
Compositional Coinduction with Sized Types

Andreas Abel

Department of Computer Science and Engineering, Gothenburg University,
Rännvägen 6, 41296 Göteborg, Sweden

andreas.abel@gu.se

Proofs by induction on some inductively defined structure, e. g., finitely-branching
trees, may appeal to the induction hypothesis at any point in the proof, provided the
induction hypothesis is only used for immediate substructures, e. g., the subtrees of
the node we are currently considering in the proof. The basic principle of structural
induction can be relaxed to course-of-value induction, which allows application of the
induction hypothesis also to non-immediate substructures, like any proper subtree of the
current tree. If course-of-value induction is not sufficient yet, we can resort to define a
well-founded relation on the considered structure and use the induction hypothesis for
any substructure which is strictly smaller with regard to the constructed relation. At
a closer look, however, this well-founded induction is just structural induction on the
derivation of being strictly smaller. This means that in a logical system that allows us
to construct inductive predicate and relations, such as, e. g., Martin-Löf Type Theory
(Nordström et al., 1990) or the Calculus of Inductive Constructions (Paulin-Mohring,
1993), structural induction is complete for any kind of inductive proof.

In all these flavors of induction, validity of induction hypothesis application can
be checked easily and locally, independent of its context. In proof assistants, in prin-
ciple a structural termination checker (Giménez, 1995; Abel, 2000) suffices1 to check
such inductive proofs, which looks at the proof tree, extracts all calls to the induction
hypotheses, and checks that they happen only on structurally smaller arguments. In
practice, mutual induction is supported as well, based on a simple static call graph anal-
ysis (Abel and Altenkirch, 2002; Barras, 2010; Ben-Amram, 2008; Hyvernat, 2014).

Dually to structural induction, in a coinductive proof of a proposition defined as
the greatest fixed-point of a set of rules, we may appeal to the coinduction hypothesis
to fill the premises of the rule we have chosen to prove our goal. For instance, two
infinite streams may be defined to be bisimilar if their heads are equal and their tails are
bisimilar, coinductively. Our goal might be to show that bisimilarity is reflexive, i. e.,
any stream is bisimilar to itself. To establish bisimilarity, we use the sole rule with the
first subgoal to show that the head of the stream is equal to itself. After this breath-
taking enterprise, we are left with the second subgoal to show that the tail of the stream
is bisimilar to itself, which we solve by appeal to the coinduction hypothesis. At this
point, it is worth noting that not the stream got smaller (the tail of an infinite stream
is still infinite), but the coinductive hypothesis is guarded by a rule application. This
means that the coinductive proof can unfold into a possibly infinitely deep derivation
without getting into a “busy loop”, meaning the proof is productive.

1 Even for induction, type-based termination offers significant advantages for compositionality
and robustness, as argued, e. g., by Barras and Sacchini (2013). However, at this point there is
no mature implementation in proof assistants based on dependent types.



2

In a similar way as for induction, we seek to relax the criterion for well-formed
coinductive proofs, which states that only the immediate subgoals of the final rule ap-
plication can be filled by the coinductive hypothesis. We can allow several rule applica-
tions until we reach the coinductive hypothesis from the root of the derivation. This is
dual to course-of-value induction and could be called guarded coinduction.2

In contrast to induction, checking the validity of calls to the coinduction hypothesis
requires us to look at the context of the calls rather than the call arguments. We have
to check that the calls to the coinductive hypotheses happen in a constructor context,
i. e., a context of coinductive rule applications only. This lack of locality also leads to
a loss of compositionality of proofs by guarded coinduction. For instance, consider a
coinductive proof of the bisimilarity of two streams through a bisimilarity chain, i. e.,
via some intermediate streams and the use of transitivity of bisimilarity. Transitivity is
not a constructing rule for bisimilarity,3 but an admissible rule proven by coinduction.
As transitivity is not a constructor, we cannot use the coinduction hypothesis under
transitivity nodes in the proof tree. In practice, often a severe restructuring of a natural
informal proof is necessary to make it guarded and please a structural guardedness
checker. The resulting proofs may be highly non-compositional and bloated, especially
if proofs of previous lemmata have to be inlined and fused into the current proof.

To regain compositionality, we have to relax the contexts of coinductive hypothesis
applications to include admissible rules and lemma invocation in general, without jeop-
ardizing productivity. Such contexts need to produce one more rule constructor than
they consume, which must be easily verifiable by the productivity checker. Sized types
(Hughes et al., 1996; Amadio and Coupet-Grimal, 1998; Barthe et al., 2004; Abel, 2008;
Sacchini, 2013) offer the necessary technology. Coinductive types, propositions, and re-
lations are parameterized by an ordinal i≤ ω which denotes the minimum definedness
depth of their derivations. Semantically, this idea is already present in Mendler’s work
(Mendler et al., 1986; Mendler, 1991), and it is implicit in the principle of ordinal it-
eration to construct the greatest fixed point of a monotone operator F . We define the
approximants ν iF of the greatest fixed-point νω F by induction on ordinal i as follows:

ν0 F = >
ν i+1 F = F (ν iF)
νω F =

d
i<ω

ν iF

For monotone F , we obtain a descending chain ν0F w ν1F w ·· · w νω F . The greatest
fixed point of F is reached at stage ω if F is continuous in the sense that

d
i∈I F(Ai)v

F(
d

i∈I Ai). For instance, all strictly positive type transformers correspond to continuous
operators (Abel, 2003, Theorem 1).

2 Coquand (1994) calls it guarded induction, Giménez (1995) guarded by constructors.
3 In fact, it is well-known that every coinductive relation with a transitivity rule is is trivial,

i. e., the total relation. The proof of relatedness of arbitrary objects is just the infinite tree
all of whose nodes are applications of the transitivity rule. This problem can be overcome
with mixed coinductive-inductive types (Abel, 2007; Nakata and Uustalu, 2010), to allow only
finitely many applications of the transitivity rule in a row (Danielsson and Altenkirch, 2010).



3

An alternative construction of the greatest fixed-point uses deflationary iteration
(Sprenger and Dam, 2003; Abel, 2012; Abel and Pientka, 2013),

ν
iF =

l

j<i

F (ν jF)

which gives a descending chain without the monotonicity of F . However, the same
conditions on F are needed to reach the fixed point at stage ω .

Giving names to the approximants ν iF of coinductive type νω F , we can express
through the type system when a term t, which acts as the context for the coinduc-
tive hypothesis, produces one more constructor than it consumes: it needs to have type
∀i. ν iF → ν i+1F polymorphic in “size” (depth) i. Such a context is called guarding.
A weaker, but very common and useful property of a function t is to be guarded-
ness preserving, i. e., having type ∀i. ν iF→ ν iF . For instance, consider bisimilarity on
streams, which is defined using relation transformer F(X)(x,y) = (headx ≡ heady)×
X (tailx)(taily). The symmetry lemma of bisimilarity ∀i.ν iF(x,y)→ ν iF(y,x) is guard-
edness preserving: to produce one constructor of the requested bisimilarity derivation,
it only needs to inspect the last constructor of the given bisimilarity derivation. Analo-
gously, transitivity of bisimilarity receives type ∀i. ν iF(x,y)→ ν iF(y,z)→ ν iF(x,z).
Here, to produce the last rule of the output derivations we only need to inspect the
last rule of the two input derivations. This typing allows us to freely use transitivity in
coinductive proofs without jeopardizing the validity of the coinductive hypothesis.

Tracking guardedness levels in the type systems through “sized” coinductive types
gives us compositional coinduction, as we can freely abstract out, for instance, guarded-
ness-preserving contexts without upsetting some structural productivity checker who
can only deal with concretely given code.

Recently, guardedness-preserving functions have been rediscovered in the context
of Isabelle/HOL as friendly operations (Blanchette et al., 2015). Prototypical imple-
mentations of type-based termination with sized types exist for Coq (Sacchini, 2015)
and Agda. The latter has been subjected to a larger case study: an implementation of
normalization by evaluation using the coinductive delay monad (Abel and Chapman,
2014). Compositional coinduction with sized types seems to be a promising alterna-
tive to parameterized coinduction (Hur et al., 2013) and up-to techniques (Pous and
Sangiorgi, 2012).

References

Abel, A.: Specification and verification of a formal system for structurally recursive functions.
In: Coquand, T., Dybjer, P., Nordström, B., Smith, J. (eds.) Types for Proofs and Programs,
International Workshop TYPES’99, Lökeberg, Sweden, June 12-16, 1999, Selected Papers.
Lecture Notes in Computer Science, vol. 1956, pp. 1–20. Springer (2000), http://dx.doi.
org/10.1007/3-540-44557-9_1

Abel, A.: Termination and guardedness checking with continuous types. In: Hofmann, M. (ed.)
Typed Lambda Calculi and Applications, 6th International Conference, TLCA 2003, Valencia,
Spain, June 10-12, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2701, pp.
1–15. Springer (2003), http://dx.doi.org/10.1007/3-540-44904-3_1

http://dx.doi.org/10.1007/3-540-44557-9_1
http://dx.doi.org/10.1007/3-540-44557-9_1
http://dx.doi.org/10.1007/3-540-44904-3_1


4

Abel, A.: Mixed inductive/coinductive types and strong normalization. In: Shao, Z. (ed.) Pro-
gramming Languages and Systems, 5th Asian Symposium, APLAS 2007, Singapore, Novem-
ber 29-December 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4807, pp.
286–301. Springer (2007), http://dx.doi.org/10.1007/978-3-540-76637-7_19

Abel, A.: Semi-continuous sized types and termination. Logical Methods in Computer Science
4(2:3), 1–33 (2008), http://dx.doi.org/10.2168/LMCS-4(2:3)2008, CSL’06 special
issue.

Abel, A.: Type-based termination, inflationary fixed-points, and mixed inductive-coinductive
types. In: Miller, D., Ésik, Z. (eds.) Proceedings of the 8th Workshop on Fixed Points in Com-
puter Science (FICS 2012). Electronic Proceedings in Theoretical Computer Science, vol. 77,
pp. 1–11 (2012), http://dx.doi.org/10.4204/EPTCS.77.1, invited talk

Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. Journal of Functional
Programming 12(1), 1–41 (2002), http://dx.doi.org/10.1017/S0956796801004191

Abel, A., Chapman, J.: Normalization by evaluation in the delay monad: A case study for coin-
duction via copatterns and sized types. In: Levy, P., Krishnaswami, N. (eds.) Proceedings
5th Workshop on Mathematically Structured Functional Programming, MSFP 2014, Greno-
ble, France, 12 April 2014. Electronic Proceedings in Theoretical Computer Science, vol. 153,
pp. 51–67 (2014), http://dx.doi.org/10.4204/EPTCS.153.4

Abel, A., Pientka, B.: Wellfounded recursion with copatterns: A unified approach to termination
and productivity. In: Morrisett, G., Uustalu, T. (eds.) Proceedings of the Eighteenth ACM SIG-
PLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA,
September 25-27, 2013. pp. 185–196. ACM Press (2013), http://doi.acm.org/10.1145/
2500365.2500591

Amadio, R.M., Coupet-Grimal, S.: Analysis of a guard condition in type theory (extended ab-
stract). In: Nivat, M. (ed.) Foundations of Software Science and Computation Structure, First
International Conference, FoSSaCS’98, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings. Lecture Notes in Computer Science, vol. 1378, pp. 48–62. Springer (1998),
http://dx.doi.org/10.1007/BFb0053541

Barras, B.: The syntactic guard condition of coq. Talk at the Journée “égalité et terminaison”
du 2 février 2010 in conjunction with JFLA 2010 (2010), http://coq.inria.fr/files/
adt-2fev10-barras.pdf

Barras, B., Sacchini, J.L.: Type-based methods for termination and productivity in Coq. In:
Mahboubi, A., Tassi, E. (eds.) The 5th Coq Workshop, A satellite workshop of ITP 2013,
Rennes, July 22nd (2013), https://coq.inria.fr/coq-workshop/2013#Sacchini

Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination of recursive
definitions. Mathematical Structures in Computer Science 14(1), 97–141 (2004), http://dx.
doi.org/10.1017/S0960129503004122

Ben-Amram, A.M.: Size-change termination with difference constraints. ACM Transactions
on Programming Languages and Systems 30(3) (2008), http://doi.acm.org/10.1145/
1353445.1353450

Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a proof assis-
tant perspective. In: Fisher, K., Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015. pp. 192–204. ACM Press (2015), http://doi.acm.org/10.1145/
2784731.2784732

Coquand, T.: Infinite objects in type theory. Lecture Notes in Computer Science, vol. 806, pp.
62–78. Springer (1994), http://dx.doi.org/10.1007/3-540-58085-9_72

Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: Bolduc, C., Desharnais, J.,
Ktari, B. (eds.) Mathematics of Program Construction, 10th International Conference,

http://dx.doi.org/10.1007/978-3-540-76637-7_19
http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.4204/EPTCS.77.1
http://dx.doi.org/10.1017/S0956796801004191
http://dx.doi.org/10.4204/EPTCS.153.4
http://doi.acm.org/10.1145/2500365.2500591
http://doi.acm.org/10.1145/2500365.2500591
http://dx.doi.org/10.1007/BFb0053541
http://coq.inria.fr/files/adt-2fev10-barras.pdf
http://coq.inria.fr/files/adt-2fev10-barras.pdf
https://coq.inria.fr/coq-workshop/2013#Sacchini
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1017/S0960129503004122
http://doi.acm.org/10.1145/1353445.1353450
http://doi.acm.org/10.1145/1353445.1353450
http://doi.acm.org/10.1145/2784731.2784732
http://doi.acm.org/10.1145/2784731.2784732
http://dx.doi.org/10.1007/3-540-58085-9_72


5

MPC 2010, Québec City, Canada, June 21-23, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6120, pp. 100–118. Springer (2010), http://dx.doi.org/10.1007/
978-3-642-13321-3_8

Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P., Nordström,
B., Smith, J. (eds.) Types for Proofs and Programs, International Workshop TYPES’94, Båstad,
Sweden, June 6-10, 1994, Selected Papers. Lecture Notes in Computer Science, vol. 996, pp.
39–59. Springer (1995), http://dx.doi.org/10.1007/3-540-60579-7_3

Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized types.
In: Boehm, H.J., Jr., G.L.S. (eds.) Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Sym-
posium, St. Petersburg Beach, Florida, USA, January 21-24, 1996. pp. 410–423. ACM Press
(1996), http://doi.acm.org/10.1145/237721.240882

Hur, C., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in coinductive proof.
In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’13, Rome, Italy, January 23 - 25, 2013. pp.
193–206. ACM Press (2013), http://doi.acm.org/10.1145/2429069.2429093

Hyvernat, P.: The size-change termination principle for constructor based languages. Logical
Methods in Computer Science 10(1) (2014), http://dx.doi.org/10.2168/LMCS-10(1:
11)2014

Mendler, N.P., Panangaden, P., Constable, R.L.: Infinite objects in type theory. In: Proceed-
ings, Symposium on Logic in Computer Science, 16-18 June 1986, Cambridge, Massachusetts,
USA. pp. 249–255. IEEE Computer Society (1986)

Mendler, N.P.: Inductive types and type constraints in the second-order lambda calculus. An-
nals of Pure and Applied Logic 51(1–2), 159–172 (1991), http://dx.doi.org/10.1016/
0168-0072(91)90069-X

Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics for while with
interactive I/O: an exercise in mixed induction-coinduction. In: Aceto, L., Sobocinski, P. (eds.)
Proceedings Seventh Workshop on Structural Operational Semantics, SOS 2010, Paris, France,
30 August 2010. Electronic Proceedings in Theoretical Computer Science, vol. 32, pp. 57–75
(2010), http://dx.doi.org/10.4204/EPTCS.32.5

Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin Löf’s Type Theory: An Intro-
duction. Clarendon Press, Oxford (1990), http://www.cs.chalmers.se/Cs/Research/
Logic/book/

Paulin-Mohring, C.: Inductive definitions in the system Coq - rules and properties. In: Bezem,
M., Groote, J.F. (eds.) Typed Lambda Calculi and Applications, International Conference on
Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-
18, 1993, Proceedings. Lecture Notes in Computer Science, vol. 664, pp. 328–345. Springer
(1993), http://dx.doi.org/10.1007/BFb0037116

Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Sangiorgi, D.,
Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction. Cambridge University
Press (2012)

Sacchini, J.: Coq̂: Type-based termination in the Coq proof assistant (2015), project description,
http://qatar.cmu.edu/~sacchini/coq.html

Sacchini, J.L.: Type-based productivity of stream definitions in the calculus of constructions.
In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New
Orleans, LA, USA, June 25-28, 2013. pp. 233–242. IEEE Computer Society Press (2013),
http://dx.doi.org/10.1109/LICS.2013.29

Sprenger, C., Dam, M.: On the structure of inductive reasoning: Circular and tree-shaped proofs
in the µ-calculus. In: Gordon, A.D. (ed.) Foundations of Software Science and Computational
Structures, 6th International Conference, FOSSACS 2003 Held as Part of the Joint European

http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/3-540-60579-7_3
http://doi.acm.org/10.1145/237721.240882
http://doi.acm.org/10.1145/2429069.2429093
http://dx.doi.org/10.2168/LMCS-10(1:11)2014
http://dx.doi.org/10.2168/LMCS-10(1:11)2014
http://dx.doi.org/10.1016/0168-0072(91)90069-X
http://dx.doi.org/10.1016/0168-0072(91)90069-X
http://dx.doi.org/10.4204/EPTCS.32.5
http://www.cs.chalmers.se/Cs/Research/Logic/book/
http://www.cs.chalmers.se/Cs/Research/Logic/book/
http://dx.doi.org/10.1007/BFb0037116
http://qatar.cmu.edu/~sacchini/coq.html
http://dx.doi.org/10.1109/LICS.2013.29


6

Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2620, pp. 425–440. Springer
(2003), http://dx.doi.org/10.1007/3-540-36576-1_27

http://dx.doi.org/10.1007/3-540-36576-1_27

	Compositional Coinduction with Sized Types

