces, excluding the type Ord.

Frade’s thesis [Fra03] introduces λ̂ , an extension of λ-calculus with ML-
polymorphism by sized inductive types, which is summarized in Barthe et al.
[BFG+04]. She does treat inductive types with embedded function spaces and
she proves subject reduction and strong normalization for λ̂ .

Our contribution, in relation to the above theses and to other systems of
type-based termination, is progress in the following areas:

Higher-order inductive types. Our inductive types can contain embedded
function spaces and, at the same time, be of higher kind. Therefore, neither
iteration to the first infinite ordinal, ω, as in Pareto’s case, nor to the first un-
countable ordinal, Ω, as in Frade’s case seems sufficient. The upper bound for
our closure ordinal is the ωth uncountable.

A theory of semi-continuous types. Frade restricts result types of recursive
functions to be monotone in their size argument. Pareto is more liberal, al-
lowing types which are, in his terminology, ω-undershooting. He gives some
criteria how to classify such admissible types, but in a rather ad-hoc manner.
We show that similar types are admissible in our semantics where types are
sets of strongly normalizing terms, which is quite distinct from his domain-
theoretic semantics. However, since we allow infinite branching, inductive
types will fall in a different class in our case. We put his ad-hoc analysis of
admissible types on a more solid basis by classifying types as upper or lower
semi-continuous, which are standard concepts in analysis. Furthermore, we
cast or results in kinding rules for semi-continuous types, thus, mechanizing
the quest for admissible types.

16 CHAPTER 1. INTRODUCTION

Heterogeneous data types. We are the first to consider typed-based termi-
nation for heterogeneous or nested data types. Heterogeneous data types can
be viewed as fixed points of type constructors of a higher kind, such that the
fixed point is not a type but a type constructor. Such heterogeneous types have
been analyzed in the mathematics of program construction and in Haskell by
Hinze [Hin98, Hin99, Hin00a, Hin00b, Hin01] Bird and Meertens [BM98], Bird
and Paterson [BP99a], Martin and Gibbons [MG01] and Bayley [MGB04] and in
the context of System Fω by Pierce, Dietzen, and Michaylov [PDM89], Matthes
[Mat01], Matthes and myself [AM03, AM04], and with Uustalu [AMU03, AMU05].
Note that heterogeneous data types are not a special case of inductive families
[Dyb94].

Equi-(co)inductive types. In contrast to many predecessors [Geu92, Alt93,
Mat98, Alt99, AA00, BJO01, BFG+04] of our work, we do not use the com-
mon iso-recursive approach to (co)inductive types, but the equi-recursive one,
hence, we consider equi-(co)inductive types. For example, take the Haskell data
type of binary trees:

data BT a = Leaf

| Node (BT a) a (BT a)

The finite binary trees can be modeled by an inductive type. Using equi-inductive
types, one can decompose a data type into recursion and a labeled sum. For this
example, the decomposition would read

BTF : ∗ → ∗ → ∗
BTF := λAλX. Leaf 1 + Node (X× A× X)

BT : ∗ → ∗
BT := λA. µ(BTF A),

where 1 is the unit type, c1 A1 + · · · + cn An is the labeled sum of the types
A1..n, and µ is the least fixed-point combinator, fulfilling the type equation
µ F = F (µ F). The constructors of the labeled sum can be reused directly as
constructors for binary trees.

Iso-inductive types, however, fold and unfold noisily: Special terms in :
F (µ F) → µ F and out : µ F → F (µ F) construct and destruct iso-inductive
types, and µ F is only isomorphic to F (µ F) (hence, the name). The constructors
for binary trees now read in ◦ Leaf and in ◦Node. This seems less direct and less-
intuitive than the equi-inductive approach. On the other hand, the metatheory
of iso-inductive types is simpler, because we know that each canonical inhabi-
tant of an inductive type is of the form in t.

In this thesis, we analyze the more challenging metatheory of equi-inductive
and -coinductive types. Especially the combination of equi-induction and equi-
coinduction will have some unpleasant effects when it comes to a strongly nor-
malizing reduction system. Anyhow, we fight our way through, but if you
want to avoid hardship, stick to iso-coinductive types!

1.5. CONTRIBUTION 17

A unified language for types and size expressions. In contrast to previous
work on sized types, we unify the languages of sizes and types by introducing
a new base kind ord of sizes into Fω. This enables us to give precise types to
polymorphic higher-order functions such as foldr. In our calculus, it can be
given the type

foldr : ∀A :∗. ∀B :ord +→ ∗.
(∀ı :ord. A→ B ı→ B (ı + 1))→
(∀ı :ord. B (ı + 1))→
(∀ı :ord. Listı A→ B ı).

By giving size information to polymorphic combinators such as foldr, even
functions built-up from these combinators can have sized types. This is a nov-
elty with regard to existing systems of type-based termination, like Barthe et al.
[BFG+04], Hughes et al. [HPS96], and Xi [Xi02].

18 CHAPTER 1. INTRODUCTION

Chapter 2

Sized Higher-Order
Subtyping

In this chapter, we define the kind and constructor level of Fω̂, the higher-order
polymorphic λ-calculus with sized types. We present rules for equality and
subtyping and show their soundness through a set-theoretic model.

2.1 Constructors and Polarized Kinds

The higher-order polymorphic lambda-calculus introduces the notion of type
constructor or just constructor. In the first intuition, it is a function which takes
one or several types and produces a type, a so called type transformer. For ex-
ample, the Cartesian product× is a constructor: It takes two types A and B and
produces the product type A× B whose canonical elements are pairs (r, s) of
terms r : A and s : B. The notion of constructor is then taken to higher orders:
A type is a constructor, a function on constructors is a constructor itself.

2.1.1 Polarities

We aim to distinguish constructors with regard to their monotonicity or vari-
ance. For instance, the product constructor × is isotone or covariant in both of
its arguments. If one enlarges the type A or B, more terms inhabit A× B. The
opposite behavior is called antitone or contravariant. Finally, a function F might
not exhibit a uniform behavior, it might grow or shrink with its argument, or
we just do not know how F behaves. This is the general case, we call it non-
variant. Each of the behaviors is called a polarity and abbreviated by one of the
following symbols:

Pol 3 p, q ::= ◦ non-variant
| + covariant
| − contravariant

19

20 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

The polarities are related: Since “non-variant” just means we do not have any
information about the function, and we can forget our knowledge, each func-
tion is non-variant. The inclusion order between the three sets of co-, contra-,
and non-variant functions induces a partial information order ≤ on Pol. The
smaller a set is, the more information it carries. Hence ◦ ≤ p, and p ≤ p for all
p. We visualize the partial order on Pol as follows:

+ −

◦

@@@@@@@

~~~~~~~

Remark 2.1 In notation and order of polarities we follow Duggan and Com-
pagnoni [DC99]. Detailed studies of polarized subtyping have been performed
by Steffen [Ste98]. He uses a different notation and considers the dual ordering.

Polarity of composed functions. Let F, G be two functions such that the com-
position F ◦ G is well-defined. If F has polarity p and G has polarity q, we de-
note the polarity of the composed function F ◦ G by pq. It is clear that polarity
composition is isotone: if one gets more information about F or G, certainly
one cannot have less information about F ◦ G. Then, if one of the functions is
non-variant, the same holds for the composition. In the remaining cases, the
composition is covariant if F and G have the same variance, otherwise it is
contravariant. We obtain the following multiplication table:

◦ + −
◦ ◦ ◦ ◦
+ ◦ + −
− ◦ − +

Polarity composition, as function composition, is associative. It is even com-
mutative, but not a priori, since function composition is not commutative.

Remark 2.2 Instead of polarities we could take signs s ∈ {0, +1,−1} with
ordinary multiplication and the non-standard order s ≤ s′ ⇐⇒ s = s′ ∨ |s| <
|s′|.

Remark 2.3 (> polarity) Steffen [Ste98] and Duggan and Compagnoni [DC99]
include a fourth polarity, called> in second loc. cit., which indicates that a func-
tion is invariant or constant. The symbol “>” is justified since a constant func-
tion is both isotone and antitone. The ordering on polarities is extended by
p ≤ > for all p. For our purposes, > is not interesting.

2.1.2 Kinds

Constructors are classified by their kind, i. e., as types, functions on types, func-
tions on such functions etc. Extending the kinds of Fω, we introduce a second



2.1. CONSTRUCTORS AND POLARIZED KINDS 21

base kind ord. Constructors of this kind are syntactic representations of ordi-
nals.

Kind 3 κ ::= ∗ types
| ord ordinals
| pκ1 → κ2 p-variant constructor transformers

A constructor of kind pκ1 → κ2 is a p-variant function which maps constructors
of kind κ1 to constructors of kind κ2. We introduce the following abbreviations:

~p~κ → κ′ for p1κ1 → · · · → pnκn → κ′,
κ

p→ κ′ for pκ → κ′, and

~κ
~p→ κ′ for ~p~κ → κ′.

Using the vector notation (first line) for kinds includes the assumption |~p| =
|~κ| = n. Our base kinds, sometimes denoted by κ0, are ∗ and ord. It is clear that
every kind can be written in vector notation ~p~κ → κ′ with potentially empty
vectors ~p and ~κ. Especially, every kind can be written in this vector notation
such that κ′ is a base kind.

Pure kinds are kinds which do not mention base kind “ord”. These are the
kinds of Steffen’s polarized Fω

≤ and given by the following grammar.

κ∗ ::= ∗ | pκ∗ → κ′∗

The rank rk(κ) ∈ N of a kind κ is defined recursively as follows:

rk(κ0) = 0 κ0 ∈ {∗, ord}
rk(pκ → κ′) = max(rk(κ) + 1, rk(κ′))

With n := |~κ| we have rk(~p~κ → κ0) = max{1 + rk(κi) | 1 ≤ i ≤ n}. If n 6= 0,
then even rk(~p~κ → κ0) = 1 + max{rk(κi) | 1 ≤ i ≤ n}.

2.1.3 Constructors

Constructors are given by the following Curry-style type-level lambda-calculus
with some constants. The meta-variable X ranges over a countably infinite set
TyVar of constructor variables.

a, b, A, B, F, G ::= C | X | λXF | F G

In most cases, we will use F, G, and H for constructors of arbitrary kind, A
and B for types (kind ∗) and a and b for ordinal expressions, i. e., constructors
of kind ord. Ordinal variables will be denoted by ı and  whereas construc-
tor variables of arbitrary kind will be denoted by X, Y and Z. As usual, λXF
binds variable X in F. We identify constructors under α-equivalence, i. e., un-
der renaming of bound variables. FV(F) shall denote the set of free variables
of constructor F.



22 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

Signature. The constructor constants C are taken from a fixed signature Σ

which contains at least the following constants together with their kinding.

→ : ∗ −→ ∗ +→ ∗ function space
∀κ : (κ ◦→ ∗) +→ ∗ quantification
µκ∗ : ord

+→ (κ∗
+→ κ∗)

+→ κ∗ inductive constructors
νκ∗ : ord

−→ (κ∗
+→ κ∗)

+→ κ∗ coinductive constructors
s : ord

+→ ord successor of ordinal∞ : ord infinity ordinal
We often denote one of µκ∗ , νκ∗ as ∇κ∗ . Note that the indices κ∗ of these con-
stants are pure kinds. Otherwise, we could define ordinals as least or great-
est fixed points of some ordinal function. When clear from the context of
discourse, we omit the indices of inductive and coinductive constructors and
quantification. We introduce the following notations:

∀X :κ. A for ∀κ λXA,
∀X A for ∀ λXA,
∇aX :κ. F for ∇κ a λXF,
∇aX F for ∇ a λXF, and
∇a

κ for ∇κ a.

The last notation is generalized to any constructor F : ord
p→ κ on ordinals: We

allow the notation Fa for application F a.

Remark 2.4 In the above signature, the only closed constructors of kind ord are
of the form s (s . . . (s ∞)) for a finite number of successors s. Semantically, all
these ordinals are equal to ∞. Hughes, Pareto, and Sabry [HPS96] add a con-
stant 0 : ord denoting the ordinal zero, in order to get a more precise typing for
constant objects of inductive type. Our syntax of ordinals is equivalent to the
stage expressions of Barthe et al. [BFG+04].

Example 2.5 (Impredicative encodings) Constructors for Cartesian product×,
disjoint sum +, and existential type ∃ can be defined by the following impred-
icative encodings.

× : ∗ +→ ∗ +→ ∗
× := λXλY∀Z :∗. (X → Y → Z)→ Z

+ : ∗ +→ ∗ +→ ∗
+ := λXλY∀Z :∗. (X → Z)→ (Y → Z)→ Z

∃κ : (κ ◦→ ∗) +→ ∗
∃κ := λF∀Z :∗. (∀X :κ. F X → Z)→ Z

We will use × and + in infix notation and right associative. Later we will
present a method to check that these definitions are well-kinded and do possess
their claimed variance.



2.1. CONSTRUCTORS AND POLARIZED KINDS 23

Example 2.6 (Types with finitely many inhabitants) We define 0 := ∀X :∗. X,
1 := ∀X :∗. X → X, and Bool := 2 := 1 + 1. It is clear how we could go on and
define 3, 4, etc.

Example 2.7 (Regular data types) In the following examples, we define some
inductive types. They are called regular data types because all of them are fixed
points of a type transformer (µ∗). The first type represents natural numbers in
unary encoding, the second type polymorphic lists, the third one trees branch-
ing over type B with node-labels of type A, and the fourth one Brouwer ordi-
nals.

Nat : ord
+→ ∗

Nat := λı. µıX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıX. 1 + A× X

Tree := ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA. µıX. 1 + A× (B→ X)

Ord := ord
+→ ∗

Ord := λı. µıX. 1 + X + (Nat∞ → X)

The first argument of the constructors in this example is an ordinal number
describing the bound for the height of elements, when viewed as trees, in this
data type. The height of a tree is defined as one plus the least upper bound of
the heights of its immediate subtrees. There are no trees of height zero. Natural
numbers and lists are linear trees, hence, their height is equal to one plus the
length of the list resp. the unary encoding of the natural number. For finitely
branching trees, the height is a finite ordinal, but for infinitely branching trees,
it might be infinite. For instance, consider a Nat∞ branching tree whose nth
immediate subtree has height n. Then the height of the whole tree is ω + 1.

Types like Nata and Lista A are called sized types since they carry a bound for
the size of their inhabitants. Closely related sized type systems are λ̂ (Barthe
et al. [BFG+04]) and the one of Hughes, Pareto, and Sabry [HPS96]. The latter
one rejects infinitely branching trees and, hence, considers only ordinals up to
ω.

Example 2.8 (Non-regular data types) The following heterogeneous or nested data
types are well-known from the literature on functional programming. Elements
of PLista A are power lists [BGJ00], i. e., list of length 2n for some n < a, or, alter-
natively, perfect trees [Hin99], i. e., perfectly balanced leaf-labeled binary trees.
The second type Busha A, bushy lists, models finite maps from unlabeled bi-
nary trees of height < a into A [Alt01, Hin00b]. An the third type, Lama A, is
inhabited by de Bruijn representations of untyped lambda terms of height < a



24 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

with free variables in A [BP99b, AR99].

PList : ord
+→ ∗ +→ ∗

PList := λı. µıXλA. A + X (A× A)

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µıXλA. 1 + A× X (X A)

Lam : ord
+→ ∗ +→ ∗

Lam := λı. µıXλA. A + X A× X A + X (1 + A)

Example 2.9 (Coinductive types) The prime example of a coinductive type,
Streama A, contains infinite lists of elements in A that are at least defined up
to depth a. In other words, retrieving the nth element of a stream is guaran-
teed to succeed if n < a.

Stream : ord
−→ ∗ +→ ∗

Stream := λıλA. νıλX. A× X

2.1.4 Kinding

In this section, we present rules of kinding, i. e., assigning kinds to constructors.
The rules extend the kinding rules of Fω by the treatment of polarities.

Positive and negative occurrence. In the simply typed lambda-calculus and
in System F there are simple syntactic definitions of positive and negative oc-
currence of type variables in types. Let A be a type expression, viewed as a
tree. A type variable X is said to occur positively in A if the path from the
root to X takes the left branch of an →-node an even number of times; oth-
erwise, X occurs negatively. This simple syntactic criterion does not scale to a
higher-order type system like Fω̂, the system under consideration, hence we
will define positivity and negativity via the kinding judgement, following pre-
vious work [AM04]. Nevertheless, the simple criterion might serve the reader
as a first intuition.

Polarized contexts. A polarized context ∆ fixes a polarity p and a kind κ for
each free variable X of a constructor F. If p = +, then X may only appear
positively in F; this ensures that λXF is an isotone function. Similarly, if p = −,
then X may only occur negatively, and if p = ◦, then X may appear in both
positive and negative positions.

PCxt 3 ∆ ::= � empty context
| ∆, X : pκ extended context (X 6∈ dom(∆))

The domain dom(∆) is the set of constructor variables ∆ mentions. Naturally,
each variable can appear in the context only once.



2.1. CONSTRUCTORS AND POLARIZED KINDS 25

Ordering on contexts. We say context ∆′ is more liberal than context ∆, writ-
ten ∆′ ≤ ∆, iff

(X : pκ) ∈ ∆ implies (X : p′κ) ∈ ∆′ for some p′ ≤ p

In particular, ∆′ may declare more variables than ∆ and assign weaker polari-
ties to them. The intuition is that all constructors which are well-kinded in ∆

are also well-kinded in a more permissive context ∆′.
The empty context is the most strict context since ∆ ≤ � for any ∆. In

contrast, there is no most liberal context.

Application of polarities to contexts. We define application p∆ of a polarity
p to a polarized context ∆. It composes p with every polarity assigned to a vari-
able in ∆. It is easy to see that +∆ = ∆ and p(q∆) = (pq)∆ since + is the neu-
tral element of Pol and polarity composition is associative, hence, −−∆ = ∆

and ◦◦∆ = ◦∆. The last operation removes all polarity information from a con-
text, making it isomorphic to a classical kinding context for System Fω, except
for the polarities within types. Application inherits monotonicity from polarity
composition: p∆ ≤ p′∆′ if p ≤ p′ and ∆ ≤ ∆′. An instance of monotonicity is
the law −∆ ≤ ∆′ ⇐⇒ ∆ ≤ −∆′.

Kinding. We will introduce a judgement ∆ ` F : κ which combines the usual
notions of well-kindedness and positive and negative occurrences of type vari-
ables. A candidate for the application rule is

∆ ` F : pκ → κ′ ∆′ ` G : κ
∆ ` F G : κ′

∆ ≤ p∆′.

The side condition is motivated by polarity composition. Consider the case
that X 6∈ FV(F). If G is viewed as a function of X, then F G is the composition
of F and G. Now if G is q-variant in X, then F G is pq-variant in X. This means
that all q-variant variables of ∆′ must appear in ∆ with a polarity of at most pq.
Now if X ∈ FV(F), it could be that it is actually declared in ∆ with a polarity
smaller than pq. Also, variables which are not free in G are not affected by the
application F G, hence they can carry the same polarity in F G as in F. Together
this motivates the condition ∆ ≤ p∆′.

To eliminate the side condition from the application rule, we need a func-
tion which computes the most liberal context ∆′ from ∆ which satisfies both
conditions.

Inverse application of polarities. We are looking for an inverse to applica-
tion, p−1∆, which should be the least ∆′ such that ∆ ≤ p∆′. If such an inverse
application exists, it is monotone and forms a Galois connection with the appli-
cation operation, i. e.,

p−1∆ ≤ ∆′ ⇐⇒ ∆ ≤ p∆′.



26 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

This inverse indeed exists and obeys the equations +−1∆ = ∆, −−1∆ = −∆,
and ◦−1∆ = {X : pκ ∈ ∆ | p = ◦}, respectively.1 In all three cases, p−1(p∆) ≤
∆, and the side condition ∆ ≤ p(p−1∆) holds.

Kinding (continued). Now we are ready to introduce a judgement ∆ ` F : κ
inductively by the following rules:

KIND-C
C :κ ∈ Σ

∆ ` C : κ
KIND-VAR

X : pκ ∈ ∆ p ≤ +
∆ ` X : κ

KIND-ABS
∆, X : pκ ` F : κ′

∆ ` λXF : pκ → κ′

KIND-APP
∆ ` F : pκ → κ′ p−1∆ ` G : κ

∆ ` F G : κ′

To understand these rules, it is useful to think of F in the context ∆ = ~X : ~p~κ
as a function F(~X). The judgement ∆ ` F : κ should be valid if both F has
kind κ and F grows (weakly) whenever the positive arguments to F grow, the
negative shrink and the non-variant stay fixed.

Hence, rule KIND-VAR can only allow non-negative variables to be fetched
from the context. In contrast, constants may appear with any polarity (KIND-C).
The rule KIND-ABS for abstraction is suggestive.

Explanation of the application rule. Because of its central role, rule KIND-APP
is given again a very detailed explanation. First, observe that whenever F
grows (with fixed G), then also the application F G grows. Hence, the polarity
of the variables in F is the same as those in F G. To see how the application
behaves if we modify G, let us consider the cases p = +,−, ◦ separately:

KIND-APP+
∆ ` F : +κ → κ′ ∆ ` G : κ

∆ ` F G : κ′

In the first case, F is a monotone function, hence whenever its argument G
grows, the application F G grows as well. Hence, the polarity of the variables
in G matches the polarity of the variables in F G.

KIND-APP− ∆ ` F : −κ → κ′ −∆ ` G : κ
∆ ` F G : κ′

If F is antitone, the application F G will grow if G shrinks. Hence, the polarity
of the variables in G must be opposite (−∆) to the one of the variables in the
application (∆). Imagine a variable X appearing negatively in G. If it grows, G

1Unlike for integers, reversing the sign does not reverse the inequality: We have−∆ ≤ ∆′ ⇐⇒
∆ ≤ −∆′.



2.1. CONSTRUCTORS AND POLARIZED KINDS 27

will shrink, hence F G will grow. Therefore X appears positively in the appli-
cation.

KIND-APP◦ ∆ ` F : ◦κ → κ′ ◦−1∆ ` G : κ
∆ ` F G : κ′

In the non-variant case, we do not know how F behaves if we modify its ar-
gument. To satisfy our informal semantics, F G needs to grow if we grow the
variables declared in ∆ to be positive, shrink the negative variables, and leave
the non-variant ones fixed. If one of the positive or negative variables appeared
in G, the argument to F would change which would result in an unpredictable
shift of the value of F G. If we want to verify that F G grows we need to ensure
that no positive or negative variables occur in G. This is done by erasing all
non-variant variables from the context through the operation ◦−1∆.

Example 2.10 (Derived rules for function space and quantification) The follow-
ing rules are derivable:

−∆ ` A : ∗ ∆ ` B : ∗
∆ ` A→ B : ∗

∆, X :◦κ ` A : ∗
∆ ` ∀X :κ. A : ∗

2.1.5 Equality

Type constructors are considered equal modulo βη. Further, the successor of
the closure ordinal is considered equal to the closure ordinal. The judgement
∆ ` F = F′ : κ is defined inductively by the following rules:

Computation axioms.

EQ-β
∆, X : pκ ` F : κ′ p−1∆ ` G : κ

∆ ` (λXF) G = [G/X]F : κ′

EQ-η
∆ ` F : pκ → κ′

∆ ` (λX. F X) = F : pκ → κ′

EQ-∞
∆ ` s ∞ = ∞ : ord

Congruence rules. In rule EQ-APP we have to modify the polarities of the
variables in G and G′ in the same way as in the application rule of the kinding
judgement: We inverse-apply p to the context ∆.

EQ-C
C :κ ∈ Σ

∆ ` C = C : κ
EQ-VAR

X : pκ ∈ ∆ p ≤ +
∆ ` X = X : κ

EQ-λ
∆, X : pκ ` F = F′ : κ′

∆ ` λXF = λXF′ : pκ → κ′

EQ-APP
∆ ` F = F′ : pκ → κ′ p−1∆ ` G = G′ : κ

∆ ` F G = F′ G′ : κ′



28 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

Symmetry and transitivity.

EQ-SYM
∆ ` F = F′ : κ
∆ ` F′ = F : κ

EQ-TRANS
∆ ` F1 = F2 : κ ∆ ` F2 = F3 : κ

∆ ` F1 = F3 : κ

The rule for reflexivity is admissible thanks to the congruence rules:

Lemma 2.11 (Reflexivity) If D :: ∆ ` F : κ then ∆ ` F = F : κ.

Proof. By induction on D. �

Lemma 2.12 (Validity) If D :: ∆ ` F = F′ : κ then ∆ ` F : κ and ∆ ` F′ : κ.

Proof. By induction on D. �

Together, ∆ ` F : κ holds if and only if ∆ ` F = F : κ.

Remark 2.13 The rules for kinding and equality are in essence those used in
previous work of the author with Matthes [AM04], extended by EQ-∞. Note
that in loc. cit., the inverse application p−1∆ of a polarity to a context was writ-
ten p∆.

2.2 Higher-Order Subtyping

In this section, we specify subtyping for constructors of polarized kinds. The
rules are inspired by Steffen [Ste98].

Reflexivity, transitivity and antisymmetry. These three properties make sub-
typing a partial order on constructors of the same kind.

LEQ-REFL
∆ ` F = F′ : κ
∆ ` F ≤ F′ : κ

LEQ-TRANS
∆ ` F1 ≤ F2 : κ ∆ ` F2 ≤ F3 : κ

∆ ` F1 ≤ F3 : κ

LEQ-ANTISYM
∆ ` F ≤ F′ : κ ∆ ` F′ ≤ F : κ

∆ ` F = F′ : κ

The reflexivity rule includes the subtyping axioms for variables and constants
as special cases. Reflexivity and transitivity together ensure that subtyping
is compatible with equality. The antisymmetry rule potentially enlarges our
notion of equality.



2.3. SEMANTICS AND SOUNDNESS 29

Abstraction.

LEQ-λ
∆, X : pκ ` F ≤ F′ : κ′

∆ ` λXF ≤ λXF′ : pκ → κ′

Application. There are two kinds of congruence rules for application: one
kind states that if functions F and F′ are in the subtyping relation, so are their
values F G and F′ G at a certain argument G.

LEQ-APP
∆ ` F ≤ F′ : pκ → κ′ p−1∆ ` G : κ

∆ ` F G ≤ F′ G : κ′

The other kind of rules concern the opposite case: If F is a function and two
arguments G and G′ are in a subtyping relation, so are the values F G and F G′

of the function at these arguments. However, such a relation can only exist if F
is either covariant or contravariant.

LEQ-APP+
∆ ` F : +κ → κ′ ∆ ` G ≤ G′ : κ

∆ ` F G ≤ F G′ : κ′

LEQ-APP− ∆ ` F : −κ → κ′ −∆ ` G′ ≤ G : κ
∆ ` F G ≤ F G′ : κ′

What about a comparable rule for non-variant constructors? It is derivable:

∆ ` F : ◦κ → κ′
◦−1∆ ` G ≤ G′ : κ ◦−1∆ ` G′ ≤ G : κ

◦−1∆ ` G = G′ : κ

∆ ` F G = F G′ : κ′

∆ ` F G ≤ F G′ : κ′

Successor and infinity.

LEQ-S-R
∆ ` a : ord

∆ ` a ≤ s a : ord
LEQ-∞ ∆ ` a : ord

∆ ` a ≤ ∞ : ord

Lemma 2.14 (Validity II) If D :: ∆ ` F ≤ F′ : κ then ∆ ` F : κ and ∆ ` F′ : κ.

Proof. By induction on D, using validity of equality (Lemma 2.12) in case of
LEQ-REFL. �

2.3 Semantics and Soundness

In this section we give a semantics to kinds and constructors and show sound-
ness of kinding, constructor equality and subtyping.



30 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

2.3.1 Interpretation of Kinds

Constructors F of kind κ will be interpreted as operators F which live in the
denotation [[κ]] of their kinds. Each kind will be interpreted as a poset (partially
ordered set) ([[κ]],vκ), which is even a complete lattice in each case.

Interpretation of base kind ∗. For the moment, we assume a complete lattice
[[∗]] of countable sets A ∈ [[∗]] ordered by inclusion, with a maximal set >∗ ∈
[[∗]] such that A ⊆ >∗ for all A ∈ [[∗]]. Later, we will let [[∗]] be the collection
of all saturated sets ⊆ SN where >∗ = SN is the set of strongly normalizing
terms. So, let

[[∗]] : complete lattice of sets
A v∗ A′ :⇐⇒ A ⊆ A′d∗ A :=

⋂
A (where A ⊆ [[∗]]).

By assumption, the poset ([[∗]],v∗) is closed under infima, i. e., for a non-empty
subset A ⊆ [[∗]] the infimum

d∗ A ∈ [[∗]] exists and is equal to the intersection⋂
A. Intersection can be extended to empty collections by letting

d∗ ∅ = >∗.
Once empty intersections are defined, we can define arbitrary suprema by⊔∗ A :=

d∗{B ∈ [[∗]] | B w∗ A for all A ∈ A}. Note that we do not require that
the supremum is the union of sets; it might actually be something bigger. On
the set [[∗]] we assume a binary operation “→” (function space construction)
such that A → B v∗ A′ → B′ if A′ v∗ A and B v∗ B′.

Interpretation of base kind ord. Constructors “a” of kind ord denote set-
theoretic ordinals in our semantics. We choose an initial segment [0;>ord] =:
[[ord]] of the ordinals for the interpretation of ord. At the moment we leave it
open which ordinal >ord denotes; we will fill it in later.

[[ord]] := >ord + 1
α vord α′ :⇐⇒ α ≤ α′

Notation. We introduce a notation F vpκ F ′ for polarized inclusion and the
notion F vp F ′ ∈ [[κ]] which expresses polarized inclusion for two operators
F ,F ′ plus the fact that both are in the set [[κ]].

F v+κ F ′ :⇐⇒ F vκ F ′
F v−κ F ′ :⇐⇒ F ′ vκ F
F v◦κ F ′ :⇐⇒ F vκ F ′ and F ′ vκ F

F vp F ′ ∈ [[κ]] :⇐⇒ F ,F ′ ∈ [[κ]] and F vpκ F ′
F v F ′ ∈ [[κ]] :⇐⇒ F v+ F ′ ∈ [[κ]]



2.3. SEMANTICS AND SOUNDNESS 31

Interpretation of function kinds. Semantically, a constructor F of kind pκ →
κ′ is a covariant (p = +), contravariant (p = −) or non-variant (p = ◦) opera-
tor. We define the posets ([[κ]],vκ) for higher kinds by induction on κ.

[[pκ → κ′]] := {F ∈ [[κ]]→ [[κ′]] | F (G) v F (G ′) ∈ [[κ′]]
for all G vp G ′ ∈ [[κ]]}

F vpκ→κ′ F ′ :⇐⇒ F (G) vκ′ F ′(G) for all G ∈ [[κ]]

Lemma 2.15 (Partial order) For each kind κ, the relation vκ denotes a partial order
on [[κ]].

Proof. By induction on κ. For base kinds κ0 ∈ {∗, ord} reflexivity, transitivity
and antisymmetry hold by definition. To prove transitivity for higher kinds,
assumeκ = pκ1 → κ2 andF1 v F2 ∈ [[κ]],F2 v F3 ∈ [[κ]], and an arbitrary G ∈
[[κ1]]. Since by ind. hyp. G vκ1 G, we have F1(G) v F2(G) ∈ [[κ2]] and F2(G) v
F3(G) ∈ [[κ2]] by definition. By induction hypothesis F1(G) vκ2 F3(G), and
since G was arbitraryF1 vpκ1→κ2 F3. Reflexivity and antisymmetry are proven
analogously. �

Pointwise infima, upper bounds and suprema. For higher kinds, we define
inductively pointwise infimum and maximal element as follows.

dpκ→κ′ F ∈ [[κ]]→ [[κ′]] for F ⊆ [[pκ → κ′]]
(
dpκ→κ′ F)(G) :=

dκ′{F (G) | F ∈ F}

>pκ→κ′ ∈ [[pκ → κ′]]
>pκ→κ′(G) := >κ′

A simple proof by induction on κ shows that >κ is really the maximal element
of [[κ]] for any kind κ. Extending the observations for kind ∗, we can now define
empty infima and arbitrary suprema for all kinds.

dκ ∅ := >κ⊔κ F :=
dκ{H ∈ [[κ]] | H wκ F for all F ∈ F}

Lemma 2.16 (Supremum is pointwise) (
⊔pκ→κ′ F)(G) =

⊔κ′{F (G) | F ∈ F}.

The posets [[κ]] now are equipped with everything required for complete lat-
tices.

Lemma 2.17 (Complete lattice) For all kinds κ, the triple ([[κ]],
dκ ,

⊔κ) forms a
complete lattice.

Proof. We only need to show that
dκ F ∈ [[κ]] is the well-defined greatest lower

bound for F ⊆ [[κ]] by induction on κ. For base kinds, there is nothing to prove.



32 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

1. Well-definedness: Show
dpκ→κ′ F ∈ [[pκ → κ′]]. Assume G vp G ′ ∈ [[κ]].

Then F (G) v F (G ′) ∈ [[κ′]] for all F ∈ F. Since the infimum is well-
defined at kind κ′ by induction hypothesis, this entails

(
dpκ→κ′ F)(G) =

dκ′{F (G) | F ∈ F} vκ′

vκ′ dκ′{F (G ′) | F ∈ F} = (
dpκ→κ′ F)(G ′).

2. Lower bound: Show
dpκ→κ′ F vpκ→κ′ F for all F ∈ F. Assume G ∈ [[κ]]

arbitrary. Since by induction hypothesis,
dκ′ is a lower bound,

(
dpκ→κ′ F)(G) =

dκ′{F (G) | F ∈ F} vκ′ F (G)

for any F ∈ F.

3. Greatest lower bound: Let H v F ∈ [[pκ → κ′]] for all F ∈ F. Show
H vpκ→κ′ dpκ→κ′ F. For G ∈ [[κ]] arbitrary, H(G) vκ′ F (G) for any
F ∈ F by assumption. Since by induction hypothesis

dκ′ is a greatest
lower bound,

H(G) vκ′ dκ′{F (G) | F ∈ F} = (
dpκ→κ′ F)(G).

�

2.3.2 Semantics of Constructors

In the following we develop a semantics of constructors through their deriva-
tions of well-kindedness. This indirect path is necessary since the constructors
are domain-free. E. g., it is not determined which function is denoted by the
constructor λXX; it could be the identity function on [[κ]] for any kind κ. In
joint work with Ralph Matthes I have investigated polarized kinding and se-
mantics of Church-style constructors [AM04]. There, λX :+κ.X denotes exactly
one set-theoretic function: the identity on [[κ]]. The following development re-
sembles closely the cited work, however, we take the detour via derivations
here.

Sound valuations. Let θ be a mapping from constructor variables to sets. We
say θ ∈ [[∆]] if θ(X) ∈ [[κ]] for all (X : pκ) ∈ ∆. A partial order on valuations is
established as follows:

θ v θ′ ∈ [[∆]] :⇐⇒ θ(X) vp θ′(X) ∈ [[κ]] for all (X : pκ) ∈ ∆

We use v− for w and v◦ for =, and v+ as synonym for v. It is clear that
θ vq θ′ ∈ [[∆]] iff θ(X) vpq θ′(X) ∈ [[κ]] for all (X : pκ) ∈ ∆.



2.3. SEMANTICS AND SOUNDNESS 33

Lemma 2.18 If θ v θ′ ∈ [[∆]], then θ vp θ′ ∈ [[p−1∆]].

Proof. By cases on p. Interesting is only case p = ◦. Assume X : qκ ∈ [[◦−1∆]],
which is only possible if q = ◦ and X : ◦κ ∈ [[∆]]. We have to show θ(X) v◦◦
θ′(X) ∈ [[κ]] which follows from the premise of the lemma. �

Remark 2.19 The opposite implication does not hold in case p = ◦.

Denotation of constructors. If D :: ∆ ` F : κ and θ is a function from type
variables to sets, we define the set [[D]]θ by recursion on D as follows.

Case

D =
X : pκ ∈ ∆ p ≤ +

∆ ` X : κ

We define [[D]]θ = θ(X).

Case

D =
C :κ ∈ Σ

∆ ` C : κ
In this case, we simply return the semantics of C, which is defined else-
where: [[D]]θ = Sem(C).

Case

D =

D′
∆, X : pκ ` F : κ′

∆ ` λXF : pκ → κ′

The semantics of D is a function over [[κ]], defined by [[D]]θ(G ∈ [[κ]]) :=
[[D′]]θ[X 7→G]. Note that this is only possible if we know the domain of the
function (κ, in this case). This is the reason why we define the seman-
tics of derivations instead of constructors (where we would not have the
domain available).

Case

D =

D1
∆ ` F : pκ → κ′

D2
p−1∆ ` G : κ

∆ ` F G : κ′

LetF := [[D1]]θ and G := [[D2]]θ. We simply define [[D]]θ := [[D1]]θ([[D2]]θ).
If F is not a function or G not in the domain of F , then the application is
defined to be the empty set.

Lemma 2.20 (Well-definedness and monotonicity) Let D :: ∆ ` F : κ. If θ v
θ′ ∈ [[∆]] then [[D]]θ v [[D]]θ′ ∈ [[κ]].

The lemma generalizes to p-monotonicity:



34 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

Corollary 2.21 (p-monotonicity) Let D :: p−1∆ ` F : κ. If θ v θ′ ∈ [[∆]] then
[[D]]θ vp [[D]]θ′ ∈ [[κ]].

Proof. By case distinction on p, using Lemma 2.18. �

Proof of the lemma. By induction on D.

Case
D =

X : pκ ∈ ∆ p ≤ +
∆ ` X : κ

Recall that [[D]]θ = θ(X). Assumingθ v θ′ ∈ [[∆]], we implicitly require—
since p ≤ +—that θ(X) v θ′(X) ∈ [[κ]]. Hence [[D]]θ v [[D]]θ′ ∈ [[κ]].

Case
D =

C :κ ∈ Σ

∆ ` C : κ
We require that Sem(C) ∈ [[κ]] for all (C :κ) ∈ Σ.

Case

D =

D′
∆, X : pκ ` F : κ′

∆ ` λXF : pκ → κ′

Recall that [[D]]θ(G ∈ [[κ]]) = [[D′]]θ[X 7→G]. Assuming G vp G ′ ∈ [[κ]], we
have θ[X 7→ G] v θ′[X 7→ G ′] ∈ [[∆, X : pκ]]. By induction hypothesis,
[[D]]θ(G) v [[D]]θ′(G ′) ∈ [[κ′]], which implies [[D]]θ v [[D]]θ′ ∈ [[pκ → κ′]].

Case

D =

D1
∆ ` F : pκ → κ′

D2
p−1∆ ` G : κ

∆ ` F G : κ′

Assume θ v θ′ ∈ [[∆]]. By induction hypothesis, [[D1]]θ v [[D1]]θ′ ∈
[[pκ → κ′]]. By second induction hypothesis, using the corollary, we have
[[D2]]θ vp [[D2]]θ′ ∈ [[κ]]. Hence, the application [[D]]θ = [[D1]]θ([[D2]]θ) ∈
[[κ′]] is well-defined, and further, [[D]]θ v [[D]]θ′ ∈ [[κ′]]. �

The remainder of this section is devoted to the proof that two well-kinded-
ness derivations for the same constructors do not yield different semantics.
More precisely, assume two derivations D :: ∆ ` F : κ and D′ :: ∆′ ` F :
κ and two valuations θ ∈ [[∆]] and θ′ ∈ [[∆′]]. If θ(X) = θ′(X) for all X ∈
FV(F), then [[D]]θ = [[D′]]θ′ . This result is not completely trivial, i. e., cannot be
proven directly by induction on the derivations, since in derivations for non-
β-normal F, some kinds in the middle of derivations can be canceled out. For
example, consider F = (λXY) G. Some kind κ for X (and G) is mentioned in
the middle of a well-kindness derivation of F, but it can differ from derivation
to derivation. Still, the semantics of F in environment θ should be just θ(Y),
independent of kind κ.



2.3. SEMANTICS AND SOUNDNESS 35

β-normal forms are given by the grammar

V ::= C ~V | X ~V | λXV.

One step β-reduction on constructorsbeta-red@β-reduction of constructors F −→β

F′ is defined as usual. Since the simply-typed λ-calculus is strongly normaliz-
ing, it is clear that well-kinded constructors ∆ ` F : κ reach a normal form:
F −→∗β V for some V.

Lemma 2.22 (Derivation-independence for normal forms) Assume two deriva-
tions D1 :: ∆1 ` V : κ and D2 :: ∆2 ` V : κ of well-kindedness for the same normal
form V, and two valuations θ1 ∈ [[∆1]] and θ2 ∈ [[∆2]]. If θ1(X) = θ2(X) for all
X ∈ FV(F), then [[D1]]θ1 = [[D2]]θ2 .

Proof. By induction on V. This is easy, since both derivations are determinis-
tic.

Case V = X ~V. For j = 1, 2 the derivation D j has the shape

(X :~p~κ → κ) ∈ ∆ j
D j

i
p−1

i ∆ j ` Vi : κi for i = 1, . . . , |~κ|
∆ j ` X ~V : κ

.

For all i we have Gi := [[D1
i ]]θ1 = [[D2

i ]]θ2 by induction hypothesis. Since
F := θ1(X) = θ2(X) by assumption, it follows that [[D1]]θ1 = F ~G =
[[D2]]θ2 .

Case V = C ~V. Analogously.

Case V = λXV′. For j = 1, 2 the derivation D j has the shape

E j

∆ j, X : pκ1 ` V′ : κ2

∆ j ` λXV′ : pκ1 → κ2
.

LetF j(G) := [[E j]]θ j [X 7→G]. Since by induction hypothesisF 1(G) = F 2(G)
for all G ∈ [[κ1]], we have [[D1]]θ1 = F 1 = F 2 = [[D2]]θ2 . �

Lemma 2.23 (Substitution) Let D1 :: ∆, X : pκ ` F : κ′ and D2 :: p−1∆ ` G : κ.
Then there exists a derivation E :: ∆ ` [G/X]F : κ′. Further, assume θ ∈ [[∆]] and let
F (G) := [[D1]]θ[X 7→G] and G := [[D2]]θ. Then [[E ]]θ = F (G).

Proof. By induction on D1. �

Lemma 2.24 (Subject reduction) Let θ ∈ [[∆]]. If D :: ∆ ` F : κ and F −→β F′

then exists a derivation E :: ∆ ` F′ : κ with [[E ]]θ = [[D]]θ.



36 CHAPTER 2. SIZED HIGHER-ORDER SUBTYPING

Proof. By induction on F −→β F′, using Lemma 2.23 in case of a β-contraction.
�

Corollary 2.25 The lemma generalizes to multi-step reduction F −→∗β F′.

Theorem 2.26 (Derivation-independence of semantics) Assume two derivations
D :: ∆ ` F : κ and D′ :: ∆′ ` F : κ and two valuations θ ∈ [[∆]] and θ′ ∈ [[∆′]]. If
θ(X) = θ′(X) for all X ∈ FV(F), then [[D]]θ = [[D′]]θ′ .

Proof. By normalization of β-reduction F −→β
∗ V. The theorem follows from

Lemma 2.22 and the last corollary. �

This result justifies the notation [[F]]κθ as shorthand for [[D]]θ where D :: ∆ `
F : κ for some ∆ such that θ ∈ [[∆]]. If κ is clear form the context of discourse,
we will omit it.

Theorem 2.27 (Soundness of constructor equality and subtyping)

1. If D :: ∆ ` F = F′ : κ and θ vp θ′ ∈ [[∆]], then [[F]]θ vp [[F]]θ′ ∈ [[κ]].

2. If D :: ∆ ` F ≤ F′ : κ and θ v θ′ ∈ [[∆]], then [[F]]θ v [[F]]θ′ ∈ [[κ]].

Proof. Simultaneously by induction on D. �



Chapter 3

Type-Based Termination

In this chapter, we present the term or program level of Fω̂. We introduce rules
for typing and reduction and show their soundness through a term model. As
a consequence, each program of Fω̂ is terminating, and even strongly normal-
izing.

3.1 Specification

In this section, we introduce the terms of Fω̂ with their typing and reduction
rules.

3.1.1 The Language

Terms. The term language we use in this chapter is quite simple, it consists
of the Curry-style λ-calculus with two special constants for recursion and core-
cursion.

Tm 3 r, s, t ::= x | λxt | r s λ-calculus
| c constant

Const 3 c ::= fixµ
n funct. def. by recursion on n + 1st argument

| fixν
n corecursive function with n arguments

We use fix∇n to denote either fixµ
n or fixν

n . The default for subscript n is 0, hence,
fixµ denotes recursion on the first argument, and fixν means the construction of
an infinite object.

In spite of its economic spirit, the untyped λ-calculus can express all com-
putable functions: it is Turing-complete. We heavily restrict its power through
typing, but it is well-known that already in the simply-typed λ-calculus, many
data structures can be simulated through continuation passing.

37



38 CHAPTER 3. TYPE-BASED TERMINATION

Example 3.1 (Pairs and Variants) Pairs with projections and variants (elements
of a disjoint sum) with case distinction can be implemented as follows:

K := λxλyx constant function constructor
K′ := λxλyy identity function constructor

pair := λxλy. λk. k x y constructor
fst := λp. p K first
snd := λp. p K′ second projection

inl := λx. λkλl. k x left injection
inr := λy. λkλl. l y right injection
case := λiλkλl. i k l

3.1.2 Typing

Typing contexts. We extend our notion of context: Now a context may not
only assign kinds and polarities to type variables X, but also types to term
variables x.

Γ ::= � empty context
| Γ , X : pκ extension by constructor variable
| Γ , x : A extension by term variable

The default polarity is non-variant; extension of a context by a non-variant type
variable may be written Γ , X :κ instead of Γ , X :◦κ.

Typing contexts Γ will also be used in kinding judgements like Γ ` F :
κ, as defined in Section 2.1.4. In this case, the term variable declarations are
irrelevant and should be considered absent.

Well-formed typing contexts Γ cxt. Contexts for typing must contain only
non-variant type variable declarations; and each term variable must be de-
clared with a well-formed type.

CXT-EMPTY � cxt
CXT-TYVAR

Γ cxt

Γ , X :◦κ cxt

CXT-VAR
Γ cxt Γ ` A : ∗

Γ , x : A cxt

The restriction to non-variant type variables in rule CXT-TYVAR will be under-
stood when the typing rules are given below. The only typing rule which in-
troduces type variables is generalization, TY-GEN, and it only introduces non-
variant variables. However, allowing all polarities in the grammar for typing
contexts Γ pays off when we pass from typing to kinding judgements Γ ` F : κ,
because those derivations introduce also co- and contravariant type variables
(and they do not impose a well-formedness criterion).

Lemma 3.2 If D :: Γ cxt and (x : A) ∈ Γ then Γ ` A : ∗.



3.1. SPECIFICATION 39

Proof. By induction on D. �

Notation. Addition a + n of a size expression a : ord and a natural number
n ∈ N.

a + 0 = a
a + (n + 1) = s a + n

Typing Γ ` t : A.

Lambda-calculus. These rules are standard:

TY-VAR
(x : A) ∈ Γ Γ cxt

Γ ` x : A
TY-ABS

Γ , x : A ` t : B
Γ ` λxt : A→ B

TY-APP
Γ ` r : A→ B Γ ` s : A

Γ ` r s : B

Quantification. Since ∀κ : (κ ◦→ ∗) +→ ∗ (see Section 2.1.3), the constructor
F is of kind κ

◦→ ∗ in the following rules:

TY-GEN
Γ , X :κ ` t : F X

Γ ` t : ∀κF
X 6∈ FV(F) TY-INST

Γ ` t : ∀κ F Γ ` G : κ
Γ ` t : F G

For rule TY-INST note that since Γ ` F : κ
◦→ ∗, the application F G is only

well-kinded in Γ if the context for G : κ mentions only non-variant variables
(see kinding rule KIND-APP◦ in Section 2.1.4). But this is the case, since Γ is
well-formed (see Lemma 3.4).

Subsumption. (Subtyping has been defined in Section 2.2.)

TY-SUB
Γ ` t : A Γ ` A ≤ B : ∗

Γ ` t : B

Folding and unfolding for (co)inductive types (∇ ∈ {µ, ν}).

TY-FOLD
Γ ` t : F (∇κ a F) ~G

Γ ` t : ∇κ (a + 1) F ~G
TY-UNFOLD

Γ ` r : ∇κ (a + 1) F ~G
Γ ` r : F (∇κ a F) ~G

Recursion (∇ = µ) and corecursion (∇ = ν).

TY-REC
Γ ` A fix∇n-adm Γ ` a : ord Γ cxt

Γ ` fix∇n : (∀ı :ord. A ı→ A (ı + 1))→ A a

The condition A fix∇n-adm ensures that we only use TY-REC to define recur-
sive (∇ = µ) or corecursive (∇ = ν) functions. Dropping the condition



40 CHAPTER 3. TYPE-BASED TERMINATION

we could immediately introduce non-terminating programs, e. g., for A(ı) =
Nat∞ → Nat∞ which does not depend on the size index, the diverging pro-
gram fixµ

0 λ f λx. succ ( f x) would be accepted.
For A fixµ

n-adm we say that A is admissible for recursion on the n + 1st argu-
ment. Similarly, A fixν

n-adm is pronounced A is admissible for corecursion with n
arguments. A definition of these predicates is given below.

Example 3.3 (Typing for Pairs and Variants) The following type assignments
show that the constructors and destructors given in Example 3.1 introduce and
eliminate Cartesian product and disjoint sum type as presented in Example 2.5
(impredicative encodings).

pair : ∀A∀B. A→ B→ A× B
fst : ∀A∀B. A× B→ A
snd : ∀A∀B. A× B→ B

inl : ∀A∀B. A→ A + B
inr : ∀A∀B. B→ A + B
case : ∀A∀B∀C. A + B→ (A→ C)→ (B→ C)→ C

Lemma 3.4 If D :: Γ ` t : A then Γ cxt.

Proof. By induction on D. At the leaves (TY-VAR and TY-REC) of the typing
derivation, Γ cxt is checked, and no rule, read downwards, extends the context.

�

Lemma 3.5 If D :: Γ ` t : A then Γ ` A : ∗.

Proof. By induction on D. In most rules the type of the conclusion is simply
assembled from components of the type(s) of the premise(s). In rule TY-SUB,
the premise Γ ` A ≤ B : ∗ entails Γ ` B : ∗ (by Lemma 2.14). �

Notation for size index. We sometimes write the size index superscript, e. g.,
µı instead of µ ı, or νı instead of ν ı.

Natural transformations. Let n ≥ 0. For constructors F1, . . . Fn and G with
~F, G : ~p~κ → ∗, let

~F⇒ G :⇐⇒ ∀~X :~κ. F1 ~X → . . . Fn ~X → G ~X.

Also, we abbreviate λ~X. F(H1 ~X) . . . (Hn ~X) by F ◦ ~H.



3.1. SPECIFICATION 41

Admissible types for recursion and corecursion must meet certain require-
ments. For completeness of the typing system, we give the judgements Γ `
A fix∇n -adm for ∇ ∈ {µ, ν} here. We will motivate and repeat them in sections
3.5.1 and 3.5.2.

Γ ` A fixµ
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G, (µıF) ◦ ~H ⇒ G) : ∗ (ı 6∈ FV(A))

for some F, G, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :+ord ` G : κ′ for some κ′ = ◦~κ′ → ∗,
Γ , ι :−ord ` Gi : κ′ for 1 ≤ i ≤ n, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

Γ ` A fixν
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G⇒ (νıF) ◦ ~H) : ∗ (ı 6∈ FV(A))

for some F, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :−ord ` Gi : κ′ (all i) for some κ′ = ◦~κ′ → ∗, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

Example 3.6 (Admissible types for recursive functions) These A(ı) are fixµ
n-adm

for some n.

Natı → Nat∞ → Nat∞ addition and multiplication
Natı → Nat∞ → Natı subtraction and division
Listı A→ ListıB list map
Listı A→ Listı A× Listı A list splitting

The following types types are not admissible according to the current criterion,
but will be admissible after a relaxation in Chapter 5.

Natı → Natı → Natı minimum and maximum
Listı A→ ListıB→ ListıC list zip-with

Example 3.7 (Repeat function) The term repeat a constructs an infinite stream
of as.

repeat a := fixν
0 λrepeat. pair a repeat

λa. repeat a : ∀A. A→ Stream∞ A

It is well-typed, since λrepeat. pair a repeat can be assigned type ∀ı. Streamı A→
Streamı+1 A, and λı. Streamı A is trivially fixν

0 -adm (empty ~G, ~H).

3.1.3 Operational Semantics

In the following, we give the operational semantics of Fω̂. It is clear that, in
order to obtain a strongly normalizing calculus, the unrolling of recursion has
to be restricted. It is safe to unroll a recursive function if all of its arguments



42 CHAPTER 3. TYPE-BASED TERMINATION

are values, however, it is sufficient if the recursive argument is a value (i. e., the
argument which decreases in the recursive call). In Fω̂, the number of the re-
cursive argument is associated with the index n of the recursion operator. A
candidate for the unrolling rule is

fixµ
n s t1..n (λxr) −→ s (fixµ

n s) t1..n (λxr),

since a λ-abstraction is the canonical value in Fω̂. Considering this for another
moment, we see that recursive and corecursive functions must also count as
values, since they are not eagerly unrolled, and under-applied constants, such
as a bare fixµ

m, should also be included. Anyhow, when we extend Fω̂ with more
primitive type constructors, more values will arise. So we trade the rule for the
following:

fixµ
n s t1..n v −→ s (fixµ

n s) t1..n v.

What about corecursion? A corecursive function should also only be un-
rolled on demand. Could we use the same rule for fixν

n—which would make
the distinction between fixµ and fixν superfluous? Actually, the above rule is
too strict for corecursion, it prevents sensible reductions. Consider, the type of
Burroni conatural numbers1 and their mapping function:

Bur : ord
+→ ∗ +→ ∗

Bur := λıλA. νıλX. A + X
= λıλA. νıλX∀C. (A→ C)→ (X → C)→ C

bmap : ∀A∀B. (A→ B)→ ∀ı. Burı A→ Burı B
bmap := λ f . fixν

1 λbmapλn. case n (λa. inl ( f a)) (λm. inr (bmap m))
= λ f . fixν

1 λbmapλn. n (λa. λgλh. g ( f a)) (λm. λgλh. h (bmap m))

Now we expect case (bmap f (inl a)) g h to reduce to g ( f a) even for variables f ,
g, and h. Expanding case and inl this simplifies to

(fixν
1 (λbmap . . . ) (λg′λh′. g′ a)) g h.

Since variable g is not a value, this term would be stuck with the evaluation
rule for fixµ . Unrolling on demand means for corecursive elements: unrolling in
any evaluation context. This can be application to a variable like g, or being
applied to a recursive function.

It is also clear that a corecursive function cannot be unrolled before all of its
arguments have been supplied and the result is demanded. For instance, we
cannot allow a reduction rule like

e (fixν
n s t1..m) −→ e (s (fixν

n s) t1..m) where m ≤ n.

1Capretta [Cap05] interprets Bur∞ A as computations of type A: Either it is a value of type A
(inl) or it is a “step” containing a computation of type A (inr). “Step” could be read as “hello, I
know you are waiting for the result, I just want to tell you that I am still alive and busy with the
computation”. A diverging computation is an infinite sequence of steps (fixν

0 inr).



3.1. SPECIFICATION 43

This rule leads to divergence of well-typed terms if m < n. For example, con-
sider the coinductive type of Bool-hungry functions νıλX. Bool → X and the
function (communicated to me by Tarmo Uustalu during the APPSEM meeting
in Nottingham 2003)

veryHungry : ∀ı. Bool→ νıλX. Bool→ X
veryHungry := fixν

1 λveryHungryλbλb′. veryHungry true.

Then veryHungry true would reduce in several steps to λb′. veryHungry true and,
hence, diverge. But the above reduction rule is sound for m = n. This we will
show in the remainder of the chapter.

Evaluation frames and contexts.

Eframe 3 e ::= _ s application
| fixµ

n s t1..n _ recursive function call

Ecxt 3 E ::= Id empty stack
| E ◦ e push frame

Frames and contexts can be interpreted as endo-functions on terms in the ob-
vious way, i.e.,

(_ s)(r) := r s
(fixµ

n s~t _)(r) := fixµ
n s~t r

Id(r) := r
(E ◦ e)(r) := E(e(r))

Hence, by abuse of notation, Eframe, Ecxt ⊆ Tm→ Tm.
The head of a term t is the shortest term r such that E(r) = t for some

evaluation context E. For example if t = fixµ
n s t1..n ((λxr′) s′), then λxr′ is the

head of t.

(Lazy) Values. While a normal form is a term which cannot be reduced further,
we will refer to a canonical form as a value.

Val 3 v ::= λxt
| fix∇n
| fix∇n s~t where 0 ≤ |~t| ≤ n

Reduction. The contraction relation t � t′ is given by the following axiom
schemata:

RED-β (λxt) s � [s/x]t

RED-REC fixµ
n s t1..n v � s (fixµ

n s) t1..n v if v 6= fixν
n′ s
′ t1..n′

RED-COREC e(fixν
n s t1..n) � e(s (fixν

n s) t1..n) if e 6= fixµ
n′ s
′ t1..n′ _



44 CHAPTER 3. TYPE-BASED TERMINATION

Furthermore, we define the one-step reduction relation −→ as closure of � un-
der all term constructors, −→+ as the transitive closure of −→ and −→∗ as the
reflexive-transitive closure.

Remark 3.8 (On the choice of RED-REC) Why have we restricted the unfold-
ing of recursive functions to call-by-value? First, note that the completely unre-
stricted unrolling of fixed points, fixµ

n s −→ s (fixµ
n s), gives immediately rise to

infinite reduction sequences. Secondly, we need recursive functions to be eval-
uation contexts, i. e., a recursive function applied to a variable may not unfold
the function definition. Otherwise, each function definition which contains a
recursive call will immediately loop under full reduction.

Remark 3.9 (Confluence) If we omit the side conditions in the fixed-point un-
rolling rules RED-REC and RED-COREC, then reduction would not be confluent,
not even locally confluent for closed terms. Critical pairs would arise when in
RED-REC, the value v was a corecursive function, or in RED-COREC, the evalu-
ation frame e was a recursive function; in this case, both rules could fire. For
instance, let s = λ_λxx, f = fixµ

0 s, and v = fixν
0 s. On one hand, f v −→ s f v,

whose only reducts are (λxx) v and v. On the other hand, f v −→ f (s v) which
reduces further only to f λxx, s f λxx, (λxx) λxx and λxx. The deeper reason
for non-confluence is that we cannot unfold all fixed-points, since we want to
ensure normalization.

In order to overcome this defect, we have inserted restrictions that remove
the critical pairs, make reduction confluent and weak head reduction deter-
ministic.

Remark 3.10 (Why prevent both reductions?) For a term with clashing fixed
points, e. g., t := fixµ

0 s (fixν
0 s′), we currently allow no contraction. As we have

seen in the previous remark, allowing both fixed-point reductions would lead
to non-confluence, and it would even break a crucial property of strongly nor-
malizing terms: they are closed under weak head expansion2 (see Remark 3.27).
But could we not give priority to one kind of fixed-points and keep one reduc-
tion of the two? This would break symmetry, but does it do any harm? Yes, as
we will see in the proofs of lemmata 3.32 and 3.37. The term t would not be
considered neutral; removing the reduction of fixµ would break the first lemma
(3.32), and removing the reduction of fixν would break the second one (3.37).

For system Fω̂, we are only interested in strong normalization. We will
present a better behaved, iso-(co)inductive, system in Section 4.1 and show
that its normalization can be inherited from Fω̂.

Example 3.11 (Reduction for repeat) Let A be a type and a : A. Recall that

2Here, we mean a restricted form of weak head expansion, which usually preserves strong
normalization. E.g., [s/x]t only expands to (λxt) s if s is strongly normalizing.



3.2. EXAMPLES 45

repeat a = fixν
0 (λrepeat. pair a repeat). We have the following reduction sequences

fst (repeat a) −→ (repeat a) K
−→ (λrepeat. pair a repeat) (repeat a) K
−→ pair a (repeat a) K
−→3 K a (repeat a)
−→2 a

snd (repeat a) −→+ K′ a (repeat a)
−→ repeat a

Note that repeat a does neither reduce by itself, nor as argument to a non-
recursive function like pair, K, etc. (lines 2–4). It only reduces if it is applied
to something (line 1). This fixed-point unfolding on demand is a generalization
of the strategy of Amadio and Coupet-Grimal [ACG98], Giménez [Gim98], and
Barthe et al. [BFG+04], who unfold corecursive definition only under case dis-
tinction.

Although there are variations on the order of reductions, one will find that
there is no possibility that the fixed-point repeat a is unfolded more than once.
Each unfolding “eats” one destructor (like fst or snd), which guarantees termi-
nation.

Lemma 3.12 (Substitution) Reduction is closed under substitution.

1. If t −→ t′ then [s/x]t −→ [s/x]t′.
2. If s −→ s′ then [s/x]t −→∗ [s′/x]t.

Proof. The first by induction on t −→ t′, the second by induction on t. �

Example 3.13 (Types not admissible for recursion) There are types which are
OK in the domain-theoretic semantics of Hughes, Pareto, and Sabry [HPS96],
but not in our current reduction semantics:

Natı ×Nat∞ → Nat∞ addition and multiplication (uncurried)
Listı A× ListıB→ ListıC list zip-with (uncurried)

We discuss modification of our semantics in Section 7.2.
But these types are not admissible and lead to undefined recursive func-

tions.

List∞(Natı)→ C admits function fixµ
0 λ f λ_. f nil

Natı → (Nat→ Natı)→ C see Section 5.1
(Nat→ Natı)→ C ditto

3.2 Examples

To flesh out the definition of Fω̂, we present some simple examples in this sec-
tion. More examples will be given in Chapter 6. If clear from the context, we
will write Nat for Nat∞ to denote the type of all natural numbers.



46 CHAPTER 3. TYPE-BASED TERMINATION

3.2.1 Fibonacci Numbers

A basic exercise in lazy functional programming is to code up the stream of
Fibonacci numbers in one line, assuming we have the standard library function

zipWith : ∀A∀B∀C. (A→ B→ C)→
∀ı. Streamı A→ StreamıB→ StreamıC

zipWith := λ f . fixν
2 λzipλsλt. pair ( f (fst s) (fst t)) (zip (snd s) (snd t)).

Note that the type of zipWith is admissible for corecursion, since ı appears neg-
atively in Streamı A and StreamıB. In Fω̂, the Fibonacci stream can be defined as
follows (assuming 0, 1 : Nat and + : Nat→ Nat→ Nat).

fib : Stream∞Nat
fib := pair 0 (fixν

0 λzip. pair 1 (zipWith (+) zip (pair 0 zip))).

The body of the corecursive definition is well-typed. We assign the following
types:

zip : Streamı Nat

pair 0 zip : Streamı+1 Nat ≤ Streamı Nat
(zipWith . . . ) : Streamı Nat

pair 1 (zipWith . . . ) : Streamı+1 Nat

It is instructive to understand why the alternative definition of the Fibonacci
stream as

fixν
0 λfib. pair 0 (pair 1 (zipWith (+) (snd fib) fib)

is not well-typed in Fω̂.

3.2.2 Co-Natural Numbers

Non-standard natural numbers are given by the type CoNat = ν∞λX. 1 + X.
We can define all natural numbers plus infinity:

0 := inl()
1 := inr 0
2 := inr 1
...
ω := fixν

0 inr

All these values inhabit CoNat.

3.2.3 Some Pathological Cases

Datatypes like Emptya := µa
∗λXX are called unguarded since their unfolding

does not produce a “real” data type constructor like +, ×, or→, which would
enable production of inhabitants. Since [[Empty]](α + 1) = [[Empty]](α), we have



3.2. EXAMPLES 47

[[Empty]] = ⊥∗. It is easy to check that fixµ
0 λxx : ∀C∀ı. Emptyı → C, so the

Empty type can be eliminated through a recursive function. A bit counterintu-
itively, this function, which is the primary example of a looping definition in
functional programming, is termination on all inputs—simply because we can
never construct a value of Emptya.

Dually, the unguarded coinductive type Unita := νa
∗λXX is inhabited by

fixν
0 λxx. This function is normalizing as well because there is no well-typed

evaluation context for elements of type Unita.

3.2.4 Huffman Trees

Huffman codes are space-optimal and prefix-free. To decode a Huffman-coded
bit stream, one uses a Huffman tree, i. e., a binary tree whose leaves are labeled
by the characters whose code is the path to their leaf. In Haskell, we can im-
plement the decoding function as follows.3

data Huffman b c = Leaf c

| Node (b -> Huffman b c)

decode :: Huffman b c -> [b] -> [c]

decode t0 = dec0

where dec0 = dec1 t0

where dec1 (Leaf c) bs = c : dec0 bs

dec1 (Node f) (b:bs) = dec1 (f b) bs

There are two subroutines: the corecursive dec0 of type [b] -> [c] decodes a
stream starting with the full Huffman-tree t0, whereas dec1, of the same type
as decode, is defined by recursion on subtrees of t0. Observe that the recursive
call to dec0 is guarded by the stream constructor (:), although not according to
Coquand’s conditions [Coq93], because it is inside another fixed point.

In Fω̂, we can define the type Huffmana B C of B-branching C-leaf labeled
trees of height < a as follows:

Huffman : ord
+→ ∗ −→ ∗ +→ ∗

Huffman := λıλBλC. µı
∗λX. C + (B→ X)

leaf : ∀B∀C∀ı. C→ Huffmanı+1 B C
leaf := inl

node : ∀B∀C∀ı. (B→ Huffmanı B C)→ Huffmanı+1 B C
node := inr

3Yong Luo observed that decode (Leaf c) [] produces an infinite stream of cs. This shows
that decode is not necessarily terminating on finite input, although it is, as we will prove in the
following, productive. One could ask whether decode’s behavior on the singleton Huffman tree
Leaf c makes sense. I think “yes”, because an infinite text over an alphabet with a single character
contains no information. Regardless what the input stream of Huffman codes is, the output will
just consist of cs. In this case, we do not even have to look at the input.



48 CHAPTER 3. TYPE-BASED TERMINATION

The decoding function takes a Huffman-tree t and a B-stream s. If the t is a
node inr f , we take the first element b from the stream and continue with the
b-th subtree of t, i. e., f b, and the remaining stream. If t is a leaf inl c, we can
output c and continue with the original Huffman tree t0.

decode : ∀B∀C. Huffman∞ B C→ Stream∞ B→ Stream∞ C
decode := λt0. fixν

1 λdec0.(
fixµ

0 λdec1.λtλs. case t
(λc. pair c (dec0 s))
(λ f . dec1 ( f (fst s)) (snd s))

)
t0

This code is a close translation of the Haskell program, one clearly sees the
outer corecursion (fixν

1 λdec0) and the inner recursion (fixµ
0 λdec1). We can assign

the following types to variables and subterms:

t0 : Huffman∞ B C
dec0 : Stream∞ B→ Streamı C
dec1 : Huffman B C→ Stream∞ B→ Streamı+1 C
t : Huffman+1 B C
s : Stream∞ B
c : C
pair c (dec0 s) : Streamı+1 C
f : B→ Huffman B C
f (fst s) : Huffman B C
dec1 ( f (fst s)) (snd s) : Streamı+1 C(
fixµ

0 . . .
)

: Huffman∞ B C→ Stream∞ B→ Streamı+1 C

The type of dec0 is admissible for corecursion with one argument, fixν
1 -adm,

since it is a function type into a coinductive type νı . . . , and the domain is
monotone in the size variable ı, since it does not mention it. Similarly, the
type of dec1 is admissible for recursion on the first argument, fixµ

0 -adm, since its
domain is an inductive type and its codomain is trivially monotone in the size
variable .

This example could be handled in the calculus of Barthe et al. [BFG+04]
and in my TLCA system [Abe03], but not in the system of Hughes, Pareto, and
Sabry [HPS96, Par00], since they forbid function spaces in data types.

In the following, we allow ourselves some syntactic sugar and write the
case-expression as pattern matching:

match t with
leaf c 7→ pair . . .
node f 7→ dec1 . . .

Creating a Huffman tree. Huffman [Huf52] presented an algorithm how to
create a optimal prefix-free binary code for a set of characters from their rel-
ative frequencies. This algorithm can be coded directly in Fω̂. For simplicity,



3.2. EXAMPLES 49

assume that the characters and their frequencies are given as a list of pairs
(n1, leaf c1), ..., (nk leaf ck) of natural numbers and singleton Huffman trees.
Assume further, this list is sorted ascendingly by frequencies (if not, sort it
first—sorting can also be coded in Fω̂, as we will see later).

We abbreviate the type of frequency-tree pairs by WT. Two pairs can be
joined by adding the frequencies and constructing a node with the two given
trees as subtrees:

WT : ∗
WT := Nat×Huffman∞ Bool Char

join : WT→ WT→ WT
join := λxλy. pair (fst x + fst y) (λb. snd (if b then x else y))

Huffman’s algorithm works as follows: Pick the pairs with the least frequen-
cies, join them and solve the remaining problem. If we start with a sorted list,
we have to insert the joined pair into the remaining list in order, before we re-
cursively process the remainder. It is crucial that insert is defined in such a way
that our type system can “see” that the extended list is only one element larger.
But this is the case for the obvious recursive definition of insert, as for example
present in the Haskell prelude. Here, we give a version slightly optimized for
our purposes: it returns head and tail of the result list separately, in order to
statically exclude the impossible case that an empty list is returned. (In the fol-
lowing, we consider frequency comparison x ≤ y for x, y ∈ WT to be already
defined.)

insert : ∀ı. WT→ Listı WT→ WT× Listı WT
insert := fixµ

1 λinsertλxλxs. match xs with
inl _ 7→ pair x xs
inr (pair y ys) 7→ if x ≤ y then pair x xs

else pair y (inr (insert x ys))

huffman : ∀ı. WT→ Listı WT→ Huffman∞ Bool Char
huffman := fixµ

1 λhuffmanλxλxs. match xs with
nil 7→ snd x
cons y ys 7→ uncurry huffman (insert (join x y) ys)

Herein, uncurry is an auxiliary function defined as usual.

uncurry : ∀A∀B∀C. (A→ B→ C)→ A× B→ C
uncurry := λ f λp. f (fst p) (snd p)

Using the impredicative encoding A× B = ∀C. (A → B → C) → C of prod-
ucts, we can state the last case without uncurry directly as

insert (join x y) ys huffman.



50 CHAPTER 3. TYPE-BASED TERMINATION

It is easy to see that the recursive call to huffman is justified. Some types are:

xs : Listı WT ≤ Listı+1 WT
ys : Listı WT
insert (join x y) ys : WT× Listı WT
uncurry huffman : WT× Listı WT→ Huffman∞ Bool Char

Finally, Huffman encoding can also be coded in Fω̂, although for this, we
need another data structure, mapping characters to Huffman codes.

3.2.5 Prime Numbers

Productivity of certain streams depends on non-trivial mathematical results.
For example, the stream of prime numbers is productive since there are in-
finitely many primes. If the converse was true, i. e., if there were only n primes
and m the product of these primes, then m + 1 would be relatively prime to
all n primes. This proof by Euclid guarantees a prime number between n + 1
and m + 1. We can exploit this fact to define a stream of prime numbers in Fω̂.
The definition is an adaption of Miculan and Gianantonio’s function p(m, n)
[GM03, tenth page]:

p(m, n) =
{ n :: p(m ∗ n, n + 1) if gcd(m, n) = 1

p(m, n + 1) else

If Fω̂, we require a dummy argument k to count down the maximum number
of steps until the next prime is found.

pr : ∀ı. Nat→ ∀. Nat→ Nat → Streamı Nat
pr := fixν

3 λprλm.
fixµ

1 λpr′λnλk. match k with
zero 7→ . . .
succ k′ 7→ if gcd m n = 1 then

pair n (pr (m ∗ n) (n + 1) ((m− 1) ∗ n + 1))
else pr′ (n + 1) k′

primes : Stream∞Nat
primes := pr 1 2 1

Herein, gcd : Nat → Nat → Nat computes the greatest common divisor and
+ and ∗ denote sum and product of natural numbers. Since in each executed
function instance pr m n k the invariant m + 2 = n + k holds, the case k = 0 is
impossible; otherwise the counter n would have stepped over m + 1 without
finding a prime. Hence, the dots “. . . ” in the first match-branch will never be
reached and can be replace with any term of the right type.

3.2.6 Sorting by Merging

The sorting algorithm whose termination is most easy to establish is insertion
sort: insertion is primitive recursive, and sorting is performed by iteratively



3.2. EXAMPLES 51

inserting elements into a list which is empty in the beginning. Quick sort is
more difficult, since the recursive calls happen on indirect sublists. It has been
treated elsewhere [Abe04]. This time, we treat merge sort. Let A be some type
with a total order ≤: A → A → Bool. Sorted merging can be defined by
lexicographic recursion on the two input lists.

merge : ∀ı. Listı A→ ∀. ListA→ List∞A
merge : fixµ

0 λmerge0λl1. match l1 with
nil 7→ λl2. l2
cons x xs 7→ fixµ

0 λmerge1λl2. match l2 with
nil 7→ l1
cons y ys 7→ if x ≤ y then cons x (merge0 xs l2)

else cons y (merge1 ys)

A more precise type for merge would be ∀ı∀. Listı A → List+1 A → Listı+A
(since the index counts the number of constructors as opposed to the length of
the list, the +1 in the type of the second list is necessary—one nil constructor is
discarded during the merge). But our type system, unlike Hughes, Pareto, and
Sabry’s [HPS96], does not handle addition of sizes. 4

Merge sort recursively splits the input list, until only singleton lists remain,
and then merges the lists together in a sorted fashion. For our type system
to accept merge sort, it is crucial to know that both output lists of the split
operation are not longer than the input list (in most, but not all cases, they
will be strictly shorter, namely half the length). The natural type for split is
∀A∀ı. Listı A → Listı A× Listı A; with the impredicative encoding of products
split can be written tail-recursive, in continuation-passing style (CPS).

split : ∀A∀ı. Listı A→ ∀C. (Listı A→ Listı A→ C)→ C
split := fixµ

0 λsplitλlλk. match l with
nil 7→ k nil nil
cons x xs 7→ split xs (λysλzs. k (cons x zs) ys)

We assign the following types.

split : Listı A→ ∀C. (Listı A→ Listı A→ C)→ C
l : Listı+1 A
k : ∀C. (Listı+1 A→ Listı+1 A→ C)→ C
x : A
xs : Listı A
split xs : (Listı A→ Listı A→ C)→ C
ys, zs : Listı A
cons x zs, ys : Listı+1 A
k (cons x zs) ys : C

4Although there is an addition on ordinals, it is not commutative and hence would be a bit
misleading in a type system (since most programmers would think of natural number addition).
We could, however, introduce another kind nat of finite sizes which supports addition.



52 CHAPTER 3. TYPE-BASED TERMINATION

The type of split is fixµ
0 -adm since the result type ∀C. (Listı A→ Listı A→ C)→

C is positive in size variable ı.
Finally, we define merge sort msort via an auxiliary function msort′ such

that msort′ a as sorts the list cons a as by merging.

msort : List∞A→ List∞A
msort := λl. match l with

nil 7→ nil
cons a as 7→ msort′ a as

msort′ : A→ List∞ A→ List∞ A
msort′ := fixµ

1 λmsortλaλxs. match xs with
nil 7→ cons a nil
cons b l 7→ split l (λasλbs. merge (msort a as) (msort b bs))

The recursive calls to msort are legal because of the typing of split. Indeed, we
can assign the following types:

msort : A→ Listı A→ List∞A
a, b : A
xs : Listı+1 A
l : Listı A
as, bs : Listı A

Altenkirch, McBride, and McKinna [AMM05] demonstrate that sorting by merg-
ing can be implemented in a structurally recursive fashion by explicating the
computation pattern into an inductive data type. Applying short-cut fusion5

to their program, one arrives at the usual functional formulation of merge sort.
They point out that Turner [Tur95] has also defused quick sort, arriving at the
structural tree sort [Bur69].

3.2.7 A Heterogeneous Data Type of Lambda Terms

In Haskell, we can define heterogeneous, also called nested, data types, for in-
stance:

data TLam a = Var a

| App (TLam a) (TLam a)

| Abs Ty (TLam (Maybe a))

(Herein, Ty denotes some Haskell type of object-level type expressions.) The
type TLam a is called heterogeneous, since the argument to the data type con-
structor TLam varies in a recursive occurrence on the right hand side. It is inhab-
ited by de Bruijn representations of typed lambda terms over a set of free vari-
ables “a”. A similar type has been studied by Altenkirch and Reus [AR99] and

5Intermediate tree structures are eliminated by the acid rain theorem.



3.2. EXAMPLES 53

Bird and Paterson [BP99b]; a precursor has been considered already by Pfen-
ning and Lee [PL89] and Pierce, Dietzen, and Michaylov [PDM89]. The con-
structor for lambda-abstraction Abs expects the type of the abstracted variable
and a term over the extended set of free variables Maybe a, which is the Haskell
representation of the sum type 1 + a. The disjoint sum reflects the choice for
a bound variable under the abstraction: either it is the variable freshly bound
(left injection into the unit set “1”) or it is one of the variables that have been
available already (right injection into “a”).

In Fω̂, we can express the type constructor TLam by a least fixed point of
kind ∗ +→ ∗.

Ty : ∗
TLam : ord

+→ ∗ +→ ∗
TLam := λı. µı

∗ +→∗λXλA. A + (X A× X A + Ty× X (1 + A))

var : ∀ı∀A. A→ TLamı+1 A
var := λx. inl x

app : ∀ı∀A. TLamı A→ TLamı A→ TLamı+1 A
app := λrλs. inr (inl 〈r, s〉)
abs : ∀ı∀A. Ty∞ → TLamı (1 + A)→ TLamı+1 A
abs := λaλr. inr (inr 〈a, r〉)

A whole article [AMU05] has been devoted to functions defined by iteration
over heterogeneous data types. Fω̂ can simulate all the systems discussed
in that article, hence, all examples in that article can be replayed in Fω̂. In
Fω̂, some functions can be given more precise typings, e. g., the functorial-
ity/monotonicity witness of TLam:

mapTLam : ∀ı∀A∀B. (A→ B)→ TLamı A→ TLamıB
mapTLam := fixµ

1 λmapTLamλ f λt. match t with
var x 7→ var ( f x)
app r s 7→ app (mapTLam f r) (mapTLam f s)
abs a r 7→ abs a (mapTLam (lift f ) r)

lift : ∀A∀B. (A→ B)→ (1 + A→ 1 + B)
lift := λ f λt. match t with

inl 〈〉 7→ inl 〈〉
inr x 7→ inr ( f x)

The call mapTLam f t renames all free variables in t according to f ; the structure
of t remains unchanged, which is partially reflected in the type of mapTLam: it
expresses that the output term is not higher than the input term. The type of
recursion is polymorphic:

C(ı) = ∀A∀B. (A→ B)→ TLamı A→ TLamıB.

This is typical for functions over heterogeneous data types; in our example,
since in the recursive call mapTLam (lift f ) r the argument r has type TLamı (1 +



54 CHAPTER 3. TYPE-BASED TERMINATION

A), the variable A of the recursion type C(ı) has to be instantiated to 1 + A. It
is well-known that type reconstruction for polymorphic recursion is undecid-
able [Hen93, KTU93], hence, we cannot hope for an autonomous type inference
algorithm for Fω̂.

This example will be continued in Section 6.3.

3.2.8 Substitution for Finite and Infinite Lambda-Terms

Altenkirch and Reus [AR99] describe a substitution function for de Bruijn-style
lambda-terms as a heterogeneous data type. During substitution under a ab-
straction, a new free variable is temporarily introduced, hence, all free vari-
ables in the substitute terms have to be lifted (renamed). Altenkirch and Reus
perform this lifting operation also using substitution, and give a lexicographic
termination argument. McBride [McB06] has, besides generalizing it to typed
lambda-terms, exhibited the primitive recursive structure behind this algo-
rithm, by giving a single traversal function for lambda-terms that is then in-
stantiated to yield renaming or substitution. In the following, we demonstrate
that we can replay his development in Fω̂, although only for untyped terms,
and that the same algorithm is recognized to be productive for infinite lambda-
terms.

The generating type constructor for untyped de Bruijn terms is LamF, from
which we get the types of finite (Lam) and infinite (CoLam) terms:

LamF : (∗ +→ ∗) +→ ∗ +→ ∗
LamF := λXλA. A + (X A× X A + X (1 + A))

Lam : ord
+→ ∗ +→ ∗

Lam := λı. µı
∗ +→∗LamF

CoLam : ord
−→ ∗ +→ ∗

CoLam := λı. νı
∗ +→∗LamF

The data constructors are uniformly definable for finite (∇ = µ) and infinite
(∇ = ν) terms:

var : ∀ı∀A. A→ ∇ı+1LamF A
var := λx. inl x

app : ∀ı∀A.∇ıLamF A→ ∇ıLamF A→ ∇ı+1LamF A
app := λrλs. inr (inl 〈r, s〉)
abs : ∀ı∀A.∇ıLamF (1 + A)→ ∇ı+1LamF A
abs := λr. inr (inr r)

In the absence of sized types, renaming and substitution can be subsumed un-
der the common type

∀A∀B. (A→ F B)→ ∇LamF A→ ∇LamF B,



3.2. EXAMPLES 55

where F is instantiated with the identity in case of renaming, and with Lam in
case of substitution. We are dealing with sized types, however, and in the case
of infinite terms we would like that both renaming and substitution are of type
CoLamı A→ CoLamıB. This means that the result of renaming and substitution
is defined at least up to the same depth than the input. Hence, we let F depend
on a size argument and obtain the type

∀ı∀A∀B. (A→ Fı B)→ CoLamı A→ CoLamıB.

McBride parameterizes the generic traversal function for de Bruijn terms by a
kit that is passed as an extra argument to the traversal function. The kit contains
three functions: a mapping from variables into F, a mapping from F to terms,
and a lifting function on F. For our purposes is more convenient to separate
the second function from the rest. We say F has term structure if it is pointed
and supports lifting:

TmStr : (ord −→ ∗ +→ ∗) ◦→ ∗
TmStr := λF∀ı∀A.

(A→ Fı+1 A)× (Fı A→ Fı(1 + A))

We have chosen F to be antitonic in the size index since we will later instantiate
it with CoLam.

If F has term structure, we can lift functions f : A → Fı+1B to make room
for one extra variable:

lift : ∀F :ord −→ ∗ +→ ∗. TmStr F→
∀ı∀A∀B. (A→ Fı+1B)→ (1 + A→ Fı+1(1 + B))

lift := λ〈vr, wk〉λ f λma. match ma with
inl 〈〉 7→ vr (inl 〈〉)
inr a 7→ wk ( f a)

Generic traversal now works for all F which can be converted to terms using
the parameter tm. It is defined as follows:

trav : ∀F :ord −→ ∗ +→ ∗. TmStr F→ (∀ı∀B. Fı+1B→ ∇ı+1LamF B)→
∀ı∀A∀B. (A→ Fı B)→ (∇ıLamF A→ ∇ıLamF B)

trav : λkλtm. fix∇ λtravλ f λt. match t with
var a 7→ tm ( f a)
abs r 7→ abs (trav (lift k f ) r)
app r s 7→ app (trav f r) (trav f s)

Note that f : A → Fı+1B, but, in the recursive call, trav f s expects f to be of
type A → FıB. This is fine because F is antitone in its size argument, hence
A → Fı+1B ≤ A → FıB. In case of ∇ = µ, fix∇ has to be instantiated with fixµ

1 ,
and with fixν

2 in case of ∇ = ν. In both cases, the type

C(ı) = ∀A∀B. (A→ Fı B)→ (∇ıLamF A→ ∇ıLamF B)



56 CHAPTER 3. TYPE-BASED TERMINATION

is admissible for (co)recursion, again since F is antitonic.
Instantiating F with λıλA.A, we obtain the renaming function for free vari-

ables:

rename : ∀ı∀A∀B. (A→ B)→ ∇ıLamF A→ ∇ıLamF B
rename := trav 〈id, inr〉 var

Substitution for infinite terms is obtained by the instantiation F = CoLam:

subst : ∀ı∀A∀B. (A→ CoLamıB)→ CoLamı A→ CoLamıB
subst := trav 〈var, rename inr〉 id

The best type we can give to substitution of finite terms in Fω̂ is (A →
Lam∞B) → Lam∞A → Lam∞B. We first have to type-check trav with a spe-
cialized type, and then instantiate it with F = λı. Lam∞:

trav : ∀F :∗ +→ ∗. TmStr (λıF)→ (∀B. F B→ Lam∞B)→
∀ı∀A∀B. (A→ F B)→ (Lamı A→ Lam∞B)

subst : ∀A∀B. (A→ Lam∞B)→ Lam∞A→ Lam∞B
subst := trav 〈var, rename inr〉 id.

3.3 Limits, Iteration, and Fixed-Points

In this section, we will define transfinite iteration to give a semantics to in-
ductive and coinductive types. We will calculate the closure ordinal >ord of
iteration, such that, µ∞ and ν∞ are indeed fixed-points. This will justify the
rules TY-FOLD and TY-UNFOLD for the case a = ∞.

3.3.1 Limits

Let (O,≤) be some complete linear ordering, e.g., the set of ordinals up to>ord

and (L,v, inf, sup) some complete lattice. For f ∈ O → L and λ > 0 a limit
ordinal in O we define:

infλ f := infα<λ f (α) infimum
supλ f := supα<λ f (α) supremum

lim infλ f := supα0<λ infα0≤α<λ f (α) limes inferior
lim supλ f := infα0<λ supα0≤α<λ f (α) limes superior

Lemma 3.14 (Relationships) In the above context, if λ 6= 0,

inf
λ

f v lim inf
λ

f v lim sup
λ

f v sup
λ

f .

If lim infλ f = lim supλ f = x for some x ∈ L, we say that the limit of f at λ

exists and set limλ f = x.



3.3. LIMITS, ITERATION, AND FIXED-POINTS 57

Lemma 3.15 (Limes inferior of monotone function) If f is monotone below λ,
i. e., f (α) v f (β) for all α < β < λ, then lim infλ f = supλ f .

Proof. For monotone f it holds that infα0≤α<λ f (α) = f (α0). �

Corollary 3.16 If f is monotone below λ, then limλ f = supλ f .

Lemma 3.17 (Limes superior of antitone function) If f is antitone below λ, then
lim supλ f = infλ f .

Proof. For antitone f it holds that supα0≤α<λ f (α) = f (α0). �

Corollary 3.18 If f is antitone below λ, then limλ f = infλ f .

A function f is continuous in λ, if f (λ) = limλ f . Here we mean continu-
ous in the sense of classical analysis, not in the sense of domain theory, where
continuity includes monotonicity.

3.3.2 Operator Iteration

By the theorem of Knaster and Tarski we know that in each complete lattice
L least and greatest fixed-points of monotone operators F ∈ L → L exist.
The least fixed-point of F , for instance, can be defined either “from above” as
inf{G | F (G) v G} or from below as the αth iterate Fα(⊥) for some suffi-
ciently large ordinal α. We choose the second alternative since our system Fω̂

also speaks about approximations Fβ(⊥) for β < α. In the following we will
make it clear what we mean by transfinite iteration Fα(G) in arbitrary com-
plete lattices L—we will of course only use the notion for our operator lattices
[[κ]], but the specifics about the lattice do not matter for iteration and fixed-
points.

Transfinite iteration. Let F ∈ L → L be an endo-function, G ∈ L and α an
ordinal number. We define theα-iterate Iα F G ofF at G by transfinite recursion
on α.

I0 F G := G
Iα+1 F G := F (Iα F G)

Iλ F G := lim infα→λ(Iα F G)

We use Fα(G) as a shorthand for Iα F G. For the limit case, we chose to use the
limes superior, as Danner [Dan99]. Note that iteration is well-defined for any
F , in particular, non-monotonic F . However, many reasonable properties on
iteration hold only for a monotonic F .

Lemma 3.19 (Iteration of monotonic function) IfF v F ′ ∈ L
+→ L then Iα F v

Iα F ′ ∈ L
+→ L for any α ∈ On.



58 CHAPTER 3. TYPE-BASED TERMINATION

Proof. By induction on α. �

For iteration to be monotonic in the ordinal index, we need to start iteration
at an element G ∈ L for which F is inflationary, meaning F (G) w G. When
we use iteration to define the semantics of µ, iteration will start at G = ⊥, for
which anyF is trivially inflationary, hence the semantics of µ will be monotone
in the ordinal argument for any monotone F .

Lemma 3.20 (Iteration of inflationary function6) Let F ∈ L
+→ L and G ∈ L

with G v F (G). Then

1. Fα(G) v Fβ(G) for α ≤ β, and

2. Fβ(G) v Fβ+1(G).

Proof. Simultaneously by induction on β. Since v is reflexive, it is sufficient
to show Fα(G) v Fβ(G) for α < β instead of proposition 1.

Case β = 0. For part 1, there is nothing to show, part 2 follows by assumption.

Case β = β′ + 1. For part 1, assume α < β′ + 1. By induction hypothesis 1,
Fα(G) v Fβ′(G), and by induction hypothesis 2, Fβ′(G) v Fβ′+1(G).
Hence the claim follows by transitivity. For part 2, just use monotonicity
of F on the induction hypothesis.

Case β = λ limit ordinal. For part 1, assume α < λ. Since by induction hy-
pothesis 1 function α 7→ Fα(G) is monotone below λ, by Lemma 3.15
it is sufficient to show that Fα(G) v supα<λ Fα(G)—which trivially
holds. For part 2 we can apply Lemma 3.15 similarly which leaves us the
goal supα<λ Fα(G) v Fλ+1(G). Assume an arbitrary α < λ. By induc-
tion hypothesis 1, Fα(G) v Fλ(G), hence by monotonicity Fα+1(G) v
Fλ+1(G). Since α was arbitrary and F 0(G) v F 1(G) by assumption, it
holds for all α < λ that Fα(G) v Fλ+1(G). Hence, we are done. �

6Our formulation of Lemma 3.20 is actually equivalent to Danner’s Lemma 3.5 [Dan99]. He
states instead (in our notation):

If Iξ+1 F x w Iξ F x, then for all γ > α ≥ ξ , Iγ F x w Iα F x.

Letting G := Iξ F x, his premise states that F should be inflationary on G. His conclusion can be
reformulated to

for all γ′ > α′, Iγ′ F G w Iα′ F G
where γ = ξ +γ′ andα = ξ +α′. The new formulation is identical to the old since ordinal addition
distributes over iteration in the following way:

Iξ+α F = Iα F ◦ Iξ F

This equation can be proven by transfinite induction on α (note that ordinal addition is defined by
recursion on the second argument) and holds without any assumptions on F . The equation also
appears in Danner’s Theorem 3.7, but only for monotone F .



3.3. LIMITS, ITERATION, AND FIXED-POINTS 59

If F is monotone and deflationary, F (G) v G, for the start value G, then
iteration will be antitonic in the ordinal index. This is, for instance, the case if
we choose G = >, as we will do for the interpretation of ν.

Lemma 3.21 (Iteration of deflationary function) Let F ∈ L
+→ L and G ∈ L

with G w F (G). Then

1. Fα(G) w Fβ(G) for α ≤ β, and

2. Fβ(G) w Fβ+1(G).

Proof. Analogously to Lemma 3.20. �

Summarizing, we can say that for a monotone F which is inflationary (de-
flationary) for G, we get a monotone (antitone) function f (α) = Iα F G. In both
cases, the limes inferior of f at some limit ordinal λ coincides with the limes
superior (lemmas 3.15 and 3.17), and, by definition of f , with the actual value
f (λ) of f at λ, hence f is continuous at all limit ordinals.

3.3.3 Fixed points

By the theorem of Knaster and Tarski [Tar55], each monotonic operator F ∈
L → L in a complete lattice L has a least fixed point. This fixed point can
be reached “from below” by transfinite iteration of F , starting at the bottom
element⊥ of the lattice. By Lemma 3.20, the iterates Fα(⊥) form an ascending
chain. If for some ordinal γ

F (Fγ(⊥)) v Fγ(⊥),

i.e., the γ-iterate is a prefixed point of F , then the least fixed point of F has been
reached and we call γ the closure ordinal of operator F .

Analogously, the greatest fixed point does exist which can be reached “from
above” by starting at the top element > of the lattice. By Lemma 3.21, the
approximations Fα(⊥) form a descending chain. For some ordinal γ it holds
that

F (Fγ(>)) w Fγ(>),

i.e., the γ-iterate is a postfixed point of F , and the greatest fixed point has been
reached.

Cardinalities for pure kinds. Since each A ∈ [[∗]] is a subset of the countable
set >∗ by definition, the cardinality of [[∗]] is at most i1 = |P(N)|, an uncount-
able cardinal number. With in+1 we denote the cardinality of the power set
P(in) of the previous cardinal in. Let κ = ~p~κ → ∗ be a pure kind, then
[[~p~κ → ∗]] ⊂ P([[κ1]]× . . .× [[κn]]× [[∗]]) hence the following lemma holds:

Lemma 3.22 (Upper bound for cardinality) For pure kind κ,

|[[κ]]| ≤ irk(κ)+1.



60 CHAPTER 3. TYPE-BASED TERMINATION

Proof. By induction on κ. Base case κ = ∗ follows by assumption. For the step
case, let n ≥ 1 and κ = ~p~κ → ∗.

|[[~p~κ → ∗]]| ≤ |P([[κ1]]× . . .× [[κn]]× [[∗]])| set-theoretic function space
≤ |P(irk(κ1)+1 × . . .×irk(κn)+1 ×i1)| induction hypothesis

≤ |P(imax{rk(κi)+1|1≤i≤n})| cardinal multiplication

≤ i1+maxi rk(κi)+1 definition of in

= irk(κ)+1 definition of rank

�

Closure ordinal. At which ordinal γ will least and greatest fixed point be
surely reached for any monotone operator? We can give a “brute-force” upper
bound for γ as follows: Assume we want to construct a fixed point in lattice
L = [[κ]] for some κ by a chain (Fα) of approximations. Since the cardinality
of L is bounded by in where n = rk(κ) + 1 (see Lemma 3.22), the chain can
enumerate less then in elements Fα where 0 ≤ α < in. Hence, the element
Fin must be the fixed point. An upper bound γ for the closure ordinal for all
monotone operators F in all lattices [[κ]] with κ pure kind is the supremum of
all in, the ordinal iω. Now we can complete the definition of [[ord]] setting

>ord := iω.

3.3.4 Inductive and Coinductive Constructors

Now, we can fix the semantics of µκ and νκ . Recalling that [[C]]θ was defined as
Sem(C), we set

Sem(µκ)(α)(F ) := Fα(⊥κ), and
Sem(νκ)(α)(F ) := Fα(>κ).

Lemma 3.23 (Semantics of (co)inductive constructors fulfill specification) We
have

[[µκ ]] ∈ [[ord]] +→ ([[κ]] +→ [[κ]]) +→ [[κ]],
[[νκ ]] ∈ [[ord]] −→ ([[κ]] +→ [[κ]]) +→ [[κ]].

Proof. By definition and lemmata 3.19, 3.20, and 3.21. �

Theorem 3.24 (Soundness of folding and unfolding) Let ∇κ ∈ {µκ , νκ}, F ∈
[[κ]] +→ [[κ]], and α ∈ [[ord]]. We set

G := F ([[∇κ ]]αF ) (unfolded) ,
H := [[∇κ ]]([[s]]α)F (folded) .

Then G vκ H andH vκ G.



3.4. SEMANTICAL TYPES 61

Proof. We consider the inductive case ∇κ = µκ , the case of coinductive con-
structors is proven analogously. Observe that G = Fα+1(⊥) andH = F [[s]]α(⊥).
Since [[s]]α = α + 1 for α < >ord, the only interesting case is α = >ord. Then,

[[s]]α = >ord, but G v H still holds since F>
ord

(⊥) is a fixed point of F . �

The soundness of rules TY-FOLD and TY-UNFOLD is a consequence of this the-
orem.

3.3.5 Soundness of λ-Dropping

The least fixpoint of a constructor equation

X : κ
X ~A = F X ~A

can mechanically be expressed as µ∞
κ λXλ~A. F X ~A. However, if F is of a reg-

ular structure, the rank of the fixed-point can be decreased. For instance, the
equation

List A = 1 + A× List A

has, besides the mechanical solution µ∞
∗ +→∗λXλA. 1 + A × X A with a rank-2

fixed-point, the rank-1 solution λA. µ∞
∗ λY. 1 + A× Y. The second constructor

has been obtained from the first by lambda dropping. With our semantics, we can
prove that the two solutions describe the same lists. More generally, assume a
constructor

Γ , ı :ord ` F : κ2
+→ κ1

p→ κ2

and a family of valuations θ(α) := θ[ı 7→ α] for some θ ∈ [[Γ ]]. Then for all
α ∈ [[ord]],

[[∇ı
∗ p→∗λXλA. F (XA) A]]θ(α) = [[λA.∇ı

κ2
λY. F YA]]θ(α)

The proof proceeds by transfinite induction on α without difficulties.

3.4 Semantical Types

In this section, we give a generic term model for our calculus, showing that
the typing rules are sound. Later we will instantiate this model to obtain a
proof of strong normalization. A generic soundness proof can, for instance, be
found in work of Vouillon [Vou04] and Melliès [VM04]. The idea is to consider
types as closed sets of terms between a (minimal) set N of neutral terms and a
(maximal) set S of safe terms. Informally a set is closed if for each of its terms t
it also contains all terms t′ which behave the same as t (for instance, weak head
reducts of t). The result of the soundness proof is that each typable term is
safe. Safe can mean different things: e.g., that the term evaluates without error;
in our case a safe term will be a strongly normalizing one. Although we have



62 CHAPTER 3. TYPE-BASED TERMINATION

taken some ideas from Vouillon and Melliès to structure our soundness proof,
it needs to be stressed that their method does not directly apply, since we are
interested in strong and not just weak normalization. For instance, we have to
introduce the concepts of safe evaluation contexts and safe reduction. Matthes
[Mat05] defines such safe contexts for a classical system F with sum types; safe
evaluation is only implicit in his inductive definition of strongly normalizing
terms.

Vaux [Vau04] and the author, in joint work with Coquand [AC05], have car-
ried out a generic soundness proof where semantical types were not required
to be closed sets. This was possible since in their model β-equal terms were
identified. From such a model, however, one can only harvest a proof of weak
normalization. A proof of strong normalization cannot be extracted, since the
property “strongly normalizing” is not preserved under β-equality.7 Hence,
we need to fall back to closed sets; in our case, we use a form of saturated sets
[Tai75, Luo90], which are a variant of Girard’s reducibility candidates [GLT89].

In the following we will develop requirements for our model and exhibit
them with labels with the prefix REQ.

Function space. Many models of the λ-calculus define the function space be-
tween sets of terms A and B as

A → B := {r | r s ∈ B for all s ∈ A}.

In other words, every term which behaves as a function—because it can be
applied—is considered a function.8 The function spaceA → Bwill be a closed
set if B is closed and A is a set of safe terms.

Type interval. Each semantical type [[A]] must contain only safe terms and
contain all neutral terms. In the following, we assume a set S ⊆ Tm of safe
terms and a set N ⊆ Tm of neutral terms such that

REQ-N -SUB-S N ⊆ S ,
REQ-S -VAL if t ∈ S \ N then t B v ∈ Val.

Herein, B is a to-be-defined evaluation relation. One could think of t B v as “t
evaluates to v without error”; then a choice for S would be the terms whose
evaluation does not throw an exception, but might diverge, andN would con-
tain the diverging terms. In our case B will be a variant of weak head reduc-
tion, and N will consist of the non-values which do not weak head reduce.

7If t is strongly normalizing and Ω diverging, then (λ_t) Ω is β-equal to t but only weakly
normalizing.

8Matthes [Mat00] calls this definition elimination based. The alternative is to define the func-
tion space introduction based as the closure of the set of all function constructions, in our case λ-
abstractions, recursive and corecursive functions. The elimination-based approach has the obvious
advantage of succinctness and spares us from defining a closure operator. The introduction-based
approach, however, has other advantages: it provides a predicative semantics of disjoint sums
[AA00] [Mat05, Sect. 4] or other constructions which have an elimination into an arbitrary type
(e.g., unary sums as in the computational λ-calculus [LS05]).



3.4. SEMANTICAL TYPES 63

Each semantical type A will be in the interval [N , S ], i. e., N ⊆ A ⊆ S . In the
following we establish the requirements for → to be an operator on term sets
in this interval.

Safe evaluation contexts are isolated by the judgements e ∈ Sframe and E ∈
Scxt.

SF-APP
s ∈ S

_ s ∈ Sframe
SF-REC

s, t1 . . . tn ∈ S
fixµ

n s t1..n _ ∈ Sframe

SC-ID
Id ∈ Scxt

SC-PUSH
E ∈ Scxt e ∈ Sframe

E ◦ e ∈ Scxt

A strict function is one which is undefined for undefined arguments, or, which
diverges if called with a diverging argument. We generalize “diverging” to
“neutral” and call a function strict which maps neutral terms to neutral terms.
Safe evaluation frames must be strict functions [Vou04], i. e.,

REQ-STRICT e(N ) ⊆ N for all e ∈ Sframe.

A trivial consequence is that all safe evaluation contexts are strict as well.

Lemma 3.25 (Function space is above N ) If A ⊆ S and N ⊆ B then N ⊆
A → B.

Proof. Since REQ-STRICT can be rewritten as N ⊆ e−1(N ) for all e ∈ Sframe,
the lemma becomes obvious if rewrite the definition of function space to

A → B =
⋂

s∈A
(_ s)−1(B).

(By SF-APP we have N s ⊆ N ⊆ B for all s ∈ A, hence, N ⊆ (_ s)−1(B).)
Alternatively, the lemma follows from monotonicity of function space, since
REQ-STRICT implies N ⊆ S → N . �

Vouillon [Vou04] defines the function space as the set of safe terms which
behave as a function. In our model instance, all functions will turn out to be
safe, hence, we make this a requirement.

REQ-FUN-SAFE N → S ⊆ S

(This condition is one property of what Vaux [Vau04] calls a stable pair (N , S).)

Lemma 3.26 (Functions are safe) If N ⊆ A and B ⊆ S then A → B ⊆ S .

Proof. Since, the function space construction is contravariant on its domain
and covariant on its codomain, the lemma follows directly from REQ-FUN-SAFE.

�

Summing up, the requirements guarantee that function space remains within
the type interval, i. e., [N , S ] → [N , S ] ⊆ [N , S ].



64 CHAPTER 3. TYPE-BASED TERMINATION

3.4.1 Saturation

In this section, we axiomatize the evaluation relation B and define a generic
notion of saturated set.

Safe weak head reduction. We assume a relation B on terms with the follow-
ing properties.

REQ-β (λxt) s B [s/x]t if s ∈ S
REQ-REC fixµ

n s t1..n v B s (fixµ
n s) t1..n v if v 6= fixν

n′ s
′ t1..n′

REQ-COREC e(fixν
n s t1..n) B e(s (fixν

n s) t1..n) if e 6= fixµ
n′ s
′ t1..n′ _

REQ-ECXT E(t) B E(t′) if t B t′

REQ-TRANS B is transitive

The least relation satisfying these requirements would be weak head reduction if
we omitted the side condition s ∈ S in REQ-β. In the presence of this condi-
tion, thinking of S as the set of strongly normalizing terms, two related terms
behave equivalently with respect to strong normalization.9 Consequently, we
require that S is closed under B in both directions.

REQ-S -CLOSED If t ∈ S and t B t′ or t C t′ then t′ ∈ S .

Remark 3.27 Here, we give another justification that we need to prevent fixed-
point unfolding in a term of the shape fixµ s (fixν s′). Assume there were no side
conditions on the reduction rules for fixed points. Let s = λ_.x and e = fixµ id _.
Then

e(s (fixν s)) −→ e(x) neutral, but
e(fixν s) −→+ e(fixν s) diverging.

Hence, the rolled and unrolled version do not behave the same, and at least the
rule REQ-COREC would be unsound.

Saturated sets. A set A is saturated, A ∈ SAT, if N ⊆ A ⊆ S and A is closed
under B-reduction and -expansion.

Remark 3.28 If A is a set of safe terms and closed under B-reduction, then
property REQ-S -VAL is inherited from S to A. This holds especially for A ∈
SAT.

Lemma 3.29 (Function space is closed) If B is closed, then so is A → B.

9In the absence of the side condition, [s/x]t could be strongly normalizing while (λxt) s is not
(if x 6∈ FV(t)). The side condition can also be meaningful in different contexts. E. g., if “safe”
means “evaluating without error” [Vou04, VM04], and s evaluates to an error, then the β-reduction
(λxt) s B [s/x]t is not semantics-preserving in call-by-value languages.



3.4. SEMANTICAL TYPES 65

Proof. Let r ∈ A → B. For r′ B r we show r′ ∈ A → B by assuming an
arbitrary s ∈ A and deriving r′ s ∈ B. But this follows from r s ∈ B, since both
r′ s B r s by REQ-ECXT and B is closed under B-expansion. In the same way,
closure under B-reduction is inherited from B to A → B. By the previous
remark, we are done. �

Corollary 3.30 (Function space is saturated) If N ⊆ A ⊆ S and B ∈ SAT then
A → B ∈ SAT.

Proof. By the previous lemma, the function space A → B is closed. It is
between N and S by lemmata 3.25 and 3.26. �

Corollary 3.31 (Abstractions are functions) Let A,B ∈ SAT. If [s/x]t ∈ B for
all s ∈ A, then λxt ∈ A → B.

Proof. For s ∈ A ⊆ S we have to show (λxt) s ∈ B. This follows from
(λxt) s B [s/x]t ∈ B, since B is closed under B-expansion. �

3.4.2 Admissible Types for Recursion

In the last section, we have established that semantic types model abstraction
and application. Now we turn our attention to the recursion combinators that
extend the λ-calculus.

Let O be an initial segment of the ordinal numbers.

Admissible semantic types for recursion. The semantic type family A ∈
O→ SAT is admissible for recursion on the n + 1st argument if

ADM-µ-SHAPE A(α) =
⋂

k∈K(B1..n(k,α) → I(k,α) → C(k,α))
for some index set K
and B1, . . . ,Bn, I , C ∈ K×O→ SAT,

ADM-µ-START I(k, 0) ⊆ N for all k ∈ K, and
ADM-µ-LIMIT infα<λ A(α) ⊆ A(λ) for all limits 0 6= λ ∈ O.

For the soundness of this criterion we need a recursive function applied to
a corecursive value to be neutral.

REQ-FIXµFIXν fixµ
n s t1..n (fixν

n′ s
′ t′1..n′) ∈ N if s,~t, s′,~t′ ∈ S

However, now there are closed neutral terms, which is quite uncommon. This
means that semantically, all types are inhabited by closed terms, which in turn
means that we cannot use this semantics to show that the type theory is consis-
tent. More concretely, we cannot show that ∀A.A does not have closed inhabi-
tants. But this is not important for strong normalization.

A summary of accumulated requirements is given in Table 3.1.



66 CHAPTER 3. TYPE-BASED TERMINATION

Cat. Page Requirement
N 62 REQ-N -SUB-S N ⊆ S

63 REQ-STRICT Scxt(N ) ⊆ N
65 REQ-FIXµFIXν fixµ

n s t1..n(fixν
m s′ t′1..m) ∈ N

S 62 REQ-S -VAL if t ∈ S \ N then t B v
63 REQ-FUN-SAFE N → S ⊆ S
64 REQ-S -CLOSED SB ⊆ S , BS ⊆ S

B 64 REQ-β (λxt) s B [s/x]t
64 REQ-REC fixµ

n s t1..n v B s (fixµ
n s) t1..n v

64 REQ-COREC e(fixν
n s t1..n) B e(s (fixν

n s) t1..n)
64 REQ-ECXT if t B t′ then E(t) B E(t′)
64 REQ-TRANS B is transitive

Table 3.1: Summary of requirements.

Lemma 3.32 (Recursion is a function) Let A ∈ O → SAT be admissible for re-
cursion on the n + 1st argument. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O, then
fixµ

n s ∈ A(β) for all β ∈ O.

Proof. By transfinite induction on β ∈ O.
The limit case is a direct consequence of ADM-µ-LIMIT.
For the remaining cases, using ADM-µ-SHAPE, assume k ∈ K, ti ∈ Bi(k, β)

for 1 ≤ i ≤ n, and r ∈ I(k, β) and show fixµ
n s~t r ∈ C(k, β). Since all ti are safe

and s is safe by assumption, e := fixµ
n s~t _ is a safe evaluation frame. Hence,

if r ∈ N , then e(r) ∈ N ⊆ C(k, β), and in case β = 0 we are done, since, by
ADM-µ-START, the set I(k, 0) contains only neutral terms.

Finally, we consider β = α + 1 and r B v. If v = fixν
n′ s
′ t′1..n′ , then e(v) ∈

N ⊆ C(k,α + 1) by REQ-FIXµFIXν . Otherwise, note that s (fixµ
n s) ∈ A(α + 1)

by assumption and induction hypothesis. Since e(r) B e(v) B s (fixµ
n s)~t v ∈

C(k,α + 1), we conclude by closure of C(k,α + 1) under B-expansion. �

3.4.3 Refined Saturation

In this section, we will refine our notion of saturation, to prepare for the treat-
ment of corecursion.

Orthogonality. An orthogonality relation t ⊥ E between term t and evaluation
context E is given by

t ⊥ E :⇐⇒ E(t) ∈ S .

For a set A of terms we can compute its orthogonal, the set E of evaluation
context in which all terms t ∈ A behave well, i. e., evaluate safely. In another
iteration, we take the orthogonal of this set E of evaluation contexts, i. e., all



3.4. SEMANTICAL TYPES 67

terms which behave well in all contexts E ∈ E , and arrive at the biorthogo-
nal of the original term set. The biorthogonal is closed and can serve as a se-
mantical type—this idea is implicit in Girard’s semantics of linear logic and
resurfaces in Ludics [Gir01]. Girard has not written up the idea clearly him-
self, but it slowly spread in the (French) research community. Parigot [Par97,
page 1469] defines a saturated set (which is a semantical type in the context of
strong normalization proofs) as a set A of terms that are strongly normalizing
when applied any list~s ∈ E of strongly normalizing terms contained in a cer-
tain set E of term lists. Applying to a list of terms is a special case of putting
into an evaluation context—hence, Parigot effectively uses Girard’s technique
(without reference), albeit not the intuition of orthogonality. Matthes [Mat05]
builds on the work of Parigot and extends it to arbitrary evaluation contexts.
A nice presentation of orthogonality can be found in the recent work of Vouil-
lon [Vou04] and Melliés [VM04]—-this is where I draw my terminology from.
However, they do not show strong normalization; I had to add the concept
of safe evaluation context to make it work in my case. Recently, Lindley and
Stark [LS05] have used biorthogonality to show strong normalization of the
computational λ-calculus and they refer to Andrew Pitts. In personal commu-
nication, Andrew Pitts claimed to have invented the technique independently
of the French School.

After having given honor to our teachers, we now can define:

E⊥ := {t ∈ Tm | t ⊥ E for all E ∈ E} for E ⊆ Ecxt

SAT⊥ := {E | {Id} ⊆ E ⊆ Scxt}
SAT := {E⊥ | E ∈ SAT⊥}
N := Scxt⊥

Note that (_)⊥ is an antitonic operation. Since S = {Id}⊥, it is clear that S is
the greatest and N the least saturated set.10 By definition, the set of neutral
terms N also fulfills the requirements REQ-N -SUB-S and REQ-STRICT. The
requirement REQ-FIXµFIXν is now phrased in terms of S :

REQ-FIXµFIXν E(fixµ
n s t1..n (fixν

n′ s
′ t′1..n′)) ∈ S for all E ∈ Scxt

Lemma 3.33 (E⊥ is closed) If for t ∈ E⊥ it holds that t B t′ or t′ B t, then t′ ∈ E⊥.

Proof. We need to show E(t′) ∈ S for all E ∈ E . This holds since B is closed
under evaluation contexts and S is closed under B. �

Corollary 3.34 The new notion of SAT is a refinement of the old one.

We need to show that the function space is still an operation on SAT.

Lemma 3.35 (Function space in SAT) If N ⊆ A ⊆ S and B ∈ SAT then A →
B ∈ SAT.

10The converse, S⊥ = {Id} is not true if we let S be the set SN of strongly normalizing terms:
Because r ∈ SN implies r x ∈ SN for any variable x, we have (_ x) ∈ SN⊥.



68 CHAPTER 3. TYPE-BASED TERMINATION

Proof. Let E⊥ = B. By definition, A → B = Ê⊥ with Ê := {E ◦ (_ s) | E ∈
E and s ∈ A} ⊆ Scxt. Since (A → B) ∩ S = A → B by REQ-FUN-SAFE, we
have A → B = Ê⊥ ∩ {Id}⊥ = (Ê ∪ {Id})⊥. The last step is formally proven in
Lemma 3.38. �

For the semantical justification of the typing rule for corecursion, which will
be given in the next section, we require fixν to be safe, if applied to a number
of safe arguments up to its arity.

REQ-FIXν fixν
n ∈ Sn+1 → S .

The remaining requirements are displayed in Table 3.2.

Cat. Page Requirement
S 67 REQ-FIXµFIXν Scxt(fixµ

n s t1..n(fixν
m s′ t′1..m)) ⊆ S

62 REQ-S -VAL if t ∈ S \ N then t B v
63 REQ-FUN-SAFE N → S ⊆ S
64 REQ-S -CLOSED SB ⊆ S , BS ⊆ S
68 REQ-FIXν fixν

n ∈ Sn+1 → S
B 64 REQ-β (λxt) s B [s/x]t

64 REQ-REC fixµ
n s t1..n v B s (fixµ

n s) t1..n v
64 REQ-COREC e(fixν

n s t1..n) B e(s (fixν
n s) t1..n)

64 REQ-ECXT if t B t′ then E(t) B E(t′)
64 REQ-TRANS B is transitive

Table 3.2: Summary of refined requirements.

A bit surprisingly, corecursive values can be found in N :

Lemma 3.36 (Neutral corecursive values) neutral corecursive values If s, t1..n ∈
S and s (fixν

n s) t1..n ∈ N then v := fixν
n s t1..n ∈ N .

Proof. We have to show that E(v) ∈ S for all E ∈ Scxt. In case E = Id,
we have v ∈ S by REQ-FIXν . Otherwise E = E′ ◦ e. Either e is a recursive
function, then E′(e(v)) is safe by REQ-FIXµFIXν , or e is an applicative evaluation
frame and E′(e(v)) B E′(e(s (fixν

n s) t1..n)) which is neutral by assumption and
REQ-STRICT, hence, E′(e(v)) ∈ S by Lemma 3.33. �

An example for such a neutral term is fixν
0 λ_x

3.4.4 Admissible Types for Corecursion

Admissible semantic types for corecursion. The semantic type family A ∈
O→ SAT is admissible for corecursion with n arguments if

ADM-ν-SHAPE A(α) =
⋂

k∈K(B1..n(k,α) → C(k,α))
for some index set K and B1..n, C ∈ K×O→ SAT,

ADM-ν-START S ⊆ C(k, 0) for all k ∈ K, and
ADM-ν-LIMIT infα<λ A(α) ⊆ A(λ) for all limits 0 6= λ ∈ O.



3.4. SEMANTICAL TYPES 69

Lemma 3.37 (Corecursion is a function) Let A ∈ O → SAT be admissible for
corecursion with n arguments. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O, then
fixν

n s ∈ A(β) for all β ∈ O.

Proof. By transfinite induction on β ∈ O.
The limit case is a direct consequence of ADM-ν-LIMIT.
For the remaining cases, using ADM-ν-SHAPE, assume k ∈ K, ti ∈ Bi(k, β)

for 1 ≤ i ≤ n and show v := fixν
n s~t ∈ C(k, β). Note that s and ti are safe, hence,

v ∈ S by REQ-FIXν . Since S ⊆ C(k, 0), we are done in case of β = 0.
For case β = α + 1, let E ⊆ Scxt be a set of evaluation contexts such that

E⊥ = C(k,α + 1). Assume an arbitrary E ∈ E and show E(v) ∈ S . If E =
Id, there is nothing new to show, otherwise E = E′ ◦ e. If e = fixµ

n′ s
′ t1..n′ _,

then E(v) ∈ S by REQ-FIXµFIXν . Otherwise, note that s (fixν
n s) ∈ A(α + 1)

by assumption and induction hypothesis. Since E(v) B E(s (fixν
n s)~t) ∈ S , we

conclude by closure of S . �

3.4.5 Lattice of Saturated Sets

In this section we will establish that SAT is a complete lattice of sets. This will
justify the interpretation of universal quantification as intersection and enable
the choice [[∗]] := SAT. Since A ⊆ S for A ∈ SAT, we set >∗ := S .

De Morgan laws. The orthogonality operation E⊥ is an intuitionistic nega-
tion. The following de Morgan laws hold:

Lemma 3.38 (De Morgan) Let I some non-empty index set and Ei ⊆ Ecxt for all
i ∈ I. Then, ⋂

i∈I E⊥i = (
⋃

i∈I Ei)⊥, and⋃
i∈I E⊥i ⊆ (

⋂
i∈I Ei)⊥.

Proof.
t ∈ ⋂

i∈I E⊥i ⇐⇒ for all i ∈ I, t ⊥ E for all E ∈ Ei
⇐⇒ t ⊥ E for all E ∈ ⋃

i∈I Ei
⇐⇒ t ∈ (

⋃
i∈I Ei)⊥

t ∈ ⋃
i∈I E⊥i =⇒ for some i ∈ I, t ⊥ E for all E ∈ Ei

=⇒ t ⊥ E for all E ∈ ⋂
i∈I Ei

=⇒ t ∈ (
⋂

i∈I Ei)⊥

�

The de Morgan laws can also be read topologically: Let the closed term sets
be the saturated ones. Then intersections of closed sets (even infinite intersec-
tions), are still closed, whereas this need not hold for unions. In the following
we show by example that the missing de Morgan law does indeed not hold.



70 CHAPTER 3. TYPE-BASED TERMINATION

Lemma 3.39 (Orthogonality not classical) Let the set of safe terms S contain ex-
actly the strongly normalizing ones. There are E1, E2 ⊆ Ecxt such that (E1 ∩ E2)⊥ 6⊆
E⊥1 ∪ E⊥2 .

Proof. Let δ := λx. x x and δ′ := λk. k δ, E1 := {Id, (_δ)}, and E2 := {Id, (_δ′)}.
Then (E1 ∩ E2)⊥ = {Id}⊥ = S , and the normal term δ is safe. But δ 6∈ E⊥1 , since
δ δ −→ δ δ, and δ 6∈ E⊥2 , since δ δ′ −→ δ′ δ′ −→ δ′ δ −→ δ δ. �

Remark 3.40 (Maximal sets of contexts) This counterexample is not completely
satisfying, because E⊥1 = E⊥2 , hence, E1 and E2 are just incompatible represen-
tations of the same saturated set A. This suggests that the representation of
a saturated set A should be the biggest set of contexts E such that E⊥ = A.
Whether such maximal sets would satisfy the missing de Morgan law, is un-
clear to me and left as an open question.

As a consequence of the de Morgan laws, saturated sets form a complete lattice.

Corollary 3.41 (SAT closed under intersection) If A ⊆ SAT, then
⋂

A ∈ SAT.

Proof. If A is empty, we set
⋂

A = S . Otherwise, let E0 :=
⋃{E | E⊥ ∈ A}.

Then E0 ∈ SAT⊥ and E⊥0 = A. �

Since N is the least saturated set, ⊥∗ =
⋂

SAT = N .
It follows that ([[∗]],

d∗,>∗) := (SAT,
⋂

, S) is a complete lattice of sets and
can serve as basis for our model of kinds, constructors, and subtyping as devel-
oped in Section 2.3. Soundness of the subtyping rule TY-SUB is an immediate
consequence of Theorem 2.27. Setting the interpretation of quantification to

[[∀κ ]]θ (F ) = Sem(∀κ)(F ) :=
⋂
G∈[[κ]]

F (G),

soundness of the generalization and instantiation rules TY-GEN and TY-INST,
follows immediately.

Supremum. The supremum of the lattice [[∗]] is formally defined as⊔∗
i∈I Ai :=

d∗{A ∈ SAT | A w∗ Ai for all i ∈ I}

=
⋂{E⊥ | E ∈ SAT⊥ and E⊥ ⊇ Ai for all i ∈ I}

Vouillon [Vou04] presents another definition of the union of semantical types.
Let

A⊥ := {E ∈ Scxt | t ⊥ E for all t ∈ A}

for a set of termsA. For reasons of symmetry, the de Morgan laws hold forA⊥
as for E⊥. Since for A ⊆ Tm and E ⊆ Scxt,

A⊥ ⊇ E ⇐⇒ A ⊆ E⊥,



3.4. SEMANTICAL TYPES 71

the two orthogonality operations form a Galois connection between sets of terms
(P(Tm),⊆) ordered by inclusion and sets of safe evaluation contexts (Scxt,⊇)
ordered by the superset relation (see Appendix C). Hence, the function which
maps A ⊆ Tm to

A := A⊥⊥

is a closure operator on sets of terms.

Lemma 3.42 If A ⊆ S then A⊥ ∈ SAT⊥ and A ∈ SAT.

Proof. If A ⊆ S then Id ∈ A⊥. Furthermore A⊥ ⊆ Scxt by definition. �

We can now define union of term sets A ∈ A as follows:⋃
A :=

⋃
A

Remark 3.43 The closure operation plays a crucial role when we construct the
semantics of inductive types. Consider the approximations Natα of the se-
mantical type of natural numbers. For α < ω, Natα contains only bounded
numbers, which can be characterized by a set of finite observations E. But Natω

cannot be characterized by finite observations alone; recursive evaluation con-
texts (like the identity function on Nat) are required. These come in through
the closure operation that is involved in the supremum: Natω =

⋃
α<ω
Natα .

Lemma 3.44 Let I be some index set and Ai ⊆ S for all i ∈ I. Then⊔∗
i∈I Ai =

⋃
i∈IAi .

Proof. Note that (*) (
⋃

i∈I Ai)⊥ ∈ SAT⊥ by Lemma 3.42.⊔∗
i∈I Ai =

⋂{E⊥ | E ∈ SAT⊥ and E⊥ ⊇ Ai for all i ∈ I} definition

=
⋂{E⊥ | E ∈ SAT⊥ and E ⊆ A⊥i for all i ∈ I} Galois conn.

=
⋂{E⊥ | E ∈ SAT⊥ and E ⊆ ⋂

i∈I A⊥i }
=

(⋃{E | E ∈ SAT⊥ and E ⊆ (
⋃

i∈I Ai)⊥}
)⊥ de Morgan

=
(⋃

i∈I Ai)⊥⊥ (*)

=
⋃

i∈IAi definition

�

The supremum of saturated term sets is the closure of their set-theoretical
union, but not necessarily identical to it, which is the case for the more tra-
ditional notion of saturation as found in Section 3.4.1 and in, e. g., Luo [Luo90],
Altenkirch [Alt93, AA00], Matthes [Mat98, Mat00], Barthe et al. [BFG+04], and
previous work of the author [Abe03, Abe04].

We have now given a semantical justification for each typing rule. We will
assemble these pieces in the next section, where we give a term model of our
calculus.



72 CHAPTER 3. TYPE-BASED TERMINATION

3.5 Soundness of Typing

3.5.1 Admissible Types for Recursion, Syntactically

Having a semantical characterization of admissible types for recursion we can
turn it into a syntactical one. For now, we give a simple characterization: A
recursive function goes from an inductive type to a result type which depends
monotonically on the ordinal index. This is the shape of types from Barthe et al.
[BFG+04] and from previous work of the author [Abe04]. Examples would
be Natı → A and Listı A → Natı, where A does not depend on the ordinal
index ı. Excluded would be types like Natı → Streamı A (since Streamı A is
antitone in ı) or Natı → Natı → Natı, the latter being the type of the maxi-
mum function. Since we also have inductive constructors, the general shape of
the recursive argument is µıF~H. Then we allow the recursive function to be a
natural transformation, i. e., of the shape ∀X :κ′. µıF (H1 X) . . . (Hn X) → G X.
Of course, we can quantify over several constructor variables, arriving at the
shape ∀~X :~κ′. µıF (H1 ~X) . . . (Hn ~X)→ G ~X, or, using the abbreviation for natu-
ral transformations, at (µıF) ◦ ~H ⇒ G. As a final relaxation, we do not require
the inductive argument to be the first one. The function may have n parameters
before the inductive argument, but their types must be antitone in the ordinal
index.

Γ ` A fixµ
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G, (µıF) ◦ ~H ⇒ G) : ∗ (ı 6∈ FV(A))

for some F, G, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :+ord ` G : κ′ for some κ′ = ◦~κ′ → ∗,
Γ , ι :−ord ` Gi : κ′ for 1 ≤ i ≤ n, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

We now prove this criterion sound. To this end, we will make use of the se-
mantics of declarative kinding and equality (see Section 2.3).

Lemma 3.45 (Soundness of admissible recursion types) If Γ ` A fixµ
n-adm and

θ ∈ [[Γ ]], then [[A]]θ is admissible for recursion on the n + 1st argument, where O may
be any initial segment of [[ord]].

Proof. Since Γ , ı :ord ` A ı = (~G, (µıF) ◦ ~H ⇒ G) : ∗ and ı 6∈ FV(A), we know
by Thm. 2.27 that for each α ∈ O,

[[A ı]]θ[ı 7→α] = [[A]]θ(α) = [[~G, (µıF) ◦ ~H ⇒ G]]θ[ı 7→α] ∈ [[∗]] = SAT.

Hence, A := [[A]]θ ∈ O → SAT. In the following, we verify the conditions
ADM-µ-SHAPE, ADM-µ-START, and ADM-µ-LIMIT.



3.5. SOUNDNESS OF TYPING 73

ADM-µ-SHAPE Show A(α) =
⋂

k∈K B1..n(k,α) → I(k,α) → C(k,α). We set

K := [[κ′1]]× · · · × [[κ′m]] where m := |~κ′|,
Bi( ~X ,α) := [[Gi]]θ[ı 7→α]

~X for 1 ≤ i ≤ n,
I( ~X ,α) := (Iα [[F]]θ ⊥κ)([[H1]]θ ~X ) . . . ([[Hl ]]θ ~X ) where l := |~κ|, and
C( ~X ,α) := [[G]]θ[ı 7→α]

~X .

ADM-µ-START Show I( ~X , 0) ⊆ N . This is clear since I0 [[F]]θ ⊥κ = ⊥κ and
⊥κH1 . . .Hl = ⊥∗ = N for any ~H.

ADM-µ-LIMIT Show infλ A ⊆ A(λ). We assume f ∈ infλ A and prove

f ∈ B1..n( ~X , λ) → I( ~X , λ) → C( ~X , λ).

To this end, fix arbitrary ti ∈ Bi( ~X , λ) and r ∈ I( ~X , λ). By Lemma 3.15,
the inductive type at a limit I( ~X , λ) = supα<λ I( ~X ,α), hence r ∈ I( ~X ,α)
for some α < λ. Since Γ , ι : −ord ` Gi : κ′, the families Bi( ~X , _) are
antitone, hence ti ∈ Bi( ~X ,α). Together, f~t r ∈ C( ~X ,α) ⊆ C( ~X , λ) by
monotonicity of C( ~X , _), which we obtain from Γ , ι :+ord ` G : κ′. �

3.5.2 Admissible Types for Corecursion, Syntactically

Similarly to the admissible types for recursion one can motivate the ones for
corecursion. The most important requirement is that the result type of a core-
cursive function must be coinductive. In essence, our rule is the one of Barthe
et al. [BFG+04], lifted to coinductive constructors and natural transformations.

Γ ` A fixν
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G⇒ (νıF) ◦ ~H) : ∗ (ı 6∈ FV(A))

for some F, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :−ord ` Gi : κ′ (all i) for some κ′ = ◦~κ′ → ∗, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

Lemma 3.46 (Soundness of admissible corecursion types) If Γ ` A fixν
n-adm

and θ ∈ [[Γ ]], then [[A]]θ is admissible for corecursion with n arguments (where O may
be any initial segment of [[ord]]).

Proof. Since Γ , ı : ord ` A ı = (~G ⇒ (νıF) ◦ ~H) : ∗ and ı 6∈ FV(A), we know
by Thm. 2.27 that for each α ∈ O,

[[A ı]]θ[ı 7→α] = [[A]]θ(α) = [[~G⇒ (νıF) ◦ ~H]]θ[ı 7→α] ∈ [[∗]] = SAT.

Hence, A := [[A]]θ ∈ O → SAT. In the following, we verify the conditions
ADM-ν-SHAPE, ADM-ν-START, and ADM-ν-LIMIT.



74 CHAPTER 3. TYPE-BASED TERMINATION

ADM-ν-SHAPE Show A(α) =
⋂

k∈K B1..n(k,α) → C(k,α). We set

K := [[κ′1]]× · · · × [[κ′m]] where m := |~κ′|,
Bi( ~X ,α) := [[Gi]]θ[ı 7→α]

~X for 1 ≤ i ≤ n, and
C( ~X ,α) := (Iα [[F]]θ >κ)([[H1]]θ ~X ) . . . ([[Hl ]]θ ~X ) where l := |~κ|.

ADM-ν-START Show S ⊆ C( ~X , 0). This is clear since I0 [[F]]θ >κ = >κ and
>κH1 . . .Hl = >∗ = S for any ~H.

ADM-ν-LIMIT Show infλ A ⊆ A(λ). We assume f ∈ infλ A and prove

f ∈ B1..n( ~X , λ) → C( ~X , λ).

To this end, fix arbitrary ti ∈ Bi( ~X , λ) and show f~t ∈ C( ~X , λ). By
Lemma 3.17, the coinductive type at a limit C( ~X , λ) = infα<λ C( ~X ,α),
hence, we need to show f~t ∈ C( ~X ,α) for arbitrary α < λ. Since Γ , ι :
−ord ` Gi : κ′, the families Bi( ~X , _) are antitone, hence ti ∈ Bi( ~X ,α).
Together, f~t ∈ C( ~X ,α) by assumption. �

3.5.3 Soundness Proof

Valuations. For the remainder of this chapter, we consider valuations θ ∈
(TyVar ∪ Var) → (

⋃
κ [[κ]] ∪ Tm) which map constructor variables X to seman-

tical constructors F ∈ [[κ]] for some κ and term variables to terms. Since a
constructor F does not depend on term variables, it is easy to see that [[F]]θ =
[[F]]θ�TyVar. The denotation LtMθ of a term t under a valuation θ is defined as
follows:

LcMθ := c
LxMθ := θ(x)
Lr sMθ := LrMθ LsMθ
LλxtMθ := λx. LtMθ[x 7→x] if x is singular in LtMθ

By x singular in LtMθ, we mean that x 6∈ FV(θ(y)) for any y ∈ FV(t) which is
different from x.11 Singularity is important to avoid variable capture in terms
of the substitution θ by the λ-abstraction, which has moved to the outside. We
can express singularity by the equivalent condition x 6∈ FVLλxtMθ. Note that
singularity can always be achieved by renaming of the bound variable x, since
FVLtMθ is finite.

Lemma 3.47 (Substitution for singular variable) If x is singular in LtMθ, then we
have [s/x]LtMθ[x 7→x] = LtMθ[x 7→s].

Proof. By induction on t. �

11This is the variable condition in the corresponding part of Barthe et al. [BFG+04].



3.5. SOUNDNESS OF TYPING 75

Sound valuations. We define the proposition θ ∈ [[Γ ]] by recursion on Γ .

θ ∈ [[�]] :⇐⇒ true
θ ∈ [[Γ , X : pκ]] :⇐⇒ θ ∈ [[Γ ]] and θ(X) ∈ [[κ]]
θ ∈ [[Γ , x : A]] :⇐⇒ θ ∈ [[Γ ]] and θ(x) ∈ [[A]]θ

This notion is compatible with θ ∈ [[∆]] from Section 2.3: If ∆ is the restriction
of Γ to constructor variable declarations, then θ ∈ [[Γ ]] implies θ ∈ [[∆]].

Lemma 3.48 (Sound context lookup) If Γ cxt and both (x : A) ∈ Γ and θ ∈ [[Γ ]]
then θ(x) ∈ [[A]]θ ∈ [[∗]].

Proof. By induction on Γ cxt, using Lem. 2.20. �

Theorem 3.49 (Soundness of typing) If Γ ` t : A and θ ∈ [[Γ ]] then LtMθ ∈ [[A]]θ.

Proof. By induction on the typing derivation.

Case

TY-VAR
(x : A) ∈ Γ Γ cxt

Γ ` x : A
By Lemma 3.48, since LxMθ = θ(x).

Case
TY-ABS

Γ , x : A ` t : B
Γ ` λxt : A→ B

Let A := [[A]]θ and B := [[B]]θ. Since, by Lemma 3.4, the context Γ , x : A is
wellformed, we have by Lemma 3.48 that A ∈ SAT. Likewise, B ∈ SAT
by Lemma 2.20, since Lemma 3.5 entails Γ ` B : ∗. W. l. o. g., x is singular
in LtMθ. To show that LλxtMθ = λx.LtMθ[x 7→x] ∈ A → B, by Corollary 3.31 it
is sufficient to show [s/x]LtMθ[x 7→x] ∈ B for arbitrary s ∈ A. This, however,
follows from the induction hypothesis, since θ[x 7→ s] ∈ [[Γ , x : A]], and
[s/x]LtMθ[x 7→x] = LtMθ[x 7→s] by Lemma 3.47.

Case
TY-APP

Γ ` r : A→ B Γ ` s : A
Γ ` r s : B

Let A := [[A]]θ and B := [[B]]θ. By induction hypothesis, LrMθ ∈ A → B
and LsMθ ∈ A, thus Lr sMθ = LrMθ LsMθ ∈ B by definition of the function
space.

Case
TY-GEN

Γ , X :κ ` t : F X
Γ ` t : ∀κF

X 6∈ FV(F)

By definition of [[∀κ ]], we have to show LtMθ ∈ [[F]]θ(G) for all G ∈ [[κ]].
This follows by induction hypothesis, since θ[X 7→ G] ∈ [[Γ , X : κ]], and
[[F X]]θ[X 7→G] = [[F]]θ(G) because X 6∈ FV(F).



76 CHAPTER 3. TYPE-BASED TERMINATION

Case

TY-INST
Γ ` t : ∀κ F Γ ` G : κ

Γ ` t : F G

By induction hypothesis, LtMθ ∈
⋂
G∈[[κ]][[F]]θ(G) and [[G]]θ ∈ [[κ]]. Hence

LtMθ ∈ [[F G]]θ.

Case

TY-SUB
Γ ` t : A Γ ` A ≤ B : ∗

Γ ` t : B

By induction hypothesis LtMθ ∈ [[A]]θ, which is a subset of [[B]]θ by Lemma 2.20.

Case

TY-FOLD
Γ ` t : F (∇κ a F) ~G

Γ ` t : ∇κ (a + 1) F ~G

By Lemma 3.5 we have Γ ` F (∇κ a F) ~G : ∗, which entails Γ ` F : +κ →
κ and Γ ` a : ord, as well as Γ ` Gi : κi for 1 ≤ i ≤ |~κ|, if we define
~p~κ → ∗ := κ. Hence, F := [[F]]θ ∈ [[κ]] +→ [[κ]] and α := [[a]]θ ∈ [[ord]] and
we can conclude by Theorem 3.24.

Case

TY-UNFOLD
Γ ` r : ∇κ (a + 1) F ~G
Γ ` r : F (∇κ a F) ~G

Analogously to case TY-FOLD.

Case

TY-REC
Γ ` A fix∇n-adm Γ ` a : ord Γ cxt

Γ ` fix∇n : (∀ı :ord. A ı→ A (ı + 1))→ A a

By lemmata 3.45 and 3.46 the family A := [[A]]θ ∈ [[ord]] → [[∗]] is admis-
sible for (co)recursion. We assume s ∈ ⋂

α∈[[ord]]A(α) → A([[s]]α) which
entails that s ∈ A(α) → A(α + 1) for all α < >ord. By lemma 3.32 resp.
3.37 we conclude fix∇n s ∈ A([[a]]θ). �

A consequence of soundness is that all typable terms are safe, if variables are
neutral.

Corollary 3.50 (Typable terms are safe) Assume Var ⊆ N . If Γ ` t : B then
t ∈ S .

Proof. Let θ be a valuation with θ(X) = >κ for all (X :κ) ∈ Γ and θ(x) = x for
all (x : A) ∈ Γ . Since x ∈ N ⊆ [[A]]θ, the valuation θ is sound w. r. t. context Γ .
Soundness of typing entails t = LtMθ ∈ [[B]]θ ⊆ S . �



3.6. STRONG NORMALIZATION 77

3.6 Strong Normalization

In this section, we will instantiate the set of safe terms S by an inductively
defined set SN of strongly normalizing terms and harvest a proof of strong
normalization from the soundness proof of typing.

3.6.1 A Few Remarks on the Method

The usual (classical) definition of strongly normalizing terms is: those terms,
which have no infinite reduction sequences. This definition has quite nice closure
properties, which are intuitively obvious: for example, if a term has no infinite
reduction sequences, then this is true for all of its subterms as well. Defining S
as the set of (classically) strongly normalizing terms, we see immediately that
REQ-FUN-SAFE, N → S ⊆ S , holds for non-empty N : If r ∈ N → S , then r s
is strongly normalizing for any s ∈ N , hence, r is strongly normalizing.

Barthe et al. [BFG+04] use this definition of strong normalization, albeit in a
positive formulation. For us, this is not sufficient, since we also require that all
non-neutral terms in S reduce to a value. Usually, after having shown strong
normalization, this fact is a consequence of type preservation (subject reduction)
and progress [Pie02]. But we need it already to show strong normalization.

Why do we require this and Barthe et al. do not? Because we are working
in an equi-recursive system where an inhabitant of µaF can be of any shape.
Hence, a recursive function is unrolled when it is applied to any value. In an
iso-recursive system, which is used in far more normalization proofs [AA00,
Abe03, Abe04, Mat05] a canonical inhabitant of µaF is of the form in t where
in is a constructor. The semantics of µaF can be defined as those terms which
are neutral or reduce to in t for some t. A recursive function f : µaF → C
is only unrolled when applied to a constructor. In the normalization proof,
when looking at f r we know that r ∈ [[µa+1F]] is either neutral or reduces to
in t. Then we can unroll the recursive function and conclude the reasoning by
induction hypothesis [Abe04, Thm. 5.10]. Similarly, in Lemma 3.32 we need
to know that r reduces to a value, but since µa+1F = F (µaF) can be any type
(product type, function type, polymorphic type etc.), we need to know that the
non-neutral inhabitants of all semantical types reduce to a value. This is most
directly achieved by requiring that it holds for all safe terms.

A byproduct of this decision is that we also get more in the end: We not
only exclude non-termination; non-neutral terms also do not get stuck. Hence,
we get both strong normalization and progress.

The search for a suitable definition of S lead us to an inductive character-
ization of strongly normalizing terms. For the lambda calculus, this was first
given by van Raamsdonk et al. [vRS95, vRSSX99], but it was already implicit
in Goguen’s work on typed operational semantics [Gog94, Gog95, Gog99].
Joachimski and Matthes used it to give a combinatorial normalization proof
for the simply-typed λ-calculus [JM03], and Matthes extended it to other cal-
culi [Mat98, Mat00, Mat05].



78 CHAPTER 3. TYPE-BASED TERMINATION

3.6.2 Inductive Characterization

We set S := SN and B := −→∗SN both of which will be defined below.

Strong(-ly normalizing) head reduction t −→SN t′ is defined inductively by
the following rules.

SHR-β
s ∈ SN

(λxt) s −→SN [s/x]t
SHR-FRAME

r −→SN r′

e(r) −→SN e(r′)

SHR-REC
fixµ

n s t1..n v −→SN s (fixµ
n s) t1..n v

v 6= fixν
n′ s
′ t′1..n′

SHR-COREC
fixν

n s t1..n r −→SN s (fixν
n s) t1..n r

Note that due to the additional argument r, the last rule is just short for

SHR-COREC
e(fixν

n s t1..n) −→SN e(s (fixν
n s) t1..n)

e 6= fixµ
n′ s
′ t′1..n′ _.

The crucial property is that the strong head expansion of a strongly normal-
izing term is strongly normalizing as well. The reflexive-transitive closure of
strong head reduction fulfills the desired properties of B from Section 3.4.1.

Lemma 3.51 (−→SN is deterministic) If D :: r −→SN r′ and r −→SN r′′ then
r′ = r′′.

Proof. By induction on D. �

Lemma 3.52 (REQ-ECXT) If t −→+
SN t′ then E(t) −→+

SN E(t′).

Proof. From SHR-FRAME by induction on E and −→+
SN. �

Corollary 3.53 The relation B :=−→∗SN fulfills the five requirements REQ-β, REQ-REC,
REQ-COREC, REQ-ECXT, and REQ-TRANS.

Strongly neutral terms r ∈ SNe are defined inductively by the following
rules.

SNE-VAR
x ∈ SNe

SNE-FRAME
r ∈ SNe e ∈ Sframe

e(r) ∈ SNe

SNE-FIXµFIXν

e︷ ︸︸ ︷
fixµ

n s t1..n _ ∈ Sframe

v︷ ︸︸ ︷
fixν

n′ s
′ t′1..n′ ∈ SN

e(v) ∈ SNe

Since the definition of Sframe rests on the definition of S = SN, strongly neutral
terms are defined simultaneously with SN below. Rule SNE-FIXµFIXν fulfills
requirement REQ-FIXµFIXν .



3.6. STRONG NORMALIZATION 79

Strongly normalizing terms t ∈ SN.

SN-SNE
r ∈ SNe

r ∈ SN
SN-ABS

t ∈ SN

λxt ∈ SN
SN-FIX

~t ∈ SN

fix∇n ~t ∈ SN
|~t| ≤ n + 1

SN-EXP
r −→SN r′ r′ ∈ SN

r ∈ SN
SN-ROLL

s (fixν
n s)~t ∈ SN

fixν
n s~t ∈ SN

|~t| ≤ n

The set SN consists of strongly neutral terms (SN-SNE) and strongly normaliz-
ing values (SN-ABS, SN-FIX) and is closed under strong head expansion (SN-EXP).
Rule SN-FIX fulfills requirement REQ-FIXν . The rule SN-ROLL is admissible, but
we have explicitely added it to simplify the proof of requirement REQ-FUN-SAFE
(see below).

Lemma 3.54 (SN is closed under B-expansion) If t −→∗SN t′ and t′ ∈ SN then
t ∈ SN.

Proof. By rule SN-EXP. �

It is clear that SN is also closed under B-reduction.

Lemma 3.55 (SN is closed under B-reduction) If t ∈ SN and t −→∗SN t′ then
t′ ∈ SN.

Proof. By induction on t −→∗SN t′. If the reduction sequence is empty (in
case t = t′), there is nothing to show. Otherwise, we perform case analysis on
t ∈ SN. The only rule which introduces redexes is SN-EXP.

SN-EXP
t −→SN t′′ t′′ ∈ SN

t ∈ SN

Since −→SN is deterministic, the first reduction in the sequence t −→+
SN t′ is

t −→SN t′′. Thus, t′ ∈ SN follows by induction hypothesis. �

Thus, SN fulfills requirement REQ-S -CLOSED.
In contrast to the definition of strong normalization as the absence of infi-

nite reduction sequences, the inductive characterization of SN also guarantees
that every t ∈ SN reduces to a weak head value, i. e., there are no stuck non-
neutral terms.

Lemma 3.56 (SN is weak head normalizing) If r ∈ SN then either r B r′ ∈ SNe
or r B v ∈ Val∩ SN.

Proof. By induction on r ∈ SN. If the last rule was SN-EXP, we proceed by
induction hypothesis. All other rules introduce neutral terms or values. �

Let BA := {r | r B r′ with r′ ∈ A} be the closure of a term set A under
B-expansion.



80 CHAPTER 3. TYPE-BASED TERMINATION

Lemma 3.57 (Neutral terms) BSNe ⊆ N .

Proof. Recall that N = Scxt⊥. Assume r B r′ ∈ SNe and E ∈ Scxt and show
E(r) ∈ SN. Since E(r′) ∈ SNe by iterated application of SNE-FRAME and SNe ⊆
SN by rule SN-SNE, it follows that E(r′) ∈ SN. Because E(r) B E(r′) and SN is
closed under B-expansion, E(r) ∈ SN. �

In particular, all variables are inN , which is a precondition of Cor. 3.50. Putting
the last two lemmata together, we see that every term in S \ N reduces to a
strongly normalizing value v ∈ SN under strong head reduction. Hence, SN
fulfills REQ-S -VAL.

Remark 3.58 (N 6= BSNe) The proposition N ⊆ BSNe, which complements
Lemma 3.57, does not hold: In Lemma 3.36 we have shown that some core-
cursive values inhabit N , but they are not in SNe. (If not for REQ-FIXµFIXν ,
this proposition would hold: We could show that no value v can be safely in-
serted into all safe contexts by exhibiting a safe context e = fixµ

0 (λ f λy. f λxx) _
in which all values would loop, even the strongly normalizing ones.)

In the following we show validity of REQ-FUN-SAFE, i. e., r ∈ SN if r s ∈ SN
for all s ∈ N .

Lemma 3.59 (Extensionality) If D :: r x ∈ SN or D :: r x ∈ SNe then r ∈ SN.

Proof. By induction on D.

Case

SNE-FRAME
r ∈ SNe

r x ∈ SNe

By SN-SNE, r ∈ SN.

Case Let |~t| = n.

SNE-FRAME
s,~t ∈ SN

fixµ
n s~t x ∈ SNe

By SN-FIX, fixµ
n s~t ∈ SN.

Case

SN-SNE
r x ∈ SNe

r x ∈ SN

By induction hypothesis.

Case

SN-FIX
~t ∈ SN

fix∇n ~t x ∈ SN
|~t| ≤ n

Then fix∇n ~t ∈ SN by SN-FIX.



3.6. STRONG NORMALIZATION 81

Case

SN-EXP
(λxt) x −→SN t t ∈ SN

(λxt) x ∈ SN

Since t ∈ SN, λxt ∈ SN by SN-ABS.

Case

SN-EXP
fixν

n s~t x −→SN s (fixν
n s)~t x s (fixν

n s)~t x ∈ SN

fixν
n s~t x ∈ SN

By induction hypothesis, s (fixν
n s)~t ∈ SN. Hence, fixν

n s~t ∈ SN by SN-ROLL.

Case
r −→SN r′

SHR-FRAME
r x −→SN r′ x r′ x ∈ SN

SN-EXP
r x ∈ SN

By induction hypothesis, r′ ∈ SN, hence r ∈ SN by SN-EXP.

Case

SN-ROLL
s (fixν

n s)~t x ∈ SN

fixν
n s~t x ∈ SN

|~t| < n

By induction hypothesis s (fixν
n s)~t ∈ SN, hence, fixν

n s~t ∈ SN by SN-ROLL.

Case

SN-ROLL
x (fixν

n x) ∈ SN

fixν
n x ∈ SN

Then fixν
n ∈ SN by SN-FIX.

�

Corollary 3.60 (REQ-FUN-SAFE) N → SN ⊆ SN.

Proof. {r | r s ∈ SN for all s ∈ N} ⊆ {r | r x ∈ SN} ⊆ SN by the lemma. �

By Cor. 3.50, each typable term is in SN. What remains to show that if t ∈ SN
then t indeed admits no infinite reduction sequences.

3.6.3 Soundness of the Inductive Characterization

Classically, a term t is strongly normalizing if there are no infinite reduction
sequences starting with t. Constructively, the set of strongly normalizing terms
sn is the accessible part of Tm w. r. t. the one-step reduction relation. Hence, it
can be defined as the smallest set sn ⊆ Tm closed under the rule

∀t′ ←− t. t′ ∈ sn

t ∈ sn

In this section, we show that SN ⊆ sn.



82 CHAPTER 3. TYPE-BASED TERMINATION

Immediate closure properties of sn. By analyzing the possible reductions of
a term t depending on its shape, we immediately obtain the following closure
properties of sn:

c ∈ sn x ∈ sn

t ∈ sn

λxt ∈ sn

r, s ∈ sn ∀t � r s. t ∈ sn

r s ∈ sn

Since E(x) is not a value, e(E(x)) is never a redex. Thus, the following two
closure properties are a consequence of the closure property for application:

E(x) ∈ sn s ∈ sn

E(x) s ∈ sn

E(x) ∈ sn s, t1..n ∈ sn

fixµ
n s t1..n E(x) ∈ sn

Similarly, fix∇n ~t is not a redex if |~t| ≤ n + 1. Hence, we can add another closure
property:

~t ∈ sn

fix∇n ~t ∈ sn
|~t| ≤ n + 1

Lemma 3.61 (Closure under subterm) The set of strongly normalizing terms is
closed under subterm formation.

1. If D :: λxt ∈ sn then D′ :: t ∈ sn.

2. If D :: r s ∈ sn then D′ :: r ∈ sn.

3. If D :: r s ∈ sn then D′ :: s ∈ sn.

In each case, #D′ ≤ #D.

Proof. Each by induction on D. �

Corollary 3.62 If E(r) ∈ sn then E(x), r ∈ sn.

Lemma 3.63 (Closure under splitting) If D :: [s/x]t ∈ sn then D′ :: t ∈ sn and
#D′ ≤ #D.

Proof. By induction on D. �

Closure under strong head expansion. We define a relation t −→sn t′ by the
same rules as t −→SN t′ except that we require s ∈ sn instead of SN in the rule
SHR-β. Our goal is to show that sn is closed under −→sn-expansion.

Lemma 3.64 (Closure under strong head expansion axioms)

1. If s, [s/x]t ∈ sn then (λxt) s ∈ sn.

2. If s (fixµ
n s) t1..n v ∈ sn then fixµ

n s t1..n v ∈ sn.



3.6. STRONG NORMALIZATION 83

3. If E(s (fixν
n s) t1..n) ∈ sn then E(fixν

n s t1..n) ∈ sn.

Proof. 1. By Lemma 3.63 t ∈ sn. We perform induction on s, t ∈ sn and analyze
the possible reducts of (λxt) s. 2. By induction on s, t1..n, v ∈ sn. 3. By induction
on s, t1..n, E(x) ∈ sn. �

Lemma 3.65 (sn closed under strong head expansion)

t0 −→sn t1 t1 ∈ sn

t0 ∈ sn

Proof. By induction on t0 −→sn t1. In case of SHR-β, SHR-REC, or SHR-COREC,
apply Lemma 3.64. In case e(t0) −→sn e(t1), we have t0 ∈ sn by induc-
tion hypothesis, since t1 ∈ sn by Cor. 3.62. We proceed by side induction on
e(x), t0 ∈ sn. Since e(t0) is not a redex, each reduction must be either in e(x) or
t0. By side induction hypothesis each reduction of e(t0) is in sn. �

For each introduction rule of SN we have established a corresponding clo-
sure property of sn. Hence, proving SN ⊆ sn amounts to a routine induction.

Lemma 3.66 (Inductive SN is sound)

1. If D :: t −→SN t′ then t −→sn t′.

2. If D :: t ∈ SNe then t = E(x) ∈ sn for some E and x.

3. If D :: t ∈ SN then t ∈ sn.

Proof. Simultaneously by induction on D. �

Theorem 3.67 (Strong normalization) If Γ ` t : A, then there are no infinite
reduction sequences starting with t.

Proof. By Cor. 3.50 and the previous lemma, t ∈ sn. By induction on t ∈ sn we
can prove that t −→∗ t′ 6−→, i. e., t reduces to a normal form in finitely many
steps. �



84 CHAPTER 3. TYPE-BASED TERMINATION



Chapter 4

Embeddings into Fω̂

In this chapter, we consider type and reduction preserving embeddings of
some total type systems into Fω̂. Such embeddings provide a translation func-
tion p·q for terms, types, and possibly kinds of the source language into the
target language Fω̂. An embedding is type preserving if for all Γ ` t : A of the
source language, it holds that pΓq ` ptq : pAq in the target language. Similarly,
if a source reduction step t −→ t′ maps to a sequence ptq −→+ pt′q of target
reduction steps, we speak of a reduction preserving embedding.

For the purpose of embeddings, it is important that Fω̂ is strongly normaliz-
ing. If Fω̂ was only normalizing w. r. t. a very specific reduction strategy, then
the reductions of the source language would not likely map to Fω̂ reductions
that are covered by the strategy. Therefore we have shown strong normaliza-
tion of Fω̂, as opposed to showing just weak normalization.

4.1 An Iso-Recursive Version of Fω̂

In our presentation of Fω̂, we decided that inductive and coinductive types
should be equi-recursive: By the rules TY-FOLD and TY-UNFOLD, a fixed point
∇∞ F is identical to its unfolded version F (∇∞ F). Alternatively, we can
present the system iso-recursively: We drop the rules TY-FOLD and TY-UNFOLD
and introduce two new term constructors:

Tm 3 r, s, t ::= · · · | in t | out t.

These two terms witness the isomorphism between the fixed point and its un-
folded version. Hence, they are typed as follows:

TY-IN
Γ ` t : F (∇κ a F) ~G

Γ ` in t : ∇κ (a + 1) F ~G
∇ ∈ {µ, ν}

TY-OUT
Γ ` t : ∇κ (a + 1) F ~G
Γ ` out t : F (∇κ a F) ~G

∇ ∈ {µ, ν}

85



86 CHAPTER 4. EMBEDDINGS INTO Fω̂

We overline µ and ν to distinguish them from the inductive and coinductive
constructors of the equi-recursive system. The contraction rules for recursive
and corecursive functions are replaced by the following ones, and we add a
reduction witnessing that (in, out) is a retraction pair.

ISO-REC fixµ
n s t1..n (in r) � s (fixµ

n s) t1..n (in r)
ISO-COREC out (fixν

n s t1..n) � out (s (fixν
n s) t1..n)

ISO-β∇ out (in t) � t

The corresponding reduction relation−→ is confluent in a natural way, in con-
trast to the equi-recursive system, where we had to introduce restrictions to
remove critical pairs (see Remark 3.9).

In previous work [Abe03, Abe04], we have considered such iso-recursive
systems. They seem to be easier to handle than their equi-recursive counter-
parts. The reduction rule ISO-REC for recursive functions is more concrete than
its counterpart RED-REC in Fω̂. Here, recursive functions can be unfolded if ap-
plied to a data constructor, in this case, in. There, the argument can be any kind
of value. Similarly, corecursive functions are only unfolded under a destructor,
out, whereas it can be any kind of evaluation context in Fω̂. Critical pairs like
fixµ

0 s (fixν
0 s′) do not arise in the iso-recursive version.

Proofs of strong normalization using saturated sets are considerably sim-
pler for iso-recursive systems than for their equi-recursive counterparts. This
is because the semantics of an iso-inductive type is quite concrete: it contains
all terms which evaluate to a constructor expression (plus neutral terms). In
contrast, the semantics of an equi-inductive type is just its unfolding, we do
not get an information on the shape of its inhabitants. We therefore require
in our soundness proof in Section 3.5 that all non-neutral terms in a semanti-
cal type reduce to a value, which makes strong normalization harder to prove
than in the iso-recursive case. To handle equi-coinductive types we even had
to refine our notion of saturated set in Section 3.4.3, which is not necessary for
iso-coinductive types [AA00, Abe03]. In the following, however, we establish
strong normalization of the iso-recursive system effortlessly by embedding it
into the equi-recursive one.

Let 1 := ∀A :∗. A→ A and id := λxx : 1. We define a translation p_q, which
maps terms of the iso-recursive system to terms of Fω̂, constructors to construc-
tors, and typing contexts to typing contexts. It is defined homomorphically for
all constructions except the following:

p∇κq = λaλF.∇κ a (λXλ~G. 1→ F X ~G)
where κ = ~p~κ → ∗ and |~G| = |~κ|

pin tq = λk. k ptq k 6∈ FV(t)
pout rq = prq id



4.2. SOME SYSTEMS FOR TERMINATION 87

The translation preserves well-typedness. Consider the derivation:

ptq : F (p∇∗q a F)

ptq : F (∇∗ a (λX. 1→ F X))

λk. k ptq : 1→ F (∇∗ a (λX. 1→ F X))

λk. k ptq : ∇∗ (a + 1) (λX. 1→ F X)

pin tq : p∇∗q (a + 1) F

This derivation can be lifted to ∇κ for higher kinds κ, and a similar deriva-
tion can be constructed for pout rq. Since all other constructions are translated
homomorphically, the first part of the following theorem is a routine induction:

Theorem 4.1 (Typing and reduction are simulated)

1. If Γ ` t : A in the iso-recursive system, then pΓq ` ptq : pAq in Fω̂.

2. If t −→ t′ in the iso-recursive system, then ptq −→+ pt′q in Fω̂.

Simulation of reduction is easy as well. We have chosen the translation such
that pin tq is a non-recursive value and pout _q is a non-recursive evaluation
frame. Hence,

fixµ
0 s pin tq −→ s (fixµ

0 s) pin tq, and
pout (fixν

0 s)q −→ pout (s (fixν
0 s))q,

which can be lifted to (co)recursive functions with more arguments. It is also
clear that pout (in t)q = (λk. k ptq) id −→+ ptq. It follows that strong normal-
ization of the iso-recursive system is inherited from Fω̂.

Remark 4.2 Embedding the equi-recursive into the iso-recursive seems much
harder, we need at least to translate the typing derivations. This suggests that
the equi-recursive is more foundational than the iso-recursive one and justifies
our choice of Fω̂.

4.2 Some Systems for Termination

In the following, we discuss the embedding of several systems which can be
seen as precursors to Fω̂. Here, we concentrate on terminating systems with
inductive types, and in the next section we switch to the dual case of productive
systems with coinductive types.

The calculus λ̂ . The closest relative to Fω̂ is definitively λ̂ , a calculus intro-
duced by Barthe, Frade, Giménez, Pinto, and Uustalu [BFG+04] and in depth
studied in Frade’s Ph.D. thesis [Fra03]. It is a simply-typed λ-calculus with
sized iso-inductive types and a reduction rule for recursive functions which is



88 CHAPTER 4. EMBEDDINGS INTO Fω̂

similar to ISO-REC. It does not have first-class polymorphism (it features ML-
polymorphism for types and sizes) nor inductive type constructors. The exten-
sion of admissible types we will consider in Chapter 5 is also not present in
their system. We claim here that λ̂ smoothly embeds into Fω̂ which is strictly
more powerful. The only technical work involved to construct an embedding
is the translation of λ̂ ’s Haskell-style inductive types into our equi-recursive
types, but this is standard: use product and disjoint sum types.

My calculus Λ+
µ [Abe04]has simple iso-inductive types and their approxima-

tions, which are an notational variant of sized types with the disadvantage that
they do not integrate well with polymorphism.1 Similar problematic formula-
tions have been devised by Amadio and Coupet-Grimal [ACG98], Giménez
[Gim98], and Barras [Bar99]. The type syntax of λ̂ and Fω̂, which resembles
Hughes, Pareto, and Sabry’s Synchronous Haskell [HPS96, Par00], is a clear im-
provement: it is both more intuitive and more powerful since it is orthogonal
to all other type constructions, like, for instance, polymorphism. Λ+

µ embeds
into λ̂ , and, even more directly, into Fω̂.

Some syntactic termination criteria. Giménez proposed a termination crite-
rion on well-typed terms called guarded by destructors. Barthe et al. [BFG+04]
formalized it in the calculus λG , which embeds into λ̂ , therefore also into Fω̂.
In previous work [Abe00] I have described functional language foetus with in-
ductive types and nested recursion, which embeds into Λ+

µ . Note, however,
that the termination checker foetus that is described in [AA02] handles also
cases of mutual recursion that cannot be expressed by nested recursion, and,
thus, not be simulated in Fω̂.

4.3 Some Systems For Productivity

Barthe et al. [BFG+04] sketch an extension of λ̂ by coinductive types. They
do not extend the proofs of subject reduction and strong normalization, but
no complications are to be expected there, partly because they work with iso-
coinductive types. (In the case of equi-coinductive types, the definition of sat-
urated set needs to be refined, see Section 3.4.3.) The extension of λ̂ by coin-
duction also embeds into Fω̂.

1Λ+
µ uses bounded quantification to model approximations of an inductive type, whereas Fω̂

uses size polymorphism. Consider the type of the list filter function:

Fω̂ (A→ Bool)→ ∀ı. Listı A→ Listı A
Λ+

µ (A→ Bool)→ ∀Y≤List A. Y → Y

This worked ok, but the type of the map function (A→ B)→ Listı A→ ListıB cannot be expressed
in Λ+

µ .



4.4. ITERATION AND PRIMITIVE RECURSION 89

My calculus λfixµν [Abe03]is an extension of Λ+
µ [Abe04] by coinductive types

and continuity (which will be discussed in Chapter 5). It allows corecursive
functions to return pairs, which is not allowed in Fω̂. But taking away this
slightly buggy feature2, λfixµν embeds into Fω̂.

The guard condition by Amadio and Coupet-Grimal [ACG98]. They present
a λ-calculus with coinductive types and nested corecursion, with a more re-
strictive syntax than λfixµν . Besides proving strong normalization with Girard’s
reducibility method, they also give a PER model to reason about corecursive
programs. The version of their calculus with reduction rules embeds into λfixµν ,
therefore also into Fω̂.

Syntactic guardedness. Coquand [Coq93] first described a syntactic criterion
for productivity: each recursive call must be guarded, i. e., occur under a con-
structor. This condition is easy to check, but quite restrictive; it rejects ad-
vanced corecursion schemes, as, for instance, used for the Huffman decoder
in Section 3.2.4. Coquand’s criterion is subsumed by Amadio and Coupet-
Grimal’s calculus.

4.4 Iteration and Primitive Recursion

There are a number of calculi without explicit recursion that are normalizing
by virtue of typing: the simply-typed λ-calculus, the polymorphic λ-calculus
(System F) and the higher-order polymorphic λ-calculus (System Fω), to name
a few examples. In System F, a limited form of recursion, so-called iteration,
can be simulated, but not primitive recursion, a strengthening of iteration. This
negative result has been proven for the β-version of System F by Splawski and
Urzyczyn [SU99], for βη it is conjectured. Primitive recursion can be simulated
in the presence of positive fixed-point types [Geu92]. The emphasis is on pos-
itive, as opposed to strictly positive. Since Fω̂ has non-strictly positive least and
greatest fixed-point types, this simulation of primitive recursion can be carried
out in Fω̂, even without the use of fix.

Using fix, primitive recursion is even directly definable, which is not really
surprising, considering the flexibility of the typing of fix. For example, the
recursor for lists can be programmed as follows:

primRec : ∀A∀B. B→ (A→ List∞ A→ B→ B)→ List∞A→ B
primRec := λnλc. fixµ

0 λprimRecλl. match l with
nil 7→ n
cons a as 7→ c a as (primRec as)

(Better known is the iterator for lists, called foldr in Haskell, which we get
from the recursor if we omit the argument as : List∞ to c.)

2I later discovered that in λfixµν there are not enough reductions for corecursive functions
[Abe05].



90 CHAPTER 4. EMBEDDINGS INTO Fω̂

The type we have given to primRec above is its usual System F type. In Fω̂,
we can give it a more precise type:

primRec : ∀A ∀B :ord +→ ∗.
(∀ı. B (ı + 1))→
(∀ı. A→ Listı A→ B ı→ B (ı + 1))→
∀ı. Listı A→ B ı

Mendler-style recursion. Mendler was the first to present formulations of
(co)iteration [Men91] and primitive (co)recursion [Men87] that resemble gen-
eralized recursion, but are in their power limited through typing. His achieve-
ments make him the “father” of type-based termination. The systems dis-
cussed in the last two sections are inspired by Mendler and tried to improve on
his work. Mendler proved strong normalization of his iteration and recursion
constructs by transfinite induction, similarly to how we motivate and verify
our recursion rule. The semantic model behind Mendler’s recursion rule

MRec : (∀X. (X → µ F)→ (X → C)→ F X → C)→ µ F→ C

is very nicely summarized by Splawski and Urzyczyn [SU99]: the variable
X stands for any approximation µαF of the inductive type µF, and F X =
F (µαF) = µα+1F for the next approximation. If one defines a function

MRec (λembλrecλt.s)

by Mendler recursion, then the function body s : C constructs a result from
argument t : µα+1F where it may invoke recursion rec : µαF → C on induc-
tive data of the previous approximation stage. Additionally, it can convert this
piece of data into the full inductive type using emb : µαF → µ∞F (this conver-
sion option is absent in case of Mendler iteration).

Semantically, Mendler already used sized types, but he decided to conceal
them using a type variable X. This way, he does not extend the type syntax
of polymorphic λ-calculus, which makes his solution quite elegant.3 However,
subsequent research seems to have been fixed to this type variable representa-
tion of approximations µαF of an inductive type. The resulting type systems by
Giménez [Gim98] and myself [Abe03, Abe04] were a bit clumsy. Introduction
of sizes into the type system, which was done by Hughes, Pareto, and Sabry
[HPS96] in the functional programming community, cleaned up this messy
syntax: Barthe et al. [BFG+04] first realized that these sizes can be interpreted
as ordinals, and Fω̂ features the quite intuitive syntax µıF.

Mendler uses positive iso-inductive types with the constructor in : F (µF)→
µF. His recursion scheme is directly definable in the iso-recursive version of
Fω̂:

MRec = λs. fixµ
0 λmrecλt. s id mrec (out t)

3The syntax seems to be a sacred cow in the logic, type theory, and programming language
community: Syntax extensions and changes might not be accepted by the fellow researchers. On
the other hand, new and better notation is a catalyzer for new ideas, as the history of mathematics
shows.



4.4. ITERATION AND PRIMITIVE RECURSION 91

It was later observed by Matthes [Mat98] and Uustalu and Vene [UV99] that
Mendler-style inductive types do not have to be positive, since there is no de-
structor out : µF → F (µF). In the absence of a destructor, negative types do
not jeopardize normalization since for them the recursion principle MRec is
simply useless. The non-positive version of Mendler inductive types cannot be
simulated directly, but via the usual encoding into positive fixed-point types
[Geu92].

Iteration and primitive recursion for inductive constructors. For (co)induc-
tive constructors of higher kind, Mendler (co)iteration and (co)recursion can be
defined analogously. This has been demonstrated in joint work with Matthes
and Uustalu [AMU03, AMU05]. The encoding of MRec given above can be
lifted to higher kinds and makes crucial use of inductive constructors of higher
kind, which are present in Fω̂ but not in λ̂ . For non-positive Mendler-style
constructors, the recursion schemes can be encoded into positive fixed-point
constructors as shown in joint work with Matthes [AM04]. Conventional it-
eration for inductive constructors [AM03] embeds into Mendler-style iteration
[AMU05]; but conventional primitive recursion for higher kinds has not yet
been studied.

We have mainly considered the inductive case, but all embeddings dualize
to coinduction.



92 CHAPTER 4. EMBEDDINGS INTO Fω̂



Chapter 5

Continuity

In this chapter, we turn our attention to the question which types are admis-
sible for (co)recursive functions. In sections 3.4.2 and 3.4.4 we have given se-
mantical criteria. The syntactical criteria in Section 3.1 were quite crude ap-
proximations, now we try to do better.

As described in the introduction, there are two criteria for admissible (se-
mantical) types A : ord→ ∗.

1. A(0) must be the biggest type, the universe of terms,

2. infα<λ A(α) ⊆ A(λ).

The first criterion is fulfilled by the general shape of the type: In case of
recursion, A must be a function type with one domain which is an inductive
type, in case of corecursion, it must be an coinductive type or a function type
with a coinductive type as codomain. We will not try to relax the first crite-
rion here, some directions of future work are hinted at in Section 7.2. Hughes,
Pareto, and Sabry [HPS96] do have a wider criterion, but they only give a de-
notational semantics and do not have to deal with the extra complications we
have by allowing reduction in any order and under binders. Their criterion is
not sound in our reduction semantics.

The second criterion looks like a continuity property, if we write it as

inf
α<λ
A(α) ⊆ A(sup

α<λ

α).

However, it talks about infimum and supremum instead of limits and it is an
inequation instead of an equation. In previous work [Abe03] we character-
ized some types that fulfill this condition syntactically. In the following, we
generalize this work to polymorphism and type constructors. At the end of
this chapter, we will have a syntactical derivation system for admissible types
which is much less restrictive than the original one in Section 3.1.

93



94 CHAPTER 5. CONTINUITY

Supremum on [[∗]]. In Section 3.4 we introduced two flavors of saturated sets.
The second version defined a saturated set as the orthogonal of a set of eval-
uation contexts, and we could not establish that the supremum of saturated
sets is identical to their union. However, for the development in this chapter,
especially the proof of the central lemma 5.8, we require that t ∈ supi∈I Ai im-
plies t ∈ Ai for some i. It could be that this property holds for saturated sets in
the refined sense, but we do not know. However, it holds for saturated sets in
the original sense, therefore, we revert to the original definition. The price we
have to pay is that coinductive constructors can no longer be treated in “equi”
style but we have to switch to “iso” style. The necessary changes to Fω̂ and its
soundness proof are spelled out in Appendix B. In the following, we assume
that the supremum on [[∗]] is the set-theoretical union.

5.1 On the Necessity of Criterion 2

In a previous article [Abe04, Sec. 6.1] we proved that the type-based termina-
tion system indeed becomes unsound if we drop criterion 2: In the absence
of this criterion, one can construct a looping term. In the following, we will
convert this example to Fω̂:

Assume sized type Nat with the two constructors zero : ∀ı. Natı+1 and succ :
∀ı. Natı → Natı+1. For simplicity of presentation, we assume that we have a
simple pattern-matching facility. We define the following functions:

shift : ∀ı. (Nat∞ → Natı+2)→ Nat∞ → Natı+1

shift := λ f λn. match f (succ n) with
zero 7→ zero
succ m 7→ m

plus2 : Nat∞ → Nat∞
plus2 := λn. succ (succ n)

It is easy to see that plus2 is a fixed point of shift:

shift plus2 : Nat∞ → Nat∞
shift plus2 −→+ plus2

Disregarding Criterion 2, the following function is well-typed:

loop : ∀ı. Natı → (Nat∞ → Natı+1)→ Nat∞
loop := fixµ

0 λloopλ_λ f . match ( f zero) with
zero 7→ zero
succ n 7→ match n with

zero 7→ zero
succ m 7→ loop m (shift f )

To see well-typedness, here some help with the types of the bound variables



5.2. SEMI-CONTINUITY 95

and some subterms:

loop : Natı → (Nat∞ → Natı+1)→ Nat∞
_ : Natı+1

f : Nat∞ → Natı+2

n : Natı+1

m : Natı

shift f : Nat∞ → Natı+1

Now a certain function call loops:

loop zero plus2 −→+ loop zero (shift plus2) −→+ loop zero plus2.

It is also not the case that the occurrence of ı + 1 in the type of loop is caus-
ing the non-termination. We can modify the counterexample such that the
+1 disappears from the type of loop. To this end, introduce a free variable
err : ∀A. A. If we modify the definition of shift such that in the case zero the
variable err is returned, then shift can be given type ∀ı. (Nat∞ → Natı+1) →
Nat∞ → Natı. If we remove one pattern matching layer from loop it gets type
∀ı. Natı → (Nat∞ → Natı) → Nat∞, and loop zero (λn. succ n) loops. Thus,
it is really the negative occurrence of the type Nat∞ → Natı[+1] that enables a
looping term.

5.2 Semi-Continuity

When we define a (co-)recursive object t of type ∀ı : ord. A(ı), we prove in the
semantics that t ∈ A(α) for all ordinals α ≤ >ord by transfinite induction on
α. In the case of a limit ordinal λ, we have t ∈ ⋂

α<λ A(α) = infα<λ A(α) and
need to show t ∈ A(λ). Hence, A must be a function over ordinals with the
property

inf
λ
A ⊆ A(λ). (5.1)

We are looking for a syntactical characterization of types that fulfill (5.1). For
instance, what is required of A and B such that C ı = A ı → B ı has this prop-
erty? We would expect that B has to fulfill (5.1) and A some dual property.
However, it is not that simple: To show infα<λ(A(α) → B(α)) ⊆ A(λ) →
B(λ) from infλ B ⊆ B(λ) requires that A(λ) ⊆ infλ A, which is not even ful-
filled if A(α) denotes the natural numbers below α. This means that not even
for type Natı → Natı we can show property (5.1) directly.

The next idea is to strengthen the requirement to limλ A ⊆ A(λ) which by
Lemma 3.14 entails (5.1). Here we hit the problem that many function spaces
do not have limits. For example, let T (α) = Nat(α) → Nat(α) denote the
family of endo-functions on natural numbers below α. Consider the function
f which increases even numbers by one, but leaves odd numbers unchanged.
This function inhabits T (α) for infinitely many α < ω (namely every second
α), hence f ∈ lim supω T . But there is no α0 < ω such that f ∈ T (α) for all



96 CHAPTER 5. CONTINUITY

α between α0 and ω, hence, f 6∈ lim infω T . Since limes superior and inferior
differ, limω T does not exist.

Although limits might not exist, it has been observed by Hughes, Pareto
and Sabry [HPS96] and the author [Abe03] that the modified requirement

lim inf
λ
A ⊆ A(λ) (5.2)

can be lifted over function types:

Proposition 5.1 Let O be some initial segment of the ordinal numbers, λ ∈ O a limit
ordinal, and A,B ∈ O → SAT. If A(λ) ⊆ lim infλ A and lim infλ B ⊆ B(λ) then
lim infα→λ (A(α) → B(α)) ⊆ A(λ) → B(λ).

This proposition is true, and the condition on A, A(λ) ⊆ lim infλ A, is exactly
what we need. The condition on B is sufficient, but rather ad hoc, and we will
replace it by the stronger requirement

lim sup
λ

B ⊆ B(λ) (5.3)

which is the dual to the requirement on A. The nature of his choice is not
technical but aesthetical: symmetry. Further, now the requirements on A and
B correspond to already-known mathematical concepts:

Semi-continuity. Let (L,v, inf, sup) be a complete lattice, O some initial seg-
ment of the ordinal numbers and λ ∈ O a limit ordinal. A functionA ∈ O→ L
is called upper semi-continuous in λ if

lim sup
λ

A v A(λ). (5.4)

It is called lower semi-continuous in λ if

A(λ) v lim inf
λ
A. (5.5)

The function A is upper/lower semi-continuous, if it is so in all limit ordinals λ ∈
O. A function is called ω-overshooting by Hughes, Pareto, and Sabry [HPS96],
if it is lower semi-continuous in ω.

The term semi-continuity is justified by the following observation:

Lemma 5.2 If A is both upper and lower semi-continuous in λ, then it is continuous
in λ.

Proof. By assumption, lim supλ A v A(λ) v lim infλ A. By Lemma 3.14, the
limes inferior is below the limes superior, hence both are equal and the limit
limλ A exists. Since A(λ) is sandwiched between the limit on both sides, it is
equal to the limit. Thus, A is continuous in λ. �



5.3. TYPE CONSTRUCTORS AND SEMI-CONTINUITY 97

Remark 5.3 (Undershooting + overshooting 6= continuous) Property (5.2),
lim infλ A v A(λ), which we have called paracontinuous in previous work
[Abe03], and which would be called λ-undershooting following Hughes, Pareto,
and Sabry [HPS96], is not strong enough to complement lower semi-continuity.
For instance, consider the function A ∈ O → L which maps all odd finite or-
dinals to > and all others to ⊥. It is both ω-under- and -overshooting, since
lim infωA = A(ω) = ⊥, but not continuous in ω, since lim supωA = >.

Set of semi-continuous functions. We denote the set of upper semi-continuous
functions from O to L by O

⊕→ L, and the set of lower semi-continuous func-
tions by O

	→ L.

Lemma 5.4 (Variance and semi-continuity) (O +→ L) ⊆ (O ⊕→ L) and (O −→
L) ⊆ (O 	→ L).

Example 5.5 (Ordinal successor) The ordinal successor is upper semi-continuous,
since it is monotone, but not lower semi-continuous.

The concepts (5.4) and (5.5) are clearly subconcepts of continuity. Familiar
subconcepts are continuity from the left/right, but since we are considering func-
tions over ordinals, every function is continuous from the right.1 But we could
ask the following question: what makes a monotone function on ordinals con-
tinuous (from the left)? We find:

1. An antitone function is already continuous if it is upper semi-continuous.

2. An isotone function is already continuous if it is lower semi-continuous.

So we could say that an upper semi-continuous function is continuous when
falling and a lower semi-continuous function is continuous when climbing.

5.3 Type Constructors and Semi-Continuity

In the following, we will analyze which type constructors preserve upper and
lower semi-continuity. For the first kind, we need to push an upper limit under
the type constructor, for the second kind, we need to pull a limit out from the
argument of a type constructor.

Preservation of upper semi-continuity. We say lim sup pushes through f ∈
L→ L′ if for all g ∈ O→ L and all λ ∈ O it holds that

lim sup
α→λ

f (g(α)) v f (lim sup
α→λ

g(α)).

1Minima always exists on the ordinals, hence, limits of falling sequences are all trivial, and since
the ordinals are wellfounded, there are no infinite strictly falling sequences.



98 CHAPTER 5. CONTINUITY

We also say that f is a lim sup-pushable function.
Most of our type constructors are covariant. This allows the following rea-

soning: If F ∈ L
+→ L′ is lim sup-pushable and A ∈ O → L is upper semi-

continuous, then

lim sup
α→λ

F (A(α)) v F (lim sup
α→λ

A(α)) v F (A(λ)),

hence, F preserves upper semi-continuity.

Remark 5.6 (Covariance alone not sufficient) In general, covariance is not suf-
ficient to preserve upper semi-continuity. Consider the function g : [0, 1] →
[0, 1] on the real or rational unit interval with g(x) = 1− x. Then clearly g is
(left) upper semi-continuous at 1, since g is even continuous. However, taking
f to be the sign function such that f (x) = 1 if x > 0 and f (0) = 0, we have
lim supx→1 f (g(x)) = 1, but f (g(1)) = 0.

Preservation of lower semi-continuity. We say lim inf can be pulled through
f ∈ L→ L′ if for all g ∈ O→ L and all λ ∈ O it holds that

f (lim inf
α→λ

g(α)) v lim inf
α→λ

f (g(α)).

We also say that f is a lim inf-pullable function.

IfF ∈ L
+→ L′ is lim inf-pullable andA ∈ O→ L is lower semi-continuous,

then

F (A(λ)) v F (lim inf
α→λ

A(α)) v lim inf
α→λ

F (A(α)),

thus, F preserves lower semi-continuity.

Contravariant constructors. IfF is contravariant and a lim sup can be pushed
into F , becoming a lim inf, then F turns lower semi-continuous functions into
upper semi-continuous ones. If a lim sup can be pulled out fromF as a lim inf,
then F maps a upper semi-continuous function to an lower semi-continuous
one.

Lemma 5.7 Let f ∈ O×O→ L and λ ∈ O proper limit. Then

lim sup
α→λ

f (α,α) v lim sup
β→λ

lim sup
γ→λ

f (β, γ)

lim inf
β→λ

lim inf
γ→λ

f (β, γ) v lim inf
α→λ

f (α,α)



5.3. TYPE CONSTRUCTORS AND SEMI-CONTINUITY 99

Proof. Let all ordinals range below λ.

sup
α≥α0

f (α,α) v sup
β≥α0

sup
γ≥α0

f (β, γ) for all α0

= inf
β0≤α0

inf
γ0≤α0

sup
β≥β0

sup
γ≥γ0

f (β, γ)

inf
α0

sup
α≥α0

f (α,α) v inf
α0

inf
β0≤α0

inf
γ0≤α0

sup
β≥β0

sup
γ≥γ0

f (β, γ) taking inf on both sides

= inf
β0

inf
γ0

sup
β≥β0

sup
γ≥γ0

f (β, γ)

= inf
β0

sup
β≥β0

inf
γ0

sup
γ≥γ0

f (β, γ)

This means that lim supα→λ f (α,α) v lim supβ→λ lim supγ→λ f (β, γ). The
second claim follows by dualization. �

5.3.1 Function Space

In this section, we show that function spaces can be upper semi-continuous,
but not lower semi-continuous.2

Lemma 5.8 (Pushing lim sup through function space) LetA,B ∈ O→ P(Tm)
and λ ∈ O a limit ordinal. Then

lim sup
α→λ

(A(α) → B(α)) ⊆ (lim inf
λ
A) → lim sup

λ

B.

Proof. We assume a function term r ∈ lim supα→λ (A(α) → B(α)) and an
argument term s ∈ supα0<λ infα0≤α≤λ A(α) and show that the application r s ∈
infβ0<λ supβ0≤β<λ B(β). In the following, let all ordinals range below λ. We
fix an arbitrary ordinal β0. We know that there exists some α0 such that s ∈
A(α) for all α ≥ α0. Furthermore, r ∈ A(β) → B(β) for some ordinal β >
max(α0, β0). Since s ∈ A(β), we conclude r s ∈ B(β). �

Corollary 5.9 Let A ∈ O
	→ P(Tm), B ∈ O

⊕→ P(Tm) and F (α) := A(α) →
B(α). Then F ∈ O

⊕→ P(Tm).

Proof. Fix some limit ordinal λ ∈ O. SinceA(λ) ⊆ lim infλ A and lim supλ B ⊆
B(λ), the desired inequation

lim sup
α→λ

(A(α) → B(α)) ⊆ A(λ) → B(λ)

2An exception could be functions over finite domains, which are lower semi-continuous in
their codomain. But we do not distinguish between finite and infinite here, this would require a
syntactical calculus of finiteness later.



100 CHAPTER 5. CONTINUITY

follows from the previous lemma, since the function space is contravariant on
the domain and covariant on the codomain. �

The converse lemma to derive that A(α) → B(α) is lower semi-continuous
does not hold. For instanceF (α) := Natω → Natα is not lower semi-continuous,
although Natα is: the identity function is in F (ω), but not in F (α) for any
α < ω.

Remark 5.10 (Cannot pull lim inf out of function space) We show that not gen-
erally (lim supα A(α)) → B ⊆ lim infα(A(α) → B). Clearly, the bigger
(lim infα A(α)) → B is then also not below lim infα(A(α) → B) in general.
Take A(n) = Natn → Nat and B = Nat. First, we show

λ f . f ( f 0) ∈ (lim sup
n

(Natn → Nat)) → Nat.

We assume that for all n0 there is some n ≥ n0 such that f ∈ Natn → Nat and
show f ( f 0) ∈ Nat. Since 0 ∈ Nat1 we have f ∈ Natn → Nat for some n ≥ 1
and therefore f 0 ∈ Nat. Since Nat =

⋃
n0
Natn0 , there must be a n0 such that

f 0 ∈ Natn0 . Thus, f ( f 0) ∈ Nat for some n ≥ n0. Now, we prove

λ f . f ( f 0) 6∈ lim inf
n

((Natn → Nat) → Nat).

We show even that λ f . f ( f 0) is in none of the sets (Natn → Nat) → Nat.
Assume an arbitrary n < ω. Let f be the function which returns n for inputs
less than n and diverges for all input greater or equal than n. Then f ∈ Natn →
Nat. But since f 0 evaluates to n, f ( f 0) diverges and, hence, cannot be in Nat.

5.3.2 Universal Quantification

Universal quantification is semantically interpreted by intersection. We can
only show that quantification preserves upper semi-continuity.

Lemma 5.11 (Pushing lim sup through infimum) Let I some index set, f ∈ O×
I → L, and λ ∈ O some limit ordinal. Then

lim sup
α→λ

inf
i∈I

f (α, i) v inf
i∈I

lim sup
α→λ

f (α, i).

Proof. For all i ∈ I it holds that infi∈I f (α, i) v f (α, i). Since inequation is pre-
served under limit formation, lim supα→λ infi∈I f (α, i) v lim supα→λ f (α, i)
for all i ∈ I, which entails our claim. �

Corollary 5.12 The space of upper semi-continuous functions O
⊕→ L forms a com-

plete lattice under pointwise ordering, pointwise infimum, and pointwise maximal
element.



5.3. TYPE CONSTRUCTORS AND SEMI-CONTINUITY 101

Proof. To see that O
⊕→ L is closed under pointwise infimum, assume a family

Fi ∈ O → L (for i ∈ I) with lim supα→λ Fi(α) v Fi(λ) for all i ∈ I. Minimiz-
ing both sides, we obtain

lim sup
α→λ

(inf
i∈I
Fi)(α) v inf

i∈I
(lim sup

α→λ

Fi(α)) v (inf
i∈I
Fi)(λ)

by pulling the upper limit out to the left (previous lemma). �

Example 5.13 (Supremum on O
⊕→ L not pointwise) The supremum of the lat-

tice, supi∈I Fi = inf {F | F w Fi for all i ∈ I}, however, is not the pointwise
one. For example, take the two element lattice ⊥ v > and the family

Ai : [0;ω]→ {⊥,>} for 0 ≤ i < ω,

Ai(α) := > if i < α,
Ai(α) := ⊥ else.

ThenAi(ω) = ⊥ w Ai(α) for allα ≥ i, hence eachAi is upper semi-continuous
in ω. However, the pointwise supremum A(α) := supi<ωAi(α) takes the
value > below ω, hence lim supωA = > 6v A(ω) = ⊥.

On the contrary, lower semi-continuous functions are not closed under point-
wise infimum. This becomes clear if we consider the same example on the dual
lattice, i. e., we swap inf and sup, and v and w (which means that ⊥ becomes
the maximal element and > the minimal). With the same trick, we harvest a
relationship between supremum and limes inferior:

Lemma 5.14 (Pulling lim inf out of a supremum) Let I some index set, f ∈ O×
I → L, and λ ∈ O some limit ordinal. Then

sup
i∈I

lim inf
α→λ

f (α, i) v lim inf
α→λ

sup
i∈I

f (α, i).

We could now turn O
	→ L into a complete lattice using the pointwise supre-

mum. But we withstand this temptation since this would trick us into believing
we could interpret universal quantification on this lattice.

Remark 5.15 One would think that, if Aı is lower semi-continuous, then also
∀X. Aı. But it is not true in our semantics. It is not clear whether it holds in
another semantics, e. g., one with parametricity.

5.3.3 Coinductive Types

Clearly, coinductive types are not lower semi-continuous in general. For ex-
ample, consider the stream of subsequent natural numbers 0, 1, . . . which is an



102 CHAPTER 5. CONTINUITY

element of Streamω(Natω). Since for all α < ω, this stream is not contained in
Streamω(Natα), the latter type family cannot be lower semi-continuous in ω.

However, coinductive types map upper semi-continuous types to upper
semi-continuous types under some conditions. We introduce a new symbol for
antitone iteration, which is used to construct the semantics of coinductive types:

ν ∈ O
−→ (L +→ L) +→ L

να(F ) = Fα(>)

By Lemma 3.21, ν is antitone in its first argument, hence by Lemma 3.17 we
can replace the limit by an infimum at limit iterates: νλ = infα<λ να . This will
enable us to reason about semi-continuity.

Lemma 5.16 Let φ ∈ O→ O and I ⊆ O. Then

1. supα∈I νφ(α) v νinfI φ,

2. supα∈I νφ(α) w νinfI φ,

3. infα∈I νφ(α) w νsupI φ, and

4. infα∈I νφ(α) v νsupI φ.

Proof. 1. and 3. follow directly from antitonicity. For 2., remember that each set
of ordinals is left-closed, hence infI φ = φ(α) for some α ∈ I. The remaining
proposition 4. is proven by cases on supI φ. If supI φ is not a limit ordinal
then supI φ = φ(α) for some α ∈ I. For this α, clearly νφ(α) v νsupI φ, which
entails the lemma. Otherwise, if supI φ is a limit ordinal, then by definition of
ν at limits we have to show infα∈I νφ(α) v νβ for all β < supI φ. By definition
of the supremum, β < φ(α) for some α. Since ν is antitone, νφ(α) v νβ from
which we infer our subgoal by forming the infimum on the left hand side. �

Hence, we can push a supremum as an infimum under antitone iteration, and
vice versa.

Corollary 5.17 lim supα<λ νφ(α) = νlim infα<λ φ(α).

Lemma 5.18 (Coinductive types are lim sup-pushable) Let (Fα)α∈O be a fam-
ily of lim sup-pushable isotone endo-functions on a complete lattice L with pointwise
infimum and supremum. Then

lim sup
α→λ

νβFα v νβ lim sup
α→λ

Fα .



5.3. TYPE CONSTRUCTORS AND SEMI-CONTINUITY 103

Proof. By induction on β. In case β = 0, both sides become the maximum
element of L. In the successor case we have

lim supα→λ νβ+1Fα = lim supα→λ Fα(νβFα)
v lim supα→λ lim supγ→λ Fα(νβFγ) Lemma 5.7
v lim supα→λ Fα(lim supγ→λ νβFγ) Fα pushable
v lim supα→λ Fα(νβ(lim supγ→λ Fγ)) Fα isotone, i.h.
= (lim supα→λ Fα)(νβ(lim supα→λ Fα)) inf, sup pointwise
= νβ+1(lim supα→λ Fα).

Note that in the last step we used that lim sup is defined pointwise on func-
tions. In the remaining case β = λ we exploit that lim sup pushes through
infima (Lemma 5.11). �

Corollary 5.19 Under the assumptions of the last lemma.

lim sup
α→λ

νφ(α)Fα v νlim infλ φ lim sup
α→λ

Fα ,

Proof. We combine Cor. 5.17 and Lemma 5.18.

lim supα→λ νφ(α)Fα v lim supα→λ lim supγ→λ νφ(α)Fγ Lemma 5.7
v lim supα→λ νφ(α)(lim supγ→λ Fγ) Lemma 5.18
v νlim infα→λ φ(α) lim supα→λ Fα Cor. 5.17 �

Corollary 5.20 (Coinductive types preserve upper semi-continuity) Forα ∈ O,
let Fα ∈ L

+→ L be lim sup-pushable. The family Fα be upper semi-continuous.
Then

lim sup
α→λ

νφ(α)Fα v νlim infλ φFλ .

Proof. By the last corollary and upper semi-continuity of Fα . �

5.3.4 Inductive Types

The result of the last section can be dualized to inductive types. We define
isotone iteration, µαF = Fα(⊥).

Lemma 5.21 Let φ ∈ O → O and I ⊆ O. Then µsupI φ = supα∈I µφ(α) and
µinfI φ = infα∈I µφ(α).

Corollary 5.22 µlim infλ φ = lim infα→λ µφ(α).



104 CHAPTER 5. CONTINUITY

Lemma 5.23 (Inductive types are lim inf-pullable) For α ∈ O, let Fα ∈ L
+→ L

be lim inf-pullable. Then isotone iteration µβFα is lim inf-pullable, i. e.,

µβ lim inf
α→λ

Fα v lim inf
α→λ

µβFα .

Corollary 5.24 Let φ be a lower semi-continuous function on ordinals. In the context
of the lemma,

µφ(λ) lim inf
α→λ

Fα v lim inf
α→λ

µφ(α)Fα .

Corollary 5.25 (Inductive types preserve lower semi-continuity) Under the as-
sumptions of the last corollary isotone iteration µφ(α)Fα is lower semi-continuous,
i. e.,

µφ(λ)Fλ v lim inf
α→λ

µφ(α)Fα ,

if the family Fα is lower semi-continuous.

Since isotone types are upper semi-continuous, many inductive types are
trivially upper semi-continuous. First, every type µαF where F does not de-
pend on α, but also, for example Listα(Natα) and Treeα(Nat,Natα).

But there are other types which are upper semi-continuous as well, for in-
stanceListα(Streamα(Nat)). This type is acceptable since it’s generatorFα(X ) =
Unit + Streamα(Nat) × X is infimum continuous3, which means that

Fα(X ) ∩ Fβ(Y) ⊆ Unit + (Streamα(Nat) ∩ Streamβ(Nat)) × (X ∩ Y).

Pareto calls such generators lenient [Par00, p. 122], recasting the conditions as
Fα(X ) ∩ Fβ(Y) ⊆ Fα(X ∩ Y). Since Pareto’s type generators are infimum
continuous by definition ([HPS96, Restriction 3.2]), they are also lenient, hence,
each inductive type is upper semi-continuous.

On the contrary, our type iterators are not lenient. This is because we allow
function spaces in data types. Consider Fi(X ) = Nati → X which constructs
Nati-hungry functions. Then the identity function is in F j+1(Nat j+1) and in
F j(Nat j), but not in F j+1(Nat j+1 ∩Nat j) = Nat j+1 → Nat j.

If all inductive types would preserve upper semi-continuity, we would have
the chain

lim sup
i→ω

µβFi ⊆ µβ lim sup
i→ω

Fi ⊆ µβFω (5.6)

for a isotone, upper semi-continuous type constructor which is lim sup-pushable.
In the following, we will construct a counterexample to our hypothesis.

3A function f is infimum continuous if infi∈I f (xi) = f (infi∈I xi) for all sequences (xi)i∈I .
An infimum continuous function is isotone. An isotone function is infimum continuous if
infi∈I f (xi) ≤ f (infi∈I xi). This last condition is what I called “continuous” in earlier work [Abe03].



5.3. TYPE CONSTRUCTORS AND SEMI-CONTINUITY 105

An inductive type which is not upper semi-continuous. A minor variant of
the last example, Fi(X ) = 1 + (Nati → X ) constructs the family of trees
which have at least i “good” branches at each node. First, we observe that,
using upper semi-continuity of sums and function space,

lim supi→ω Fi(Xi) ⊆ 1 + (lim supi→ω(Nati → Xi))
⊆ 1 + ((lim infi→ωNati) → (lim supi→ω Xi))
= 1 + (Natω → (lim supi→ω Xi))
= Fω(lim supi→ω Xi).

Hence, the functor family F is lim sup-pushable, but, as we will show, isotone
iteration of F is upper semi-continuous.

The ωth iteration µωFi contains the i-branching trees of finite height. Let
ti be a ω-branching tree of height i for all i < ω. Consider the tree t(n) = tn,
whose root has infinitely many branches, containing the ti in order. The first 0
branches are good and of height < 0 (empty quantification), the first 1 branches
are good and of height < 1, the first 2 branches are good and of height < 2 etc.
This implies that

t ∈ inf
i<ω

sup
j<ω

µ jFi = lim sup
i→ω

µωFi . (5.7)

But it is not true that t is an infinitely branching tree of finite height, i. e.,

t 6∈ sup
j<ω

µ jFω = µωFω. (5.8)

This invalidates the inequation 5.6 for ordinal β = ω; inductive types do not
generally preserve upper semi-continuity.

Could we nevertheless accept all inductive types as result types of recursive
functions without jeopardizing termination? After all, our semantics might be
defective, ruling out a class of functions for internal reasons? The answer is
no. In the following, we show how to construct a looping term if the inductive
type of Nat-hungry functions Hungryı(Natı) = µı X. Natı → X is accepted as
result of a recursive function.

Constructing a looping term. We assume that the natural numbers are con-
structed by the two closed normal forms zero and succ and that there is a elim-
ination caseNat. We postulate the following typings and reductions.

zero : ∀ı. Natı+1

succ : ∀ı. Natı → Natı+1

caseNat : ∀X∀ı. X → (Natı → X)→ Natı+1 → X

caseNat z s zero −→+ z
caseNat z s (succ n) −→+ s n

Since zero and succ are closed and normal, they must be weak-head values,
hence, trigger unfolding of recursive functions. We can define a predecessor



106 CHAPTER 5. CONTINUITY

function on positive numbers as follows:

err : ∀X.X

pred : ∀ı. Natı+1 → Natı

pred := caseNat err id

Herein, we had to assume a variable err which inhabits every type. Note that
there cannot be a closed term pred of type ∀ı. Natı+1 → Natı, since then pred zero
would be a closed normal form in the type ∀ı. Natı whose semantics Nat0 con-
tains only neutral, i. e., open normal forms. The assumption of variable err
is unproblematic, since we are refuting strong normalization in this example,
and strong normalization treats also reduction of open terms. It is clear that
pred (succ t) −→+ t, hence by induction on n, also

predn (succn t) −→+ t

for any term t.
Next, we define a function which transforms a Nat-hungry function into

a Nat+1-hungry function. In the visualization of A-hungry functions as A-
branching trees, this means that we insert a left-most branch at each node.

s : ∀∀ı. Hungryı(Nat)→ Hungryı(Nat+1)
s := fixµ

0 λsλh. s ◦ h ◦ pred

sn v −→+ sn ◦ v ◦ predn

At this, point we can construct a hungry function h recursively, if we disregard
that Hungryı(Natı) does not denote a upper semi-continuous function. Since the type
of hungry functions does not contain values semantically, this is clearly patho-
logical already. Later we will exploit h to construct a non-normalizing term.

h : ∀ı. Natı → Hungryı(Natı)
h := fixµ

0 λhλ_. s ◦ h ◦ pred

h v −→+ s ◦ h ◦ pred

To implement a diverging term, we need the inverse p of s. Intuitively, it cuts
the left-most branch of each node.

p : ∀∀ı. Hungryı(Nat+1)→ Hungryı(Nat)
p := fixµ

0 λpλh. p ◦ h ◦ succ

pn v −→+ pn ◦ v ◦ succn

Finally, we define a “traversal” function tr which diverges on h v.

tr : Hungry∞(Nat∞)→ 0
tr := fixµ

0 λtrλh. tr ((p ◦ h ◦ succ) zero)

tr v −→+ tr ((p ◦ v ◦ succ) zero)



5.4. A KINDING SYSTEM FOR SEMI-CONTINUITY 107

Now, we construct the following reduction sequence for any n ∈ N.

tr (pn (sn (h zero))) −→+ tr (pn (sn (s ◦ h ◦ pred)))
−→∗ tr (pn (sn+1 ◦ h ◦ predn+1))
−→∗ tr (pn ◦ sn+1 ◦ h ◦ predn+1 ◦ succn)
−→+ tr ((pn+1 ◦ sn+1 ◦ h ◦ predn+1 ◦ succn+1) zero)
−→+ tr (pn+1 (sn+1 (h zero)))

It is clear that tr (h zero) diverges.

5.3.5 Product and Sum Types

Product and sum type are both upper and lower semi-continuous. This has
been shown by Pareto [Par00] for a denotational semantics, and by myself
[Abe03] for a SN semantics for a type system with iso-(co)inductive types.
However, I do not know whether this can be shown for the impredicative en-
codings of sum and product from Example 3.3. In the following, we assume
we have the continuity property for sum and product. This might require to
add them as primitive notions to Fω̂.

Lemma 5.26 Let A,B ∈ O→ P(Tm). Then for all limit ordinals λ ∈ O,

(a) lim supα→λ(A(α) × B(α)) ⊆ (lim supλ A) × (lim supλ B),

(b) lim supα→λ(A(α) + B(α)) ⊆ (lim supλ A) + (lim supλ B),

(c) (lim infλ A) × (lim infλ B) ⊆ lim infα→λ(A(α) × B(α)), and

(d) (lim infλ A) + (lim infλ B) ⊆ lim infα→λ(A(α) + B(α)).

Corollary 5.27 (Product and sum preserve semi-continuity) Let q ∈ {⊕,	} and
A,B ∈ O

q→ P(Tm). Then (α 7→ A(α) + B(α)), (α 7→ A(α) × B(α)) ∈ O
q→

P(Tm).

5.4 A Kinding System for Semi-Continuity

In this section we define a calculus to derive semi-continuous constructors.
This calculus will be part of the new criterion for admissible types for (co)recursion.

Polarities for semi-continuous functions. Similar to the polarities +, −, and
◦ for co-, contra-, and non-variant constructors we introduce two new polari-
ties for semi-continuous constructors:

HPol 3 q ::= ⊕ upper semi-continuity
| 	 lower semi-continuity



108 CHAPTER 5. CONTINUITY

Positive contexts. We define contexts Π ∈ Cxt+ ⊆ PCxt in which each vari-
able has positive polarity and each kind is pure:

Cxt+ 3 Π ::= � empty context
| Π, X :+κ∗ positive constructor variable

Well-formed size expressions. The judgement ∆ ` a ord singles out well-
formed λ-free constructors of kind ord. With this separate judgement, it is very
easy to show that every well-formed a is either an affine function in one size
variable, or equal to >ord.

ORD-∞
∆ ` ∞ ord

ORD-VAR
(ı : pord) ∈ ∆ p ≤ +

∆ ` ı ord
ORD-s

∆ ` a ord
∆ ` s a ord

Derivation system for kinds and semi-continuity. Let ∆ be a polarized con-
text with (ı : pord) ∈ ∆ for some p. We define the judgement ∆; ~X :+~κ∗ `ıq F : κ
inductively by the following rules. Variables ~X can only appear strictly positive
in F, and they are disjoint from the variables in ∆. The intended semantics of
the judgement depends on q: If q = ⊕ then F is a well-kinded, upper semi-
continuous constructor in ordinal variable ı, and a lim sup can be pushed into
its arguments ~X. If q = 	 then F is lower semi-continuous and a lim inf can be
pulled out from its arguments ~X.

The first three rules enable us to derive semi-continuity from an ordinary
kinding judgement ∆ ` F : κ.

CONT-IN
∆ ` F : κ

∆, ı : pord; Π `ıq F : κ

CONT-CO
∆, ı :+ord ` F : κ p ≤ +

∆, ı : pord; Π `ı⊕ F : κ

CONT-CONTRA
∆, ı :−ord ` F : κ p ≤ −

∆, ı : pord; Π `ı	 F : κ

These rules are justified by the fact that each invariant function is continuous,
each covariant function is upper semi-continuous and each contravariant func-
tion is lower semi-continuous. The next rules are for the pure λ-calculus part
of the constructor grammar.

CONT-VAR
X : pκ ∈ ∆, Π p ≤ +

∆; Π `ıq X : κ

CONT-ABS
∆, X : pκ; Π `ıq F : κ′

∆; Π `ıq λXF : pκ → κ′
X 6= ı

CONT-APP
∆, ı : p′ord; Π `ıq F : pκ → κ′ p−1∆ ` G : κ

∆, ı : p′ord; Π `ıq F G : κ′



5.4. A KINDING SYSTEM FOR SEMI-CONTINUITY 109

Note that in the application rule, we require the argument G to be constant
in ı. The background is that the composition of F and G has trivially all the
continuity and variance properties of F if G is constant. Of course, with this
rule we could never derive, e. g., that A → B is upper semi-continuous in ı if
B is upper semi-continuous and A is lower semi-continuous. Hence, we need
specialized rules for the constants, which implement the observations from the
last section.

CONT-SUM
∆; Π `ıq A, B : ∗

∆; Π `ıq A + B : ∗ CONT-PROD
∆; Π `ıq A, B : ∗

∆; Π `ıq A× B : ∗

CONT-ARR
−∆; � `ı	 A : ∗ ∆; Π `ı⊕ B : ∗

∆; Π `ı⊕ A→ B : ∗

CONT-∀ ∆; Π `ı⊕ F : ◦κ → ∗
∆; Π `ı⊕ ∀κF : ∗

CONT-MU
∆; Π, X :+κ∗ `ı	 F : κ∗ ∆ `ı	 a : ord

∆; Π `ı	 µaXF : κ∗

CONT-NU
∆; Π, X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; Π `ı⊕ νaXF : κ∗

We abbreviate ∆; � `ıq F : κ by ∆ `ıq F : κ.

Example 5.28 (Type of minimum function) Recall that Natı = µıX. 1 + X. First,
we derive that Nat is lower semi-continuous:

CONT-VAR
ı :◦ord; X :+∗ `ı	 X : ∗

CONT-SUM
ı :◦ord; X :+∗ `ı	 1 + X : ∗

CONT-VAR
ı :◦ord `ı	 ı : ord

CONT-MU
ı :◦ord; � `ı	 Natı : ∗

Since Nat : ord
+→ ∗ is also upper semi-continuous, we can derive that the type

of the minimum and maximum functions is upper semi-continuous. We omit
: ∗ and empty positive contexts Π in the derivation:

ı :◦ord `ı	 Natı

ı :◦ord `ı	 Natı

ı :+ord ` Natı

CONT-CO
ı :◦ord `ı⊕ Natı

CONT-ARR
ı :◦ord `ı⊕ Natı → Natı

CONT-ARR
ı :◦ord `ı⊕ Natı → Natı → Natı

Example 5.29 (Stream of natural numbers) Let Streamı A = νıX. A×X, as de-



110 CHAPTER 5. CONTINUITY

fined in Example 2.9. The type Streamı Natı is upper semi-continuous.

ı :+ord ` Natı

CONT-CO
ı :◦ord; X :+∗ `ı⊕ Natı CONT-VAR

ı :◦ord; X :+∗ `ı⊕ X
CONT-PROD

ı :◦ord; X :+∗ `ı⊕ Natı × X
CONT-NU

ı :◦ord `ı⊕ Streamı Natı

Example 5.30 (Finitely branching trees) Node-labeled forests of height < ı with
less than  branches can be implemented as µıX. List (A×X). If we let the two
indices coincide, we obtain µıX. Listı (A×X), which is upper semi-continuous
(since isotone), but also lower semi-continuous. This is an example with two
strictly positive variables:

CONT-VAR
. . . X, Y :+∗ `ı	 X

CONT-PROD
. . . X, Y :+∗ `ı	 (A× X)

CONT-VAR
. . . X, Y :+∗ `ı	 Y

CONT-PROD
. . . X, Y :+∗ `ı	 (A× X)×Y

CONT-SUM
ı :+ord; X, Y :+∗ `ı	 1 + (A× X)×Y

CONT-MU
ı :+ord; X :+∗ `ı	 Listı (A× X)

CONT-MU
ı :+ord; � `ı	 µıX. Listı (A× X)

Lemma 5.31 (Soundness of judgement for size expressions) If D :: ∆ ` a ord
then ∆ ` a : ord.

Proof. By induction on D. �

Theorem 5.32 (Erasure of continuity) If D :: ∆; Π `ıq F : κ then ∆, Π ` F : κ.

Proof. By induction on D. �

A consequence of the erasure theorem is that all derivations of semi-continuous
constructors produce only well-kinded constructors.

5.5 Semantical Soundness of Continuity Derivations

In the following, we will show that all types that are kindable by the calculus
of the last section indeed have the postulated semi-continuity properties. We
will make use of all the semantical propositions proven in Section 5.3.

Lemma 5.33 If D :: ∆ ` a ord, then for all θ ∈ [[∆]] and ordinal variables ı,

φ := (α 7→ [[a]]θ[ı 7→α]) ∈ [[ord]]→ [[ord]]

is either the constant function φ(α) = >ord or a function of the shape φ(α) =
min{α + n,>ord} for some natural number n.



5.5. SEMANTICAL SOUNDNESS OF CONTINUITY DERIVATIONS 111

Proof. By induction on D. �

Theorem 5.34 (Semantical soundness) Let θ ∈ [[∆, Π]], (X : +κ′) ∈ Π, G ∈
[[ord]]→ [[κ′]], and λ ∈ [[ord]] a limit ordinal.

1. If D :: ∆; Π `ı⊕ F : κ then

(a) lim supα→λ[[F]]θ[ı 7→α] vκ [[F]]θ[ı 7→λ], and

(b) lim supα→λ[[F]]θ[X 7→G(α)] vκ [[F]]θ[X 7→lim supλ G].

2. If D :: ∆; Π `ı	 F : κ then

(a) [[F]]θ[ı 7→λ] vκ lim infα→λ[[F]]θ[ı 7→α], and

(b) [[F]]θ[X 7→lim infλ G] vκ lim infα→λ[[F]]θ[X 7→G(α)].

Proof. By induction on D.

Case CONT-IN. A constant function is trivially continuous.

Case CONT-CO. Isotone functions are upper semi-continuous (Lemma 5.4).

Case CONT-CONTRA. Analogously.

Case CONT-VAR. By assumption.

Case CONT-ABS.
∆, X : pκ; Π `ıq F : κ′

∆; Π `ıq λXF : pκ → κ′
X 6= ı

For subcase q = ⊕, we need to show that (a),

lim sup
α→λ

([[λXF]]θ[ı 7→α]) vpκ→κ′ [[λXF]]θ[ı 7→λ].

It is sufficient that for all G ∈ [[κ]],

(lim supα→λ[[λXF]]θ[ı 7→α]) G = lim supα→λ([[λXF]]θ[ı 7→α] G)
= lim supα→λ([[F]]θ[ı 7→α][X 7→G])
= lim supα→λ([[F]]θ[X 7→G][ı 7→α])
vκ′ [[F]]θ[X 7→G][ı 7→λ]
= [[λXF]]θ[ı 7→λ] G ,

which follows by induction hypothesis. Goal (b) follows similarly, and
case q = 	 analogously. We have used that infimum and supremum
are defined pointwise on lattices [[κ]], if κ is an ordinary polarized kind
without continuity restrictions (Lemma 2.16).4

4On lattices with continuity, e. g., O
⊕→ L, the supremum might not be the pointwise one (Ex-

ample 5.13!).



112 CHAPTER 5. CONTINUITY

Case CONT-APP. Similarly, by pointwise infimum and supremum.

Case CONT-SUM and CONT-PROD. By Cor. 5.27.

Case CONT-ARR. By Cor. 5.9.

Case CONT-∀. By Cor. 5.12.

Case CONT-MU.
∆; Π, X :+κ∗ `ı	 F : κ∗ ∆ `ı	 a : ord

∆; Π `ı	 µaXF : κ∗
By induction hypothesis, φ := α 7→ [[a]]θ[ı 7→α] is a lower semi-continuous
function on ordinals. Let Fα(H) = [[F]]θ[X 7→H][ı 7→α]. By induction hypoth-
esis we have for all limits λ ∈ [[ord]], H ∈ [[κ∗]], β ∈ [[ord]], G ∈ [[ord]] →
[[κ∗]] that

(a) [[F]]θ[X 7→H][ı 7→λ] = Fλ(H) v lim infα→λ Fα(H),
(b) [[F]]θ[X 7→lim infλ G][ı 7→β] = Fβ(lim infλ G) v lim infα→λ Fβ(G(α)),

thus, F is both lower semi-continuous and lim inf-pullable. Goal (a),

µφ(λ)Fλ v lim inf
α→λ

µφ(α)Fα

follows by Cor 5.25.

To show (b) for some variable (Y :+κ′) ∈ Π, let β = [[a]]θ and F (G)(H) =
[[F]]θ[Y 7→G][X 7→H]. Then [[µaXF]]θ[Y 7→G] = µβF (G). By induction hypothe-
sis (b), for all G ′ ∈ [[κ′]],H ∈ [[κ∗]], G ∈ ord→ [[κ′]], and λ limit

(b.1) F (G ′)(lim infλH) v lim infβ→λ F (G ′)(H(β)) and
(b.2) F (lim infλ G) v lim infα→λ F (G(α)).

Since by (b.1) Tα = F (G(α)) is lim inf-pullable, we can apply Lemma 5.23,
we have for all G,

µβ lim inf
α→λ

F (G(α)) v lim inf
α→λ

µβF (G(α)).

Combining this with (b.2), we can prove our goal

µβF (lim inf
λ
G) v lim inf

α→λ
µβF (G(α)).

Case CONT-NU.
∆; Π, X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; Π `ı⊕ νaXF : κ∗
Let Fα(H) = [[F]]θ[X 7→H][ı 7→α]. By induction hypothesis we have for all
limits λ ∈ [[ord]],H ∈ [[κ∗]], β ∈ [[ord]], G ∈ [[ord]]→ [[κ∗]] that

(a) lim supα→λ Fα(H) v Fλ(H) = [[F]]θ[X 7→H][ı 7→λ],
(b) lim supα→λ Fβ(G(α)) v Fβ(lim supλ G) = [[F]]θ[X 7→lim supλ G][ı 7→β],



5.5. SEMANTICAL SOUNDNESS OF CONTINUITY DERIVATIONS 113

thus, F is both upper semi-continuous and lim sup-pushable. First, we
observe that the greatest fixed point of Fβ is already reached at iterate ω,
because

νωFβ = lim supα→ω Fα
β

= lim supα→ω Fβ(Fα
β )

v Fβ(lim supα→ω Fα
β )

= Fβ(νωFβ)
= νω+1Fβ.

(It is well-known that strictly positive coinductive types close at ω.) By
Cor. 5.20, we have

lim sup
α→λ

νφ(α)Fα v νlim infλ φFλ .

Now, by Lemma 5.33, φ := α 7→ [[a]]θ[ı 7→α] is either affine or constantly
>ord. In both cases, φ(λ) ≥ω and lim infλ φ ≥ω, hence, goal (a),

lim sup
α→λ

νφ(α)Fα v νφ(λ)Fλ

follows since the fixed-point is reached at ω.

To show (b) for some variable (Y :+κ′) ∈ Π, let β = [[a]]θ and F (G)(H) =
[[F]]θ[Y 7→G][X 7→H]. Then [[νaXF]]θ[Y 7→G] = νβF (G). By induction hypothe-
sis (b), for all G ′ ∈ [[κ′]],H ∈ [[κ∗]], G ∈ ord→ [[κ′]], and λ limit

(b.1) lim supβ→λ F (G ′)(H(β)) v F (G ′)(lim supλH) and
(b.2) lim supα→λ F (G(α)) v F (lim supλ G).

Since by (b.1) Tα = F (G(α)) is lim sup-pushable, we can apply Lemma 5.18,
yielding for all G,

lim sup
α→λ

νβF (G(α)) v νβ lim sup
α→λ

F (G(α)).

Combining this with (b.2), we can prove our goal

lim sup
α→λ

νβF (G(α)) v νβF (lim sup
λ

G).

Uff! �



114 CHAPTER 5. CONTINUITY

5.6 Type-Based Termination with Continuous Types

We replace the conditions for admissible (co)recursion types from Section 3.1.2
by the following, which use the new judgments for semi-continuity:

Γ ` A fixµ
n-adm iff Γ , ı :ord ` A ı = (~G, (µıF) ◦ ~H ⇒ G) : ∗

and Γ , ı :ord `ı⊕ ~G, (µıF) ◦ ~H ⇒ G : ∗
for some F, G, ~G, ~H with |~G| = n

Γ ` A fixν
n-adm iff Γ , ı :ord ` A ı = (~G⇒ (νıF) ◦ ~H) : ∗

and Γ , ı :ord `ı⊕ ~G⇒ (νıF) ◦ ~H : ∗
for some F, ~G, ~H with |~G| = n

Example 5.35 (Stream of natural numbers) We can now assign a precise type
to the stream of natural numbers 0,1,. . . .

mapStream : ∀A∀B. (A→ B)→ ∀ı. Streamı A→ StreamıB
mapStream := λ f . fixν

0 λmapStreamλs. 〈 f (fst s), mapStream (snd s)〉

nats : ∀ı. Streamı Natı

nats := fixν
0 λnats. 〈zero, mapStream succ nats〉

Here are the types of some subexpressions of nats:

nats : Streamı Natı

succ : Natı → Natı+1

mapStream succ nats : Streamı Natı+1

zero : Natı+1

〈zero, mapStream succ nats〉 : Streamı+1Natı+1

Since Streamı Natı is upper semi-continuous (Example 5.29) it is admissible for
corecursion. Note that it was not admissible according to the previous criterion
(Section 3.1.2).

More examples for definitions that require the new criterion will be given
in sections 6.1 (breath-first traversal of finitely branching trees), 6.4, (equality
for monadic lists), 6.5 (a generic merge function), and 6.7 (transitivity of simple
subtyping derivations).

5.7 Related and Future Work

The author [Abe03] has investigated admissible recursion types on the basis
of slightly different concept. Roughly, lower semi-continuity of f is replaced
by the weaker condition (1) f (λ) v supλ f and upper semi-continuity by the
weaker condition (2) lim infλ f v f (λ). He shows the following main lemma:
If A(λ) v supλ A and lim infλ B v B(λ), then lim infα→λ(A(α) → B(α)) v



5.7. RELATED AND FUTURE WORK 115

A(λ) → B(λ). One could think that, since the conditions are weaker, more
types are admissible. But the opposite is the case. Since (1) distributes only
over a product A(α) × B(α) if A and B are monotonic, products that involve
an antitonic component are rejected by the syntactic calculus “cocont” which
incarnates (1). However, in this thesis such types, for instance, Listı(Natı) ×
(Natı → Bool), are accepted as lower semi-continuous.

Pareto [Par00] has investigated properties of types similar to semi-continuity.
His setting differs considerably from ours: He considers only fixed-points of
type constructors that are reached at iteration ω. These are inductive types
without embedded function spaces, and strictly positive coinductive types.
Size variables range over natural numbers and, consequently, ∀ı. A(ı) quan-
tifies only over natural numbers. However, for certain A the variable ı may
be instantiated by ω: Pareto describes a class of valid types which he calls ω-
undershooting. These types have the property lim infı→ω A(ı) ⊆ A(ω). Func-
tion types are ω-undershooting if their codomain is so and if their domain is
ω-overshooting, A(ω) ⊆ lim infı→ω A(ı). We have generalized the term ω-
overshooting to arbitrary limit ordinals and called it lower semi-continuous.
Also, we have demonstrated that our notion of upper semi-continuity, which
uses lim sup, is as useful as Pareto’s notion of ω-undershooting, which uses
lim inf.

We have shown that, in contrast to Pareto, we rightfully refuse inductive
types as preservers of upper semi-continuity, since we allow embedded func-
tion spaces in inductive types.

We have given a syntax-directed derivation system for semi-continuous types.
This was possible since we also created the new concepts of lim sup-pushable
and lim inf-pullable type constructors on the semantical side. Our calculus is
still weak on the higher-order features, and this is an area of future research.
Ideally, we could extend our annotation of function kinds to express how a
lim sup could be pushed into or a lim inf could be pulled out of a constructor.
Then we would not need special rules for →, ∀, etc, but the kinding of these
constants would take care of continuity properties—as it does currently with
variance properties (polarities +, −, and ◦).



116 CHAPTER 5. CONTINUITY



Chapter 6

Examples

In this chapter, we present several examples, some of which exhibit an inter-
esting recursion scheme (breadth-first traversal in Section 6.1, normalization
procedures in sections 6.2 and 6.3, generic programming in Section 6.5) and
others that are interesting for theoretical reasons (impredicative datatypes in
Section 6.6, inductive proofs in Section 6.7). Pareto provided many functions
on natural numbers, lists, and streams in his thesis [Par00]. Most of these are
also typable in Fω̂, except those that use addition of size variables, what we do
not support.

In the examples we use syntactic sugar like pattern matching, which is a
conservative extension of Fω̂. It can be reduced to the primitives as described
in section 2.4 of the article [AMU05].

6.1 Breadth-First Tree Traversal

Breadth-first traversal of a tree is not a structurally recursive program. In the
following, we will refine the standard definition such that it is typable in Fω̂.

Recall that in Haskell, [a] is the type of lists with constructors nil :: [a]

and (:) :: a -> [a] -> [a] and a function (++) :: [a] -> [a] -> [a],
which concatenates two lists. Since in Haskell least and greatest solutions of
type equations coincide, there is no distinction between inductive and coin-
ductive types, and [a] contains finite and infinite lists. For this example, we
mean only finite lists. Rose trees are finitely-branching labeled trees with one
constructor Rose :: a -> [Rose a] -> Rose a. A rose forest is a list of rose
trees. Breadth-first flattening of a rose forest can be implemented as follows:

data Rose a = Rose a [Rose a]

bf0 :: [Rose a] -> [a]

bf0 [] = []

bf0 (Rose a rs : rs') = a : bf0 (rs' ++ rs)

117



118 CHAPTER 6. EXAMPLES

Other breadth-first operations like breadth-first left or right folding can be ex-
pressed similarly. The definition of bf0 uses general recursion, since the recur-
sive argument rs' ++ rs is not a subterm of Rose a rs : rs'. Termination
could be shown by a decreasing measure: the number of Rose constructors in
the forest. We show termination by massaging the definition until it fits our
type system.

Looking a bit closer, we see that the traversal of the forest can be separated
into phases: In the first phase, we process the roots of all rose trees. In the next
phase, we do the same for the subtrees which emerged by cutting the roots in
the first phase. Etc.

step :: [Rose a] -> ([a], [Rose a])

step [] = ([], [])

step (Rose a rs' : rs) =

let (as, rs'') = step rs

in (a : as, rs' ++ rs'')

The step function makes such a run over the forest, returning a list of roots
and the subforest. It is a simple iterative function and returns rose trees which
are strictly less tall than the input trees. This is recognized by its typing in Fω̂:

Rose : ord
+→ ∗ +→ ∗

Rose := λıλA. µı
∗λX. A× List∞X

step : ∀A∀∀ı. List(Roseı+1 A)→ List A× List∞(Roseı A)
step := fixµ

0 λstepλl. match l with
nil 7→ 〈nil, nil〉
cons 〈a, rs′〉 rs 7→ match step rs with

〈as, rs′′〉 7→ 〈cons a as, append rs′ rs′′〉

The type B() = List(Roseı+1 A) → List A× List∞(Roseı A) of the recursion
is admissible, the second size variable ı does not interfere with admissibility.

Iterating step, we can perform a complete breadth-first traversal.

bf1 :: [Rose a] -> [a]

bf1 rs =

let (as, rs') = step rs

in as ++ bf1 rs'

However, its type C(ı) = List∞(Roseı A) → List∞A is not admissible for re-
cursion. And indeed, bf1 is not terminating on the empty forest, which means
that it eventually loops on every input. If we introduce a special clause for the
empty forest, we regain termination.

bf2 :: [Rose a] -> [a]

bf2 [] = []

bf2 rs =

let (as, rs') = step rs

in as ++ bf2 rs'



6.1. BREADTH-FIRST TREE TRAVERSAL 119

But since we have not improved on the type of bf2, our type system will still
reject it. We need to make explicit that we deal with non-empty forests in the
recursion.

bf3 :: [Rose a] -> [a]

bf3 [] = []

bf3 (r:rs) = bf3' r rs

bf3' :: Rose a -> [Rose a] -> [a]

bf3' r rs =

case step (r:rs) of

(as, []) -> as

(as, r' : rs') -> as ++ bf3' r' rs'

The recursion in function bf3' can be given the type

C(ı) = Roseı A→ List∞(Roseı A)→ List∞ A

which is admissible in the extension of Fω̂ introduced in Chapter 5. For this,
we have to show

A :◦∗, ı :◦ord; � `ı⊕ Roseı A→ List∞(Roseı A)→ List∞ A : ∗.

The non-obvious part of this goal is to show that List∞(Roseı A) is lower semi-
continuous. In the following derivation, let Γ := A :◦∗, ı :◦ord. We further save
space by dropping inessential parts of the derivation and its judgements.

Γ; X, Y, Z `ı	 1 + Y× Z

Γ; X, Y `ı	 List∞Y

Γ; X, Y `ı	 A× List∞Y Γ; X `ı	 ı : ord

Γ; X `ı	 Roseı A Γ; X `ı	 X

Γ; X `ı	 1 + Roseı A× X

Γ; � `ı	 List∞(Roseı A)

As a thumb rule, a type is lower semi-continuous, if its composed only of con-
stant types, sum, product, and strictly positive inductive types.

This is the encoding of bf3' in Fω̂:

bf ′3 : ∀A∀ı. Roseı A→ List∞(Roseı A)→ List∞A
bf ′3 := fixµ

0 λbf λrλrs. match step (cons r rs) with
〈as, nil〉 7→ as
〈as, cons r′ rs′〉 7→ append as (bf r′ rs′)



120 CHAPTER 6. EXAMPLES

We can assign the following types:

bf : Roseı A→ List∞(Roseı A)→ List∞A
r : Roseı+1 A
rs : List∞(Roseı+1 A)
cons r rs : List∞(Roseı+1 A)
step (cons r rs) : List∞A× List∞(Roseı A)
r′ : Roseı A
rs′ : List∞(Roseı A)
bf r′ rs′ : List∞A

Looking at bf3 we recognize that step is only called with non-empty forests.
This enables the following optimization:

step4 :: Rose a -> [Rose a] -> ([a], [Rose a])

step4 (Rose a rs') [] = ([a], rs')

step4 (Rose a rs') (r:rs) =

let (as, rs'') = step4 r rs

in (a : as, rs' ++ rs'')

bf4' :: Rose a -> [Rose a] -> [a]

bf4' r rs =

case step4 r rs of

(as, []) -> as

(as, r' : rs') -> as ++ bf4' r' rs'

We have successfully turned breadth-first traversal into a program which is
accepted by our type system, by exhibiting a structure that was implicit in the
original program. Well, the resulting program is much longer than the original,
have we gained anything? Indeed, the refined program runs even faster than
the original! For a literal translation of these programs into SML/NJ, Version
110.0.7, I have obtained the following running times on a SuSE Linux 9.1 sys-
tem with an Intel R© Pentium R© III 1066MHz Mobile CPU and 256 MB system
RAM.

Depth Size Rep bf0 bf2 bf4

1 2 1000000 0.112 0.128 0.107

2 5 318641 0.119 0.136 0.105

3 16 52006 0.092 0.081 0.075

4 65 5281 0.109 0.034 0.032

5 326 371 0.176 0.013 0.012

6 1957 20 0.380 0.006 0.005

7 13700 1 1.984 0.006 0.005

The first two columns display quantitative information about traversed rose
trees and the third column the number of repetitions. The remaining columns
list the running times of the three programs in seconds. The speed-up can be



6.2. CONTINUOUS NORMALIZATION OF INFINITE DE BRUIJN TERMS121

explained by a more economic use of concatenation: The original program ap-
pends each subforest immediately to the (possibly very long) traversed forest,
which can be a quite expensive operation. The refined programs only prepend
(relatively short) subforests to an intermediate forest, which will be the tra-
versed forest in the next phase. This is, in comparison, a cheap operation.

6.2 Continuous Normalization of Infinite De Bruijn
Terms

Whether a normalizer/evaluator terminates depends on the object language
and on the object expression that is to be evaluated. Usually, an evaluator can-
not be implemented in a total meta language. In Section 6.3 we will present an
exception: normalization of simply typed lambda-terms can actually be imple-
mented in Fω̂. But even evaluators for partial object languages, which might be
invoked on non-terminating object programs, can be implemented in Fω̂ using
coinduction. The trick is to produce the result step by step, and if no new piece
of output can be guaranteed in the next step, instead produce a tick, which
means wait for more output. (Of course, nothing guarantees that there will not
be an infinite succession of ticks.) Such evaluation techniques are known under
the slogan continuous normalization in proof theory and have been introduced
by Mints [Min78] for the sequent calculus and adopted for natural deduction
style term systems by Ruckert [Ruc85] and Schwichtenberg [Sch98], who built
upon Buchholz’s infinite notations of sequent proofs [Buc91].

Aehlig and Joachimski [AJ05] describe continuous normalization of infinite
λ-terms by guarded corecursion in the sense of Coquand [Coq93]. They give
the following grammar for infinite de Bruijn terms with two “repetition” sym-
bolsR and β [AJ05, page 43] .

Λco
R 3 r, s ::=co k | λr | r s | Rr | βr

(Herein, k denotes a de Bruijn index.) After defining substitution r[s] of s for
the 0th variable in r, they give the following recursive definition of a function
r@~s, which continuously β-normalizes the term r~s (where~s is a possibly empty,
finite list of terms)[AJ05, page 46].

k @ (s1, . . . , sn) = k (s1@()) . . . (sn@())
(λr) @ (s,~s) = β(r[s]@~s)
(λr) @ () = λ(r@())
(r s) @~s = R(r@(s,~s))
(Rr) @~s = R(r@~s)
(βr) @~s = β(r@~s)

Since each recursive call is under a term constructor, these equations define a
corecursive function according to the guarded-by-constructors principle [Coq93,
Gim95]. The constructors R and β do not contribute to the semantics of a



122 CHAPTER 6. EXAMPLES

lambda-term, but act as a notification that computation is still ongoing, but the
outermost constructor of the lambda-term is not yet known. The symbol R
is produced whenever an application is evaluated (fourth equation), the sym-
bol β when a β-reduction has been performed. It is remarked that continuous
normalization could be defined without the β-constructor. Then, the recursive
call in the second equation is no longer under a constructor, thus, violates the
guardedness condition. But the recursive call is justified since the length of the
second argument has been decreased. Hence, the “termination” argument is
lexicographic: Either the definedness of the output is increased (the second ar-
gument might be increased, as in the case of application), or the definedness of
the output is not increased, but the size of the second argument is decreased.
To make this precise, we express the normalization algorithm in Fω̂.

In Fω̂, we can define a coinductive type dB : ord → ∗ with the following
constructors:

var : ∀ı. Nat→ dBı+1

abs : ∀ı. dBı → dBı+1

app : ∀ı. dBı → dBı → dBı+1

rep : ∀ı. dBı → dBı+1

We assume we have already defined substitution subst : dB∞ → dB∞ → dB∞
(such that subst r s returns r[s]) and the library function for lists,

foldl : ∀A∀B. (B→ A→ B)→ B→ List∞A→ B
foldl o e [a1, . . . , an] = e o a1 o . . . o an

where [a1, . . . , an] denotes, as in ML and Haskell, the list cons a1 (. . . cons annil),
and o is a binary operation written infix. Then we can implement the normal-
ization function @ by the following definition:

napp : ∀ı∀. dB∞ → List dB∞ → dBı

napp := fixν
2 λnapp0.

fixµ
1 λnapp1.
λtλl. match t with

var k 7→ foldl (λr′λs. app r′ (napp0 s nil)) t l
abs r 7→ match l with

nil 7→ abs (napp0 r nil)
cons s l′ 7→ napp1 (subst r s) l′

app r s 7→ rep (napp0 r (cons s l))
rep r 7→ rep (napp0 r l)

This definition is well-typed, since we can assign the following types to vari-



6.3. NORMALIZATION OF SIMPLY-TYPED DE BRUIJN TERMS 123

ables and subexpressions:

napp0 : ∀. dB∞ → ListdB∞ → dBı

napp1 : dB∞ → ListdB∞ → dBı+1

r, s, t : dB∞
l : List+1dB∞
r′ : dBı+1 ≤ dBı

app r′ (napp0 s nil) : dBı+1

foldl (. . . ) t l : dBı+1

abs (napp0 r nil) : dBı+1

l′ : ListdB∞
napp1 (subst r s) l′ : dBı+1

rep (napp0 . . . ) : dBı+1

An equivalently precise type of napp is the instantiation dB∞ → List∞dB∞ →
dB∞, but we used the size variables ı and  to indicate that napp is defined by
lexicographic induction over (ı, ).

Remark 6.1 The function napp’s modulus of continuity is not the identity; we
cannot assign to it the more precise type ∀ı. dBı → List∞dBı → dBı. This would
require subst to be of type ∀ı. dBı → dBı+1 → dBı+1 which is clearly invalid: if
in the call subst r s, the first argument r does not contain the 0th variable, then
the result is r which only has type dBı. Hence, the most precise type for subst
is ∀ı. dBı → dBı → dBı.

6.3 Normalization of Simply-Typed De Bruijn Terms

We continue the example of Section 3.2.7. Simple types over a fixed type Atom
of base types can be represented by the following constructors, which are easily
definable Fω̂:

Ty : ord
+→ ∗

atom : ∀ı. Atom→ Tyı+1

arr : ∀ı. Tyı → Tyı → Tyı+1

Joachimski and Matthes [JM03] describe a normalization procedure for simply-
typed λ-terms; a similar algorithm has been found by Watkins, Cervesato,
Pfenning, and Walker [WCPW03] for a term language of intuitionistic linear
logic. At its heart lies an operation r@sA which produces a the β-normal form
of r s where r and s are normal and s is of type A. It uses a normalizing sub-
stitution function [s/x : A]r which returns the normal form of the substitution
[s/x]r if r and s are normal and s is of type A. The termination order of these



124 CHAPTER 6. EXAMPLES

mutual recursive functions is the lexicographic product of A and r.

(λx : A. r)@sA = [s/x : A]r
(x~r)@sA = x~r s

[s/x : A](λy : B. r) = λy : B. [s/x : A]r w. l. o. g., y 6∈ FV(s) and x 6= y

[s/x : A](r t) = r′ ([s/x : A]t) if r′ := [s/x : A]r neutral
= r′@([s/x : A]t)C otherwise (then C is smaller than A)

[s/x : A]y = sA if x = y
= y otherwise

The result of substitution into a neutral term is either a neutral term or a normal
term plus its type. We encode these alternatives in the type Resı A, where ı is
an upper bound on the size of the type and A is the set of free variables which
might occur in the result term.

Res : ord
+→ ∗ +→ ∗

Res := λıλA. (1 + Tyı)× TLam∞ A

resNe : ∀ı. TLam∞ A→ Resı A
resNe := λr. 〈inl 〈〉, r〉
resNf : ∀ı. Tyı → TLam∞ A→ Resı A
resNf := λaλr. 〈inr a, r〉
weakRes : ∀ı∀A. Resı A→ Resı (1 + A)
weakRes := λ〈m, r〉. 〈m, mapTLam inr r〉

The function weakRes lifts the free variables in a result term by one (the function
mapTLam is defined in Section 3.2.7).

The implementation of [s/x : A]r is problematic, since for our encoding of
de Bruijn terms only r ρ of all free variables is directly implementable. Sub-
stitution of a single variable is then implemented as a special case of parallel
substitution. But for the termination of normalizing substitution, the size of
type A is important, so we expose it in the mapping ρ.

(λx : A. r)@sA = r(ρ0[x 7→ sA])
(x~r)@sA = x~r s

(λy : B. r)ρA = λy : B. r(ρ[y 7→ y])A w. l. o. g., y singular in ρ

(r s)ρA = r′ (sρA) if r′ := rρA neutral
= r′@(sρA)C otherwise (then C is smaller than A)

yρA = ρ(y)

In the first line, ρ0 denotes the identity substitution. A sharp look reveals that
the mapping ρ assigns exactly to one variable a non-trivial term, namely s to x,
all other variables are mapped to themselves. A generalization of this invariant



6.3. NORMALIZATION OF SIMPLY-TYPED DE BRUIJN TERMS 125

can be expressed in the type Substı A B of ρ:

Subst : ord
+→ ∗ −→ ∗ +→ ∗

Subst := λıλAλB. A→ ResıB

sgSubst : ∀ı∀A. TLam∞A→ Tyı → Substı (1 + A) A
sgSubst := λsλaλmx. match mx with

inl 〈〉 7→ resNf a s
inr x 7→ resNe (var x)

liftSubst : ∀ı∀A∀B. Substı A B→ Substı (1 + A) (1 + B)
liftSubst := λrhoλmx. match mx with

inl 〈〉 7→ resNe (var (inl 〈〉))
inr x 7→ weakRes (rho x)

The call sgSubst s a : Substı (1 + A) A corresponds to ρ0[x 7→ sA]; it generates a
substitution which maps the variable x in 1 to resNf a s and the variables y in A
to resNe (var y). The extension ρ[y 7→ y] of a substitution ρ is implemented by
liftSubst rho.

tm : ∀A. Res∞A→ TLam∞ A
tm := λ〈m, r〉. r

absRes : ∀ı∀A. Ty∞ → Res∞(1 + A)→ Resı A
absRes := λaλp. 〈inl 〈〉, abs a (tm p)〉
appNf : ∀A. Ty∞ → TLam∞ A→ TLam∞ A→ TLam∞ A
appNf := fixµ

0 λapp.
let subst =

fixµ
0 λsubstλtλrho. match t with
abs c u 7→ absRes c (subst u (liftSubst rho))
var y 7→ rho y
app r s 7→ match subst r rho with

resNe r′ 7→ resNe (app r′ (tm (subst s rho)))
resNf (arr a b) r′ 7→ resNf b (app a r′ (tm (subst s rho)))

in λaλrλs. match r with
abs _ t 7→ tm (subst t (sgSubst s a))
var _ 7→ app r s
app _ _ 7→ app r s

The matching of p := subst r rho is not complete, we have omitted the case
resNf (atoma) r′. This case is excluded by an invariant we cannot express in our
type system: that r, and also the parallel substitution of r have function type.
In practice, this clause is never needed, so we could return anything suitable.

The body of appNf is quite complex; to increase readability we have used
a let x = s in t construct as syntactic sugar for (λxt) s. First we consider the



126 CHAPTER 6. EXAMPLES

typing of subst:

app : Tyı → ∀A. TLam∞A→ TLam∞A→ TLam∞A
subst : ∀A∀B. TLamA→ Substı+1 A B→ Resı+1B
t : TLam+1 A
rho : Substı+1 A B
c : Ty∞
u : TLam(1 + A)
liftSubst rho : Substı+1 (1 + A) (1 + B)
subst u (liftSubst rho) : Resı+1(1 + B)
absRes c (. . . ) : Resı+1B
y : A
rho y : Resı+1B
r, s : TLam A
subst r rho : Resı+1 B
r′, tm (subst s vrho) : TLam∞B
resNe (app r′ (. . . )) : Resı+1 B
arr a b : Tyı+1

a, b : Tyı

app a r′ (. . . ) : TLam∞B
resNf b (. . . ) : ResıB ≤ Resı+1B
subst : ∀A∀B. TLam∞A→ Substı+1 A B→ Resı+1B

Well-typedness of appNf now follows:

app : Tyı → ∀A. TLam∞A→ TLam∞A→ TLam∞A
subst : ∀A∀B. TLam∞A→ Substı+1 A B→ Resı+1B
a : Tyı+1

r, s : TLam∞ A
t : TLam∞ (1 + A)
sgSubst s a : Substı+1 (1 + A) A
subst t (. . . ) : Resı+1 A
tm (. . . ), app r s : TLam∞A

6.4 Data Types with Higher-Order Parameters

Type-based termination, unlike termination using structural term orderings,
scales effortlessly to data types with higher-order parameters. For example,
consider the type of monadic lists

MList : ord
+→ (∗ +→ ∗) +→ ∗ +→ ∗

MList := λıλMλA. µıλX. 1 + M A×M X



6.4. DATA TYPES WITH HIGHER-ORDER PARAMETERS 127

with constructors

mnil : ∀ı. ∀M : (∗ +→ ∗). ∀A.
MListı+1 M A

mnil := inl 〈〉

mcons : ∀ı. ∀M : (∗ +→ ∗). ∀A.
M A→ M (MListı+1 M A)→ MListı+1 M A

mcons := λmaλmas. inr 〈ma, mas〉.

Equality-test for monadic lists MListı M A must necessarily be parameterized
by an equality for A and an equality transformer for M, meaning a function
which turns an equality for an arbitrary type A into an equality for type M A.

Eq : ∗ → ∗
Eq := λA. A→ A→ Bool

eqMList : ∀M. (∀A. Eq A→ Eq (M A))→ ∀A. Eq A→ Eq (MList∞M A)
eqMList := λmeqλeq. fixµ

0 λeqMList.
λkλl.match 〈k, l〉 with
〈mnil, mnil〉 7→ true
〈mcons ma mas,
mcons mb mbs〉 7→ meq eq ma mb and

meq eqMList mas mbs
_ 7→ false

The function eqMList exhibits a funny recursion pattern: instead of having a
recursive call in which the function is applied to some structurally smaller ar-
guments, in the “recursive call” meq eqMList, it is passed itself as an argument to
one of the function arguments. Now this behavior is surely problematic: If we
do not know how meq handles its argument, there is no way we could justify
termination. For instance, the execution of meq eqMList could involve an appli-
cation of eqMList to some non-empty constant lists. In this case eqMList would
clearly diverge. Fortunately, the parametric type ∀A. Eq A → Eq (M A) of meq
prevents such a use of eqMList. And indeed, eqMList is terminates on all inputs,
since it is well-typed in Fω̂:

eqMList : Eq (MListı M A)
k, l : MListı+1 M A
mas, mbs : M (MListı M A)
meq : ∀A. Eq A→ Eq (M A)
meq eqMList : Eq (M (MListı M A))
meq eqMList mas mbs : Bool

This was a first instance of a non-standard recursion behavior; in the next sec-
tion we will see more such examples.



128 CHAPTER 6. EXAMPLES

6.5 Generic Programming

Jansson and Jeuring [JJ97] and Hinze [Hin02] describe frameworks for poly-
typic and generic programming. In these, both types and values can be con-
structed by recursion on some index type. A common feature is that the behav-
ior is only specified for the type and constructor constants like Nat, 1, + and×,
and this uniquely defines the constructed type or value. In the following we
propose an ad-hoc extension by sized types, sized polytypic programming. This
framework is good enough to model Hinze’s generalized tries [Hin00b], but
whether it scales to other examples requires more research.

Type-indexed types are of kind-indexed kinds. A type-indexed constructor
Type〈F :κ〉 has kind-indexed kind TYPE〈κ〉. In the polytypic framework, each
such constructor Type〈F〉 and each such kind TYPE〈κ〉must obey the following
laws:

TYPE〈ord〉 = ord

TYPE〈κ1
p→ κ2〉 = TYPE〈κ1〉

p→ TYPE〈κ2〉

Type〈X〉 = X
Type〈λXF〉 = λX. Type〈F〉
Type〈F G〉 = Type〈F〉 Type〈G〉
Type〈∇κ〉 = ∇TYPE〈κ〉
Type〈s〉 = s
Type〈∞〉 = ∞

This means, function kinds are always mapped to function kinds, applica-
tion to application, fixed point to fixed point etc. Hence, a kind-indexed kind
TYPE〈κ〉 is determined by the value of TYPE〈∗〉, and a type-indexed type
Type〈F〉 by the value of Type〈C〉 for the constants C which appear in F.

Proposition 6.2 (Well-kindedness of type-indexed types) Let Σ a signature of
constructor constants. If Type〈C〉 : TYPE〈κ〉 for all (C : κ) ∈ Σ, and D :: X1 :
p1κ1, . . . , Xn : pnκn ` F : κ, then X1 : p1TYPE〈κ1〉, . . . , Xn : pnTYPE〈κn〉 `
Type〈F〉 : TYPE〈κ〉.

Proof. By induction on D. �

Remark 6.3 Note that the presence of polarities restricts the choices for Type〈C〉.
However, if index types are constructed in a signature without polymorphism
and function space, as it is usual in the generic programming community, all
function kinds are covariant and we do not have to worry about polarities.

Example: finite maps via generalized tries. Hinze [Hin00b] defines general-
ized tries Map〈F〉 by recursion on F. In particular, Map〈K : ∗〉V is the type of



6.5. GENERIC PROGRAMMING 129

finite maps from domain K to codomain V. The following representation us-
ing type-level λ can be found in his article on type-indexed data types [HJL04,
page 139].

MAP〈∗〉 := ∗ +→ ∗

Map〈Int〉 := λV. efficient implementation of Int→fin V
Map〈Char〉 := λV. efficient implementation of Char→fin V
Map〈1〉 := λV. 1 + V
Map〈+〉 := λFλGλV. 1 + F V × G V
Map〈×〉 := λFλGλV. F (G V)

Well-kindedness of these definitions is immediate, except maybe for Map〈×〉
which must be of kind (∗ +→ ∗) +→ (∗ +→ ∗) +→ (∗ +→ ∗). For Map〈+〉 we have
used the variant of spotted products (or lifted products) which Hinze mentions
in section 4.1 of his article [Hin00b]. This way we avoid that certain empty
tries have a infinite normal form (see [Hin00b, page 341]) which requires lazy
evaluation. The constructor for finite maps over strings can now be computed
as follows:

Map〈λı. Listı Char〉
= Map〈λı. µ∗ ı λX. 1 + Char× X〉
= λı. µ

∗ +→∗
ı λX. Map〈+〉Map〈1〉 (Map〈×〉Map〈Char〉X)

= λı. µ
∗ +→∗

ı λXλV. 1 + (1 + V)×Map〈Char〉 (X V)
(= λıλV. µ∗ ı λY. 1 + (1 + V)×Map〈Char〉Y)

For the last (and optional) step, we have applied λ-dropping (see Sec. 3.3.5), to
turn the second-order fixed point into a first-order one. The matching kind is

MAP〈ord +→ ∗〉 = ord
+→ ∗ +→ ∗.

Type-index values poly〈F :κ〉 are of kind-indexed types. These types Poly〈F :
κ〉 are defined by recursion on κ, and F is just a parameter. The kind κ must fit
into the grammar

κ ::= ∗ | ord p→ κ | κ1
p→ κ2.

Note that Hinze, Jeuring, and Löh [HJL04, page 142] allow kind-indexed types
Poly〈. . . 〉 with several constructor parameters. For our examples, however, a
single parameter is sufficient.

The following laws hold for all constructor-indexed values poly〈F : κ〉 and



130 CHAPTER 6. EXAMPLES

kind-indexed types Poly〈F :κ〉 in the framework:

Poly〈F :ord
p→ κ〉 = ∀ı :ord. Poly〈F ı :κ〉

Poly〈F :κ1
p→ κ2〉 = ∀G :κ1. Poly〈G :κ1〉 → Poly〈F G :κ2〉

poly〈X〉 = x
poly〈λıF : ord→ κ〉 = poly〈F〉
poly〈λXF : κ1 → κ2〉 = λx. poly〈F〉 where κ1 6= ord

poly〈∇κ a〉 = fix∇n for some n
poly〈F G〉 = poly〈F〉 poly〈G〉 where F 6= ∇

In order to ignore size expressions, which do not contribute to the compu-
tational behavior of the generic value poly〈F〉, we ignore size abstractions and
size parameters to fixed points. To make this work, the constructor parameter F
must be in normal form, and constants C of the signature should not take a size
argument. A polytypic value of an (co)inductive constructor is (co)recursive.
The parameter n in fix∇n must be given appropriately.

Note that kind-indexed types need not be compositional, i. e., in general
Poly〈F G〉 = Poly〈F〉Poly〈G〉 does not hold. On the other hand, they are para-
metric in the constructor argument, since only a single equation Poly〈A : ∗〉 =
. . . is given by the user, which does not analyze the structure of A.

Example: finite map lookup. We give an adaption of Hinze’s generic lookup
function to our setting. Herein, we use the bind operation�= for the Maybe
monad λV. 1 + V. It obeys the laws inl() �= f −→+ inl() and inr v �=
f −→+ f v. Note that in this section, we will write pairs as (r, s) instead of 〈r, s〉
and the empty tuple as () instead of 〈〉, to avoid confusions with the notation
for type indices.

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V

lookup〈1〉 : ∀V. 1→ 1 + V → 1 + V
lookup〈1〉 := λkλm. m

lookup〈+〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A + B→ 1 + (Map〈A〉V)× (Map〈B〉V)→ 1 + V

lookup〈+〉 := λlaλlbλabλtab. tab�= λ(ta, tb).
match ab with

inl a 7→ la a ta
inr b 7→ lb b tb

lookup〈×〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A× B→ Map〈A〉 (Map〈B〉V)→ 1 + V

lookup〈×〉 := λlaλlbλ(a, b)λtab. la a tab�= λtb. lb b tb

All these definitions are well-typed, which is easy to check since there are no
references to sizes.



6.5. GENERIC PROGRAMMING 131

Example: lookup for list-shaped keys. The previous definitions determine
the instance of the generic lookup function for the type constructor of lists.

lookup〈List〉
: Lookup〈List〉
: ∀ı∀K :∗. Lookup〈K〉 → Lookup〈Listı K〉
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → Map〈ListıK〉 → 1 + V
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → (µıλY. 1 + (1 + V)×Y)→ 1 + V

lookup〈List〉
= lookup〈λıλK. µıλX. 1 + K× X〉
= λlookupK. fixµ

0 λlookup. lookup〈+〉 lookup〈1〉 (lookup〈×〉 lookupK lookup)
= λlookupK. fixµ

0 λlookupλlλm. m�= λ(n, c).
match l with

nil 7→ n
cons k l′ 7→ lookupK k c�= λm′. lookup l′ m′

Note that the type of lookup〈List〉 mentions the size variable ı twice, as index
to both inductive arguments. This makes sense, since the length of the search
keys determines the depth of the trie. Welltypedness can be ensured on an
abstract level:

lookupK : Lookup〈K〉
lookup : Lookup〈ListıK〉
lookup〈×〉 lookupK lookup =: r : Lookup〈K× ListıK〉
lookup〈+〉 lookup〈1〉 r =: s : Lookup〈1 + K× ListıK〉

: Lookup〈Listı+1K〉
fixµ

0 λlookup. s : Lookup〈ListıK〉

Finally, the type Lookup〈ListıK〉 is admissible for recursion on the first argu-
ment, since the first argument is of shape µıF and the whole type Lookup〈ListıK〉
is upper semi-continuous in ı.

Trie merging. Hinze [Hin00b] presents three elementary operations to con-
struct finite tries: empty, single, and merge. In the following we replay the
construction of merge in our framework, since it exhibits a most interesting
recursion scheme.

First we define the type Bin V for binary operations on V and a function
comb which lifts a merging function for V to a merging function for 1 + V.

Bin : ∗ ◦→ ∗
Bin := λV. V → V → V

comb : ∀V. (V → V → V)→ (1 + V → 1 + V → 1 + V)
comb := λcλm1λm2. match (m1, m2) with

(inl(), _) 7→ m2
(_, inl()) 7→ m1
(inr v1, inr v2) 7→ inr (c v1 v2)



132 CHAPTER 6. EXAMPLES

The following definitions determine a generic merging function.

Merge〈K :∗〉 := ∀V. Bin V → Bin (Map〈K〉V)

merge〈1〉 : Merge〈1〉
merge〈1〉 := comb

merge〈+〉 : ∀A. Merge〈A〉 → ∀B. Merge〈B〉 → ∀V. Bin V →
Bin (1 + Map〈A〉V ×Map〈B〉V)

merge〈+〉 := λmaλmbλc. comb
λ(ta1, tb1)λ(ta2, tb2). (ma c ta1 ta2, mb c tb1 tb2)

merge〈×〉 : ∀A. Merge〈A〉 → ∀B. Merge〈B〉 → ∀V. Bin V →
Bin (Map〈A〉 (Map〈B〉V))

merge〈×〉 := λmaλmbλc. ma (mb c)

The instance for list tries can be computed as follows:

merge〈List〉
: Merge〈List〉
: ∀ı∀K. Merge〈K〉 → Merge〈ListıK〉
: ∀ı∀K. (∀V. Bin V → Bin (Map〈K〉V))→

∀W. Bin W → Bin (Map〈ListıK〉W)

merge〈List〉
= merge〈λıλK. µıλX. 1 + K× X〉
= λmergeK. fixµ

1 λmerge. merge〈+〉merge〈1〉 (merge〈×〉mergeK merge)
= λmergeK. fixµ

1 λmergeλc. comb
λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK (merge c) t1t2)

[= λmergeKλc. fixµ
0 λmerge. comb

λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK merge t1 t2)]

In the last step, we have decreased the rank of recursion by λ-dropping. Sur-
prisingly, recursion happens not by invoking merge on structurally smaller ar-
guments, but by passing the function itself to a parameter, mergeK. Here, type-
based termination reveals its strength; it is not possible to show termination of
merge〈List〉 disregarding its type. With sized types, however, the termination
proof is again just a typing derivation, as easy as for lookup〈List〉. We reason
again on the abstract level:

mergeK : Merge〈K〉
merge : Merge〈ListıK〉
merge〈×〉mergeK merge =: r : Merge〈K× ListıK〉
merge〈+〉merge〈1〉 r =: s : Merge〈1 + K× ListıK〉

: Merge〈Listı+1K〉
fixµ

1 λmerge. s : Merge〈ListıK〉



6.6. IMPREDICATIVE DATA TYPES 133

The type Merge〈ListıK〉 is admissible for recursion on the second argument (the
first argument is of type Bin V): The whole type is of shape ∀V. Bin V → µıF→
µıF→ µıF for some F which does not depend on the size variable ı. Hence, the
type is upper semi-continuous.

Merging bushy tries. An even more dazzling recursion pattern is exhibited
by the merge function for “bushy” tries, i. e., finite maps over bushy lists.

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µ
∗ +→∗

ı λXλK. 1 + K× X (X K)

Map〈Bush〉 : ord
+→ (∗ +→ ∗) +→ (∗ +→ ∗)

Map〈Bush〉 = λı. µ
(∗ +→∗) +→(∗ +→∗)

ı λXλFλV. 1 + (1 + V)× F (X (X F) V)

The merge function for bush-indexed tries can be derived routinely:

merge〈Bush〉
= merge〈λı. µı λXλK. 1 + K× X (X K)〉
= fixµ

2 λmergeλmergeK.
merge〈+〉merge〈1〉 (merge〈×〉mergeK (merge (merge mergeK)))

= fixµ
2 λmergeλmergeK
λc. comb λ(mv1, t1)λ(mv2, t2).

(comb c mv1 mv2, mergeK (merge (merge mergeK) c) t1 t2)

The recursion pattern of merge〈Bush〉 is adventurous. Not only is the recur-
sive instance merge passed to an argument to the function mergeK, but also this
function is modified during recursion: it is replaced by (merge mergeK), which
involves the recursive instance again! All these complications are “miracu-
lously” resolved by typing!

Related work. Hinze, Jeuring, and Löh [HJL04] present generic program-
ming with type-indexed datatypes and type-indexed value both in Haskell and
the higher-order polymorphic λ-calculus with a standard model. Altenkirch
[Alt01] investigates the representation of total functions over inductive types
as higher-order coinductive types. He establishes isomorphisms in a categori-
cal semantics.

6.6 Impredicative Data Types

Some kinds of structural orderings for termination do not scale to impredica-
tivity. On such ordering is described by Coquand [Coq92] and implemented in
the termination checker foetus [AA02, Abe99]. It rests on the axioms

t < c t, if c is a data constructor, and
f t ≤ f .



134 CHAPTER 6. EXAMPLES

In the presence of datatypes with impredicativity, this ordering is not well-
founded. Coquand demonstrates this using a type V with a single constructor

c : (∀A. A→ A)→ V.

With id = λxx we obtain the cycle c id > id ≥ id (c id) = c id. Hence, a ter-
mination checker based on this ordering would accept the recursive program
f (c g) = f (g (c g)). Let us analyze this paradox with sized types:

V : ord
+→ ∗

V := λı. µı
∗λ_. ∀A. A→ A

loop : ∀ı. Vı → 0
loop := fixµ

0 λ f λg. f (g g)

Type-based termination rejects this program: We have

g : ∀A. A→ A
g : Vı+1

g g : Vı+1,

but f : Vı → 0 does not accept this argument.

6.7 Inductive Proofs as Recursive Functions

In this section, we will demonstrate how Fω̂ can be used to certify termina-
tion of recursive functions which correspond to proofs by induction in some
dependent type theory.

As example theorem, we consider transitivity for a simple inductively de-
fined subtyping relation. A similar example has been given by Wahlstedt [Wah04],
who uses size-change termination [LJBA01].

We consider a language of simple types σ , τ with a least type⊥ and a great-
est type >.

Ty 3 σ , τ ::= ⊥ | > | σ × τ | σ ⇒ τ

Subtyping is defined inductively by the following rules:

SBot ⊥ <: τ
STop

τ <: >

SProd
σ1 <: σ2 τ1 <: τ2

σ1 × τ1 <: σ2 × τ2
SArr

σ2 <: σ1 τ1 <: τ2

σ1 ⇒ τ1 <: σ2 ⇒ τ2

We represent this subtyping relation by an inductive family Sub : Ty → Ty →
Prop with four constructors:

SBot : Sub⊥ τ

STop : Subτ >
SProd : Subσ1 σ2 → Subτ1 τ2 → Sub (σ1 × τ1) (σ2 × τ2)
SArr : Subσ2 σ1 → Subτ1 τ2 → Sub (σ1 ⇒ τ1) (σ2 ⇒ τ2)



6.7. INDUCTIVE PROOFS AS RECURSIVE FUNCTIONS 135

We have suppressed the arguments of type Ty for all constructors: SBot and
SBot take an additional hidden argument τ , and SProd and SArr take four hid-
den arguments σ1, σ2, τ1, and τ2.

The relation <: is transitive, and it can be shown by induction on the sum
of the heights of the two input derivations. In type theory, the proof can be
implemented as a recursive function

trans : Subτ1 τ2 → Subτ2 τ3 → Subτ1 τ3.

Again, we consider τ1, τ2, and τ3 hidden arguments of trans. Each case in the
proof of transitivity corresponds to one pattern matching clause of trans. Using
the type dependencies, the following matching is complete:

trans SBot _ = SBot
trans _ STop = STop
trans (SProd d1 d′1) (SProd d2 d′2) = SProd (trans d1 d2) (trans d′1 d′2)
trans (SArr d1 d′1) (SArr d2 d′2) = SArr (trans d2 d1) (trans d′1 d′2)

This function is not just defined by structural recursion on the first argument
or by lexicographic recursion on both arguments, since in the last line, a sub-
term (d2) of the second argument appears as first argument to a recursive call
(trans d2 d1) and vice versa. A valid termination measure would be the sum of
the size of both arguments. We can also certify its termination by typing it in
Fω̂. To this end, we have to erase all dependencies.

In Fω̂, we set Subı := µı λX. 1 + 1 + X × X + X × X. The four constructors
are now definable:

SBot : ∀ı. Subı+1

STop : ∀ı. Subı+1

SProd : ∀ı. Subı → Subı → Subı+1

SArr : ∀ı. Subı → Subı → Subı+1

The recursive function can now be given the type

trans : ∀ı. Subı → Subı → Subı.

One problem remains: In Fω̂, we have no partiality, but without dependencies,
the four patterns defining trans do not cover the full value space. This problem
can be mended by adding a catch-all clause trans _ _ = SBot, or by extending
Fω̂ by partiality. For instance, one could have four eliminations of the disjoint
sum type, caseS, for S ⊆ {l, r}, with typing

case{} : ∀A∀B∀C. A + B→ C
case{l} : ∀A∀B∀C. A + B→ (A→ C)→ C
case{r} : ∀A∀B∀C. A + B→ (B→ C)→ C
case{l,r} : ∀A∀B∀C. A + B→ (A→ C)→ (B→ C)→ C



136 CHAPTER 6. EXAMPLES

and the reduction rules

case{l} (inl r) s � s r
case{r} (inr r) t � t r
case{l,r} (inl r) s t � s r
case{l,r} (inr r) s t � t r.

A term caseS (ink r) with k 6∈ S would be considered neutral.



Chapter 7

Extensions

In this chapter, we sketch some useful extensions of Fω̂.

7.1 Mutual Recursion

Normal de Bruijn terms can be defined by two mutually recursive type con-
structors in Haskell:

data Ne a = Var a

| App (Ne a) (Nf a)

data Nf a = Ne (Ne a)

| Abs (Nf (Maybe a))

In Fω̂, there is no notion of mutual recursion, but it can be simulated with
nested recursion.1 For mutual type constructors, the standard encoding into
nested inductive type constructors works smoothly:

NeF, NfF : (∗ +→ ∗) +→ (∗ +→ ∗) +→ ∗ +→ ∗
NeF := λXλYλA. A + Y A× X A
NfF := λXλYλY. Y A + X (1 + A)

Ne, Nf : ord
+→ ∗ +→ ∗

Ne := λı. µı
∗ +→∗

λY. NeF (µ
∗ +→∗

λX. NfF X Y) Y
Nf := λı. µı

∗ +→∗
λX. NfF X (µ

∗ +→∗
λY. NeF X Y)

1Nested is also called interleaving [AA00].

137



138 CHAPTER 7. EXTENSIONS

As usual, we can define the following data constructors:

var : ∀A∀ı. A→ Neı+1 A
var := λx. inl x

app : ∀A∀ı. Neı A→ Nf ı A→ Neı+1 A
app := λrλs. inr 〈r, s〉
ne : ∀A∀ı. Neı A→ Nf ı+1 A
ne := λr. inl r

abs : ∀A∀ı. Nf ı A→ Nf ı+1 A
abs := λr. inr r

To encode mutual recursion on the term level, we need to extend the type
system of Fω̂. We basically need a well-founded recursion rule and a bounded
recursion rule:

TY-WF-REC
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı :ord. (∀≤ ı. A )→ A (ı + 1))→ A a

TY-BD-REC
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı≤ a. A ı→ A (ı + 1))→ A a′
a′ ∈ {a, s a}

Bounded quantification ∀X ≤ G : κ. A is to be understood as usual. It has
been studied extensively in the last decade, e. g., by Pierce and Steffen [PS97,
Ste98] and Duggan and Compagnoni [DC99]. In our calculus, we could add it
through a constant and some defined notation:

∀≤κ : κ
−→ (κ ◦→ ∗) +→ ∗

∀X≤G :κ. A := ∀≤κ G (λXA)

Adding a top kind Topκ : κ for all kinds (for ord it is ∞), we can then define
usual quantification by ∀κ := ∀≤κ Topκ . We replace the generalization and in-
stantiation rules by the following:

TY-GEN
Γ , X≤G :κ ` t : F X

Γ ` t : ∀≤κ G F
TY-INST

Γ ` t : ∀≤κ H F Γ ` G ≤ H : κ
Γ ` t : F G

Figure 7.1 displays the mapping terms of normal and neutral de Bruijn
terms. The term mapNf reuses the lifting operation from Section 3.2.7. We have
used the standard encoding of mutual recursion into nested recursion, and it is
compatible with our extension of Fω̂as the following type assignment for mapNf
in Figure 7.1 shows.

Bounded and well-founded recursion can be combined into bounded well-
founded recursion.

TY-BD-WF-REC
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı≤ a. (∀≤ ı. A )→ A (ı + 1))→ A a′
a′ ∈ {a, s a}



7.1. MUTUAL RECURSION 139

Mapping terms.

MapNe, MapNf : ord
◦→ ∗

MapNe := λı. ∀A∀B. (A→ B)→ Neı A→ NeıB
MapNf := λı. ∀A∀B. (A→ B)→ Neı A→ NeıB

mapNeF : ∀ı. MapNf ı→ MapNeı→ MapNe(ı + 1)
mapNeF := λmapNfλmapNeλ f λt. match t with

var x 7→ var ( f x)
app r s 7→ app (mapNe f r) (mapNf f s)

mapNfF : ∀ı. MapNf ı→ MapNeı→ MapNf(ı + 1)
mapNfF := λmapNfλmapNeλ f λt. match t with

ne r 7→ ne (mapNe f r)
abs r 7→ abs (mapNf (lift f ) r)

mapNe : ∀ı. MapNeı
mapNe := fixµ

1 λmapNe. mapNeF (fixµ
1 λmapNf . mapNfF mapNf mapNe) mapNe

mapNf : ∀ı. MapNf ı
mapNf := fixµ

1 λmapNf . mapNfF mapNf (fixµ
1 λmapNe. mapNeF mapNf mapNe)

Type assignment for mapNf .

mapNf : ∀≤ ı. MapNf  assumption
≤ ı assumption
mapNe : MapNf  assumption
mapNf : MapNf ı instantiation
mapNeF mapNf mapNe : MapNe( + 1)
(fixµ

0 λmapNe . . . ) : MapNeı TY-BD-REC
mapNf : MapNf ı instantiation
mapNfF mapNf (. . . ) : MapNf(ı + 1) TY-WF-REC

Figure 7.1: Functoriality for normal de Bruijn terms.



140 CHAPTER 7. EXTENSIONS

The presence of bounded type assumptions X≤ G :κ in Γ , especially ı≤ a for
ordinals, does not jeopardize our normalization result. The induction princi-
ple behind TY-BD-WF-REC can easily justified by transfinite induction. A more
natural formulation of this rule would one using strict inequality of ordinals:

Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı< a. (∀< ı. A )→ A ı)→ A a

But how to prove normalization in presence of strict inequality assumptions
ı < a in Γ requires further thought.

Mutual Recursion Via Products. Alternatively, mutual recursion can be added
as a new principle, realized via products. This has been carried out by Pareto
[Par00, p. 152] and Xi [Xi02]. To implement mutual recursion on the construc-
tor level we need product kinds.

7.2 More Admissible Types

Our criterion for types of recursive functions admits the type ∀ı. Natı → Natı →
Natı, e. g., as type of the minimum or maximum function for natural numbers,
but not the isomorphic type ∀ı. Natı × Natı → Natı. Using this type, the mini-
mum function would be coded as follows:

min : ∀ı. Natı ×Natı → Natı

min := fixµ
0 λminλ〈x, y〉. match 〈x, y〉 with
〈zero, _〉 7→ zero
〈_, zero〉 7→ zero
〈succ x′, succ y′〉 7→ succ (min 〈x′, y′〉)

However, in our reduction semantics, min is not strongly normalizing, since
the pair 〈x′, y′〉 counts as a value and triggers unfolding of recursion:

min 〈x, y〉 −→+ match . . . succ (min 〈x′, y′〉)
−→+ match . . . succ (match . . . succ (min 〈x′′, y′′〉))
−→+ . . .

The most promising solution to this problem is add patterns as a primitive
language construct and to tie unfolding recursion to pattern matching:

min : ∀ı. Natı ×Natı → Natı

min := fixµ
0 λminλ

 〈zero, _〉 7→ zero
〈_, zero〉 7→ zero
〈succ x′, succ y′〉 7→ succ (min 〈x′, y′〉)


The reduction semantics has to be adapted such that min 〈x, y〉 is no longer
a redex, only min 〈zero, y〉 and min 〈x, zero〉, which both reduce to zero, and
min 〈succ x′, succ y′〉, which reduces to succ (min 〈x′, y′〉) in one step.



7.2. MORE ADMISSIBLE TYPES 141

Since products of the form A× A are isomorphic to Bool → A, one could
imagine a type system which also accept the following, a little artificial, variant
of the minimum function:

min : ∀ı. (Bool→ Natı)→ Natı

min := fixµ
0 λminλ f . match 〈 f true, f false〉 with
〈zero, _〉 7→ zero
〈_, zero〉 7→ zero
〈succ x′, succ y′〉 7→ succ (min (λb. if b then x′ else y′))

Since a λ-abstraction is a value, this definition of min is not strongly normaliz-
ing for similar reasons as the first definition with products. However, in this
case, it seems impossible to salvage strong normalization. But if one is only
interested in the termination of closed programs, this definition is fine, and
indeed, the type system of Hughes, Pareto, and Sabry [HPS96] accepts it.



142 CHAPTER 7. EXTENSIONS



Chapter 8

Conclusion

In this thesis, I have presented a simple but powerful type system which certi-
fies termination and productivity for higher-order functional programs with
higher-rank polymorphism and higher-order and heterogeneous data types
that can contain both infinitely deep and infinitely branching trees. Its prac-
tical applicability has been demonstrated by numerous non-trivial examples.
It has been shown that the marriage of types with termination analysis can ef-
fortlessly treat the case of higher-order functional programs which are hard for
termination analyses based on term orderings. The types paradigm has again
proven an effective tool to structure program analysis.

Some problems have been left open in this thesis. For one thing, more work
has to be done on models of Fω̂. The current model proves strong normaliza-
tion, but it does not give much information about the impredicative encodings
of disjoint sum and product. It would be desirable to have a model where the
impredicative encodings have semi-continuity properties, but it is unclear to
me whether this can be achieved.1

Also, the types-as-sets-of-evaluation-contexts model needs refinement. One
would like that t ⊥ ⋂

i∈I Ei implies t ⊥ Ei for some i ∈ I, if the Ei are sets of
evaluation contexts with certain closure properties and form a sequence of a
certain form, e.g., a chain or a directed sequence. With that property, one could
prove semi-continuity properties for the refined saturation model which was
necessary for equi-coinductive types. Again, this is future research.

Finally, I am looking for a model of type-based termination and produc-
tivity that is simpler than the ones known to me: (1) types as sets of strongly
normalizing terms (this thesis, Barthe et al. [BFG+04], Blanqui [Bla04]) and (2)
types as upward closed subsets of a domain with ⊥-element (Pareto [HPS96,
Par00]). It seems funny that in order to reason about terminating and produc-
tive functional programs, which never produce an undefined result, one either
has to generalize evaluation to symbolic computation and speak about strong

1Christine Paulin-Mohring has told me that the impredicative encodings are not adequate—
they contain junk.

143



144 CHAPTER 8. CONCLUSION

normalization, or one has to add a ⊥-element and show that it is never a re-
sult of a well-typed program. A promising direction is Xi‘s work [Xi02] which
gives a much simpler call-by-value semantics. However, he cannot handle in-
finite objects like streams. Maybe coinductive types can be modeled as sets of
evaluation contexts, as in this thesis, but on the basis of a simpler operational
semantics, e. g., a big-step call-by-name semantics for closed programs.

8.1 Related Work

There is an abundant literature on termination. We will only consider a few
recent publications. We divide them into two categories: papers which deal
with fully automated termination checking, and those which presents methods
how to (partially) automate termination proofs.

8.1.1 Termination Proofs

A very general method to define function is by well-founded recursion. Nord-
ström has demonstrated its use in Martin-Löf Type Theory [Nor88]. In the
Calculus of Inductive Constructions, this recursion scheme is an instance of
primitive recursion over the accessibility predicate, which is the constructive
version of well-foundedness and can be defined as an infinitely-branching in-
ductive data type. Balaa and Bertot [BB00] demonstrate how to recover the
fixed-point equation from well-founded recursion in Coq.

From a recursive function definition, an induction scheme can be extracted
[Wal92, Hut92]. Each function clause corresponds to one case, and each re-
cursive call in this clause to one induction hypothesis available in this case.
One way to prove termination of the function is to first establish the induction
scheme and use it to show termination. The second part can often be fully
mechanized. In the following, we describe some works which follow roughly
this technique.

In Higher-Order Logic, as implemented in the Isabelle [Pau90] interactive
theorem prover, a fixed-point combinator WFREC for well-founded recursion
is definable. Slind [Sli96] wrote the TFL package which translates recursive
functions defined by pattern matching into WFREC-expressions, and extracts
termination conditions as proof obligations. Special tactics attempt to dis-
charge these obligations with the help of a user-supplied measure. This ap-
proach is very flexible and works quite well in practice. Unfortunately, it can-
not be used to construct proofs by induction, since derivations are not first class
objects in HOL and cannot be manipulated by functions (the Curry-Howard
isomorphism breaks down).

A similar mechanism is implemented in PVS [ORS92]. With a recursive
definition the user has to supply a termination measure and prove the arising
termination conditions. PVS has powerful proof automation, hence, discharg-
ing the conditions causes in most cases not much trouble.



8.1. RELATED WORK 145

Bove and Capretta [BC05a] take a recursive definition and generate its in-
ductive domain predicate such that the induction scheme associated to this
predicate corresponds to the above describe induction scheme associated with
the recursive function. The recursive definition is translated into Type Theory
as a partial function which is well-defined on the inductive domain. To show
that a function is total one has to prove that all values inhabit the inductive
domain. Recently Bove and Capretta have extended their approach to higher-
order domains [BC05b].

Bertot [Ber05] uses domain predicates to define corecursive stream filter-
ing functions. He requires the selection predicate to hold infinitely often on
the input streams to obtain productive output streams. Since “infinitely often”
means at each point “eventually” and he uses an inductive definition of “even-
tually”, he can define the filtering function using recursion inside corecursion.
With his technique he manages to define the Sieve of Eratosthenes by corecur-
sion in Coq. Mixed recursion/corecursion is also possible in Fω̂ (see Huffman
decoding example, Section 3.2.4), but to see that the Sieve of Eratosthenes is
productive requires mathematical knowledge, which is beyond our system.

Ultrametric spaces and Banach’s fixed-point theorem. Buchholz [Buc05] in-
vestigates recursive and corecursive definitions as fixed-points of functionals
on ultrametric spaces. For instance, streams of natural numbers S form an ul-
trametric space with the equivalence relations ≈n⊆ S × S for n ∈ N defined
by

s ≈0 s′ ⇐⇒ true
s ≈n+1 s′ ⇐⇒ hd s = hd s′ and tl s ≈n tl s′.

Banach’s fixed-point theorem guarantees such definitions to be well-defined if
the underlying functional is contractive. Buchholz turns this principle into a
system for “type-based termination” by decorating function arrows with mod-
uli φ : N → N. The modulus of a function expresses how well its arguments
must be related for its results to be related, or more precisely,

f ∈ A
φ→ B ⇐⇒ ∀l ∈ N∀a, a′ ∈ A. a ≈φ(l) a′ =⇒ f a ≈l f a′ ∈ B.

Then, the tail function tl can be given type S +1→ S and stream construction

cons : N → S −1→ S . In terms of Buchholz’ systems, Fω̂ is restricted to moduli
of the form ±k and uses a fixed ultrametric arising from the approximation
of (co)inductive fixed points. I think Buchholz can simulate the simply-typed
strictly-positive fragment of Fω̂, but I am not sure whether he can define recur-
sive functions over inductive datatypes with a closure ordinal > ω.

A conceptual difference between rewriting in Fω̂ and Buchholz’ system is
that in Fω̂, fixed points are unrolled on demand, whereas in Buchholz’ system
a term is given an amount of “fuel” and each fixed-point unrolling costs one
unit. The amount of initial fuel depends on the modulus of the term and on
how precise the result of the term should be approximated.



146 CHAPTER 8. CONCLUSION

Buchholz does not treat polymorphism.
Gianantonio and Miculan [GM03] generalize ultrametric spaces further to

ordered families of equivalences (OFE). Basically, there is a collection of equiva-
lence relations ≡ indexed by any well-ordered set (in Buchholz’ case, this was
always N). Otherwise, their method is very similar to Buchholz’. Their main
selling point is that they can treat mixed recursive/corecursive definitions;
as the Huffman-decoder examples of Huffman decoding and prime numbers
show (see sections 3.2.4 and 3.2.5), this is also possible in Fω̂.

Finally, Matthews [Mat99] has explored the use of converging equivalence
relations (CERs), which are a variant of OFEs to define corecursive objects in
Isabelle. His results are similar to Gianantonio and Miculan’s.

8.1.2 Termination Checking

Size-change principle. Lee, Jones, and Ben-Amram [LJBA01] have coined the
term size-change principle for termination: A program terminates on all inputs if
every infinite call sequence . . . would cause an infinite descent in some data values.
Checking size-change termination is in general PSPACE-complete, but with
some restrictions it becomes polynomial [Lee02].

Jones and Bohr [JB04] apply size-change termination to closed lambda-terms
under deterministic call-by-value evaluation. One lambda-expression calls an-
other if the evaluation of the first depends on the evaluation of the second. Us-
ing an operational semantics with environments (explicit substitutions), they
maintain the invariant that the set of subexpressions is not increased under
evaluation and call. Since the initial lambda-expression has only a finite num-
ber of subexpressions, a call graph can be constructed on these using abstract
interpretation. Sereni [Ser04], also with Jones [SJ05], refines the abstract in-
terpretation and refutes the conjecture that the size-change principle certifies
termination for all simply-typed closed lambda-terms [Ser05]. This suggests
that (simple) typing and size-change are complementary principles.

The size-change termination analysis for closed lambda-expressions cannot
directly be extended to open expressions since it hinges on the subexpression-
property, which fails for open expressions: Let n denote the nth Church nu-
meral. Then n (m f ) x has O(n + m) subexpressions, but its evaluation, f nm x,
has O(nm) subexpressions.

In own work with Altenkirch [AA02], simple typing has been combined
with a termination criterion based on call graphs which likens the one of Jones
et al.In essence, it does not accept functions which swap their parameters in re-
cursive calls, otherwise, it is isomorphic to Jones et al.. The tool foetus [Abe98]
detects lexicographic termination orderings for simply-typed functional pro-
grams and inductive types.

Wahlstedt [Wah04] combines size-change termination with dependent types
and first-order inductive datatypes. His normalization proof uses a reducibil-
ity semantics and Ramsey’s theorem.



8.1. RELATED WORK 147

Abstract interpretation and types. Telford and Turner [TT00, TT97] check
termination and productivity of recursive functions by an abstract interpreta-
tion. They track size-change on an abstract domain and can handle first-order
functional programs quite well. However, type-based termination seems the
more promising approach, since then type analysis and size analysis are inte-
grated into one language and can benefit from each other.

Amadio and Coupet-Grimal [ACG98] extend the simply-typed λ-calculus
by non-nested coinductive types and describe a type system for well-defined
corecursion via a fixed-point combinator. The typing rule for fixed-points is
motivated by transfinite induction, but no closure ordinal is provided. Sound-
ness of the system is proven through a model of partial equivalence relations
(PER). The PER model validates an equality consisting of β, η, and fixed-point
unfolding axioms, plus a uniqueness theorem for fixed points. They also give
confluent β and fixed-point reduction rules, whose termination is shown via a
model of reducibility candidates. Their system subsumes Coquand’s guard
condition [Coq93], but since it does not have size polymorphism, it is out-
matched by Barthe et al. [BFG+04] and my system λfixµν [Abe03], which in
turn are both subsumed by this thesis.

McBride, the principal implementor of Epigram [MM04] seems to follow
the slogan every total program is structurally recursive, i. e., he tries to unveil hid-
den structures and defuse functional programs to arrive at components which
are all primitive recursive. For instance, as already noted by Turner [Tur95],
quick-sort is just a deforested version of tree-sort. Altenkirch, McBride, and
McKinna [AMM05] defuse also merge-sort by introducing some kind of bal-
anced tree as intermediate structure. Sized types, as presented in this thesis,
can elegantly capture structural recursion, but can do more than that. By ex-
pressing size relations between input and output of functions, e. g., for the
subtraction function, recursive functions such as Euclidean division that are
not structurally recursive in the strict sense are acceptable as strongly nor-
malizing by the type system. While it may be a intellectually satisfying and
understanding-heightening enterprise to exhibit deeper mathematical struc-
tures in generally recursive programs and turn them into primitive recursive
ones, it is certainly desirable to have a type system that accepts as many termi-
nating recursive programs as possible.

Altenkirch has suggested to me to represent type-based termination within
dependent type theory, since sized types are in some sense “poor mans de-
pendent types”. However, this would require the implementation of ordinal
notation systems in type theory [CHS97], a non-trivial task. It seems impossi-
ble to implement the ordinal ∞ of Fω̂ in type theory, since it serves a the closure
ordinal of all inductive definitions of the theory, hence, it should be inaccessible
within the theory.



148 CHAPTER 8. CONCLUSION

8.1.3 Sized Types

The work of Hughes, Pareto and Sabry [HPS96] and Pareto’s thesis [Par00], as
well as the work of Giménez [Gim98], Frade [Fra03], and Barthe et al. [BFG+04],
which are closest to this thesis, have already been related to our approach (e. g.,
see Section 1.5).

Barthe, Gregoire, and Pastawski [BGP05] have extended System F à la Church
with sized inductive inductive types, arriving at System F̂. It is roughly the
Church-version of λ̂ with quantification over types. For this system they have
implemented a type inference algorithm with computes and generalizes size
constraints, and proven its soundness and completeness. Introducing dummy
abstractions and applications to model type abstraction and application, F̂
can be embedded into our calculus Fω̂, which is in Curry-style, in a reduction
preserving way. Data types in Fω̂ can be contravariant, interleaved, heteroge-
neous, and coinductive, which is not possible for data types in F̂.

Blanqui [Bla04, Bla05] decorates the inductive types of his Calculus of Al-
gebraic Constructions, which is an extension of the Calculus of Inductive Con-
structions underlying Coq [BC04], with sizes of the same expressiveness as in
Fω̂ and λ̂ . He proves that reduction rules which adhere to the type-based
termination criterion are strongly normalizing and presents a constraint-based
algorithm for checking sized types. His system is quite powerful, featuring de-
pendent types and reduction rules that go beyond computation (β). However,
our system is not subsumed since he does not feature size polymorphism or,
since his positivity condition on data types is syntactical and not kind-based as
in our approach, interesting heterogeneous data types.

Chin and Khoo [CK01], also with Xu [CKX01], extend the approach of
Hughes, Pareto, and Sabry on sized types. They describe an algorithm how
to infer lower and upper size bounds for a strict functional language with al-
gebraic data types. Sizes are constrained by Presburger arithmetic formulas.
They do not treat sizes > ω that arise for data types with embedded function
spaces.

Zenger [Zen98], introduces indexed types, which are a shallow form of de-
pendent types, in the sense that they can express data invariants over decidable
constraint domains, but cannot type more programs than a non-dependent lan-
guage like Haskell. Zenger’s approach is similar to the one by Chin and Khoo.
He cannot certify termination with his type system.

Portillo, Hammond, Loidl, and Vasconcelos [PHLV02] describe a cost infer-
ence algorithm for higher-order and polymorphic, but non-recursive functional
programs. To estimated computation costs, they also need sized types. They
treat the special case of sized natural numbers and sized lists, but their size
language is more expressive than ours, featuring sum, difference, product, and
maximum. Polymorphic combinators such as folds are problematic in their ap-
proach because all size information is lost. They could benefit from our idea
to make size expressions first-class citizens in the type language, then list folds
could be assigned a more precise type (see Section 1.5). Their approach has
been extended to recursive functions by Vasconcelos and Hammond [VH04].



8.1. RELATED WORK 149

Rich size languages. Crary and Weirich [CW99] present a intermediate lan-
guage, LX, for a typed compiler with a rich constructor level: Constructors
form a strongly normalizing purely functional language on their own, with
data structures and primitive recursion. Consequently, besides function kinds,
they have product, sum, and inductive kinds, with a natural number kind as
a special case. Data structures on the level of programs can be connected to
their abstraction on the level of constructors, since recursive types can be pa-
rameterized by shapes, which are elements of inductive kinds. For example,
a type of trees parameterized by a perfectly balanced constructor-level tree of
size n contains only perfectly balanced object-level trees of size n. This way,
structure invariants of data types can be represented in LX. To certify execu-
tion time bounds, the type system of LX is extended by a virtual clock [CW00].
The new language, LXres, can determine primitive-recursive execution costs,
which are represented as constructors of kind Nat. To specify cost-functions,
Crary and Weirich use a variant of Mendler-style primitive recursion (see Sec-
tion 4.4) on the constructor level. It is not unthinkable to transfer our approach
to terminating recursion to the constructor level of LXres. Our whole devel-
opment would then occur one level higher; we would require sized inductive
kinds, subkinding, and a sort of ordinals, sort then being the fourth syntactic
level (objects, constructors, kinds, sorts).

Hongwei Xi [Xi02] presents a framework for type-based termination within
DML, recently extended to ATS, which are a form of dependently typed pro-
gramming languages, only that the program and type level expressions are
syntactically separated (as in LX), but put into relation through singleton types.
His sizes for types can be exact (as opposed to our system, where they are
only upper bounds), and he allows termination on measures which are lexico-
graphic products of natural numbers. He can treat many practical first- and
higher-order functional programs. However, infinitely branching trees and
coinductive structures are not covered by his approach.



150 CHAPTER 8. CONCLUSION



Appendix A

Summary of Fω̂

In the following, we summarize the syntactic rules of Fω̂.

A.1 Kinds and Constructors

Polarities. Order given by ◦ ≤ p and p ≤ p.

p ::= + covariant
| − contravariant
| ◦ non-variant

Kinds. Pure kinds κ∗ do not mention ord.

κ ::= ∗ types
| ord ordinals
| pκ1 → κ2 co-/contra-/non-variant constructor transformers

Constructors are given by the following Curry-style type-level lambda-calculus
with some constants.

a, b, A, B, F, G ::= C | X | λXF | F G

Signature. The constructor constants C are taken from a fixed signature Σ

which contains at least the following constants together with their kinding.

→ : ∗ −→ ∗ +→ ∗ function space
∀κ : (κ ◦→ ∗) +→ ∗ quantification
µκ∗ : ord

+→ (κ∗
+→ κ∗)

+→ κ∗ inductive constructors
νκ∗ : ord

−→ (κ∗
+→ κ∗)

+→ κ∗ coinductive constructors
s : ord

+→ ord successor of ordinal∞ : ord infinity ordinal

151



152 APPENDIX A. SUMMARY OF Fω̂

Polarized contexts.
∆ ::= � | ∆, X : pκ

Operations on polarities and contexts. Negation of a polarity−p is given by
the three equations −(+) = −, −(−) = + and −(◦) = ◦. We define inverse
application p−1∆ of a polarity p to a polarized context ∆.

+−1∆ = ∆

−−1(�) = �
−−1(∆, X : pκ) = −−1∆, X : (−p)κ

◦−1(�) = �
◦−1(∆, X :◦κ) = ◦−1∆, X :◦κ
◦−1(∆, X :+κ) = ◦−1∆

◦−1(∆, X :−κ) = ◦−1∆

Kinding. ∆ ` F : κ

KIND-C
C :κ ∈ Σ

∆ ` C : κ
KIND-VAR

X : pκ ∈ ∆ p ≤ +
∆ ` X : κ

KIND-ABS
∆, X : pκ ` F : κ′

∆ ` λXF : pκ → κ′
KIND-APP

∆ ` F : pκ → κ′ p−1∆ ` G : κ
∆ ` F G : κ′

Constructor equality. Computation axioms.

EQ-β
∆, X : pκ ` F : κ′ p−1∆ ` G : κ

∆ ` (λXF) G = [G/X]F : κ′

EQ-η
∆ ` F : pκ → κ′

∆ ` (λX. F X) = F : pκ → κ′

EQ-∞
∆ ` s ∞ = ∞ : ord

Congruences.

EQ-C
C :κ ∈ Σ

∆ ` C = C : κ
EQ-VAR

X : pκ ∈ ∆ p ≤ +
∆ ` X = X : κ

EQ-APP
∆ ` F = F′ : pκ → κ′ p−1∆ ` G = G′ : κ

∆ ` F G = F′ G′ : κ′

EQ-λ
∆, X : pκ ` F = F′ : κ′

∆ ` λXF = λXF′ : pκ → κ′



A.2. TERMS, TYPING AND REDUCTION 153

Symmetry and transitivity.

EQ-SYM
∆ ` F = F′ : κ
∆ ` F′ = F : κ

EQ-TRANS
∆ ` F1 = F2 : κ ∆ ` F2 = F3 : κ

∆ ` F1 = F3 : κ

Declarative Higher-Order Subtyping. Reflexivity, transitivity, antisymme-
try.

LEQ-REFL
∆ ` F = F′ : κ
∆ ` F ≤ F′ : κ

LEQ-TRANS
∆ ` F1 ≤ F2 : κ ∆ ` F2 ≤ F3 : κ

∆ ` F1 ≤ F3 : κ

LEQ-ANTISYM
∆ ` F ≤ F′ : κ ∆ ` F′ ≤ F : κ

∆ ` F = F′ : κ

Abstraction and application.

LEQ-λ
∆, X : pκ ` F ≤ F′ : κ′

∆ ` λXF ≤ λXF′ : pκ → κ′

LEQ-APP
∆ ` F ≤ F′ : pκ → κ′ p−1∆ ` G : κ

∆ ` F G ≤ F′ G : κ′

LEQ-APP+
∆ ` F : +κ → κ′ ∆ ` G ≤ G′ : κ

∆ ` F G ≤ F G′ : κ′

LEQ-APP− ∆ ` F : −κ → κ′ −−1∆ ` G′ ≤ G : κ
∆ ` F G ≤ F G′ : κ′

Successor and infinity.

LEQ-S-R
∆ ` a : ord

∆ ` a ≤ s a : ord
LEQ-∞ ∆ ` a : ord

∆ ` a ≤ ∞ : ord

A.2 Terms, Typing and Reduction

Terms.

r, s, t ::= x | λxt | r s | fixµ
n | fixν

n



154 APPENDIX A. SUMMARY OF Fω̂

A.2.1 Static Semantics

Typing contexts.
Γ ::= � | Γ , x : A | Γ , X : pκ

Wellformed contexts.

CXT-EMPTY � cxt
CXT-TYVAR

Γ cxt

Γ , X :◦κ cxt
CXT-VAR

Γ cxt Γ ` A : ∗
Γ , x : A cxt

Typing. Γ ` t : A
Lambda-calculus.

TY-VAR
(x : A) ∈ Γ Γ cxt

Γ ` x : A
TY-ABS

Γ , x : A ` t : B
Γ ` λxt : A→ B

TY-APP
Γ ` r : A→ B Γ ` s : A

Γ ` r s : B

Quantification.

TY-GEN
Γ , X :κ ` t : F X

Γ ` t : ∀κF
X 6∈ FV(F) TY-INST

Γ ` t : ∀κ F Γ ` G : κ
Γ ` t : F G

Subsumption.

TY-SUB
Γ ` t : A Γ ` A ≤ B : ∗

Γ ` t : B

Folding and unfolding for (co)inductive types (∇ ∈ {µ, ν}).

TY-FOLD
Γ ` t : F (∇κ a F) ~G

Γ ` t : ∇κ (a + 1) F ~G
TY-UNFOLD

Γ ` r : ∇κ (a + 1) F ~G
Γ ` r : F (∇κ a F) ~G

Recursion (∇ = µ) and corecursion (∇ = ν).

TY-REC
Γ ` A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı :ord. A ı→ A (ı + 1))→ A a

A.2.2 Admissible Recursion Types

Notation for size index. We sometimes write the size index superscript, e. g.,
µı instead of µ ı, or νı instead of ν ı.

Natural transformations. For constructors ~F, G : ~p~κ → ∗, let

~F⇒ G :⇐⇒ ∀~X :~κ. F1 ~X → . . . Fn ~X → G ~X.

Also, we abbreviate λ~X. F(H1 ~X) . . . (Hn ~X) by F ◦ ~H.



A.3. SEMI-CONTINUOUS TYPES FOR RECURSION 155

Admissible types for recursion and corecursion.

Γ ` A fixµ
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G, µıF ◦ ~H ⇒ G) : ∗ (ı 6∈ FV(A))

for some F, G, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :+ord ` G : κ′ for some κ′ = ◦~κ′ → ∗,
Γ , ι :−ord ` Gi : κ′ for 1 ≤ i ≤ n, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

Γ ` A fixν
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G⇒ νıF ◦ ~H) : ∗ (ı 6∈ FV(A))

for some F, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :−ord ` Gi : κ′ (all i) for some κ′ = ◦~κ′ → ∗, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

A.2.3 Dynamic Semantics

(Lazy) Values.

Val 3 v ::= λxt
| fix∇n ~t where |~t| ≤ n + 1

Evaluation frames.
e(_) ::= _ s | fixµ

n s t1..n _

Reduction. t −→ t′

(λxt) s −→β [s/x]t

fixµ
n s t1..n v −→β s (fixµ

n s) t1..n v if v 6= fixν
n′ s
′ t1..n′

e(fixν
n s t1..n) −→β e(s (fixν

n s) t1..n) if e 6= fixµ
n′ s
′ t1..n′ _

plus congruences for all term constructors.

A.3 Semi-Continuous Types for Recursion

Positive contexts.

Cxt+ 3 Π ::= � | Π, X :+κ∗



156 APPENDIX A. SUMMARY OF Fω̂

Derivation system for semi-continuity. ∆; Π `ıq F : κ for q ∈ {⊕,	}
Converting ordinary derivations.

CONT-IN
∆ ` F : κ

∆, ı : pord; Π `ıq F : κ
CONT-CO

∆, ı :+ord ` F : κ p ≤ +
∆, ı : pord; Π `ı⊕ F : κ

CONT-CONTRA
∆, ı :−ord ` F : κ p ≤ −

∆, ı : pord; Π `ı	 F : κ

λ-calculus part.

CONT-VAR
X : pκ ∈ ∆, Π p ≤ +

∆; Π `ıq X : κ

CONT-ABS
∆, X : pκ; Π `ıq F : κ′

∆; Π `ıq λXF : pκ → κ′
X 6= ı

CONT-APP
∆, ı : p′ord; Π `ıq F : pκ → κ′ p−1∆ ` G : κ

∆, ı : p′ord; Π `ıq F G : κ′

Built-in constructors:

CONT-SUM
∆; Π `ıq A, B : ∗

∆; Π `ıq A + B : ∗ CONT-PROD
∆; Π `ıq A, B : ∗

∆; Π `ıq A× B : ∗

CONT-ARR
−∆; � `ı	 A : ∗ ∆; Π `ı⊕ B : ∗

∆; Π `ı⊕ A→ B : ∗

CONT-∀ ∆; Π `ı⊕ F : ◦κ → ∗
∆; Π `ı⊕ ∀κF : ∗

CONT-MU
∆; Π, X :+κ∗ `ı	 F : κ∗ ∆ `ı	 a : ord

∆; Π `ı	 µaXF : κ∗

CONT-NU
∆; Π, X :+κ∗ `ı⊕ F : κ∗ ∆ ` a ord

∆; Π `ı⊕ νaXF : κ∗

Improved criterion for admissible types.

Γ ` A fixµ
n-adm iff Γ , ı :◦ord ` A ı = (G1..n, µıF ◦ ~H ⇒ G) : ∗

and Γ , ı :◦ord; � `ı⊕ G1..n, µıF ◦ ~H ⇒ G : ∗

Γ ` A fixν
n-adm iff Γ , ı :◦ord ` A ı = (G1..n ⇒ νıF ◦ ~H) : ∗

and Γ , ı :◦ord; � `ı⊕ G1..n ⇒ νıF ◦ ~H : ∗



Appendix B

Iso-Coinductive Constructors

In this section, we present a variant of Fω̂ which still has equi-inductive con-
structors, but iso-coinductive constructors, i. e., folding and unfolding coinduc-
tive types is no longer silent on the term level. It is clear that the iso-version of a
system is strongly normalizing if the equi-version is (see Section 4.1). However,
the normalization proof is easier: it can be carried out with the original, more
constructive definition of saturated term sets. The main advantage is that sat-
urated sets in the original sense are closed under unions. Of course, now the
symmetry between induction and coinduction is somewhat broken. But this
has also an advantage: The pathological neutral terms, recursive functions ap-
plied to corecursive values, disappear. Now, every neutral term is bound to
have a free variable, so no closed term will get stuck.

In the following, we summarize the changes to system definition and sound-
ness proof.

B.1 Syntax

Terms. We extend the language of terms by two new constants:

Const 3 c ::= inν codata constructor
| outν codata destructor

Typing. The folding and unfolding rules are replaced by the following:

TY-FOLDµ Γ ` t : F (µκ a F) ~G
Γ ` t : µκ (a + 1) F ~G

TY-UNFOLDµ Γ ` r : µκ (a + 1) F ~G
Γ ` r : F (µκ a F) ~G

TY-FOLDν Γ ` t : F (νκ a F) ~G
Γ ` inν t : νκ (a + 1) F ~G

TY-UNFOLDν Γ ` r : νκ (a + 1) F ~G
Γ ` outν r : F (νκ a F) ~G

The rules for λ-terms, quantification, subsumption, recursion and corecursion
stay in place.

157



158 APPENDIX B. ISO-COINDUCTIVE CONSTRUCTORS

Example B.1 (Repeat function, revisited) In the new system, the body of repeat
is wrapped into a codata constructor.

repeat a := fixν
0 λrepeat. inν (pair a repeat)

λa. repeat a : ∀A. A→ Stream∞ A

Evaluation frames. The codata destructor is a new atomic evaluation context:

Eframe 3 e ::= _ s application
| fixµ

n s t1..n _ recursive function call
| outν _ codata destruction

Evaluation context are compositions of evaluation frames, as before.

Values. The new constants give rise to new values. As before, each under-
applied constant is a value, but also codata construction inν t.

Val 3 v ::= λxt
| fix∇n
| fix∇n s~t where 0 ≤ |~t| ≤ n
| outν | inν | inν t

Reduction. Corecursive functions are only unrolled under a codata destruc-
tor. We get the following contractions:

RED-β (λxt) s � [s/x]t
RED-REC fixµ

n s t1..n v � s (fixµ
n s) t1..n v

RED-COREC outν (fixν
n s t1..n) � outν (s (fixν

n s) t1..n)
RED-βν outν (inν r) � r

By requiring explicit folding and unfolding for codata, we have syntactically
removed the critical application of recursive functions to corecursive values.
The term fixµ

n s t1..n (fixν
n′ s
′ t1..n′) now has only one sensible reduction: unrolling

recursion; corecursion requires a destructor to be unrolled.

Example B.2 (Reduction for repeat) The codata destructor triggers one unrolling
and then vanishes with the freshly created codata constructor.

outν (repeat a) −→ outν ((λrepeat. inν (pair a repeat)) (repeat a))
−→ outν (inν (pair a (repeat a))
−→ pair a (repeat a)

B.2 Soundness

Safe evaluation contexts. Codata destruction is an additional safe evaluation
context.

SF-OUT
outν _ ∈ Sframe



B.2. SOUNDNESS 159

Safe weak head reduction now also accounts for βν-contractions.

REQ-β (λxt) s B [s/x]t if s ∈ S
REQ-REC fixµ

n s t1..n v B s (fixµ
n s) t1..n v

REQ-COREC outν (fixν
n s t1..n) B outν (s (fixν

n s) t1..n)
REQ-βν outν (inν r) B r

REQ-ECXT E(t) B E(t′) if t B t′

REQ-TRANS B is transitive

The requirement

REQ-FIXµFIXν fixµ
n s t1..n (fixν

n′ s
′ t′1..n′) ∈ N if s,~t, s′,~t′ ∈ S

can be dropped, since REQ-REC now covers also the application of a recursive
function to a corecursive value.

We still require

REQ-FIXν fixν
n ∈ Sn+1 → S .

Saturated sets. We revert to our old definition: A setA is saturated, A ∈ SAT,
if N ⊆ A ⊆ S and A is closed under B-reduction and -expansion.

Lemma B.3 If A is saturated, then also A′ := {r | outν r ∈ A}.

Proof. To show N ⊆ A′, we require outν(N ) ⊆ A. Since N ⊆ A, by assump-
tion, we conclude with REQ-STRICT. The next goal, A′ ⊆ S follows from the
new requirement

REQ-OUTν outν r ∈ S implies r ∈ S .

Finally, we need to show that A′ is closed under B-reduction and -expansion.
This property is inherited from A by REQ-ECXT. �

Lattice of saturated sets. SAT forms a complete lattice under the set-theoretic
intersection and union. That we now have sup A =

⋃
A =

⋃
A for A ⊆ SAT, is

the main gain of this development.

Lemma B.4 Let A ⊆ SAT. Then
⋂

A ∈ SAT and
⋃

A ∈ SAT.

Proof. If A is empty, then
⋂

A = S and
⋃

A = N . Otherwise, let t ∈ ⋃
A.

Then there exists some A ∈ A such that t ∈ A. Now if t B t′ or t C t′, then
t′ ∈ A ⊆ ⋃

A, hence,
⋃

A is closed. If t ∈ ⋂
A then t ∈ A for all A ∈ A. Since

all A are closed, each B-reduction or -expansion t′ of t is in every A, hence,
also in

⋂
A. �



160 APPENDIX B. ISO-COINDUCTIVE CONSTRUCTORS

Semantics of µ and ν. Let κ = ~p~κ → ∗ and | ~H| = |~κ|.

out−1
νκ

: ([[κ]] +→ [[κ]]) +→ [[κ]] +→ [[κ]]
out−1

νκ
(F )(G)( ~H) := {r | outν r ∈ F (G)( ~H)}

Sem(µκ)(α)(F ) := Fα(⊥κ)
Sem(νκ)(α)(F ) := (out−1

νκ
(F ))α(>κ).

Since [[∗]] = SAT, we have [[νκ ]] = Sem(νκ) ∈ [[ord]] −→ ([[κ]] +→ [[κ]]) +→ [[κ]],
hence, the semantics of coinductive types is sound.

Lemma B.5 (Soundness of codata construction) Let A ∈ SAT. If t ∈ A then
inν t ∈ {r | outν r ∈ A}.

Proof. outν (inν t) B t, and A is closed under B-expansion. �

Lemma B.6 (Soundness of (un)folding for coinductive constructors) Let κ =
~p~κ → ∗,Hi ∈ [[κi]] F ∈ [[κ]] +→ [[κ]], and α ∈ [[ord]]. We set

A := F ([[νκ ]]αF )( ~H) (unfolded)
B := ([[νκ ]]([[s]]α)F )( ~H) (folded)

Then inν(A) ⊆ B and outν(B) ⊆ A.

Proof. If α < >ord, then

B = out−1
νκ

(F )([[νκ ]]αF )( ~H),

which means that t ∈ B ⇐⇒ outν t ∈ A. With Lemma B.5, our claim follows.
In case α = >ord the equation for B is still valid, since the fixed point is reached
at the closure ordinal. �

The soundness of rules TY-FOLDν and TY-UNFOLDν is a consequence of this
theorem.

Admissible semantic types for corecursion. We need to prove soundness of
corecursion again, now for our old definition of SAT. The reasoning power we
have lost by reverting to the old definition of SAT is compensated by a new
requirement ADM-ν-STEP.

The semantic type family A ∈ O → SAT is admissible for corecursion with n
arguments if the following four conditions are met:

ADM-ν-SHAPE A(α) =
⋂

k∈K(B1..n(k,α) → C(k,α))
for some index set K and B1..n, C ∈ K×O→ SAT,

ADM-ν-START S ⊆ C(k, 0) for all k ∈ K,
ADM-ν-STEP t′ ∈ C(k,α + 1) and outν t B outν t′ imply t ∈ C(k,α + 1),
ADM-ν-LIMIT infα<λ A(α) ⊆ A(λ) for all limits 0 6= λ ∈ O.



B.2. SOUNDNESS 161

Lemma B.7 (Corecursion is a function) Let A ∈ O → SAT be admissible for
corecursion with n arguments. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O, then
fixν

n s ∈ A(β) for all β ∈ O.

Proof. By transfinite induction on β ∈ O. The new proof differs from the old
one in the step case.

The limit case is a direct consequence of ADM-ν-LIMIT.
For the remaining cases, using ADM-ν-SHAPE, assume k ∈ K, ti ∈ Bi(k, β)

for 1 ≤ i ≤ n and show v := fixν
n s~t ∈ C(k, β). Note that s and ti are safe,

hence, v ∈ S by REQ-FIXν . Since S ⊆ C(k, 0), we are done in case of β = 0.
For case β = α + 1, we have s (fixν s) ∈ A(α + 1) by induction hypothesis

and assumption, hence, s (fixν s)~t ∈ C(k,α + 1). Since outν v Boutν (s (fixν s)~t),
by ADM-ν-STEP it follows that v ∈ C(k,α + 1). �

Admissible types for corecursion, syntactically. We recapitulate the crite-
rion on types for corecursion:

Γ ` A fixν
n-adm :⇐⇒ Γ , ı :ord ` A ı = (~G⇒ (νıF) ◦ ~H) : ∗ (ı 6∈ FV(A))

for some F, ~G, ~H with |~G| = n and

Γ ` F : +κ → κ for some pure κ = ~p~κ → ∗,
Γ , ι :−ord ` Gi : κ′ (all i) for some κ′ = ◦~κ′ → ∗, and
Γ ` Hi : ◦~κ′ → κi for 1 ≤ i ≤ |~κ|.

Lemma B.8 (Soundness of admissible corecursion types) If Γ ` A fixν
n-adm

and θ ∈ [[Γ ]], then [[A]]θ is admissible for corecursion with n arguments.

Proof. As in proof of the corresponding lemma 3.46, we set

A(α) = [[A]]θ(α) = [[~G⇒ (νıF) ◦ ~H]]θ[ı 7→α]

In the following, we verify the conditions ADM-ν-SHAPE and ADM-ν-STEP;
ADM-ν-START and ADM-ν-LIMIT are proven as before.

ADM-ν-SHAPE Show A(α) =
⋂

k∈K B1..n(k,α) → C(k,α). We set

K := [[κ′1]]× · · · × [[κ′m]] where m := |~κ′|,
Bi( ~X ,α) := [[Gi]]θ[ı 7→α]

~X for 1 ≤ i ≤ n, and
F := out−1

νκ
([[F]]θ)

Hi( ~X ) := [[Hi]]θ ~X for 1 ≤ i ≤ |~κ|
C( ~X ,α) := (Iα F >κ)( ~H( ~X )).

ADM-ν-STEP Assume t′ ∈ C( ~X ,α + 1) = F (Iα F >)( ~H( ~X )) and outν t Boutν t′.
By assumption, outν t′ ∈ [[F]]θ(Iα F >)( ~H( ~X )), and since this set is closed
by B-expansion, outν t inhabits it as well. But this means that t ∈ C( ~X ,α +
1), as required. �



162 APPENDIX B. ISO-COINDUCTIVE CONSTRUCTORS

Theorem B.9 (Soundness of typing) If Γ ` t : A and θ ∈ [[Γ ]] then LtMθ ∈ [[A]]θ.

Proof. By induction on the typing derivation. We do the new cases. For in-
ductive constructors, nothing changes; TY-FOLDµ can be handled as TY-FOLD
before, and the same holds for unfolding. The cases for coinductive construc-
tors are:

Case

TY-FOLDν Γ ` t : F (νκ a F) ~G
Γ ` inν t : νκ (a + 1) F ~G

By Lemma 3.5 we have Γ ` F (νκ a F) ~G : ∗, which entails Γ ` F : +κ → κ

and Γ ` a : ord, as well as Γ ` Gi : κi for 1 ≤ i ≤ |~κ|, if we define
~p~κ → ∗ := κ. Hence, F := [[F]]θ ∈ [[κ]] +→ [[κ]] and α := [[a]]θ ∈ [[ord]] and
we can conclude by Lemma B.6.

Case

TY-UNFOLDν Γ ` r : νκ (a + 1) F ~G
Γ ` outν r : F (νκ a F) ~G

Analogously to case TY-FOLDν .
�

B.3 Strong Normalization

Strong(-ly normalising) head reduction t −→SN t′ is defined inductively by
the following rules.

SHR-β
s ∈ SN

(λxt) s −→SN [s/x]t
SHR-FRAME

r −→SN r′

e(r) −→SN e(r′)

SHR-REC
fixµ

n s t1..n v −→SN s (fixµ
n s) t1..n v

SHR-COREC
outν (fixν

n s t1..n) −→SN outν (s (fixν
n s) t1..n)

SHR-βν
outν(inν t) −→SN t

It is easy to see that −→SN is deterministic and closed under evaluation con-
texts, hence we can set its reflexive-transitive extension −→∗SN to be B.

Strongly neutral terms r ∈ SNe are defined inductively by the following
rules. The pathological case SNE-FIXµFIXν has disappeared.

SNE-VAR
x ∈ SNe

SNE-FRAME
r ∈ SNe e ∈ Sframe

e(r) ∈ SNe



B.3. STRONG NORMALIZATION 163

Strongly normalizing terms t ∈ SN. The last three rules account for the new
constants.

SN-SNE
r ∈ SNe

r ∈ SN
SN-ABS

t ∈ SN

λxt ∈ SN
SN-FIX

~t ∈ SN

fix∇n ~t ∈ SN
|~t| ≤ n + 1

SN-EXP
t −→SN t′ t′ ∈ SN

t ∈ SN
SN-ROLL

s (fixν
n s)~t ∈ SN

fixν
n s~t ∈ SN

|~t| ≤ n

SN-IN
t ∈ SN

inν t ∈ SN
SN-IN

inν ∈ SN
SN-OUT

outν ∈ SN

(We have reused the rule name SN-IN in the same sense as we have reused the
name SN-FIX.)

It is clear that SN is closed under B-expansion (rule SN-EXP) and -reduction
(each head redex must have been introduced by SN-EXP). Hence, we can set
S = SN, and REQ-S -CLOSED is fulfilled. We also see that each term in SN
strong head reduces either to a value or to a strongly neutral term. Setting
N = BSNe, the requirement REQ-S -VAL becomes true: each term t ∈ S \ N
reduces to a value, t B v. Of course N ⊆ S (REQ-N -SUB-S) and e(N ) ⊆ N
(REQ-STRICT) are validated immediately as well. The requirement REQ-FIXν is
an instances of the rules SN-FIX; the requirement REQ-OUTν is fulfilled by the
following lemma.

Lemma B.10 (REQ-OUTν) If D :: outν r ∈ SN then r ∈ SN.

Proof. By induction on D.

Case

SN-SNE
SNE-FRAME

r ∈ SN

outν r ∈ SN
outν r ∈ SN

By assumption r ∈ SN.

Case

SN-EXP
outν (fixν

n s t1..n) −→sn outν (s (fixν
n s) t1..n) ∈ SN

outν (fixν
n s t1..n) ∈ SN

By induction hypothesis, s (fixν
n s) t1..n ∈ SN. Then by SN-ROLL, fixν

n s t1..n ∈
SN.

Case

SN-EXP
outν (inν t) −→sn t t ∈ SN

outν (inν t) ∈ SN

By SN-IN, inν t ∈ SN. �



164 APPENDIX B. ISO-COINDUCTIVE CONSTRUCTORS

Proof of REQ-FUN-SAFE N → SN ⊆ SN. It is sufficient to show that r x ∈ SN
implies r ∈ SN.

The following lemma holds in the new setting since corecursion is no longer
unrolled under application.

Lemma B.11 If D :: r x −→SN t then either r = λxt or t = r′ x with r −→SN r′.

Proof. By induction on D. �

Lemma B.12 (Extensionality) If D :: r x ∈ SN or D :: r x ∈ SNe then r ∈ SN.

Proof. By induction on D.

Case

SNE-FRAME
r ∈ SNe

r x ∈ SNe

By SN-SNE, r ∈ SN.

Case Let |~t| = n.

SNE-FRAME
s,~t ∈ SN

fixµ
n s~t x ∈ SNe

By SN-FIX, fixµ
n s~t ∈ SN.

Case

SN-SNE
r x ∈ SNe

r x ∈ SN

By induction hypothesis.

Case

SN-FIX
~t ∈ SN

fix∇n ~t x ∈ SN
|~t| ≤ n

Then fix∇n ~t ∈ SN by SN-FIX.

Case

SN-ROLL
s (fixν

n s)~t x ∈ SN

fixν
n s~t x ∈ SN

|~t| < n

By induction hypothesis s (fixν
n s)~t ∈ SN, hence, fixν

n s~t ∈ SN by SN-ROLL.

Case

SN-ROLL
x (fixν

n x) ∈ SN

fixν
n x ∈ SN

Then fixν
n ∈ SN by SN-FIX.



B.3. STRONG NORMALIZATION 165

Case
SN-EXP

r x −→SN t t ∈ SN

r x ∈ SN

By Lemma B.11, we can distinguish two cases. If r = λxt, then r ∈ SN
by SN-ABS. Otherwise, t = r′ x and r −→SN r′. By induction hypothesis,
r′ ∈ SN, hence, r ∈ SN by SN-EXP.

Case
SN-IN

x ∈ SN

inν x ∈ SN

By SN-IN we have inν ∈ SN. �

Corollary B.13 (REQ-FUN-SAFE) N → SN ⊆ SN.

Proof. {r | r s ∈ SN for all s ∈ N} ⊆ {r | r x ∈ SN} ⊆ SN by the lemma. �

Soundness for the inductive characterization, SN ⊆ sn, can be proven as
before.



166 APPENDIX B. ISO-COINDUCTIVE CONSTRUCTORS



Appendix C

Galois Connections

We follow Vouillon [Vou04].

Definition C.1 (Galois connection) Let (X,≤X) and (Y,≤Y) be partially or-
dered sets. A pair of functions ( f , g) ∈ (X → Y)× (Y → X) is called a Galois
connection between X and Y iff

f (x) ≤Y y ⇐⇒ x ≤X g(y).

Lemma C.2 The pair ( f , g) is a Galois connection iff

1. f ◦ g is contractive, g ◦ f is extensive, and

2. f and g are isotone.

Proof. 1. Since g(y) ≤ g(y), we have f (g(y)) ≤ y. Likewise, x ≤ g( f (x))
follows from f (x) ≤ f (x). 2. The assumption x ≤ x′ implies x ≤ g( f (x′) since
g ◦ f is extensive, hence f (x) ≤ f (x′). Isotonicity of g is proven analogously.

For the converse direction, first assume f (x) ≤ y. This entails x ≤ g( f (x)) ≤
g(y). The reverse implication is equally trivial. �

Corollary C.3

1. Both f ◦ g ◦ f = f and g ◦ f ◦ g = g.

2. f ◦ g and g ◦ f are idempotent.

Definition C.4 (Closure operator) A function x 7→ x is a closure operator on
(X,≤) if it is isotone, extensive, and idempotent.

Corollary C.5 If ( f , g) is a Galois connection between X and Y, then g ◦ f is a closure
operator on X.

167



168 APPENDIX C. GALOIS CONNECTIONS

Lemma C.6 (Polarity) Let R ⊆ X×Y be a relation and

f ∈ P(X)→ P(Y)
f (A) := AR := {y ∈ Y | x R y for all x ∈ A}

g ∈ P(Y)→ P(X)
g(B) := BR := {x ∈ X | x R y for all y ∈ B}

Then ( f , g) is a Galois connection between (P(X),⊆) and (P(Y),⊇), called the
polarity.

Proof.
f (A) ⊇ B ⇐⇒ (∀y ∈ B∀x ∈ A. x R y)

⇐⇒ (∀x ∈ A∀y ∈ B. x R y) ⇐⇒ A ⊆ g(B)
�

Example C.7 (Orthogonality) Consider a set of safe terms S ⊆ Tm. The or-
thogonality relation ⊥ ⊆ Tm× Ecxt between terms and evaluation contexts is
given by

t ⊥ E ⇐⇒ E(t) ∈ S .

Then the function A 7→ A := A⊥⊥ is a closure operator on sets of terms, and
for E ⊆ Ecxt the set of terms E⊥ is closed.



Bibliography

[AA00] Andreas Abel and Thorsten Altenkirch. A predicative strong
normalisation proof for a λ-calculus with interleaving inductive
types. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith, ed-
itors, Types for Proof and Programs, International Workshop, TYPES
’99, volume 1956 of Lecture Notes in Computer Science, pages 21–40.
Springer-Verlag, 2000.

[AA02] Andreas Abel and Thorsten Altenkirch. A predicative analysis of
structural recursion. Journal of Functional Programming, 12(1):1–41,
January 2002.

[Abe98] Andreas Abel. foetus – termination checker for simple functional
programs. Programming Lab Report, 1998.

[Abe99] Andreas Abel. A semantic analysis of structural recursion. Mas-
ter’s thesis, Ludwig-Maximilians-University Munich, 1999.

[Abe00] Andreas Abel. Specification and verification of a formal system for
structurally recursive functions. In Thierry Coquand, Peter Dyb-
jer, Bengt Nordström, and Jan Smith, editors, Types for Proof and
Programs, International Workshop, TYPES ’99, volume 1956 of Lec-
ture Notes in Computer Science, pages 1–20. Springer-Verlag, 2000.

[Abe03] Andreas Abel. Termination and guardedness checking with con-
tinuous types. In M. Hofmann, editor, Typed Lambda Calculi and
Applications (TLCA 2003), Valencia, Spain, volume 2701 of Lecture
Notes in Computer Science, pages 1–15. Springer-Verlag, June 2003.

[Abe04] Andreas Abel. Termination checking with types. RAIRO – Theoret-
ical Informatics and Applications, 38(4):277–319, 2004. Special Issue:
Fixed Points in Computer Science (FICS’03).

[Abe05] Andreas Abel. Termination and productivity
checking with continuous types—second thoughts.
http://www.tcs.ifi.lmu.de/˜abel/errata-tlca03.pdf, January
2005.

169



170 BIBLIOGRAPHY

[AC05] Andreas Abel and Thierry Coquand. Untyped algorithmic equal-
ity for Martin-Löf’s logical framework with surjective pairs. In
Paweł Urzyczyn, editor, Typed Lambda Calculi and Applications
(TLCA 2005), Nara, Japan, volume 3461 of Lecture Notes in Computer
Science, pages 23–38. Springer-Verlag, April 2005.

[ACG98] Roberto M. Amadio and Solange Coupet-Grimal. Analysis of a
guard condition in type theory. In Maurice Nivat, editor, Foun-
dations of Software Science and Computation Structures, First Interna-
tional Conference, FoSSaCS’98, volume 1378 of Lecture Notes in Com-
puter Science, pages 48–62. Springer-Verlag, 1998.

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting us-
ing dependency pairs. Theoretical Computer Science, 236:133–178,
2000.

[AJ05] Klaus Aehlig and Felix Joachimski. Continuous normalization for
the lambda-calculus and Gödel’s T. Annals of Pure and Applied
Logic, 133:39–71, 2005.

[Alt93] Thorsten Altenkirch. Constructions, Inductive Types and Strong Nor-
malization. PhD thesis, University of Edinburgh, November 1993.

[Alt99] Thorsten Altenkirch. Logical relations and inductive/coinductive
types. In G. Gottlob, E. Grandjean, and K. Seyr, editors, Computer
Science Logic, 12th International Workshop, CSL ’98, Annual Confer-
ence of the EACSL, Brno, Czech Republic, August 24-28, 1998, Proceed-
ings, Lecture Notes in Computer Science, pages 343–354. Springer-
Verlag, 1999.

[Alt01] Thorsten Altenkirch. Representations of first order function types
as terminal coalgebras. In Typed Lambda Calculi and Applications,
TLCA 2001, number 2044 in Lecture Notes in Computer Science,
pages 8 – 21. Springer-Verlag, 2001.

[AM03] Andreas Abel and Ralph Matthes. (Co-)iteration for higher-order
nested datatypes. In H. Geuvers and F. Wiedijk, editors, Types for
Proofs and Programs, International Workshop, TYPES 2002, volume
2646 of Lecture Notes in Computer Science, pages 1–20, Berg en Dal,
The Netherlands, 2003. Springer-Verlag.

[AM04] Andreas Abel and Ralph Matthes. Fixed points of type construc-
tors and primitive recursion. In Jerzy Marcinkowski and Andrzej
Tarlecki, editors, Computer Science Logic, CSL’04, volume 3210 of
Lecture Notes in Computer Science, pages 190–204. Springer-Verlag,
2004.

[AMM05] Thorsten Altenkirch, Conor McBride, and James McKinna. Why
dependent types matter. Manuscript, available online, April 2005.



BIBLIOGRAPHY 171

[AMU03] Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Generalized
iteration and coiteration for higher-order nested datatypes. In
A. Gordon, editor, Foundations of Software Science and Computation
Structures (FoSSaCS 2003), volume 2620 of Lecture Notes in Com-
puter Science, pages 54–69, Warsaw, Poland, April 2003. Springer-
Verlag.

[AMU05] Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration
schemes for higher-order and nested datatypes. Theoretical Com-
puter Science, 333(1–2):3–66, 2005.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of
lambda terms using generalized inductive types. In Jörg Flum and
Mario Rodríguez-Artalejo, editors, Computer Science Logic, 13th In-
ternational Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of
Lecture Notes in Computer Science, pages 453–468. Springer-Verlag,
1999.

[Bar99] Bruno Barras. Auto-validation d’un sysème de preuves avec familles
inductives. PhD thesis, Universit’e Paris 7, 1999.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis
of typed λ-programs on term algebras. Theoretical Computer Sci-
ence, 39:135–154, 1985.

[BB00] Antonia Balaa and Yves Bertot. Fix-point equations for well-
founded recursion in type theory. In Mark Aagaard and John Har-
rison, editors, Theorem Proving in Higher Order Logics, 13th Inter-
national Conference, TPHOLs 2000, Portland, Oregon, USA, August
14-18, 2000, Proceedings, volume 1869 of Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, 2000.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, Berlin, May 2004.

[BC05a] Ana Bove and Venanzio Capretta. Modelling general recursion in
type theory. Mathematical Structures in Computer Science, 15(4):671–
708, 2005.

[BC05b] Ana Bove and Venanzio Capretta. Recursive functions with higher
order domains. In Pawel Urzyczyn, editor, Typed Lambda Calculi
and Applications (TLCA 2005), Nara, Japan, volume 3461 of Lecture
Notes in Computer Science, pages 116–130. Springer-Verlag, 2005.



172 BIBLIOGRAPHY

[Bee04] Michael Beeson. Lambda logic. In D. Basin and M. Rusinowitch,
editors, Automated Reasoning, 2nd International Joint Conference, IJ-
CAR 2004, volume 3097 of Lecture Notes in Artificial Intelligence,
pages 440–474, Cork, Ireland, July 2004. Springer-Verlag.

[Ber05] Yves Bertot. Filters on coinductive streams, an application to er-
atosthenes’ sieve. In Pawel Urzyczyn, editor, Typed Lambda Calculi
and Applications (TLCA 2005), Nara, Japan, volume 3461 of Lecture
Notes in Computer Science, pages 102–115. Springer-Verlag, 2005.

[BFG+04] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-
based termination of recursive definitions. Mathematical Structures
in Computer Science, 14(1):1–45, 2004.

[BGJ00] Richard Bird, Jeremy Gibbons, and Geraint Jones. Program op-
timisation, naturally. In Millenial Perspectives in Computer Science,
Palgrave, 2000.

[BGP05] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Practi-
cal inference for type-based termination in a polymorphic setting.
In Pawel Urzyczyn, editor, Typed Lambda Calculi and Applications
(TLCA 2005), Nara, Japan, volume 3461 of Lecture Notes in Computer
Science, pages 71–85. Springer-Verlag, 2005.

[BJO01] Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada.
Inductive data type systems. Theoretical Computer Science, 277,
2001.

[Bla04] Frédéric Blanqui. A type-based termination criterion for
dependently-typed higher-order rewrite systems. In Vincent van
Oostrom, editor, Rewriting Techniques and Applications, 15th Interna-
tional Conference, RTA 2004, Aachen, Germany, June 3 – 5, 2004, Pro-
ceedings, volume 3091 of Lecture Notes in Computer Science, pages
24–39. Springer-Verlag, 2004.

[Bla05] Frédéric Blanqui. Decidability of type-checking in the Calculus
of Algebraic Constructions with size annotations. In C.-H. Luke
Ong, editor, Computer Science Logic, 19th International Workshop,
CSL 2005, 14th Annual Conference of the EACSL, Oxford, UK, August
22-25, 2005, Proceedings, volume 3634 of Lecture Notes in Computer
Science, pages 135–150. Springer-Verlag, 2005.

[BM98] Richard Bird and Lambert Meertens. Nested datatypes. In Johan
Jeuring, editor, Mathematics of Program Construction, MPC’98, Pro-
ceedings, volume 1422 of Lecture Notes in Computer Science, pages
52–67. Springer-Verlag, 1998.

[BP99a] Richard Bird and Ross Paterson. Generalised folds for nested
datatypes. Formal Aspects of Computing, 11(2):200–222, 1999.



BIBLIOGRAPHY 173

[BP99b] Richard S. Bird and Ross Paterson. De Bruijn notation as a nested
datatype. Journal of Functional Programming, 9(1):77–91, 1999.

[Buc91] Wilfried Buchholz. Notation systems for infinite derivations.
Archive of Mathematical Logic, 30:277–296, 1991.

[Buc05] Wilfried Buchholz. A term calculus for (co-)recursive definitions
on streamlike data-structures. Annals of Pure and Applied Logic,
136(1–2):75–90, 2005.

[Bur69] Rod Burstall. Proving properties of programs by structural induc-
tion. Computer Journal, 12(1):41–48, 1969.

[Cap05] Venanzio Capretta. General recursion via coinductive types. Logi-
cal Methods in Computer Science, 2005. To appear.

[CC99] Catarina Coquand and Thierry Coquand. Structured type theory.
In Workshop on Logical Frameworks and Meta-languages (LFM’99),
Paris, France, September 1999.

[CHS97] Thierry Coquand, Peter Hancock, and Anton Setzer. Ordinals in
type theory. Slides, August 1997. Aarhus.

[CK01] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types.
Higher-Order and Symbolic Computation, 14(2–3):261–300, 2001.

[CKX01] Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu. Higher-order
polymorphic sized types for safety checks. In The Second Asian
Workshop on Programming Languages and Systems, APLAS’01, Korea
Advanced Institute of Science and Technology, Daejeon, Korea, Decem-
ber 17-18, 2001, Proceedings, pages 117–131, 2001.

[Coq92] Thierry Coquand. Pattern matching with dependent types. In
Bengt Nordström, Kent Pettersson, and Gordon Plotkin, editors,
Proceedings of the 1992 Workshop on Types for Proofs and Programs,
Båstad, Sweden, June 1992, pages 71–83, 1992.

[Coq93] Thierry Coquand. Infinite objects in type theory. In H. Baren-
dregt and T. Nipkow, editors, Types for Proofs and Programs (TYPES
’93), volume 806 of Lecture Notes in Computer Science, pages 62–78.
Springer-Verlag, 1993.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In
Proceedings of the fourth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’99), Paris, France, volume 34 of SIG-
PLAN Notices, pages 233–248. ACM Press, 1999.

[CW00] Karl Crary and Stephanie Weirich. Resource bound certification.
In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 184–198, Boston, Mas-
sachusetts, USA, January 2000.



174 BIBLIOGRAPHY

[Dan99] Norman Danner. Transfinite iteration functionals and ordinal
arithmetic. arXiv.org e-Print archive, August 1999.

[DC99] Dominic Duggan and Adriana Compagnoni. Subtyping for object
type constructors, January 1999. Presented at FOOL 6.

[Dyb94] Peter Dybjer. Inductive families. Formal Aspects of Computing,
6(4):440–465, 1994.

[Far04] William M. Farmer. Formalizing undefinedness arising in calcu-
lus. In D. Basin and M. Rusinowitch, editors, Automated Reason-
ing, 2nd International Joint Conference, IJCAR 2004, volume 3097 of
Lecture Notes in Artificial Intelligence, pages 475–489, Cork, Ireland,
July 2004. Springer-Verlag.

[Fra03] Maria João Frade. Type-Based Termination of Recursive Definitions
and Constructor Subtyping in Typed Lambda Calculi. PhD thesis, Uni-
versidade do Minho, Departamento de Informática, 2003.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration
and recursion. In Bengt Nordström, Kent Pettersson, and Gordon
Plotkin, editors, Proceedings of the 1992 Workshop on Types for Proofs
and Programs, Båstad, Sweden, June 1992, pages 193–217, 1992.

[Gim95] Eduardo Giménez. Codifying guarded definitions with recur-
sive schemes. In Peter Dybjer, Bengt Nordström, and Jan
Smith, editors, Types for Proofs and Programs, International Workshop
TYPES´94, Båstad, Sweden, June 6-10, 1994, Selected Papers, volume
996 of LNCS, pages 39–59. Springer, 1995.

[Gim98] Eduardo Giménez. Structural recursive definitions in type theory.
In K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata, Lan-
guages and Programming, 25th International Colloquium, ICALP’98,
Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of
Lecture Notes in Computer Science, pages 397–408. Springer-Verlag,
1998.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures dans l’arithmétique d’ordre supérieur. Thèse de Doctorat
d’État, Université de Paris VII, 1972.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1989.



BIBLIOGRAPHY 175

[GM03] Pietro Di Gianantonio and Marino Miculan. A unifying approach
to recursive and co-recursive definitions. In H. Geuvers and
F. Wiedijk, editors, Types for Proofs and Programs, Second Interna-
tional Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-
28, 2002, Selected Papers, volume 2646 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type Theory.
PhD thesis, University of Edinburgh, August 1994. Available as
LFCS Report ECS-LFCS-94-304.

[Gog95] Healfdene Goguen. Typed operational semantics. In M. Deziani-
Ciancaglini and G. D. Plotkin, editors, Typed Lambda Calculi and
Applications (TLCA 1995), volume 902 of Lecture Notes in Computer
Science, pages 186–200. Springer-Verlag, 1995.

[Gog99] Healfdene Goguen. Soundness of the logical framework for its
typed operational semantics. In Jean-Yves Girard, editor, Typed
Lambda Calculi and Applications, TLCA 1999, volume 1581 of Lecture
Notes in Computer Science, L’Aquila, Italy, 1999. Springer-Verlag.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM
Transactions on Programming Languages and Systems (TOPLAS),
15(2):253–289, 1993.

[Hin98] Ralf Hinze. Numerical representations as higher-order nested
datatypes. Technical Report IAI-TR-98-12, Institut für Informatik
III, Universität Bonn, December 1998.

[Hin99] Ralf Hinze. Polytypic functions over nested datatypes. Discrete
Mathematics & Theoretical Computer Science, 3(4):193–214, 1999.

[Hin00a] Ralf Hinze. Efficient generalized folds. In Johan Jeuring, editor,
Proceedings of the Second Workshop on Generic Programming, WGP
2000, Ponte de Lima, Portugal, July 2000.

[Hin00b] Ralf Hinze. Generalizing generalized tries. Journal of Functional
Programming, 10(4):327–351, July 2000.

[Hin01] Ralf Hinze. Manufacturing datatypes. Journal of Functional Pro-
gramming, 11(5):493–524, 2001.

[Hin02] Ralf Hinze. Polytypic values possess polykinded types. MPC Spe-
cial Issue, Science of Computer Programming, 43:129–159, 2002.

[HJL04] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data
types. MPC Special Issue, Science of Computer Programming, 51:117–
151, 2004.



176 BIBLIOGRAPHY

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness
of reactive systems using sized types. In 23rd Symposium on Prin-
ciples of Programming Languages, POPL’96, pages 410–423, 1996.

[Huf52] D. Huffman. My famous paper on Huffman trees. In Proc. IRE,
volume 40, pages 1098–1101, 1952.

[Hut92] Dieter Hutter. Automatisierung der vollständigen Induktion. Old-
enbourgh Verlag, 1992.

[JB04] Neil Jones and Nina Bohr. Termination analysis of the untyped
λ-calculus. In Vincent van Oostrom, editor, Rewriting Techniques
and Applications, 15th International Conference, RTA 2004, Aachen,
Germany, June 3 – 5, 2004, Proceedings, volume 3091 of Lecture Notes
in Computer Science, pages 1–23. Springer-Verlag, 2004.

[JG02] Neil D. Jones and Arne J. Glenstrup. Abstract and conclusions of
PLI invited paper: program generation, termination, and binding-
time analysis. In Proceedings of the 4th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Program-
ming, pages 1–1. ACM Press, 2002.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP—a polytypic program-
ming extension. In 24th Symposium on Principles of Programming
Languages, POPL’97, Paris, France, pages 470–482. ACM Press,
1997.

[JM03] Felix Joachimski and Ralph Matthes. Short proofs of normaliza-
tion. Archive of Mathematical Logic, 42(1):59–87, 2003.

[KTU93] Assaf Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. Type reconstruc-
tion in the presence of polymorphic recursion. ACM Transactions
on Programming Languages and Systems (TOPLAS), 15(2):290–311,
1993.

[Lee02] Chin Soon Lee. Program termination analysis in polynomial
time. In Don S. Batory, Charles Consel, and Walid Taha, ed-
itors, Generative Programming and Component Engineering, ACM
SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA, USA,
October 6-8, 2002, Proceedings, volume 2487 of Lecture Notes in Com-
puter Science, pages 218–235. Springer-Verlag, 2002.

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
change principle for program termination. In ACM Symposium on
Principles of Programming Languages (POPL’01), London, UK, Jan-
uary 2001. ACM Press.

[LS05] Sam Lindley and Ian Stark. Reducibility and >>-lifting for com-
putation types. In Paweł Urzyczyn, editor, Typed Lambda Calculi



BIBLIOGRAPHY 177

and Applications (TLCA 2005), Nara, Japan, volume 3461 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[Luo90] Zhaohui Luo. ECC: An Extended Calculus of Constructions. PhD
thesis, University of Edinburgh, 1990.

[Mat98] Ralph Matthes. Extensions of System F by Iteration and Primi-
tive Recursion on Monotone Inductive Types. PhD thesis, Ludwig-
Maximilians-University, May 1998.

[Mat99] John Matthews. Recursive function definition over coinductive
types. In Yves Bertot, Gilles Dowek, André Hirschowitz, C. Paulin,
and Laurent Théry, editors, Theorem Proving in Higher Order Log-
ics, 12th International Conference, TPHOLs ’99, Nice, France, volume
1690 of Lecture Notes in Computer Science, pages 73–90. Springer-
Verlag, 1999.

[Mat00] Ralph Matthes. Characterizing strongly normalizing terms of a
calculus with generalized applications via intersection types. In
ITRS 00, ICALP Satellite Workshops 2000, pages 339–354, 2000.

[Mat01] Ralph Matthes. Monotone inductive and coinductive construc-
tors of rank 2. In Laurent Fribourg, editor, Computer Science Logic,
15th International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, 2001, Proceedings, volume
2142 of Lecture Notes in Computer Science, pages 600–614. Springer-
Verlag, 2001.

[Mat05] Ralph Matthes. Non-strictly positive fixed-points for classical nat-
ural deduction. APAL, 2005. To appear.

[McB06] Conor McBride. Type-preserving renaming and substitution. Jour-
nal of Functional Programming, 2006. Functional Pearl. To appear.

[Men87] Nax P. Mendler. Recursive types and type constraints in second-
order lambda calculus. In Proceedings of the Second Annual IEEE
Symposium on Logic in Computer Science, Ithaca, N.Y., pages 30–36.
IEEE Computer Society Press, 1987.

[Men91] Nax Paul Mendler. Inductive types and type constraints in the
second-order lambda calculus. Annals of Pure and Applied Logic,
51(1–2):159–172, 1991.

[MG01] Clare Martin and Jeremy Gibbons. On the semantics of nested
datatypes. Information Processing Letters, 80(5):233–238, December
2001.

[MGB04] Clare Martin, Jeremy Gibbons, and Ian Bayley. Disciplined, ef-
ficient, generalised folds for nested datatypes. Formal Aspects of
Computing, 16(1):19–35, 2004.



178 BIBLIOGRAPHY

[Min78] Grigori Mints. Finite investigations of transfinite derivations. Jour-
nal of Soviet Mathematics, 10:548–596, 1978. Translated from: Zap.
Nauchn. Semin. LOMI 49 (1975).

[MM04] Connor McBride and James McKinna. The view from the left. Jour-
nal of Functional Programming, 2004.

[Nor88] Bengt Nordström. Terminating general recursion. BIT, 28(3):605–
619, 1988.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verifi-
cation system. In Deepak Kapur, editor, 11th International Confer-
ence on Automated Deduction (CADE), volume 607 of Lecture Notes
in Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992.
Springer-Verlag.

[Par97] Michel Parigot. Proofs of strong normalization for second order
classical natural deduction. Journal of Symbolic Logic, 62(4):1461–
1479, 1997.

[Par00] Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers Uni-
versity of Technology, 2000.

[Pau90] Lawrence Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361–386.
Academic Press, 1990.

[PDM89] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Program-
ming in higher-order typed lambda-calculi. Technical report,
Carnegie Mellon University, 1989.

[PHLV02] A.J. Rebon Portillo, K. Hammond, H-W. Loidl, and P. Vasconcelos.
Cost analysis using automatic size and time inference. In IFL’02
International Workshop on the Implementation of Functional Languages
Madrid, Spain, September 16-18, 2002, volume 2670 of Lecture Notes
in Computer Science, pages 232–247. Springer-Verlag, 2002.

[Pie01] Brigitte Pientka. Termination and reduction checking for higher-
order logic programs. In Rajeev Goré, Alexander Leitsch, and To-
bias Nipkow, editors, Automated Reasoning, First International Joint
Conference, IJCAR 2001, volume 2083 of Lecture Notes in Artificial
Intelligence, pages 401–415. Springer-Verlag, 2001.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[PL89] Frank Pfenning and Peter Lee. LEAP: A language with eval and
polymorphism. In TAPSOFT, Vol.2, volume 352 of Lecture Notes in
Computer Science, pages 345–359. Springer-Verlag, 1989.



BIBLIOGRAPHY 179

[Pol94] Randy Pollack. The Theory of LEGO. PhD thesis, University of
Edinburgh, 1994.

[PS97] Benjamin C. Pierce and Martin Steffen. Higher order subtyping.
Theoretical Computer Science, 176(1,2):235–282, 1997.

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf - a meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International Confer-
ence on Automated Deduction (CADE-16), volume 1632 of Lecture
Notes in Artificial Intelligence, pages 202–206, Trento, Italy, July
1999. Springer-Verlag.

[RP93] J. C. Reynolds and G. D. Plotkin. On functors expressible in the
polymorphic typed lambda calculus. Information and Computation,
105:1–29, 1993.

[Ruc85] Martin Ruckert. Church-Rosser Theorem und Normalisierung für
Termkalküle mit unendlichen Termen unter Einschluß permutativer
Reduktionen. PhD thesis, Mathematisches Institut der LMU
München, 1985.

[Sch98] Helmut Schwichtenberg. Finite notations for infinite terms. Annals
of Pure and Applied Logic, 94(1-3):201–222, 1998.

[Ser04] Damien Sereni. Size-change termination for higher-order func-
tional programs. Technical report, Oxford University Computing
Laboratory, 2004.

[Ser05] Damien Sereni. Simply-typed λ-calculus and SCT. Unpublished
note, 2005.

[SJ05] Damien Sereni and Neil D. Jones. Termination analysis of higher-
order functional programs. In Kwangkeun Yi, editor, Program-
ming Languages and Systems, Third Asian Symposium, APLAS 2005,
Tsukuba, Japan, November 2-5, 2005, Proceedings, volume 3780 of
Lecture Notes in Computer Science, pages 281–297. Springer-Verlag,
2005.

[Sli96] Konrad Slind. Function definition in higher order logic. In Pro-
ceedings of TPHOLs 96, volume 1125 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[Ste95] Joachim Steinbach. Simplification orderings: History of results.
Fundamenta Informaticae, 24(1/2):47–87, 1995.

[Ste98] Martin Steffen. Polarized Higher-Order Subtyping. PhD thesis, Tech-
nische Fakultät, Universität Erlangen, 1998.



180 BIBLIOGRAPHY

[SU99] Zdzisław Spławski and Paweł Urzyczyn. Type fixpoints: Itera-
tion vs. recursion. In Proceedings of the fourth ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP ’99), Paris,
France, volume 34 of SIGPLAN Notices, pages 102–113. ACM Press,
1999.

[Tai75] William W. Tait. A realizability interpretation of the theory of
species. In R. Parikh, editor, Logic Colloquium Boston 1971/72, vol-
ume 453 of Lecture Notes in Mathematics, pages 240–251. Springer-
Verlag, 1975.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific Journal of Mathematics, 5:285–309, 1955.

[TT97] Alastair J. Telford and David A. Turner. Ensuring streams flow. In
Algebraic Methodology and Software Technology (AMAST ’97), vol-
ume 1349 of Lecture Notes in Computer Science, pages 509–523.
Springer-Verlag, 1997.

[TT00] Alastair J. Telford and David A. Turner. Ensuring termination in
ESFP. Journal of Universal Computer Science, 6(4):474–488, April
2000. Proceedings of BCTCS 15 (1999).

[Tur95] David Turner. Elementary strong functional programming. In
Programming Languages in Education, First International Symposium,
volume 1022 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[UV99] Tarmo Uustalu and Varmo Vene. Mendler-style inductive types,
categorically. Nordic J. of Computing, 6(3):343–361, 1999.

[Vau04] Lionel Vaux. A type system with implicit types. English version
of his mémoire de maîtrise, June 2004.

[VH04] Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equa-
tions for recursive, polymorphic and higher-order functional pro-
grams. In Philip W. Trinder, Greg Michaelson, and Ricardo Pena,
editors, Implementation of Functional Languages, 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8-11, 2003, Revised
Papers, volume 3145 of Lecture Notes in Computer Science, pages 86–
101. Springer-Verlag, 2004.

[VM04] Jérôme Vouillon and Paul-André Melliès. Semantic types: A fresh
look at the ideal model for types. In Neil D. Jones and Xavier
Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004, pages 52–63. ACM Press, 2004.



BIBLIOGRAPHY 181

[Vou04] Jérôme Vouillon. Subtyping union types. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, Computer Science Logic, CSL’04, vol-
ume 3210 of Lecture Notes in Computer Science, pages 415–429.
Springer-Verlag, 2004.

[vRS95] Femke van Raamsdonk and Paula Severi. On normalisation. Tech-
nical Report CS-R9545, CWI, 1995.

[vRSSX99] Femke van Raamsdonk, Paula Severi, Morten Heine Sørensen,
and Hongwei Xi. Perpetual reductions in lambda calculus. In-
formation and Computation, 149(2):173–225, March 1999.

[Wah04] David Wahlstedt. Type theory with first-order data types and
size-change termination. Licentiate Thesis, Chalmers University
of Technology, September 2004.

[Wal92] Christoph Walther. Computing induction axioms. In International
Conference on Logic Programming and Automated Reasoning – LPAR
92, volume 624 of Lecture Notes in Artificial Intelligence, St. Peters-
burg, 1992. Springer-Verlag.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgements and prop-
erties. Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 2003.

[Wei05] Eric W. Weisstein. Goldbach conjecture.
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GoldbachConjecture.html,
2005.

[Xi01] Hongwei Xi. Dependent types for program termination verifica-
tion. In Proceedings of 16th IEEE Symposium on Logic in Computer
Science, Boston, USA, June 2001.

[Xi02] Hongwei Xi. Dependent types for program termination verifica-
tion. Journal of Higher-Order and Symbolic Computation, 15(1):91–
131, October 2002.

[Zen98] Christoph Zenger. Indizierte Typen. PhD thesis, Fakultät für Infor-
matik der Universität Kalsruhe, 1998.



182 BIBLIOGRAPHY



Index

λ̂ , 87
λfixµν , 89
Λ+

µ , 88

abstract interpretation, 147
accessibility, 144
addition, 41
admissible for corecursion, 40, 41,

68, 73, 93, 160
admissible for recursion, 40, 41, 65,

72, 93
antitone, 19
antitone iteration, 102
application of polarities to contexts,

25
approximation, 57
approximation stages, 14
ascending chain, 59

Banach’s fixed-point theorem, 145
base kinds, 21
β-reduction of constructors, 35
biorthogonal, 67
breadth-first traversal, 117
Brouwer ordinals, 23
Burroni conatural numbers, 42

calculus for semi-continuity, 107
Calculus of Algebraic Constructions,

148
Calculus of Inductive Constructions,

144, 148
canonical form, 43
cardinal, 59
Cartesian product, 22, 107
case distinction, 38
Church-style constructors, 32

closed, 61, 64, 67
closure operator, 71, 167
closure ordinal, 13, 59, 60, 147
codata constructor, 157
codata destructor, 157
coinduction, 121
coinductive, 22, 101
complete lattice, 31
confluent, 44
constructor, 19, 21
constructor equality, 27
context, 24
continuation passing, 37
continuous, 57
continuous normalization, 121
contraction, 43
contractive, 145
contravariant, 19
converging equivalence relations, 146
Coq, 144, 148
corecursion, 37, 39, 68, 147, 160
cost inference, 148
covariant, 19
Curry-Howard isomorphism, 9, 144
Curry-style λ-calculus, 37

data constructor, 86
de Bruijn term, 121, 124
de Morgan laws, 69
defuse, 52, 147
denotation of terms, 74
denotation of types, 33
derivation-independence of seman-

tics, 36
descending chain, 59
disjoint sum, 22, 107
diverging, 62

183



184 INDEX

division, 41
domain, 24
domain predicate, 145
domain-free constructors, 32

elimination based, 62
embedding, 85
Epigram, 147
equi-coinductive, 16, 143
equi-inductive, 16, 157
equi-recursive, 16, 77, 85
equivalence relations, 145
evaluation context, 43
evaluation frame, 43
evaluation relation, 64
evaluator, 121
existential type, 22

Fibonacci numbers, 46
finite observations, 71
finitely branching tree, 110
fixed point, 59
fixed-point unfolding, 45
foetus, 146
folding, 39, 157
fuel, 145
function space, 22, 30, 62, 67, 99

Galois connection, 25, 71, 167
general recursion, 12
generalization, 39, 70
greatest fixed point, 59
guard condition, 89
guarded by constructors, 121
guarded by destructors, 88
guarded corecursion, 121
guarded, syntactically, 89

Halteproblem, 7
Haskell, 117
head, 43
height, 23
heterogeneous data types, 16, 23
higher-order functions, 11
Higher-Order Logic, 144
higher-order subtyping, 28

Huffman codes, 47

impredicative encodings, 22, 40, 143
impredicative polymorphism, 11
inaccessible, 147
indexed types, 148
induction scheme, 144, 145
inductive, 22
inductive characterization of strongly

normalizing terms, 77
inductive kind, 149
inductive type, 13, 103
infimum, 30, 56
infimum continuous, 104
infinite height, 23
infinite ordinal, 15
infinite term, 121
infinitely branching, 11, 15, 144, 149
infinity ordinal, 22
inflationary, 58
information order, 20
instantiation, 39, 70
interpretation of kinds, 30
intersection, 30, 100, 159
introduction based, 62
intuitionistic negation, 69
inverse application of polarities, 25
Isabelle, 144
iso-coinductive, 157
iso-inductive, 16
iso-recursive, 16, 85
isotone, 19
isotone iteration, 103
iterate, 13, 57
iteration, 89

kind, 20
kind interpretation, 30
kind semantics, 30
kinding, 24, 26
Knaster, 59

labeled sum, 16
lambda dropping, 61
lambda-calculus, 39
lattice, 69, 159



INDEX 185

least fixed point, 59
lenient, 104
lexicographic termination orderings,

146
liberal, 25
lim inf-pullable, 98
lim sup-pushable, 98
limes inferior, 56
limes superior, 56
limit, 56, 95
list, 23
list map, 41
list splitting, 41
list zip-with, 41
locally confluent, 44
lower semi-continuous, 96

Martin-Löf Type Theory, 144
maximal element, 30, 31
maximum, 41
measure, 144
Mendler-style recursion, 90
minimum, 41, 109, 140
mixed recursion-corecursion, 48, 145,

146
model, 61
modulus, 145
monotonicity, 19
multiplication, 41
mutual recursion, 137

natural transformation, 40, 72
negative occurrence, 24
nested data types, 16, 23
nested recursion, 137
neutral corecursive values, 68
neutral terms, 61, 162
non size-increasing, 11
non-strictly positive, 89
non-variant, 19
normal form, 43
normalization, 123
normalizer, 121

ω-overshooting, 97, 115
ω-undershooting, 97, 115

one-step reduction, 44
operator iteration, 57
ordered families of equivalences, 146
ordinal expressions, 21
ordinal iteration, 13
ordinal notation, 11, 147
ordinal variables, 21
ordinals, 21
orthogonal, 66
orthogonality, 66, 168
overshooting, 96, 115

pair, 38
paracontinuous, 97
parallel substitution, 124
Partial evaluation, 9
partial order, 31
partiality, 9, 135
partially ordered set, 30
pattern matching, 117, 140
pointwise infimum, 31
pointwise supremum, 31
polarity, 19, 107
polarity composition, 20
polarized context, 24
polarized inclusion, 30
poset, 30
positive occurrence, 24
positive context, 108
positivity condition, 24, 89, 148
power lists, 23
prime numbers, 50
primitive recursion, 89, 147
product type, 22, 107
program analysis, 143
projection, 38
pullable, 98
pulled through, 98
Pure kinds, 21
pushable, 98
pushes through, 97
PVS, 144

quantification, 22, 39, 100

rank, 21



186 INDEX

rank-2 polymorphism, 11
recursion, 37, 39, 65
recursion, Mendler-style, 90
recursive argument, 42
reducibility candidates, 62
reduction, 43
reduction preserving embedding, 85
reflexivity, 28
regular data types, 23
repeat, 41
requirements, 65, 68
rose tree, 117

Safe, 61
safe evaluation context, 63
safe terms, 61
safe weak head reduction, 64, 159
saturated, 62, 64, 94, 157, 159
saturation, 66, 143
semantical type, 62
semantics of constructors, 32
semantics of kinding derivations, 33
semantics of kinds, 30
semantics of types, 32
semi-continuity, 95, 96, 143
semi-continuous types, 15
Sieve of Eratosthenes, 145
signature, 22
singular, 74
size-change principle, 146
size-change termination, 146
sized inductive type, 13
sized types, 23
soundness, 36, 61, 110, 162
stage expressions, 22
stream, 109
stream filtering, 145
strict, 63
strictly positive, 89, 108
strong head reduction, 78, 162
strong normalization, 61, 162
strong normalization, inductive char-

acterization, 77
strongly neutral terms, 78, 162
strongly normalizing terms, 79, 163
subject reduction, 35, 77

substitution, 123
subsumption, 39
subtraction, 41
subtyping, 28
successor of ordinal, 22
sum type, 22, 107
supremum, 30, 56, 70, 94, 101, 159
Synchronous Haskell, 15, 88
syntactic guardedness, 89
systems with partiality, 9

Tarski, 59
term, 37
term model, 61
termination, 7
termination checking, 144
termination conditions, 144
termination proof, 144
top element, 31
total correctness, 9
total systems, 9
transfinite induction, 95
transfinite iteration, 57
tree, 23
type constructor, 19
type equality, 27
type interpretation, 33
type interval, 62
type preservation, 77
type preserving embedding, 85
type transformer, 19
type variable, 90
type-based termination, 10, 12
typed intermediate language, 149
types paradigm, 143
typing context, 38
typing derivation, 11

ultrametric space, 145
uncountable, 15, 59
undershooting, 97, 115
unfolding, 39, 157
union, 30, 70, 94, 157, 159
universal quantification, 100
upper semi-continuous, 96

validity, 28, 29



INDEX 187

valuation, 32, 74
value, 43
variance, 19

weak head reduction, 64
well-formed context, 38
well-founded recursion, 144


