
Slide 1

A Higher-Order Polymorphic Lambda-Calculus
With Sized Types

This is where the subtitle would have gone.

Andreas Abel

First APPSEM II Workshop
Nottingham, UK
March 28, 2003

— Work in progress —

Work supported by: PhD Prg. Logic in Computer Science, Munich (DFG)

Slide 2

Setting the stage. . .

• Curry-Howard-Isomorphism:
proofs by induction = programs with recursion

• Only terminating programs constitute valid proofs.

• Design issue: How to integrate terminating recursion into
proof/programming language?

1

Slide 3

One approach: special forms of recursion

• Tame recursion by restricting to special patterns.

• Iteration/catamorphisms
e.g. Haskell’s List.fold

• Primitive recursion/paramorphisms

• Problems:

– Non-trivial operational semantics makes it harder to
understand programs.

– I do not want to write all of my list-processing functions
using fold.

Slide 4

Another approach: recursion with termination checking

• Use general recursion: letrec.

• Has “intuitive” meaning through simple operational semantics.

• In general not normalizing, need termination checking.

• Here we used the sized types approach [Hughes et al. 1996]
[Barthe et al. 2003?].

• View data as trees.

• Size = height = # constructors in longest path of tree.

• Height of input data must decrease in each recursive call.

• Termination is ensured by type-checker.

2

Slide 5

Sized types in a nutshell

• Sizes are upper bounds.

• Lista denotes lists of length < a.

• List∞ denotes list of arbitrary (but finite) length.

• Sizes induce subtyping: Lista ≤ Listb if a ≤ b.
• In general, sizes are ordinal numbers, needed e.g. for infinitely

branching trees.

• Size expressions:

a ::= i variable

| a+ 1 sucessor

| ∞ ultimate limit, denoting Ω (first uncountable)

Slide 6

Example: list splitting

split : ∀i :ord.∀A :∗. ListiA→ ListiA× ListiA

split []i+1 = 〈[]i+1, []i+1〉
split (x :: ki)i+1 = case ki≤i+1 of

[]i+1 → 〈(x :: k)i+1, []i+1〉
| (y :: li) → let 〈xsi, ysi〉=split li in

〈(x :: xs)i+1, (y :: ys)i+1〉

• Sized types allow us to express that split denotes a non-size
increasing function.

3

Slide 7

Example: list splitting

split : ∀i :ord.∀A :∗. ListiA→ ListiA× ListiA

split []i+1 = 〈[]i+1, []i+1〉
split (x :: ki)i+1 = case ki≤i+1 of

[]i+1 → 〈(x :: k)i+1, []i+1〉
| (y :: li) → let 〈xsi, ysi〉=split li in

〈(x :: xs)i+1, (y :: ys)i+1〉

• To compute split at stage i+ 1, split is only used at stage i.

• Hence, split is terminating.

Slide 8

Example: list splitting

split : ∀i :ord.∀A :∗. ListiA→ ListiA× ListiA

split []i+1 = 〈[]i+1, []i+1〉
split (x :: ki)i+1 = case ki≤i+1 of

[]i+1 → 〈(x :: k)i+1, []i+1〉
| (y :: li) → let 〈xsi, ysi〉=split li in

〈(x :: xs)i+1, (y :: ys)i+1〉

• We additionally can infer that split is non-size increasing.

• Using split, we can define merge sort. . .

4

Slide 9

Example: merge sort

merge : ∀i :ord. Listi Int→ ∀j :ord. Listj Int→ List∞ Int

msort : ∀i :ord. Listi Int→ List∞ Int

msort []i+1 = []
msort (x :: ki) = case kj+1=i of

[] → x :: []
| (y :: lj)→ let (xsj , ysj)=split lj in

merge (msort (x :: xs)j+1=i)
(msort (y :: ys)j+1=i)

Slide 10

Example: merge sort

merge : ∀i :ord. Listi Int→ ∀j :ord. Listj Int→ List∞ Int

msort : ∀i :ord. Listi Int→ List∞ Int

msort []i+1 = []
msort (x :: ki) = case kj+1=i of

[] → x :: []
| (y :: lj)→ let (xsj , ysj)=split lj in

merge (msort (x :: xs)j+1=i)
(msort (y :: ys)j+1=i)

5

Slide 11

Fω: smoothing the presentation

• Kinds.

κ ::= ∗ types

| ord ordinal sizes

| κ −−+−→ κ′ covariant type constructors

| κ −−−−→ κ′ contravariant type constructors

| κ −−0−→ κ′ invariant type constructors

• “Subconstructors” F ≤ G : κ. E.g.,

X≤Y : κ ` F X ≤ GY : κ′

F ≤ G : κ −−+−→ κ′

• Well-kindedness definable by F : κ ⇐⇒ F ≤ F : κ

Slide 12

Inductive types

• Inductive constructors.

µκ : ord −−+−→ (κ −−+−→ κ) −−+−→ κ

• Example: List = λiλA. µ∗i (λX. 1 +A×X).

• Axiom: Fixpoint is reached at stage ∞.

µa ≤ µ∞ : (κ −−+−→ κ) −−+−→ κ

• Recursion over inductive types:

F : ∗ −−+−→ ∗
G : ord −−+−→ ∗
i : ord ` s : (µ iF → Gi)→ µ (i+ 1)F → G (i+ 1)

fixµ s : ∀i :ord. µ i F → Gi

6

Slide 13

Higher-rank inductive types

• Inductive functors: µκ for κ = ∗ → ∗.
• E.g., TermA, de Bruijn terms with free variables in A:

Term = µ∗→∗∞λTλA.A+ T (1 +A) + TA× TA

Slide 14

Conclusions

Sized types:

• Conceptually lean way of ensuring termination.

• Well-typedness ensures termination.

• No external static analysis required.

System Fω:

• Size expressions can be integrated into constructors.

• Sized types scale to higher-order polymorphism.

Goal: extend to dependent types.

7

