
Primitive Recursion for Rank-2 Inductive Types

Andreas Abel? and Ralph Matthes??

Department of Computer Science
University of Munich

Recently, higher-rank datatypes have drawn interest in the functional pro-
gramming community [Oka99,Oka96,Hin01]. Rank-2 non-regular types, so-called
nested datatypes, have been investigated in the context of Haskell. To define total
functions which traverse nested datastructures, Bird et al. [BP99] have developed
generalized folds which implement an iteration scheme and are strong enough to
encode most of the known algorithms for nested datatypes. In this note, we in-
vestigate a scheme to overcome some limitations of iteration which we expound
in the following.

Since the work of Böhm et al. [BB85] it is well-known that iteration for rank-
1 datatypes can be simulated in typed lambda-calculi. The easiest examples are
iterative definitions of addition and multiplication for Church numerals. The
iterative definition of the predecessor, however, is inefficient: It traverses the
whole numeral in order to remove one constructor. Surely, taking the predecessor
should run in constant time.

Primitive recursion is the combination of iteration and efficient predecessor.
A typical example for a prim. rec. algorithm is the natural definition of the
factorial function. It is common belief that prim. rec. cannot be reduced to it-
eration in a computationally faithful manner. This is because no encoding of
natural numbers in the polymorphic lambda-calculus (System F) seems possible
which supports a constant-time predecessor operation (see Sp lawski and Urzy-
czyn [SU99]). Mendler extended System F by a scheme of prim. rec. for rank-1
datatypes and proved strong normalization [Men87]. Mendler’s formulation does
not follow the usual category-theoretic approach with initial recursive algebras
(see Geuvers [Geu92]).

For rank-2 datatypes there are also examples of functions which can most
naturally be implemented with prim. rec. One is redecoration for triangular ma-
trices which is presented below. These examples are not instances of generalized
folds à la Bird et al., which remain within the realm of iteration but hardwire
Kan extensions into the recursion scheme. Rank-2 prim. rec., which we propose
in this work, seeks to extend rank-2 iteration in the same way that prim. rec.
extends rank-1 iteration. We achieve this by lifting Mendler’s scheme of prim.
rec. to rank 2. The decision for Mendler-style and against the traditional way
roots in the following observation: Experiments with formulations according to
the traditional style showed unnecessary but unavoidable traversals of the whole
data structures in our examples. Mendler’s style, however, yielded precisely the

? The first author is supported by the Graduiertenkolleg “Logik in der Informatik” of
the Deutsche Forschungsgemeinschaft.

?? Both authors acknowledge financial support by ETAPS 2003.



desired efficient reduction behavior. This was crucial since the only reason to
incorporate prim. rec. is operational efficiency as opposed to denotational ex-
pressiveness.

We work within the framework System Fω of higher-order parametric poly-
morphism formulated in Curry-style, i.e., as a type assignment system for the
pure lambda-calculus. For type transformers X, Y : ∗ → ∗ we abbreviate the
type of natural transformations ∀A.XA → Y A from X to Y by X ⊆ Y . Let
id = λx.x denote the identity function.

We extend the framework by a new constructor constant µ and two term
constants in and MRec and a new reduction rule as follows.

Formation. µ : ((∗ → ∗) → ∗ → ∗) → ∗ → ∗
Introduction. in : ∀F (∗→∗)→∗→∗. F (µF ) ⊆ µF
Elimination. MRec : ∀F (∗→∗)→∗→∗∀G∗→∗. (∀X∗→∗. X ⊆ µF →

X ⊆ G → F X ⊆ G) → µF ⊆ G
Reduction. MRec s (in t) −→β s id (MRec s) t

The type transfomer µF : ∗ → ∗ is the least fixed-point of the constructor
F : (∗ → ∗) → ∗ → ∗ and denotes a simultaneously defined family of types
of well-founded trees, their shape depending on F . For instance, using F =
λXλA. 1 + A×X A the well-known type of polymorphic lists is recovered. The
term in is the general constructor, which, in case of lists, codes together nil
and cons. The term MRec establishes a scheme of primitive recursion in the
style of Mendler. Typical for this style is the universally quantified constructor
variable X in the type of the step term s which ensures termination without any
positivity restrictions on F . During reduction, X is instantiated by µF , and the
first parameter, i : X ⊆ µF , by id. The presence of a transformation i from the
blank type X back into the fixed-point µF is what distinguishes Mendler-style
prim. rec. from Mendler-style iteration.

A E E E . . . E
A E E . . . E

A E . . . E
A . . . E

. . . E
A

An example of a non-regular datatype is TriA = (µTriF) A with TriF =
λXλA.A×(1+X(E×A)), the type of triangular matrices over a given entry type
E but with type A on the diagonal. For these matrices, we define a redecoration
operation

redec : ∀A∀B. TriA → (TriA → B) → TriB.

The call redec t f replaces each diagonal element a of t with the result of applying
f to the sub-triangle whose upper-left corner is a. Redecoration is a natural
example for primitive recursion and is no instance of a generalized fold.



System Fω, extended by Mendler-style primitive recursion, is still confluent
and strongly normalizing. A dual construction can be carried out to obtain
coinductive families with primitive corecursion.

Acknowledgement. We thank Tarmo Uustalu for communicating the example of
triangular matrices to us.

References

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-
programs on term algebras. Theoretical Computer Science, 39:135–154, 1985.

[BP99] Richard Bird and Ross Paterson. Generalised folds for nested datatypes. For-
mal Aspects of Computing, 11(2):200–222, 1999.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and re-
cursion. In Bengt Nordström, Kent Pettersson, and Gordon Plotkin, edi-
tors, Proceedings of the 1992 Workshop on Types for Proofs and Programs,
B̊astad, Sweden, June 1992, pages 193–217, 1992. Electronically available via
ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.dvi.Z.

[Hin01] Ralf Hinze. Manufacturing datatypes. Journal of Functional Programming,
11(5):493–524, 2001.

[Men87] Nax P. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, Ithaca, N.Y., pages 30–36. IEEE Computer Society Press,
1987.

[Oka96] Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie
Mellon University, 1996.

[Oka99] Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure
in Types. In International Conference on Functional Programming, pages 28–
35, September 1999.

[SU99] Zdzis law Sp lawski and Pawe l Urzyczyn. Type fixpoints: Iteration vs. recursion.
SIGPLAN Notices, 34(9):102–113, 1999. Proceedings of the 1999 International
Conference on Functional Programming (ICFP), Paris, France.


