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Proofs by induction on some inductively defined structure, e. g., finitely-branching
trees, may appeal to the induction hypothesis at any point in the proof, provided the
induction hypothesis is only used for immediate substructures, e. g., the subtrees of
the node we are currently considering in the proof. The basic principle of structural
induction can be relaxed to course-of-value induction, which allows application of the
induction hypothesis also to non-immediate substructures, like any proper subtree of the
current tree. If course-of-value induction is not sufficient yet, we can resort to define a
well-founded relation on the considered structure and use the induction hypothesis for
any substructure which is strictly smaller with regard to the constructed relation. At
a closer look, however, this well-founded induction is just structural induction on the
derivation of being strictly smaller. This means that in a logical system that allows us
to construct inductive predicate and relations, such as, e. g., Martin-Löf Type Theory
(Nordström et al., 1990) or the Calculus of Inductive Constructions (Paulin-Mohring,
1993), structural induction is complete for any kind of inductive proof.

In all these flavors of induction, validity of induction hypothesis application can
be checked easily and locally, independent of its context. In proof assistants, in prin-
ciple a structural termination checker (Giménez, 1995; Abel, 2000) suffices1 to check
such inductive proofs, which looks at the proof tree, extracts all calls to the induction
hypotheses, and checks that they happen only on structurally smaller arguments. In
practice, mutual induction is supported as well, based on a simple static call graph anal-
ysis (Abel and Altenkirch, 2002; Barras, 2010; Ben-Amram, 2008; Hyvernat, 2014).

Dually to structural induction, in a coinductive proof of a proposition defined as
the greatest fixed-point of a set of rules, we may appeal to the coinduction hypothesis
to fill the premises of the rule we have chosen to prove our goal. For instance, two
infinite streams may be defined to be bisimilar if their heads are equal and their tails are
bisimilar, coinductively. Our goal might be to show that bisimilarity is reflexive, i. e.,
any stream is bisimilar to itself. To establish bisimilarity, we use the sole rule with the
first subgoal to show that the head of the stream is equal to itself. After this breath-
taking enterprise, we are left with the second subgoal to show that the tail of the stream
is bisimilar to itself, which we solve by appeal to the coinduction hypothesis. At this
point, it is worth noting that not the stream got smaller (the tail of an infinite stream
is still infinite), but the coinductive hypothesis is guarded by a rule application. This
means that the coinductive proof can unfold into a possibly infinitely deep derivation
without getting into a “busy loop”, meaning the proof is productive.

1 Even for induction, type-based termination offers significant advantages for compositionality
and robustness, as argued, e. g., by Barras and Sacchini (2013). However, at this point there is
no mature implementation in proof assistants based on dependent types.
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In a similar way as for induction, we seek to relax the criterion for well-formed
coinductive proofs, which states that only the immediate subgoals of the final rule ap-
plication can be filled by the coinductive hypothesis. We can allow several rule applica-
tions until we reach the coinductive hypothesis from the root of the derivation. This is
dual to course-of-value induction and could be called guarded coinduction.2

In contrast to induction, checking the validity of calls to the coinduction hypothesis
requires us to look at the context of the calls rather than the call arguments. We have
to check that the calls to the coinductive hypotheses happen in a constructor context,
i. e., a context of coinductive rule applications only. This lack of locality also leads to
a loss of compositionality of proofs by guarded coinduction. For instance, consider a
coinductive proof of the bisimilarity of two streams through a bisimilarity chain, i. e.,
via some intermediate streams and the use of transitivity of bisimilarity. Transitivity is
not a constructing rule for bisimilarity,3 but an admissible rule proven by coinduction.
As transitivity is not a constructor, we cannot use the coinduction hypothesis under
transitivity nodes in the proof tree. In practice, often a severe restructuring of a natural
informal proof is necessary to make it guarded and please a structural guardedness
checker. The resulting proofs may be highly non-compositional and bloated, especially
if proofs of previous lemmata have to be inlined and fused into the current proof.

To regain compositionality, we have to relax the contexts of coinductive hypothesis
applications to include admissible rules and lemma invocation in general, without jeop-
ardizing productivity. Such contexts need to produce one more rule constructor than
they consume, which must be easily verifiable by the productivity checker. Sized types
(Hughes et al., 1996; Amadio and Coupet-Grimal, 1998; Barthe et al., 2004; Abel, 2008;
Sacchini, 2013) offer the necessary technology. Coinductive types, propositions, and re-
lations are parameterized by an ordinal i≤ ω which denotes the minimum definedness
depth of their derivations. Semantically, this idea is already present in Mendler’s work
(Mendler et al., 1986; Mendler, 1991), and it is implicit in the principle of ordinal it-
eration to construct the greatest fixed point of a monotone operator F . We define the
approximants ν iF of the greatest fixed-point νω F by induction on ordinal i as follows:

ν0 F = >
ν i+1 F = F (ν iF)
νω F =

d
i<ω

ν iF

For monotone F , we obtain a descending chain ν0F w ν1F w ·· · w νω F . The greatest
fixed point of F is reached at stage ω if F is continuous in the sense that

d
i∈I F(Ai)v

F(
d

i∈I Ai). For instance, all strictly positive type transformers correspond to continuous
operators (Abel, 2003, Theorem 1).

2 Coquand (1994) calls it guarded induction, Giménez (1995) guarded by constructors.
3 In fact, it is well-known that every coinductive relation with a transitivity rule is is trivial,

i. e., the total relation. The proof of relatedness of arbitrary objects is just the infinite tree
all of whose nodes are applications of the transitivity rule. This problem can be overcome
with mixed coinductive-inductive types (Abel, 2007; Nakata and Uustalu, 2010), to allow only
finitely many applications of the transitivity rule in a row (Danielsson and Altenkirch, 2010).
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An alternative construction of the greatest fixed-point uses deflationary iteration
(Sprenger and Dam, 2003; Abel, 2012; Abel and Pientka, 2013),

ν
iF =

l

j<i

F (ν jF)

which gives a descending chain without the monotonicity of F . However, the same
conditions on F are needed to reach the fixed point at stage ω .

Giving names to the approximants ν iF of coinductive type νω F , we can express
through the type system when a term t, which acts as the context for the coinduc-
tive hypothesis, produces one more constructor than it consumes: it needs to have type
∀i. ν iF → ν i+1F polymorphic in “size” (depth) i. Such a context is called guarding.
A weaker, but very common and useful property of a function t is to be guarded-
ness preserving, i. e., having type ∀i. ν iF→ ν iF . For instance, consider bisimilarity on
streams, which is defined using relation transformer F(X)(x,y) = (headx ≡ heady)×
X (tailx)(taily). The symmetry lemma of bisimilarity ∀i.ν iF(x,y)→ ν iF(y,x) is guard-
edness preserving: to produce one constructor of the requested bisimilarity derivation,
it only needs to inspect the last constructor of the given bisimilarity derivation. Analo-
gously, transitivity of bisimilarity receives type ∀i. ν iF(x,y)→ ν iF(y,z)→ ν iF(x,z).
Here, to produce the last rule of the output derivations we only need to inspect the
last rule of the two input derivations. This typing allows us to freely use transitivity in
coinductive proofs without jeopardizing the validity of the coinductive hypothesis.

Tracking guardedness levels in the type systems through “sized” coinductive types
gives us compositional coinduction, as we can freely abstract out, for instance, guarded-
ness-preserving contexts without upsetting some structural productivity checker who
can only deal with concretely given code.

Recently, guardedness-preserving functions have been rediscovered in the context
of Isabelle/HOL as friendly operations (Blanchette et al., 2015). Prototypical imple-
mentations of type-based termination with sized types exist for Coq (Sacchini, 2015)
and Agda. The latter has been subjected to a larger case study: an implementation of
normalization by evaluation using the coinductive delay monad (Abel and Chapman,
2014). Compositional coinduction with sized types seems to be a promising alterna-
tive to parameterized coinduction (Hur et al., 2013) and up-to techniques (Pous and
Sangiorgi, 2012).
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du 2 février 2010 in conjunction with JFLA 2010 (2010), http://coq.inria.fr/files/
adt-2fev10-barras.pdf

Barras, B., Sacchini, J.L.: Type-based methods for termination and productivity in Coq. In:
Mahboubi, A., Tassi, E. (eds.) The 5th Coq Workshop, A satellite workshop of ITP 2013,
Rennes, July 22nd (2013), https://coq.inria.fr/coq-workshop/2013#Sacchini
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