
Equivalence of Applicative Functors and
Multifunctors

Andreas Abel
Department of Computer Science, Gothenburg University, Sweden

February 2022, January 2024

McBride and Paterson [2008] introduced Applicative functors toHaskell, which
are equivalent to the lax monoidal functors (with strength) of category theory. Ap-
plicative functors 𝐹 are presented via idiomatic application _⊛_ ∶ 𝐹 (𝐴 → 𝐵) →
𝐹 𝐴 → 𝐹 𝐵 and laws that are a bit hard to remember. Capriotti and Kaposi [2014]
observed that applicative functors can be conceived as multifunctors, i. e., by a fam-
ily liftA𝑛 ∶ (𝐴1 → … → 𝐴𝑛 → 𝐶) → 𝐹 𝐴1 → … → 𝐹 𝐴𝑛 → 𝐹 𝐶 of zipWith-like
functions that generalize pure (𝑛 = 0), fmap (𝑛 = 1) and liftA2 (𝑛 = 2). This
reduces the associated laws to just the first functor law and a uniform scheme of
second (multi)functor laws, i. e., a composition law for liftA. In this note, we rig-
orously prove that applicative functors are in fact equivalent to multifunctors, by
interderiving their laws.

1 Introduction

McBride and Paterson [2008] introduce applicative functors as a Haskell type constructor class
Applicative 𝐹 with two methods

pure ∶ 𝐴 → 𝐹 𝐴 embedding
_ ⊛ _ ∶ 𝐹 (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵 idiomatic application, left associative

satisfying four laws:

identity pure (𝜆𝑥 → 𝑥) ⊛ 𝑢 = 𝑢
composition pure (𝜆𝑓𝑔𝑥 → 𝑓 (𝑔 𝑥)) ⊛ 𝑢 ⊛ 𝑣 ⊛ 𝑤 = 𝑢 ⊛ (𝑣 ⊛ 𝑤)
interchange pure (𝜆𝑓 → 𝑓𝑥) ⊛ 𝑢 = 𝑢 ⊛ pure 𝑥
homomorphism pure (𝑓 𝑥) = pure 𝑓 ⊛ pure 𝑥

Using the usual definitions of identity id and composition (_∘_) the first two laws can be presented
as follows:

identity pure id ⊛ 𝑢 = 𝑢
composition pure (_∘_) ⊛ 𝑢 ⊛ 𝑣 ⊛ 𝑤 = 𝑢 ⊛ (𝑣 ⊛ 𝑤)

1



Functoriality of 𝐹 is recovered via fmap 𝑓 𝑢 = pure 𝑓 ⊛ 𝑢 where identity acts as the first functor
law. The second functor law can be derived via composition and homomorphism as follows:

fmap 𝑓 (fmap 𝑔 𝑢) = pure 𝑓 ⊛ (pure 𝑔 ⊛ 𝑢) = pure (_∘_) ⊛ pure 𝑓 ⊛ pure 𝑔 ⊛ 𝑢
= pure (𝑓 ∘ _) ⊛ pure 𝑔 ⊛ 𝑢 = pure (𝑓 ∘ 𝑔) ⊛ 𝑢
= fmap (𝑓 ∘ 𝑔) 𝑢

Unfortunately, McBride and Paterson’s laws are not easy to remember, especially the composition
and interchange laws. They do not follow simple patterns like the functor laws which can be seen
as actions of the function category, or the monad laws, which can be conceived as generalization
of the monoid laws. It is also not intuitively clear at a glance that these laws are complete.
Starting with GHC 8.2 (2017), Applicatives can also be given via liftA2 ∶ (𝐴 → 𝐵 → 𝐶) →
𝐹 𝐴 → 𝐹 𝐵 → 𝐹 𝐶 rather than idiomatic application, which are interdefinable:

liftA2 𝑓 𝑢 𝑣 = pure 𝑓 ⊛ 𝑢 ⊛ 𝑣
ℎ ⊛ 𝑢 = liftA2 (𝜆𝑓𝑥 → 𝑓𝑥) ℎ 𝑢

However, to this date (2024-01-24) the documentation1 of Applicative does not spell out the type
class laws in terms of liftA2.
Note that liftA2 appears to be the binary generalization of the unary fmap = liftA1 ∶ (𝐴 → 𝐵) →
𝐹 𝐴 → 𝐹 𝐵. In the same way, we get the nullary pure = liftA0 ∶ 𝐴 → 𝐹 𝐴.
In this note, we show that the further generalization to arbitrary arities liftA𝑛 gives very elegant
laws for the family liftA𝑛, which are just generalizations of the two functor laws.
The infinite family liftA𝑛 can be truncated to 𝑛 ≤ 2, yielding the following composition laws in
addition to the functor laws (for liftA1):

liftA1 𝑓 (liftA0 𝑥) = liftA0 (𝑓 𝑥) homomorphism
liftA2 𝑓 (liftA0 𝑥) = liftA1 (𝑓 𝑥) homomorphism
liftA2 𝑓 𝑢 (liftA0 𝑦) = liftA1 (𝜆𝑥 → 𝑓 𝑥 𝑦) 𝑢 exchange
liftA2 𝑓 (liftA1 𝑔 𝑢) = liftA2 (𝑓 ∘ 𝑔) 𝑢 2nd functor law
liftA2 𝑓 𝑢 (liftA1 ℎ 𝑣) = liftA2 (𝜆𝑥 → 𝑓 𝑥 ∘ ℎ) 𝑢 𝑣
liftA1 𝑓 (liftA2 𝑔 𝑢 𝑣) = liftA2 (𝜆𝑥 → 𝑓 ∘ 𝑔 𝑥) 𝑢 𝑣
liftA2 𝑓 (liftA2 𝑔 𝑢 𝑣) 𝑤 = liftA2 (𝜆𝑥(𝑦, 𝑧) → 𝑓 (𝑔 𝑥 𝑦) 𝑧) 𝑢 (liftA2 (_,_) 𝑣 𝑤)
liftA2 𝑓 𝑢 (liftA2 𝑔 𝑣 𝑤) = liftA2 (𝜆(𝑥, 𝑦) → 𝑓 𝑥 ∘ 𝑔 𝑦) (liftA2 (_,_) 𝑢 𝑣) 𝑤

2 Applicative Functors as Multifunctors

Preliminaries: generalized composition. If 𝑓 ∶ 𝐴1..𝑛 → 𝐶 → 𝐷 and 𝑔 ∶ 𝐵1..𝑚 → 𝐶 then
let 𝑓 ∘𝑚

𝑛 𝑔 ∶ 𝐴1..𝑛 → 𝐵1..𝑚 → 𝐷 be defined by

(𝑓 ∘𝑚
𝑛 𝑔) 𝑎1..𝑛 𝑏1..𝑚 = 𝑓 𝑎1..𝑛 (𝑔 𝑏1..𝑚).

1https://hackage.haskell.org/package/base-4.19.0.0/docs/Control-Applicative.html

2

https://hackage.haskell.org/package/base-4.19.0.0/docs/Control-Applicative.html


Herein, ℎ 𝑥1..𝑛 is to be understood as curried application ℎ 𝑥1 … 𝑥𝑛. A sequence 𝑥1..𝑛 may more
succinctly be written as 𝑥⃗𝑛 or just 𝑥⃗.
Note that (𝑓 ∘1

0 𝑔) 𝑥 = 𝑓 (𝑔 𝑥) is ordinary unary function composition. Further, (𝑓 ∘0
𝑛 𝑦) 𝑎1..𝑛 =

𝑓 𝑎1..𝑛 𝑦 is partial application of 𝑓 to its 𝑛+1st argument, which for 𝑛 = 0 is just plain application:
𝑓 ∘0

0 𝑦 = 𝑓 𝑦.

Multifunctors. To distinguish our concept of applicative functors from that of McBride and
Paterson, we temporarily call them multifunctor.2

A multifunctor 𝐹 shall be witnessed by a family of functions (𝑛 ≥ 0)

liftA𝑛 ∶ (𝐴1 → … → 𝐴𝑛 → 𝐶) → 𝐹 𝐴1 → … → 𝐹 𝐴𝑛 → 𝐹 𝐶

satisfying the following laws:

identity liftA1 id = id
composition liftA𝑛+1+𝑚 𝑓 𝑢𝑛 (liftA𝑘 𝑔 𝑣𝑘) = liftA𝑛+𝑘+𝑚 (𝑓 ∘𝑘

𝑛 𝑔) 𝑢 𝑣

We may drop the index to liftA when it is generic or clear from the context of discourse.
Just functoriality of 𝐹 can be recovered by fmap = liftA1 with identity being the first functor law
and composition specializing to the second functor law with 𝑛 = 𝑚 = 0 and 𝑘 = 1:

liftA1 𝑓 (liftA1 𝑔 𝑣) = liftA1 (𝑓 ∘1
0 𝑔) 𝑣

Pure computations are represented via pure = liftA0, with the composition law specializing to:

liftA 𝑓 𝑢𝑛 (pure 𝑥) = liftA (𝑓 ∘0
𝑛 𝑥) 𝑢

For fmap (𝑛 = 𝑚 = 0) this yields fmap 𝑓 (pure 𝑥) = pure (𝑓 𝑥). For just 𝑛 = 0 we get law
liftA1+𝑚 𝑓 (pure 𝑥) 𝑤⃗ = liftA𝑚 (𝑓 𝑥) 𝑤⃗. This can be iterated to liftA𝑛 𝑓 (pure 𝑥1) … (pure 𝑥𝑛) =
pure (𝑓 𝑥1..𝑛) corresponding to the intuition that composition of effect-free computations is again
an effect-free computation.

2.1 Multifunctors are applicative

Idiomatic application can be obtained as a special case of liftA2:

_ ⊛ _ ∶ 𝐹 (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵
𝑢 ⊛ 𝑣 = liftA2 id 𝑢 𝑣

We easily derive its laws:
1. identity:

pure id ⊛ 𝑢 = liftA2 id (pure id) 𝑢 = liftA1 (id ∘0
0 id) 𝑢 by composition

= liftA1 (id id) 𝑢 = liftA1 id 𝑢 = 𝑢 by identity
2The name multi-functor is taken from Capriotti and Kaposi [2014] and already motivated there as means to “natu-
rally arrive at the definition of the Applicative clase via an obvious generalization of the notion of functor.”

3



2. composition.

pure (_∘_) ⊛ 𝑢 ⊛ 𝑣 ⊛ 𝑤
= liftA2 id (pure (_∘_) 𝑢 ⊛ 𝑣 ⊛ 𝑤 = liftA1 (_∘_) 𝑢 ⊛ 𝑣 ⊛ 𝑤 by composition
= liftA2 id (liftA1 (_∘_) 𝑢) 𝑣 ⊛ 𝑤 = liftA2 (_∘_) 𝑢 𝑣 ⊛ 𝑤 by composition
= liftA2 id (liftA2 (_∘_) 𝑢 𝑣) 𝑤 = liftA3 (_∘_) 𝑢 𝑣 𝑤 by composition
= liftA3 (𝜆𝑓𝑔𝑥 → 𝑓 (𝑔𝑥)) 𝑢 𝑣 𝑤 = liftA3 (𝜆𝑓𝑔𝑥 → id 𝑓 (id 𝑔 𝑥)) 𝑢 𝑣 𝑤
= liftA3 (id ∘2

1 id) 𝑢 𝑣 𝑤 = liftA2 id 𝑢 (liftA2 id 𝑣 𝑤) by composition
= 𝑢 ⊛ (𝑣 ⊛ 𝑤)

3. homomorphism. This has been shown before, here again step-by-step:

pure 𝑓 ⊛ pure 𝑥 = liftA2 id (pure 𝑓) (pure 𝑥) = liftA1 (id 𝑓) (pure 𝑥) by composition
= liftA1 𝑓 (pure 𝑥) = liftA0 (𝑓 𝑥) by composition
= pure (𝑓 𝑥)

4. interchange:

𝑢 ⊛ (pure 𝑥) = liftA2 id 𝑢 (liftA0 𝑥) = liftA1 (id ∘0
1 𝑥) 𝑢 by composition

= liftA1 (𝜆𝑓 → 𝑓 𝑥) 𝑢 = pure (𝜆𝑓 → 𝑓𝑥) ⊛ 𝑢 by composition

2.2 Applicative functors are multifunctors

Following McBride and Paterson [2008], the family liftA𝑛 can be defined for each applicative
functor:

liftA0 𝑥 = pure 𝑥
liftA𝑛+1 𝑓 𝑢 𝑣 = liftA𝑛 𝑓 𝑢 ⊛ 𝑣

The identity is just identity. We establish composition by a series of inductions.

Lemma 1 (Frame). If liftA𝑛 𝑓 𝑢𝑛 = liftA𝑘 𝑔 𝑣𝑘 then liftA𝑛+𝑚 𝑓 𝑢 𝑤⃗𝑚 = liftA𝑘+𝑚 𝑔 𝑣 𝑤⃗.

Proof. By induction on 𝑚.

As a consequence of Lemma 1, we only need to show the composition law for 𝑚 = 0:

liftA𝑛+1 𝑓 𝑢𝑛 (liftA𝑘 𝑔 𝑣𝑘) = liftA𝑛+𝑘 (𝑓 ∘𝑘
𝑛 𝑔) 𝑢 𝑣

We first show the case 𝑛 = 0:

Lemma 2 (Composition for 𝑛 = 0).

liftA1 𝑓 (liftA𝑘 𝑔 𝑣) = liftA𝑘 (𝑓 ∘𝑘
0 𝑔) 𝑣

Proof. By induction on 𝑘.

4



Case 𝑘 = 0: This is homomorphism.
Case 𝑘 → 𝑘 + 1.

liftA1 𝑓 (liftA𝑘+1 𝑔 𝑣 𝑤)
= pure 𝑓 ⊛ (liftA𝑘 𝑔 𝑣 ⊛ 𝑤)
= pure (_∘_) ⊛ pure 𝑓 ⊛ liftA𝑘 𝑔 𝑣 ⊛ 𝑤 by composition
= pure (𝑓 ∘ _) ⊛ liftA𝑘 𝑔 𝑣 ⊛ 𝑤 by homomorphism
= liftA𝑘 ((𝑓 ∘ _) ∘𝑘

0 𝑔) 𝑣 ⊛ 𝑤 by ind.hyp.
= liftA𝑘+1 (𝑓 ∘𝑘+1

0 𝑔) 𝑣 𝑤

For the last step, note that (𝑓 ∘ _) ∘𝑘
0 𝑔 = 𝜆𝑥⃗𝑘 → (𝑓 ∘ _)(𝑔 𝑥⃗) = 𝜆𝑥⃗ → 𝑓 ∘ (𝑔 𝑥⃗) = 𝜆𝑥⃗𝑦 →

𝑓(𝑔 𝑥⃗ 𝑦) = 𝑓 ∘𝑘+1
0 𝑔.

Corollary 3 (Composition for 𝑘 = 0).
liftA𝑛+1 𝑓 𝑢 (pure 𝑥) = liftA𝑛 (𝑓 ∘0

𝑛 𝑥) 𝑢

Proof.
liftA𝑛+1 𝑓 𝑢 (pure 𝑥)

= liftA𝑛 𝑓 𝑢 ⊛ pure 𝑥 = pure (𝜆𝑘 → 𝑘 𝑥) ⊛ liftA𝑛 𝑓 𝑢 by exchange
= liftA𝑛 ((𝜆𝑘 → 𝑘 𝑥) ∘𝑛

0 𝑓) 𝑢 = liftA𝑛 (𝑓 ∘0
𝑛 𝑥) 𝑢

The last step is justified by (𝜆𝑘 → 𝑘 𝑥) ∘𝑛
0 𝑓 = 𝜆𝑦𝑘 → (𝜆𝑘 → 𝑘 𝑥) (𝑓𝑦) = 𝜆𝑦𝑘 → 𝑓𝑦 𝑥 =

𝑓 ∘0
𝑛 𝑥.

Theorem 4 (Composition).
liftA𝑛+1 𝑓 𝑢𝑛 (liftA𝑘 𝑔 𝑣𝑘) = liftA𝑛+𝑘 (𝑓 ∘𝑘

𝑛 𝑔) 𝑢 𝑣

Proof. By induction on 𝑘.
Case 𝑘 = 0: This is Corollary 3.
Case 𝑘 → 𝑘 + 1:

liftA𝑛+1 𝑓 𝑢𝑛 (liftA𝑘+1 𝑔 𝑣𝑘 𝑤)
= liftA𝑛 𝑓 𝑢 ⊛ (liftA𝑘 𝑔 𝑣 ⊛ 𝑤)
= pure (_∘_) ⊛ liftA𝑛 𝑓 𝑢 ⊛ liftA𝑘 𝑔 𝑣 ⊛ 𝑤 by composition
= liftA𝑛 ((_∘_) ∘𝑛

0 𝑓) 𝑢 ⊛ liftA𝑘 𝑔 𝑣 ⊛ 𝑤 by Lemma 2
= liftA𝑛+𝑘 (((_∘_) ∘𝑛

0 𝑓) ∘𝑘
𝑛 𝑔) 𝑢 𝑣 ⊛ 𝑤 by ind.hyp.

= liftA𝑛+𝑘+1 (𝑓 ∘𝑘+1
𝑛 𝑔) 𝑢 𝑣 𝑤

For the last step, we calculate ((_∘_) ∘𝑛
0 𝑓) ∘𝑘

𝑛 𝑔 = 𝜆𝑥⃗𝑛𝑦𝑘 → (𝜆𝑥⃗𝑛 → (𝑓𝑥⃗) ∘ _)) 𝑥⃗ (𝑔 𝑦) =
𝜆𝑥⃗𝑛𝑦𝑘 → (𝑓𝑥⃗) ∘ (𝑔 𝑦) = 𝜆𝑥⃗𝑛𝑦𝑘𝑧 → 𝑓𝑥⃗ (𝑔 𝑦 𝑧) = 𝑓 ∘𝑘+1

𝑛 𝑔.

Q.E.D.

5



References
P. Capriotti and A. Kaposi. Free applicative functors. In P. B. Levy and N. Krishnaswami, editors,
Proc. 5thWksh. onMathematically Structured Functional Programming, MSFP 2014, volume
153 of Electr. Proc. in Theor. Comp. Sci., pages 2–30, 2014. URL https://doi.org/10.
4204/EPTCS.153.2.

C. McBride and R. Paterson. Applicative programming with effects. J. Func. Program., 18(1):
1–13, 2008. URL https://doi.org/10.1017/S0956796807006326.

6

https://doi.org/10.4204/EPTCS.153.2
https://doi.org/10.4204/EPTCS.153.2
https://doi.org/10.1017/S0956796807006326

	Introduction
	Applicative Functors as Multifunctors
	Multifunctors are applicative
	Applicative functors are multifunctors


