A Higher-Order Polymorphic Lambda-Calculus
With Sized Types

This is where the subtitle would have gone.
Andreas Abel

First APPSEM II Workshop
Nottingham, UK
March 28, 2003

Slide 1

— Work in progress —

Work supported by: PhD Prg. Logic in Computer Science, Munich (DFG)

Setting the stage. ..

e Curry-Howard-Isomorphism:
proofs by induction = programs with recursion
e Only terminating programs constitute valid proofs.
e Design issue: How to integrate terminating recursion into

Slide 2 proof/programming language?

One approach: special forms of recursion

e Tame recursion by restricting to special patterns.

Iteration/catamorphisms
e.g. Haskell’s List.fold

Primitive recursion/paramorphisms
Slide 3 e Problems:

— Non-trivial operational semantics makes it harder to
understand programs.

— I do not want to write all of my list-processing functions
using fold.

Another approach: recursion with termination checking

e Use general recursion: letrec.

e
e Has “intuitive” meaning through simple operational semantics.
e In general not normalizing, need termination checking.

e Here we used the sized types approach [Hughes et al. 1996]
Slide 4 [Barthe et al. 20037].

e View data as trees.
e Size = height = # constructors in longest path of tree.
e Height of input data must decrease in each recursive call.

e Termination is ensured by type-checker.

Sized types in a nutshell

e Sizes are upper bounds.
List” denotes lists of length < a.
List™ denotes list of arbitrary (but finite) length.

Sizes induce subtyping: List® < List® if a < b.

Slide 5 e In general, sizes are ordinal numbers, needed e.g. for infinitely
branching trees.

e Size expressions:
a = 1 variable
| a+1 sucessor

| oo ultimate limit, denoting € (first uncountable)

Example: list splitting

split : VA:x. List A — List A x List A
split [] = 0)
split (z::k) =casek of
[] —({@=k) L[])
Slide 6 | (y::1) — let (ws ,ys)=splitl in

(@:os) L (yiys))

e Sized types allow us to express that split denotes a non-size

increasing function.

Slide 7

Slide 8

Example: list splitting

split : Vi:ord. VA: . List’A — List A x List A
split [] = .0)

split (x :: k)"l = case k'<iT1!of
[] = {(z=k) L[])
| (y::1") — let (zs ,ys)=spliti®in
((x:xs) (y:ys))

e To compute split at stage ¢ + 1, split is only used at stage 1.

e Hence, split is terminating.

Example: list splitting

split : Vi:ord. VA: . List’A — List’A x List'A
split [J'** = (14 (1)
split (x :: k)"l = case k'<iT!of
17— (s B,)
| (y =2 1%) — let (zs?, ys') =splitl® in
{(z:ms)™L, (y 2 ys)™Th)

e We additionally can infer that split is non-size increasing.

e Using split, we can define merge sort. ..

Slide 9

Slide 10

Example: merge sort

merge : List Int — List Int — List Int
msort : List Int — List Int

msort [] =[]

msort (x :: k) = case k of

[] — x|
| (y::1)— let (ws ,ys)=splitl in
merge (msort (z :: xs))
(msort (y :: ys))

Example: merge sort

merge: Vi:ord. List’ Int — Vj:ord. List’ Int — List™ Int

msort : Vi:ord. List’ Int — List™ Int

msort [[T1 =]
msort (z :: k') = case k/ 1= of
0 —e=l] ‘
| (y::17) — let (xs?, ys?)=splitl? in
merge (msort (:: zs)IT1=%)
(msort (y :: ys)IT1=%)

F“: smoothing the presentation

e Kinds.

K = % types
ord ordinal sizes

|
K K covarilan ype constructors
—+ K iant t truct
|
|

Slide 11 k —— K/ contravariant type constructors
k —%— k' invariant type constructors
e “Subconstructors” F < G : k. E.g.,
X<Y:kFFX<GY:«
F<G:x —ET-§K
e Well-kindedness definable by F : k <— F < F :k
Inductive types
e Inductive constructors.
p sord —F— (k —F— k) —F— &
e Example: List = MAA. p.i (AX. 1+ A x X).
e Axiom: Fixpoint is reached at stage oo.
Slide 12

pa <poco: (k —t— k) —F—k

e Recursion over inductive types:

Fx—+ %
G :ord —— x
itordbFs: (WiF - Gi)—p(i+1)F—>G(@+1)

fix''s:Vicord. ui FF — Gi

Higher-rank inductive types

e Inductive functors: y, for Kk = % — *.

e E.g., Term A, de Bruijn terms with free variables in A:

Term = i 00ATAA. A4+ T(1+ A+ TAXTA

Slide 13

Conclusions

Sized types:

e Conceptually lean way of ensuring termination.
e Well-typedness ensures termination.

e No external static analysis required.

Slide 14 System F:

e Size expressions can be integrated into constructors.

e Sized types scale to higher-order polymorphism.

Goal: extend to dependent types.

