
An Agda implementation of deletion in
Left-leaning Red-Black trees

Julien Oster, Ludwig-Maximilians-Universität München

December 10th, 2010

Left-Leaning Red-Black trees

The Data Type

Deletion
extractMinR
deleteR

Left-Leaning Red-Black trees

f

d

b

a c e

k

i

h

g

j l

Invariants of LLRBs

1. Left-Leaning Red-Black invariant
� every node is either red or black
� right children are always black
� the root must be black
� leafs are black by definition

2. Black Height invariant
� each node is assigned a black height, the number of black

nodes on every downward path from that node to a
descendant leaf

� consequently, for every node, black heights of both children
must be equal

� leafs have black height zero

3. Search Tree invariant
� all left descendant keys of a node have smaller keys
� all right descendant keys of a node have greater keys

Node types in non-Left-Leaning Red-Black trees

a

t1 t2

b

a

t1 t2

c

t4 t5

b

a

t1 t2

t3

a

t1 b

t1 t2

Node types in Left-Leaning Red-Black trees

a

t1 t2

b

a

t1 t2

t3

Less patterns, less cases.

How Agda is going to help us

� the data structure will enforce all invariants: correctness by
definition

� coverage checking will ensure that we do not forget any
cases

� termination checking will make sure that the algorithm
terminates, here using Sized Types1

1Unfortunately, they are buggy right now.

Left-Leaning Red-Black trees

The Data Type

Deletion
extractMinR
deleteR

Module Parameterization

module llrb

(order : StrictTotalOrder Level.zero Level.zero Level.zero)

open module sto = StrictTotalOrder order

A = StrictTotalOrder.Carrier order

This includes what we need, which is:

� a type (the key type),

� an order and an equivalence relation onto the key type,

� a function for comparing values,

� another function for applying the transitivity of the order
relation.

Bounds

LowerBounds = List A

UpperBounds = List A

Bounds are just simple lists of values (of our key type, A). A value
being within those bounds means that it is greater (LowerBounds)
or smaller (UpperBounds) than all elements in the respective list.

Proof Types for Bounds

infix 5 _isleftof_

isleftof : A Ñ UpperBounds Ñ Set

z isleftof [] = J

z isleftof b :: B = z < b � z isleftof B

infix 5 _isrightof_

isrightof : A Ñ LowerBounds Ñ Set

z isrightof [] = J

z isrightof b :: G = b < z � z isrightof G

Example

a isleftof [b,c,d,e,f] == a < b � a < c � a < d � ...

Bounds Change

c

b

a

d

f

e g

b

a c

d

e

f

g

for node e:

lower: c :: d :: B lower: b :: c :: d :: B
upper: f :: G upper: G

Incompatible if we want to take a subtree from one tree and plug it
into the other!

Bounds Implication

infix 5 _ñr_

data _ñr_ : UpperBounds Ñ UpperBounds Ñ Set where

 : @ {G} Ñ G ñ
r G

keep_ : @ {G G’ b} Ñ G ñ
r G’ Ñ b :: G ñ

r b :: G’
skip_ : @ {G G’ b} Ñ G ñ

r G’ Ñ b :: G ñ
r G’

cover_,_ : @ {B B’ x y} Ñ x < y Ñ x :: y :: B ñ
r B’

Ñ x :: B ñ
r B’

infix 5 _ñl_

data _ñl_ : LowerBounds Ñ LowerBounds Ñ Set where

 : @ {B} Ñ B ñ
l B

keep_ : @ {B B’ b} Ñ B ñ
l B’ Ñ b :: B ñ

l b :: B’
skip_ : @ {B B’ b} Ñ B ñ

l B’ Ñ b :: B ñ
l B’

cover_,_ : @ {G G’ x y} Ñ x < y Ñ y :: x :: G ñ
l G’

Ñ y :: G ñ
l G’

Interpretation: Given proof that B ñ
l B 1 and that x isleftof B, we

conclude that x isleftof B 1. and given proof that B ñ
rB 1 and that

x isrightof B, we conclude that x isrightof B 1.

Seen as Transformations of Bounds Lists

Treat it as a sequence of operations on a bounds list.

keep Keep the current bound and move on to the next.

skip Skip the current bound (not needed anymore).

cover Insert a new bound after the current bound (because
a new node appeared along the path to the root).
The current bound must be a better bound than the
new one!
Let a be any minimum bound for x . If b a, then
b x due to transitivity, and b is also a minimum
bound for x . Analog with maximum bounds.
This operation requires us to specify a proof of b a.

 Keep the rest of the bounds.

Example for Bounds Implication/Transformation

Example from above:

lower: c :: d :: B lower: b :: c :: d :: B
upper: f :: G upper: G

We can transform the lower bounds with:

cover b<c , keep keep

or simply:

cover b<c ,

And the upper bounds with:

skip

Bounds Representation with Single List

b

a d

c e

d

b

a c

e

With two lists, bounds lists for node c are:

lower: b :: B lower: b :: B
upper: d :: G upper: d :: G

But with just a single list:

leftOf d :: rightOf b :: B rightOf b :: leftOf d :: B

Disadvantages of Single List Representation

� Ordering is not invariant

� Additional rule swap, was necessary, to change positions of
bounds

� Proof system not linear, term searcher (Agsy) less likely to
find proof

� Superfluous keep operations to jump over bounds

Interpretation of Bounds Implication Data Type

[[_]]r : @ {B B’}
Ñ B ñ

r B’ Ñ (x : A) Ñ x isleftof B Ñ x isleftof B’
[[
]]r z p = p

[[keep h]]r z (p1 , p2) = p1 , [[h]]r z p2
[[skip h]]r z (_ , p) = [[h]]r z p

[[cover q , h]]r z (p1 , p) = [[h]]r z

(p1 , trans p1 q , p)

[[_]]l : @ {G G’}
Ñ G ñ

l G’ Ñ (x : A) Ñ x isrightof G Ñ x isrightof G’
[[
]]l z p = p

[[keep h]]l z (p1 , p2) = p1 , [[h]]l z p2
[[skip h]]l z (_ , p) = [[h]]l z p

[[cover q , h]]l z (p1 , p = [[h]]l z

(p1 , trans q p1 , p)

First function’s type read as proposition:
Given proof that B ñ

l B 1 and that x isleftof B, we conclude that
x isleftof B 1

Exactly what we stated as our desired interpretation!

Color

data Color : Set where

red : Color

black : Color

Could have used a boolean, but this is clearer.

The Data Type

data Tree’ (B : UpperBounds) (G : LowerBounds)

: Color Ñ N Ñ Set where

Parameterized and indexed by:

� upper and lower bounds

� color of the tree (meaning its root)

� black height

Leafs

lf : Tree’ B G black 0

Leafs are black and have black height 0.

Red Nodes

nr : @ {n}(a : A) Ñ a isleftof B Ñ a isrightof G
Ñ Tree’ (a :: B) G black n Ñ Tree’ B (a :: G) black n

Ñ Tree’ B G red n

� black height n, children must have same height

� key value a of type A

� proof that key is within upper bounds

� proof that key is within lower bounds
� left child

� must be black
� upper bound prepended with key

� right child
� must be black
� lower bound prepended with key

Black Nodes

nb : @ {leftSonColor n}(a : A) Ñ a isleftof B Ñ a isrightof G
Ñ Tree’ (a :: B) G leftSonColor n Ñ Tree’ B (a :: G) black n

Ñ Tree’ B G black (suc n)

� black height n, children’s black height + 1

� key value a of type A

� proof that key is within upper bounds

� proof that key is within lower bounds
� left child

� can be red or black
� upper bound prepended with key

� right child
� must be black
� lower bound prepended with key

How Invariants are Enforced

1. Left-Leaning Red-Black Invariant: tree indexed with color,
specified accordingly in node constructors

2. Black Height Invariant: tree indexed with height, specified
accordingly in node constructors

3. Search Tree Invariant: Bounds Lists maintained for all nodes

Transform a subtree’s bounds

infixl 3 _|>_

|> : @ {B B’ G c n}

Ñ Tree’ B G c n Ñ B ñ
r B’ Ñ Tree’ B’ G c n

lf |> F = lf

nr x pxl pxr l r |> F =

nr x ([[F]]r x pxl) pxr (l |> keep F) (r |> F)
nb x pxl pxr l r |> F =

nb x ([[F]]r x pxl) pxr (l |> keep F) (r |> F)

infixl 3 _||>_

||> : @ {B G G’ c n}

Ñ Tree’ B G c n Ñ G ñ
l G’ Ñ Tree’ B G’ c n

lf ||> F = lf

nr x pxl pxr l r ||> F =

nr x pxl ([[F]]l x pxr) (l ||> F) (r ||> keep F)
nb x pxl pxr l r ||> F =

nb x pxl ([[F]]l x pxr) (l ||> F) (r ||> keep F)

We can now take subtrees and plug them into other trees, provided
we can specify a proof of bounds implication.

Opaque Data Type

data Tree : Set where

tree : @ {n} Ñ Tree’ [] [] black n Ñ Tree

Hides implementation, suitable for exporting.

Left-Leaning Red-Black trees

The Data Type

Deletion
extractMinR
deleteR

Overview of Algorithm

Some properties:

� Three functions.

� Two of the functions self-contained (in recursion pattern).

� Only using simple recursive descent.

� Only base cases actually remove nodes.

General approach:

� Traverse the tree down a path.

� Reconfigure while traversing it.

� If matching node is found during traversal, carry it down the
path.

� When reaching a base case, removing matching node (if any).

Left-Leaning Red-Black trees

The Data Type

Deletion
extractMinR
deleteR

extractMinR

extractMinR extracts the minimum node from a red tree. It
returns minimum key and a modified tree.

extractMinR operates on red trees only!

This is because we can always remove nodes from red trees
without affecting black height.

If black height would be affected, we would have to handle many
more cases in every caller, including recursion!

Strategy of extractMinR

1. Pattern match against the top of the currently looked at
subtree.

2. If we have reached the minimum (i.e., a base case), return a
subtree without that node.

3. Otherwise, perform a recursive call with a smaller red subtree.

4. Finally, rebuild a valid tree from the result and all nodes that
weren’t part of the recursive call and return it.

Note that:

� It might not be possible to take existing subtree in step 3, we
need a red subtree.

� The outcome of step 4 might cause some reconfiguration to
merge the result back!

We are reconfiguring the tree’s shape almost constantly during
descent!

Type for extractMinR?

extractMinR : @ {n B G} Ñ Tree’ B G red n

Ñ D ń c Ñ A � Tree’ B G c n

Operationally okay, but we are throwing some type information
away...

Type for extractMinR!

extractMinR : @ {n B G} Ñ Tree’ B G red n

Ñ D2 ń min c Ñ

min isleftof B �

min isrightof G �

Tree’ B (min :: G) c n

Additionally includes:

� proof that minimum is within tree’s bounds

� bounds of resulting tree indicate that tree is right of minimum

And we do need that stuff later on.

Base Cases

Tree with one node becomes empty tree:

extractMinR (nr a pal par lf lf) = a , black , pal , par , lf

Further base cases:

b

a d

d

b

b

a d

c

c

b d

First Recursive Case

c

b

a

t1 t2 t3

t4

extractMinR

Second Recursive Case

b

a

t1 t2

d

c

t3 t4 t5

a

t1 t2

extractMinR

c

b

a’ t3

d

t4 t5

And another.

d

b

a c

f

e g

red

black

b

a c

extractMinR

d

b’

a’ c’

f

e g

recolor

f

d

b’ e g

Left-Leaning Red-Black trees

The Data Type

Deletion
extractMinR
deleteR

Overview of deleteR

Shares overall approach with extractMinR:

� operates on red trees only (no black height reduction)

� reconfigures tree shape during traversal

� removes nodes only in base cases (carries matching node
through tree in recursive cases)

The main difference is that we don’t just follow the leftmost path,
but have to make comparisons to decide which path to take.

deleteR : @ {n B G}
Ñ A Ñ Tree’ B G red n Ñ D ń c’ Ñ Tree’ B G c’ n

Base Case for Black Height 0

deleteR .{0} x (nr a pal par lf lf) with x
?
� a

We remove the node if its key is equal to the given key a:

... | yes _ = , lf

And leave it if it’s not:

... | no _ = , nr a pal par lf lf

Base Cases for Black Height 1

b

a c

c

b

x=a c

a

x=b b

a

x=c

b

a d

c

c

b d

x=a c

a d

x=b b

a d

x=c b

a c

x=d

c

b

a

d

c

b d

x=a c

a d

x=b b

a d

x=c b

a c

x=d

c

b

a

e

d

c

b e

d

x=a c

a e

d

x=b

b

a e

d

x=c b

a e

c

x=d

b

a d

c

x=e

Recursive Cases

d

b

a c

f

e g

red

black

x d

b

a c

deleteR

d

b’

a’ c’

f

e g

recolor

f

d

b’ e g

	Left-Leaning Red-Black trees
	The Data Type
	Deletion
	extractMinR
	deleteR

