
Birkhoff’s Completeness Theorem for
Multi-Sorted Algebras Formalized in Agda

Andreas Abel
Department of Computer Science, Gothenburg University, Sweden

3 June 2021

This document provides a formal proof of Birkhoff’s completeness theorem for
multi-sorted algebras which states that any equational entailment valid in all models
is also provable in the equational theory. More precisely, if a certain equation is valid
in all models that validate a fixed set of equations, then this equation is derivable
from that set using the proof rules for a congruence.

The proof has been formalized in Agda version 2.6.2 with the Agda Standard
Library version 1.7 and this document reproduces the commented Agda code.

1 Introduction

Birkhoff’s completeness theorem [1935] has been formalized in type theory before, even in Agda
[Gunther et al., 2017, Thm .3.1]. Our formalization makes the following decisions:

1. We use indexed containers [Altenkirch et al., 2015] aka Peterson-Synek (interaction) trees.
Given a set 𝑆 of sort symbols, a signature over 𝑆 is an indexed endo-container, which has
three components:
a) Per sort 𝑠 ∶ 𝑆, a set 𝑂𝑠 of operator symbols. (In the container terminology, these

are called shapes for index 𝑠, and in the interaction tree terminology, commands for
state 𝑠.)

b) Per operator 𝑜 ∶ 𝑂𝑠, a set 𝐴𝑜, the arity of operator 𝑜. The arity is the index set for the
arguments of the operator, which are then given by a function over 𝐴𝑜. (In the other
terminologies, these are the positions or responses, resp.)

c) Per argument index 𝑖 ∶ 𝐴𝑜, a sort 𝑠𝑖 ∶ 𝑆 which denotes the sort of the 𝑖th argument
of operator 𝑜. (In the interaction tree terminology, this is the next state.)

Closed terms of a multi-sorted algebra (aka first-order terms) are then concrete interaction
trees, i.e., elements of the indexed 𝑊 -type pertaining to the container.
Note that all the “set”s we mentioned above come with a size, see next point.

1

2. Universe-polymorphic: As we are working in a predicative and constructive meta-theory,
we have to be aware of the size (i.e., inaccessible cardinality) of the sets. Our formalization
is universe-polymorphic to ensure good generality, resting on the universe-polymorphic
Agda Standard Library.
In particular, there is no such thing as “all models”; rather we can only quantify over
models of a certain maximum size. The completeness theorem consequently does not
require validity of an entailment in all models, but only in all models of a certain size,
which is given by the size of the generic model, i.e., the term model. The size of the term
model in turn is determined by the size of the signature of the multi-sorted algebra.

3. Open terms (with free variables) are obtained as the free monad over the container. Con-
cretely, we make a new container that has additional nullary operator symbols, which stand
for the variables. Terms are intrinsically typed, i.e., the set of terms is actually a family of
sets indexed by a sort and a context of sorted variables in scope.

4. No lists: We have no finiteness restrictions whatsover, neither the number of operators need
to be finite, nor the number of arguments of an operator, nor the set of variables that are
in scope of a term. (Note however, since terms are finite trees, they can actually mention
only a finite number of variables from the possibly infinite supply.)

2 Preliminaries

We import library content for indexed containers, standard types, and setoids.

{−# OPTIONS --guardedness #−} -- transitional, for Data.Container.Indexed.FreeMonad

open import Level

open import Data.Container.Indexed.Core using (Container; J_K; _◃_/_)
open import Data.Container.Indexed.FreeMonad using (_⋆C_)
open import Data.W.Indexed using (W; sup)

open import Data.Product using (Σ; _×_; _, _; Σ−syntax); open Σ
open import Data.Sum using (_⊎_; inj1; inj2; [_, _])
open import Data.Empty.Polymorphic using (⊥; ⊥−elim)

open import Function using (_∘_)
open import Function.Bundles using (Func)

open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Unary using (Pred)

import Relation.Binary.Reasoning.Setoid as SetoidReasoning

2

open Setoid using (Carrier; _≈_; isEquivalence)
open Func renaming (f to apply)

Letter ℓ denotes universe levels.

variable
ℓ ℓ′ ℓs ℓo ℓa ℓm ℓe ℓi ∶ Level
I ∶ Set ℓi
S ∶ Set ℓs

The interpretation of a container (Op ◃ Ar / sort) isJ Op ◃ Ar / sort K X s = Σ[o ∈ Op s] ((i : Ar o) → X (sort o i))
which contains pairs consisting of an operator 𝑜 and its collection of arguments. The least fixed
point of (X ↦ J C K X) is the indexed W-type given by C, and it contains closed first-order terms
of the multi-sorted algebra C.
We need to interpreting indexed containers on Setoids. This definition is missing from the stan-
dard library v1.7. It equips the sets (J C K X s) with an equivalence relation induced by the one
of the family 𝑋. The definition of J_K𝑠 can be stated for heterogeneous index containers where
we distinguish input and output sorts 𝐼 and 𝑆.

J_Ks ∶ (C ∶ Container I S ℓo ℓa) (ξ ∶ I → Setoid ℓm ℓe) → S → Setoid _ _

J C Ks ξ s .Carrier =J C K (Carrier ∘ ξ) s

J Op ◃ Ar / sort Ks ξ s ._≈_ (op , args) (op′ , args′) =
Σ[eq ∈ op ≡ op′] EqArgs eq args args′

where
EqArgs ∶ (eq ∶ op ≡ op′)

(args ∶ (i ∶ Ar op) → ξ (sort _ i) .Carrier)
(args′ ∶ (i ∶ Ar op′) → ξ (sort _ i) .Carrier)

→ Set _
EqArgs refl args args′ = (i ∶ Ar op) → ξ (sort _ i) ._≈_ (args i) (args′ i)

J Op ◃ Ar / sort Ks ξ s .isEquivalence .IsEquivalence.refl
= refl , 𝜆 i → Setoid.refl (ξ (sort _ i))J Op ◃ Ar / sort Ks ξ s .isEquivalence .IsEquivalence.sym (refl , g)
= refl , 𝜆 i → Setoid.sym (ξ (sort _ i)) (g i)J Op ◃ Ar / sort Ks ξ s .isEquivalence .IsEquivalence.trans (refl , g) (refl , h)
= refl , 𝜆 i → Setoid.trans (ξ (sort _ i)) (g i) (h i)

3

3 Multi-sorted algebras

A multi-sorted algebra is an indexed container.

• Sorts are indexes.
• Operators are commands/shapes.
• Arities/argument are responses/positions.

Closed terms (initial model) are given by the W type for a container, renamed to 𝜇 here (for least
fixed-point).
It is convenient to name the concept of signature, i.e. (Sort, Ops)

record Signature (ℓs ℓo ℓa ∶ Level) ∶ Set (suc (ℓs ⊔ ℓo ⊔ ℓa)) where
field

Sort ∶ Set ℓs
Ops ∶ Container Sort Sort ℓo ℓa

We assume a fixed signature.

module _ (Sig ∶ Signature ℓs ℓo ℓa) where
open Signature Sig
open Container Ops renaming

(Command to Op
; Response to Arity
; next to sort
)

We let letter 𝑠 range over sorts and op over operators.

variable
s s′ ∶ Sort
op op′ ∶ Op s

3.1 Models

A model is given by an interpretation (Den 𝑠) for each sort 𝑠 plus an interpretation (den 𝑜) for
each operator 𝑜. A model is also frequently known as an Algebra for a signature; but as that
terminology is too overloaded, it is avoided here.

record SetModel ℓm ∶ Set (ℓs ⊔ ℓo ⊔ ℓa ⊔ suc ℓm) where
field

Den ∶ Sort → Set ℓm
den ∶ {s ∶ Sort} → J Ops K Den s → Den s

4

The setoid model requires operators to respect equality. The Func record packs a function (apply)
with a proof (cong) that the function maps equals to equals.

record SetoidModel ℓm ℓe ∶ Set (ℓs ⊔ ℓo ⊔ ℓa ⊔ suc (ℓm ⊔ ℓe)) where
field

Den ∶ Sort → Setoid ℓm ℓe
den ∶ {s ∶ Sort} → Func (J Ops Ks Den s) (Den s)

4 Terms

To obtain terms with free variables, we add additional nullary operators, each representing a
variable.
These are covered in the standard library FreeMonad module, albeit with the restriction that the
operator and variable sets have the same size.

Cxt ∶ Set (ℓs ⊔ suc ℓo)
Cxt = Sort → Set ℓo

variable
Γ Δ ∶ Cxt

Terms with free variables in Var.

module _ (Var ∶ Cxt) where

We keep the same sorts, but add a nullary operator for each variable.

Ops+ ∶ Container Sort Sort ℓo ℓa
Ops+ = Ops ⋆C Var

Terms with variables are then given by the W-type for the extended container.

Tm ∶ Pred Sort _
Tm = W Ops+

We define nice constructors for variables and operator application via pattern synonyms. Note
that the 𝑓 in constructor var’ is a function from the empty set, so it should be uniquely determined.
However, Agda’s equality is more intensional and will not identify all functions from the empty
set. Since we do not make use of the axiom of function extensionality, we sometimes have to
consult the extensional equality of the function setoid.

pattern _∙_ op args = sup (inj2 op , args)
pattern var′ x f = sup (inj1 x , f)
pattern var x = var′ x _

5

Letter 𝑡 ranges over terms, and ts over argument vectors.

variable
t t′ t1 t2 t3 ∶ Tm Γ s
ts ts′ ∶ (i ∶ Arity op) → Tm Γ (sort _ i)

4.1 Parallel substitutions

A substitution from Δ to Γ holds a term in Γ for each variable in Δ.

Sub ∶ (Γ Δ ∶ Cxt) → Set _
Sub Γ Δ = ∀{s} (x ∶ Δ s) → Tm Γ s

Application of a substitution.

[] ∶ (t ∶ Tm Δ s) (𝜎 ∶ Sub Γ Δ) → Tm Γ s
(var x) [𝜎] = 𝜎 x
(op ∙ ts) [𝜎] = op ∙ 𝜆 i → ts i [𝜎]

Letter 𝜎 ranges over substitutions.

variable
𝜎 𝜎′ ∶ Sub Γ Δ

5 Interpretation of terms in a model

Given an algebra 𝑀 of set-size ℓ𝑚 and equality-size ℓ𝑒, we define the interpretation of an 𝑠-
sorted term 𝑡 as element of 𝑀(𝑠) according to an environment 𝜌 that maps each variable of sort
𝑠′ to an element of 𝑀(𝑠′).

module _ {M ∶ SetoidModel ℓm ℓe} where
open SetoidModel M

Equality in 𝑀’s interpretation of sort 𝑠.

≃ ∶ Den s .Carrier → Den s .Carrier → Set _
≃ {s = s} = Den s ._≈_

An environment for Γ maps each variable 𝑥 ∶ Γ(𝑠) to an element of 𝑀(𝑠). Equality of environ-
ments is defined pointwise.

Env ∶ Cxt → Setoid _ _
Env Γ .Carrier = {s ∶ Sort} (x ∶ Γ s) → Den s .Carrier

6

Env Γ ._≈_ 𝜌 𝜌′ = {s ∶ Sort} (x ∶ Γ s) → 𝜌 x ≃ 𝜌′ x
Env Γ .isEquivalence .IsEquivalence.refl {s = s} x = Den s .Setoid.refl
Env Γ .isEquivalence .IsEquivalence.sym h {s} x = Den s .Setoid.sym (h x)
Env Γ .isEquivalence .IsEquivalence.trans g h {s} x = Den s .Setoid.trans (g x) (h x)

Interpretation of terms is iteration on the W-type. The standard library offers ‘iter’ (on sets), but
we need this to be a Func (on setoids).

⦅_⦆ ∶ ∀{s} (t ∶ Tm Γ s) → Func (Env Γ) (Den s)
⦅ var x ⦆ .apply 𝜌 = 𝜌 x
⦅ var x ⦆ .cong 𝜌=𝜌′ = 𝜌=𝜌′ x
⦅ op ∙ args ⦆ .apply 𝜌 = den .apply (op , 𝜆 i → ⦅ args i ⦆ .apply 𝜌)
⦅ op ∙ args ⦆ .cong 𝜌=𝜌′ = den .cong (refl , 𝜆 i → ⦅ args i ⦆ .cong 𝜌=𝜌′)

An equality between two terms holds in a model if the two terms are equal under all valuations
of their free variables.

Equal ∶ ∀ {Γ s} (t t′ ∶ Tm Γ s) → Set _
Equal {Γ} {s} t t′ = ∀ (𝜌 ∶ Env Γ .Carrier) → ⦅ t ⦆ .apply 𝜌 ≃ ⦅ t′ ⦆ .apply 𝜌

This notion is an equivalence relation.

isEquiv ∶ IsEquivalence (Equal {Γ = Γ} {s = s})
isEquiv {s = s} .IsEquivalence.refl 𝜌 = Den s .Setoid.refl
isEquiv {s = s} .IsEquivalence.sym e 𝜌 = Den s .Setoid.sym (e 𝜌)
isEquiv {s = s} .IsEquivalence.trans e e′ 𝜌 = Den s .Setoid.trans (e 𝜌) (e′ 𝜌)

5.1 Substitution lemma

Evaluation of a substitution gives an environment.

⦅_⦆s ∶ Sub Γ Δ → Env Γ .Carrier → Env Δ .Carrier
⦅ 𝜎 ⦆s 𝜌 x = ⦅ 𝜎 x ⦆ .apply 𝜌

Substitution lemma: ⦅t[𝜎]⦆𝜌 ≃ ⦅t⦆⦅𝜎⦆𝜌

substitution ∶ (t ∶ Tm Δ s) (𝜎 ∶ Sub Γ Δ) (𝜌 ∶ Env Γ .Carrier) →
⦅ t [𝜎] ⦆ .apply 𝜌 ≃ ⦅ t ⦆ .apply (⦅ 𝜎 ⦆s 𝜌)

substitution (var x) 𝜎 𝜌 = Den _ .Setoid.refl
substitution (op ∙ ts) 𝜎 𝜌 = den .cong (refl , 𝜆 i → substitution (ts i) 𝜎 𝜌)

7

6 Equations

An equation is a pair 𝑡 ≐ 𝑡′ of terms of the same sort in the same context.

record Eq ∶ Set (ℓs ⊔ suc ℓo ⊔ ℓa) where
constructor _≐_
field

{cxt} ∶ Sort → Set ℓo
{srt} ∶ Sort
lhs ∶ Tm cxt srt
rhs ∶ Tm cxt srt

Equation 𝑡 ≐ 𝑡′ holding in model 𝑀 .

⊧ ∶ (M ∶ SetoidModel ℓm ℓe) (eq ∶ Eq) → Set _
M ⊧ (t ≐ t′) = Equal {M = M} t t′

Sets of equations are presented as collection E : I → Eq for some index set I : Set ℓ𝑖.
An entailment/consequence 𝐸 ⊃ 𝑡 ≐ 𝑡′ is valid if 𝑡 ≐ 𝑡′ holds in all models that satify equations
𝐸.

module _ {ℓm ℓe} where

⊃ ∶ (E ∶ I → Eq) (eq ∶ Eq) → Set _
E ⊃ eq = ∀ (M ∶ SetoidModel ℓm ℓe) → (∀ i → M ⊧ E i) → M ⊧ eq

6.1 Derivations

Equalitional logic allows us to prove entailments via the inference rules for the judgment 𝐸 ⊢
Γ ⊳ 𝑡 ≡ 𝑡′. This could be coined as equational theory over a given set of equations 𝐸. Relation
𝐸 ⊢ Γ ⊳ _ ≡ _ is the least congruence over the equations 𝐸.

data _⊢_⊳_≡_ {I ∶ Set ℓi}
(E ∶ I → Eq) ∶ (Γ ∶ Cxt) (t t′ ∶ Tm Γ s) → Set (ℓs ⊔ suc ℓo ⊔ ℓa ⊔ ℓi) where

hyp ∶ ∀ i → let t ≐ t′ = E i in
E ⊢ _ ⊳ t ≡ t′

base ∶ ∀ (x ∶ Γ s) {f f′ ∶ (i ∶ ⊥) → Tm _ (⊥−elim i)} →
E ⊢ Γ ⊳ var′ x f ≡ var′ x f′

app ∶ (∀ i → E ⊢ Γ ⊳ ts i ≡ ts′ i) →
E ⊢ Γ ⊳ (op ∙ ts) ≡ (op ∙ ts′)

8

sub ∶ E ⊢ Δ ⊳ t ≡ t′ →
∀ (𝜎 ∶ Sub Γ Δ) →
E ⊢ Γ ⊳ (t [𝜎]) ≡ (t′ [𝜎])

refl ∶ ∀ (t ∶ Tm Γ s) →
E ⊢ Γ ⊳ t ≡ t

sym ∶ E ⊢ Γ ⊳ t ≡ t′ →
E ⊢ Γ ⊳ t′ ≡ t

trans ∶ E ⊢ Γ ⊳ t1 ≡ t2 →
E ⊢ Γ ⊳ t2 ≡ t3 →
E ⊢ Γ ⊳ t1 ≡ t3

6.2 Soundness of the inference rules

We assume a model 𝑀 that validates all equations in 𝐸.

module Soundness {I ∶ Set ℓi} (E ∶ I → Eq) (M ∶ SetoidModel ℓm ℓe)
(V ∶ ∀ i → M ⊧ E i) where
open SetoidModel M

In any model 𝑀 that satisfies the equations 𝐸, derived equality is actual equality.

sound ∶ E ⊢ Γ ⊳ t ≡ t′ → M ⊧ (t ≐ t′)

sound (hyp i) = V i
sound (app {op = op} es) 𝜌 = den .cong (refl , 𝜆 i → sound (es i) 𝜌)
sound (sub {t = t} {t′ = t′} e 𝜎) 𝜌 = begin

⦅ t [𝜎] ⦆ .apply 𝜌 ≈⟨ substitution {M = M} t 𝜎 𝜌 ⟩
⦅ t ⦆ .apply 𝜌′ ≈⟨ sound e 𝜌′ ⟩
⦅ t′ ⦆ .apply 𝜌′ ≈˘⟨ substitution {M = M} t′ 𝜎 𝜌 ⟩
⦅ t′ [𝜎] ⦆ .apply 𝜌 ∎
where
open SetoidReasoning (Den _)
𝜌′ = ⦅ 𝜎 ⦆s 𝜌

sound (base x {f} {f′}) = isEquiv {M = M} .IsEquivalence.refl {var′ x 𝜆()}

sound (refl t) = isEquiv {M = M} .IsEquivalence.refl {t}
sound (sym {t = t} {t′ = t′} e) = isEquiv {M = M} .IsEquivalence.sym

{x = t} {y = t′} (sound e)
sound (trans {t1 = t1} {t2 = t2}

{t3 = t3} e e′) = isEquiv {M = M} .IsEquivalence.trans
{i = t1} {j = t2} {k = t3} (sound e) (sound e′)

9

7 Birkhoff’s completeness theorem

Birkhoff proved that any equation 𝑡 ≐ 𝑡′ is derivable from 𝐸 when it is valid in all models
satisfying 𝐸. His proof (for single-sorted algebras) is a blue print for many more completeness
proofs. They all proceed by constructing a universal model aka term model. In our case, it is
terms quotiented by derivable equality 𝐸 ⊢ Γ ⊳ _ ≡ _. It then suffices to prove that this model
satisfies all equations in 𝐸.

7.1 Universal model

A term model for 𝐸 and Γ interprets sort 𝑠 by (Tm Γ s) quotiented by 𝐸 ⊢ Γ ⊳ _ ≡ _.

module TermModel {I ∶ Set ℓi} (E ∶ I → Eq) where
open SetoidModel

Tm Γ s quotiented by E⊢Γ⊳·≡·.

TmSetoid ∶ Cxt → Sort → Setoid _ _
TmSetoid Γ s .Carrier = Tm Γ s
TmSetoid Γ s ._≈_ = E ⊢ Γ ⊳_≡_
TmSetoid Γ s .isEquivalence .IsEquivalence.refl = refl _
TmSetoid Γ s .isEquivalence .IsEquivalence.sym = sym
TmSetoid Γ s .isEquivalence .IsEquivalence.trans = trans

The interpretation of an operator is simply the operator. This works because 𝐸 ⊢ Γ ⊳ _ ≡ _ is a
congruence.

tmInterp ∶ ∀ {Γ s} → Func (J Ops Ks (TmSetoid Γ) s) (TmSetoid Γ s)
tmInterp .apply (op , ts) = op ∙ ts
tmInterp .cong (refl , h) = app h

The term model per context Γ.

M ∶ Cxt → SetoidModel _ _
M Γ .Den = TmSetoid Γ
M Γ .den = tmInterp

The identity substitution 𝜎0 maps variables to themselves.

𝜎0 ∶ {Γ ∶ Cxt} → Sub Γ Γ
𝜎0 x = var′ x 𝜆()

𝜎0 acts indeed as identity.

10

identity ∶ (t ∶ Tm Γ s) → E ⊢ Γ ⊳ t [𝜎0] ≡ t
identity (var x) = base x
identity (op ∙ ts) = app 𝜆 i → identity (ts i)

Evaluation in the term model is substitution 𝐸 ⊢ Γ ⊳ ⦅𝑡⦆𝜎 ≡ 𝑡[𝜎]. This would even hold ”up to
the nose” if we had function extensionality.

evaluation ∶ (t ∶ Tm Δ s) (𝜎 ∶ Sub Γ Δ) → E ⊢ Γ ⊳ (⦅_⦆ {M = M Γ} t .apply 𝜎) ≡ (t [𝜎])
evaluation (var x) 𝜎 = refl (𝜎 x)
evaluation (op ∙ ts) 𝜎 = app (𝜆 i → evaluation (ts i) 𝜎)

The term model satisfies all the equations it started out with.

satisfies ∶ ∀ i → M Γ ⊧ E i
satisfies i 𝜎 = begin

⦅ tl ⦆ .apply 𝜎 ≈⟨ evaluation tl 𝜎 ⟩
tl [𝜎] ≈⟨ sub (hyp i) 𝜎 ⟩
tr [𝜎] ≈˘⟨ evaluation tr 𝜎 ⟩
⦅ tr ⦆ .apply 𝜎 ∎
where
open SetoidReasoning (TmSetoid _ _)
tl = E i .Eq.lhs
tr = E i .Eq.rhs

7.2 Completeness

Birkhoff’s completeness theorem [1935]: Any valid consequence is derivable in the equational
theory.

module Completeness {I ∶ Set ℓi} (E ∶ I → Eq) {Γ s} {t t′ ∶ Tm Γ s} where
open TermModel E

completeness ∶ E ⊃ (t ≐ t′) → E ⊢ Γ ⊳ t ≡ t′
completeness V = begin
t ≈˘⟨ identity t ⟩
t [𝜎0] ≈˘⟨ evaluation t 𝜎0 ⟩
⦅ t ⦆ .apply 𝜎0 ≈⟨ V (M Γ) satisfies 𝜎0 ⟩
⦅ t′ ⦆ .apply 𝜎0 ≈⟨ evaluation t′ 𝜎0 ⟩
t′ [𝜎0] ≈⟨ identity t′ ⟩
t′ ∎
where open SetoidReasoning (TmSetoid Γ s)

Q.E.D.

11

8 Related work

Gunther et al. [2017] further formalize signaturemorphisms. These would be, in our setting, mor-
phisms of indexed containers, described by Altenkirch et al. [2015], albeit in a slightly different
semantics, slice categories.
DeMeo’s rather comprehensive development [2021] formalizes single-sorted algebras up to the
Birkhoff’s HSP theorem in Agda. DeMeo’s signatures are containers; even though he does not
make this connection explicit, it inspired the use of indexed containers in the present develop-
ment. DeMeo’s formalization is basis for https://github.com/ualib/agda-algebras.
Amato et al. [2021] formalize multi-sorted algebras with finitary operators in UniMath. Limiting
to finitary operators is due to the restrictions of the UniMath type theory, which does not have
W-types nor user-defined inductive types. These restrictions also prompt the authors to code
terms as lists of stack machine instructions rather than trees.
Lynge and Spitters [2019] formalize multi-sorted algebras in HoTT, also restricting to finitary
operators. Using HoTT they can define quotients as types, obsoleting setoids. They prove three
isomorphism theorems concerning sub- and quotient algebras. A universal algebra or varieties
are not formalized.

Acknowledgments. Standing on the shoulders of giants: the present concise formalization
is enabled by the well-organized standard library of Agda maintained by Matthew Daggitt and
Guillaume Allais. Thanks to Jacques Carette for discussions and constructive review of the Agda
code.
This document has been generated from MultiSortedAlgebra.agda using the agda2lagda
translator and the agda --latex backend.

References
T. Altenkirch, N. Ghani, P. G. Hancock, C. McBride, and P. Morris. Indexed containers. J.

Func. Program., 25, 2015. doi: 10.1017/S095679681500009X. URL https://doi.org/
10.1017/S095679681500009X.

G. Amato, M. Maggesi, and C. P. Brogi. Universal algebra in unimath. CoRR, abs/2102.05952,
2021. URL https://arxiv.org/abs/2102.05952.

G. Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the Cambridge
Philosophical Society, 31(4):433–454, 1935. doi: 10.1017/S0305004100013463.

W. J. DeMeo. The Agda Universal Algebra Library and Birkhoff’s theorem in Martin-Löf de-
pendent type theory. CoRR, abs/2101.10166, 2021. URL https://arxiv.org/abs/2101.
10166.

12

https://github.com/ualib/agda-algebras
https://andreasabel.github.io/agda2lagda/
http://agda-lang.org
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://arxiv.org/abs/2102.05952
https://arxiv.org/abs/2101.10166
https://arxiv.org/abs/2101.10166

E. Gunther, A. Gadea, and M. Pagano. Formalization of universal algebra in Agda. In S. Alves
and R. Wasserman, editors, 12th Workshop on Logical and Semantic Frameworks, with Ap-
plications, LSFA 2017, Brasília, Brazil, September 23-24, 2017, volume 338 of Electr. Notes
in Theor. Comp. Sci., pages 147–166. Elsevier, 2017. doi: 10.1016/j.entcs.2018.10.010. URL
https://doi.org/10.1016/j.entcs.2018.10.010.

A. Lynge and B. Spitters. Universal algebra in HoTT. In M. Bezem, editor, TYPES 2019, 25th
International Conference on Types for Proofs and Programs, 2019. URL http://www.ii.
uib.no/~bezem/abstracts/TYPES_2019_paper_7.

13

https://doi.org/10.1016/j.entcs.2018.10.010
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7

	Introduction
	Preliminaries
	Multi-sorted algebras
	Models

	Terms
	Parallel substitutions

	Interpretation of terms in a model
	Substitution lemma

	Equations
	Derivations
	Soundness of the inference rules

	Birkhoff's completeness theorem
	Universal model
	Completeness

	Related work

