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Abstract Continuing in the steps of Jon Kleinberg’s
and others celebrated work on decentralized search, we
conduct an experimental analysis of destination sam-
pling, a dynamic algorithm that produces small-world
networks. We find that the algorithm adapts robustly to
a wide variety of situations in realistic geographic net-
works with synthetic test data and with real world data,
even when vertices are unevenly and non-homogeneously
distributed.

We investigate the same algorithm in the case where
some vertices are more popular destinations for searches
than others, for example obeying power-laws. We find
that the algorithm adapts and adjusts the networks ac-
cording to the distributions, leading to improved per-
formance. The ability of the dynamic process to adapt
and create small worlds in such diverse settings suggests
a possible mechanism by which such networks appear
in nature.

1 Introduction

In 1967 Stanley Milgram set out to measure the “small-
ness” of the world. He wanted to know if it was really
true that any two people could be connected through
a short chain of acquaintances. To conduct this experi-
ment, he gave volunteers living in Omaha, Nebraska, a
letter addressed to a stockbroker from outside Boston,
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asking them to forward it to him, with the stipulation
that the letter could only ever pass between people who
were on a first name basis. The results of his experiment
were generally seen as proof that we really do live in a
small world – for the letters that arrived successfully,
the average number of steps was just six.

The idea of the small world has inspired the mathe-
matical study of graph diameter. Roughly speaking, it
has been noted that if the edges of a graph are chosen
randomly, then the diameter tends to be “small”: of the
order of log n where n is the size of the graph. However,
while such a world may be small, this does not in it-
self explain the success of Milgram’s experiment. In his
seminal paper from 2000 [14], Jon Kleinberg took an
algorithmic perspective and asked: how is it that it was
possible for people to know whom they should send the
letter to so it would arrive in few steps? After all, the
social network is a criss-crossed maze of connections,
of which the participants have no overview. Kleinberg
showed that for it to be possible, using only local knowl-
edge, to efficiently forward the message to its destina-
tion the graph must have a particular form. Specifi-
cally, the probability that two people are acquainted
must follow a particular power-law relation with the
distance between them. When this is the case, messages
can be routed in a polylogarithmic number of steps, in
all other cases such paths exponentially longer. Graphs
where routing is efficient (paths being polylogarithmic
of the size) have since been labeled navigable.

1.1 Motivation

In Kleinberg’s original work [14] [13], his model for the
world was a two-dimensional grid, where people knew
their k-nearest neighbors, and had r random long-range
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Fig. 1 In the real world, populations are in-homogeneously dis-
tributed. Here the population density of the United States of
America by county.

contacts in the network. The distribution of these short-
cuts is what determines the navigability of the graph.
Later works have extended the model to more general
and more realistic settings. In his PhD thesis, David
Liben-Nowell [18] studied a real-world social network of
people from the United States connected over the In-
ternet. He found that this network was navigable, and
could be made to fit with Kleinberg’s theory, but only
after adjustments had been made to take into account
the highly non-homogeneous geographical distribution
of the population. While his work gives hints as to in
what situations the unadjusted model fails, the crite-
ria for this have not been characterized. Several works
have explored this more general relation in other con-
texts [15] [25] [11] [8].

Another question that is raised by any attempt to
apply Kleinberg’s ideas to the real world, is understand-
ing why social networks should be navigable in the first
place. In some ways, the negative results (that is, the
lower bounds) in Kleinberg’s work are much stronger
than the positive ones: for almost all edge distributions
efficient routing is not possible, it is only for distribu-
tions meeting very strict criteria that it is. This seems
strange in relation to the lessons of Milgram’s experi-
ment – people really could route well – and also Liben-
Nowell’s observations from his dataset. It seems feasible
that there is some dynamic which causes navigability to
arise. Sandberg and Clarke [24] [23] have suggested such
a dynamic a re-wiring algorithm which causes networks
to become navigable. By simulating a large number of
searches on the network, and changing the shortcuts
based on the path taken by each search, the algorithm
progressively creates a small-world from any starting
distribution.

We consider the situation of graphs with fixed, in-
dependently chosen, edges to be largely understood: for

almost any situation, there are known methods for cre-
ating navigable graphs. This paper is not an attempt
to retread this ground. The goal of this paper is to see
if it is possible for dynamic models, previously explored
only on regular grids, to function also in networks with
realistic population distributions.

To this effect, we undertake an experimental anal-
ysis of Sandberg and Clarke’s algorithm under more
realistic situations. As far as we are aware, this is the
first comprehensive experimental analysis of a dynamic
model for the emergence of small worlds in realistic ge-
ographic scenarios. We study how it behaves when ver-
tices are not placed in a grid, but rather distributed
in a continuum and with non-homogeneous population
density. We contrast this with the results of using the
same edge probabilities as in the homogeneous case, as
well as the methods of Liben-Nowell et al. [19]. We also
investigate how the algorithm responds to uneven dis-
tributions in the source and destination of searches –
something more similar to the power-law (“scale-free”)
distributions known to be common in many real life
networks. Finally, we also simulate another re-wiring
algorithm, described in [6], and compare its results to
those of Sandberg and Clarke.

1.2 Previous Work

For a summary of previous work in the field of navigable
networks, see Jon Kleinberg’s ICM survey [16]. Besides
the algorithm of Sandberg and Clarke which is the main
target of our studies, Clauset and Moore have suggested
a different re-wiring algorithm which they find experi-
mentally also leads to a navigable graphs. Their work
remains unpublished, but a preprint is available online
[6]. The two methods are superficially similar, but ac-
tually lead to very different dynamics (see Section 6 for
further discussion of this method ). Other models for
small-world emergence have been suggested by Sand-
berg [22] and Duchon et al. [9] and recently by Chain-
treau et al. [5] but these are not evolutionary rewiring
schemes and function differently.

1.3 Contribution

We characterize our contribution as follows:

1. We investigate experimentally navigable small-world
models with non-homogeneous population distribu-
tions, identifying when naively applying the method
of adding shortcuts that Kleinberg used in the grid
fails to produce navigability. The fact that this method
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fails in some cases has been observed before [19] ex-
perimentally and analytically, but when this hap-
pens is not fully understood. Here we find that it
works surprisingly well, even in cases where it is dif-
ficult to justify analytically, but we identify a family
of distributions where the original model demon-
strably fails to produce small worlds, while previ-
ously known density adjusted models function well.

2. We simulate the placement of shortcuts in such envi-
ronments using Sandberg and Clarke’s evolutionary
rewiring model. We are not aware of any previous
studies of dynamic small-world emergence models in
realistic geographic settings. We demonstrate that
the algorithm used produces navigable networks ro-
bustly under all tested circumstances: synthetic dis-
tributions with homogeneous and non-homogeneous
distributions of data points, as well as scenarios
based on the real world population distributions of
Sweden and the United States. We also simulate cre-
ating shortcut’s using Clauset and Moore’s rewiring
model, however these results are less conclusive.

3. We test the same evolutionary model also for non-
homogeneous popularity models – when some peo-
ple are more popular targets for searches than oth-
ers, for instance obeying various power laws. We find
that it not only works robustly in these cases, but it
adapts the distribution and produces better mean
results than otherwise.

The source code of our simulators and data files can
be found at:

http://www.math.chalmers.se/~ossa/dynamic/

2 Decentralized Routing and Navigable
Augmentation

Let G = (V, E) belong to a family of finite graphs with
high (some power of |V |) diameter, and let the ran-
dom graph G′ be created by addition (augmentation)
of random edges to G. It is well known, see for instance
[3], that the diameter shrinks quickly to a logarithm of
|V | when random edges are added between the vertices.
Navigability does not concern a small diameter, how-
ever, but rather a stronger property: the possibility of
finding a short path between two vertices in G′ using
only local knowledge at each vertex visited. By local
knowledge, one means that each vertex knows distance
with respect to G, but does not know which random
edges have been added to any vertex until it is vis-
ited. The exact limits of such decentralized routing al-
gorithms have been discussed elsewhere [14] [2], but we
will only discuss the one we use: greedy routing.

In greedy routing for a target vertex z, the next ver-
tex chosen is always that neighbor which is the closest
to z according to the distance induced by G (with some
tie-breaking rule applied). Both the original and aug-
mented edges can be used, but because the choice is
only optimal with respect to G, the path discovered by
greedy routing will seldom be a minimal path in G′.

Kleinberg originally let G be a 2-dimensional n ×
n-grid and independently added shortcuts from each
vertex to random destinations. Each shortcut is added
to x ∈ V such that for y ∈ V , and some α ≥ 0

P(x ; y) =
1

hα,nd(x, y)α
(1)

where x ; y is the event that x is augmented with an
edge to y and d(x, y) denotes L1 distance in Zd. hα,n is
here a normalizing constant, equal to

∑
y 6=x d(x, y)−α.

His observation was that when α = 2, greedy routing
between any two points in V takes O(log2 n) steps in
expectation, while for any other value of α decentral-
ized algorithms create routes of expected length at least
Ω(ns) steps for some s > 0 (where s depends on α and
the dimension but not the size of the graph nor the
algorithm used).

One may note that for x in a 2-dimensional grid
and r > 0, |{y ∈ V : d(x, y) ≤ r}| ∝ r2. The general
principle that may be noted by combining this with (1)
is that under navigable augmentation the probability
that x links to y should be inversely proportional to
the number of vertices that are closer to x than y. This
has been observed to hold not just when G is a grid of
any dimension, but also for wider classes of graphs, see
e.g. [15] [25] [8].

In particular, in Liben-Nowell et al.’s paper on ge-
ographic routing [19], they let the rank of a vertex y

with respect to x be y’s position when the vertices are
ordered by distance from x, written rankx(y). (Some
natural ordering of the vertices is used for tie-breaking).
Their augmentation principle is then that

P(x ; y) =
1

hnrankx(y)
. (2)

where hn =
∑n

k=1 k−1 ≈ log n. In a companion pa-
per by Kumar et al. [17] they prove analytically that
this leads to a O(log2 n) path lengths in expectation in
a discrete non-homogeneous model (the population is
confined to a two dimensional grid, but the number of
people at each grid point varies).

2.1 Continuum Settings

When attempting to model reality, it is preferable to
view the “world” of the vertices as a continuous metric
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space, rather than just a base graph G. In particular, we
want both the routing and the augmentation to be with
respect to the distance between vertices given arbitrary
positions in the space, rather than just graph distance.

That is, if M is a metric space with d : M ×M 7→ R
a metric, then the set V may consist of n arbitrarily
distributed points in M . (Typically, and in the text
below, the metric space is a compact subset of R2, and
d is Euclidean distance.) We then construct the “short-
range” links (that is G) so as to respect the geometry of
the space. In particular, one wishes for G to be suitable
for greedy routing with respect to d in the sense that
for z 6= x, x always has a neighbor closer to z than
itself – if this is not the case, it is possible for a greedy
route to reach a “dead-end” at which no progress can
be made in the next step.

This sort of construction was considered in [7]. There,
the authors let the the base graph G be constructed
by connecting each vertex x with all vertices within
some distance r(n). For sufficiently large r(n) this will
with high probability lead a base graph which is suit-
able for greedy routing. Slivkins [25] constructs a graph
purely through random augmentation with no short-
range links, but with a sufficient number of augmented
edges (Θ(n2)) that a base graph is with high probabil-
ity never needed. Using edge probabilities similar to (2)
he attains results for non-homogeneous vertex distribu-
tions, in terms of the graph size, doubling dimension,
and aspect ratio (the ratio of the shortest to longest
inter-vertex distance) of the model.

In [23] a different approach is used. Instead of con-
necting all near vertices, a Voronoi tessellation of M

with respect to the points is calculated, and each ver-
tex is connected to those with neighboring cells. Thus
G is the Delaunay graph (or Delaunay triangulation)
of the set of points. The advantage of this approach is
that G is a planar graph more elegantly describing a
neighbor structure on M , and that no probability cal-
culations are necessary: it is easy to see that G always
allows a greedy route to monotonically approach its tar-
get. Delaunay graphs can be efficiently calculated using
well-known algorithms [10]. Figure 2 shows a Delaunay
graph realization on a randomly chosen set of points.

Once G has been defined, one can augment it to cre-
ate G′ as before, adding outgoing edges to each vertex.
The probabilities are found by replacing L1 distance
with the more general d(x, y) in (1) and when calculat-
ing rankx(y).

2.2 Destination Sampling

“Destination sampling” is a name given to the re-wiring
algorithm introduced by Sandberg and Clarke in [24].

Fig. 2 Realization of 375 vertices in a random distribution (see
Section 3.1) on [0, 1] × [0, 1] using k = 10 and γ = 1.2, together
with the Delaunay triangulation.

This is not a method of augmenting a graph G to cre-
ate G′ as such, but takes any given augmentation, and
changes the shortcuts (without changing their number
or the out-degree of any vertex) so as to make the re-
sulting graph navigable.

The algorithm can be expressed in varying levels
of generality, but the general principle is always the
same: each vertex samples the destination of its short-
cuts from the destinations of searches that pass through
that vertex.

Algorithm 21 Let Gs = (V,E ∪Es) be an augmented
graph at time s. G = (V, E) is the base graph, and Es

the set of shortcuts, which for each vertex in V contains
at least one outgoing edge.

Let 0 < p < 1. Then Gs+1 is defined as follows.

1. Choose ys+1 and zs+1 randomly from V .
2. If the chosen vertices are distinct, do a greedy walk

in Gs from ys+1 to zs+1. Let x0 = ys+1, x1, x2, ..., xt =
zs+1 denote the points of this walk.

3. For each x0, x1, ..., xt−1 independently and with prob-
ability p replace a randomly chosen shortcut from
that vertex with one to zs+1.

See Figure 3 for an illustration of the process.
In order to create a navigable augmentation, this

algorithm is applied repeatedly, causing it to converge
to a stationary distribution. For simulations and ana-
lytical motivations why this works when

1. The vertices of V are homogeneously distributed.
2. ys+1 and zs+1 are chosen uniformly at random.
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Fig. 3 An illustration of Destination Sampling on an augmented
grid before and after a rewiring. The blue vertices and edges
represent a greedy path from red to green. After the path has been
found, the shortcuts of two vertices along the path are randomly
selected to be rewired.

see [24] and [23]. The goal of this paper is to study what
happens when these two assumptions do not necessarily
hold, as one would expect in a realistic situation.

The parameter p in the algorithm is used to limit
the dependence among edges of nearby nodes. In the-
ory, the algorithm performs better the lower p is, but
the sampling, and thus convergence, is slower. We use a
value of p = 0.1 which we have determined experimen-
tally provides a good trade-off, throughout the paper.

2.3 Motivating Destination Sampling

At first glance Algorithm 21 may not seem like a partic-
ularly good algorithm for explaining how social bonds
are formed. Indeed, it would seem ridiculous to claim
that any simple algorithm can explain the chaotic man-
ner in which social networks are generated. We note,
however, that in order to explain the presence of navi-
gability in real world networks, it is by no means nec-
essary for all the edges to be created in a navigable
manner. Since adding extra edges to a graph can never
reduce a its navigability, it is sufficient that some so-
cial bonds be created according to a pattern helpful
for navigation. The presence of other friendships may

sometimes help, but can never hinder, a greedy routing
algorithm.

With this in mind, we do think that there is an
intuition for why destination sampling bears some re-
semblance to real life social networks. Of course the
algorithm is never formally applied in social settings
– and outside psychological experiments Milgram-type
social navigation almost never occurs – but the basic
intuition behind Algorithm 21 is simply this: vertices
(people) end up knowing those vertices that other ver-
tices expect them to know. By sampling the edges from
the destinations of the queries, the distribution of out-
going edges from a vertex is forced to be the same as
the distribution of incoming queries. Replacing a “who”
with a “what”, this type of dynamic is almost certainly
present in our everyday lives: many of the things we
know, we know exactly because we have been asked
them before, and then forced to find out the answer1.
It is not a stretch to imagine that at least some social
connections are formed in the same manner.

Of course, this is not a work of sociology or social
psychology, and the reasoning in this section amounts
to nothing more than speculation. Inventing and per-
forming experiments to justify or contradict these state-
ments is a very interesting further development, far out-
side the scope and subject of the current work.

3 Population Density

3.1 Experiments

To experiment with non-homogeneous population den-
sities we used a continuum model and the Delaunay
graph as described above. We divided a 2-dimensional
real space into zones of different population density,
and populated it with a non-homogeneous spatial Pois-
son process. The intensity of the process in each zone
was the zones population density normalized so as to
give approximately a desired population size for the
whole space. With the vertices thus placed a Delaunay
graph can then be constructed using known algorithms,
and we experimented with different ways of augmenting
edges to ensure navigability.

Our goals with this were twofold – firstly to iden-
tify in which types of situations augmenting according

1 One of the authors of this paper finds himself, during its
preparation, swamped with questions from his students regarding
where their exam will take place. In fact, he has no better way of
finding this out than the students themselves (and no personal
need to know it), but having forwarded the first couple of queries
to the responsible administrator, he is now in possession of the
information, and can answer directly. The perception among his
students that he will know the exams location, has thus caused
him to learn it.
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Fig. 4 The population density of Sweden, broken into 1x1 km
squares.

to formula (1) fails to lead to navigability, while (2)
works. Liben-Nowell et al. [19] as well as Slivkins [25]
give some hints as to when this may be the case, but do
not characterize it. Secondly, we simulated Destination
Sampling (Algorithm 21) to see if it adapts and gives
navigable augmentation even in cases where distance
based augmentation does not.

The role of augmentation by rank using formula (2)
is thus to provide a known “good” scenario, while dis-
tance based augmentation using formula (1) provides a
known “bad” scenario. Our main goal is therefore to see
whether destination sampling performs like the former,
rather than the latter.

The models of population density that were used
are the following:

1. Uniform: The n vertices are placed uniformly at
random across a square space M = [0, 1]× [0, 1].

2. Metropolis: Here also the vertices are placed ran-
domly in the same square space, but this time with
90% of the total intensity within 20% of the maxi-
mal distance from the space’s center.

3. Random: [0, 1]× [0, 1] was divided into k×k equally
sized square zones, which were given a randomly
ordered labeling of s = 1, . . . , k2. The population
of each zone was then given a relative population
density of 1/sγ , making the labels an ordering from
most to least densely populated. For our experi-
ments, we used k = 100 and γ = 1.2 where the
latter value approximates the average value of de-
cay of city sizes in the real world [26]. See Figure 2
for an example realization.

4. Real World : Finally, we used data regarding the con-
temporary population distribution of Sweden and
the United States. For Sweden, data was obtained
from Statistics Sweden [27] giving the population
of each of the country’s 449,964 square kilometers,
which we interpret as the proportional intensity of
population in that area. For the United States, a
map showing the population density of each county
in the lower 48 states, taken from The National At-
las [21] was used2.

In each case, each vertex was given one outgoing
shortcut, selected by the following augmentation meth-
ods:

1. Distance: Explicit sampling according to a power-
law of the distance, as in Kleinberg’s original work.
This means following formula (1) but with d in the
formula and the normalizer interpreted as Euclidean
distance in R2.
For two dimensions, we use α = 2, the value at
which navigability arises in uniform networks.

2. Rank : Explicit sampling, but using the rank formula
(2) as used by Liben-Nowell et al. This is largely
equivalent to other “inverse ball” type augmenta-
tion methods, as used in e.g. [15] [25] [8].

3. Destination Sampling : Each node is initiated with
no useful long-range link (formally, it has one to
itself), and then the Algorithm 21 is run 10n, where
n is the graph size, times.

In some cases, we also compared with the results of
choosing the shortcut uniformly among the other ver-
tices. This is known to give greedy path lengths which
are a fractional power of the number of vertices – Ω(n1/3)
with a uniform population distribution – and thus was
used only as a baseline for comparison.

We note that the number of iterations of Algorithm
21 we perform, 10n is very small compared to the num-
ber of vertex pairs that can be routed between. We
have no theoretical motivation for using so few itera-
tions, and can refer only to the simple fact, as observed
below, that it is sufficient to create navigable networks.
We consider its remarkably fast convergence rate to be
a strength of the destination sampling method. In fact,
simulations indicate that even 2n iterations is enough
in all cases (see Figure 6) – we simulate more simply
because compared with the other augmentation meth-
ods tested the computation time needed for destination
sampling is insignificant.

2 The data in both cases was not exact. The map of Sweden
gives the population of each square kilometer among the levels
0, 1-4, 5-29, 30-149, 150-4999, and 5000 and above. The map of
the continental USA was divided in to 0, 1-4, 5-9, 10-24, 25-49,
50-99, 100-249, and 250 and above people per square mile.
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Fig. 5 A realization of a Delaunay graph and destination sam-
pling on a population distributed according to Sweden’s popula-
tion density (see Figure 4).
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Fig. 6 The performance of greedy routing after destination sam-
pling for different numbers of iterations. We are not able to see
any detectable improvement in performance after 2n iterations.

3.2 Results

Our results on non-homogeneous population distribu-
tions are shown in Figures 7 – 12. In general, we find
that adding shortcuts as done by Kleinberg (1) in the
grid can work well even when the population is not
uniformly distributed. This is shown by the fact that
in the metropolis model, where most of the population
is limited to a central core, we still get log2 n scal-
ing of the path lengths, see Figure 8. We find that
in order for the purely distance based augmentation
to fail, we have to turn to highly irregular population
models. Previously it was known (see Liben-Nowell et
al. [19]) that the distance based augmentation could
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Fig. 7 Performance of greedy routing when augmenting the
Delaunay graph of uniformly randomly distributed points in
[0, 1]× [0, 1], using distance based augmentation (1) with α = 2,
rank based augmentation (2), destination sampling, and also
Clauset and Moore’s algorithm (see Section 6).
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Fig. 8 Performance of greedy routing when augmenting the De-
launay graph of Metropolis distributed points in [0, 1]× [0, 1], us-
ing distance based augmentation augmentation (1) with α = 2,
rank based augmentation (2), and destination sampling.
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Fig. 9 Performance of greedy routing when augmenting the De-
launay graph of Random model distributed points in [0, 1]×[0, 1],
using distance based augmentation augmentation (1) with α = 2,
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Fig. 10 Performance of greedy routing when augmenting the
Delaunay graph of points distributed according to Sweden’s pop-
ulation, using distance based augmentation (1) with α = 2, rank
based augmentation (2), and destination sampling.
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Fig. 11 Performance of greedy routing when augmenting the
Delaunay graph of points distributed according to the population
density of the United States, using distance based augmentation
(1) with α = 2, rank based augmentation (2), and destination
sampling.
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Fig. 12 Explicit distance based augmentation gives the same
(poor) performance in the Sweden, USA, and Random population
models.

fail, but it is not exactly clear under what circum-
stances. We identify one such family, of irregular non–
homogeneous distributions, namely the random model
described above, where distance based augmentation
performs worse than even uniform such (Figure 9).

Figures 10 and 11 show the results using the real
world data of the population density in Sweden and
the USA. As expected due to Liben-Nowell et al.’s ob-
servations of the Internet community data, as well as
our structurally similar random configuration, purely
distance based augmentation does not give good result
here, being beaten even by uniform augmentation.

Remarkably, the results for the random model are
almost identical to those for the real world populations
(Figure 12), showing that as far as distance based aug-
mentation is concerned, the real world data appears
structurally very similar to that produced by the ran-
dom model.

The destination sampling algorithm performs well
in all situations – both synthetic test data as shown
in Figures 7 - 12 and for real world data, as shown
in Figures 10 and 11 – always producing results that
scale like log2 n as desired, and consistently performing
better than explicit distance or rank based augmenta-
tion. We have not been able to find any population
distribution or situation where the re-wiring algorithm
performs poorly.

4 Popularity Distributions

4.1 Experiments

One of the most striking differences between social net-
works and most simple random graph models is that
the former seem to have power-law degree distributions,
while the latter most often have Poisson distributed or
even constant degrees. The celebrated “preferential at-
tachment” model (see [1] and [20] as well as [4] for rig-
orous analysis) explains this fact by showing that such
distributions arise when new vertices are more likely to
connect to vertices which already have a high degree.

In the context of the re-wiring algorithm, one might
expect some vertices to be more popular targets of
searches than others (as would most definitely be the
case if the algorithm was, for example, used to wire up
a peer-to-peer network). It is of interest to see whether
the rewiring algorithm can adapt also to this situation.
(Clearly the distribution of searches has a large effect
on what edges are formed during destination sampling.)

In order to separate these results from those above,
we return to the original model of Kleinberg – vertices
placed in a regular lattice with connections to their
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Fig. 13 Performance of greedy routing when choosing destina-
tion by power-law distributions of different exponent (β in (3)),
using destination sampling in a one dimensional grid. This is con-
trasted against explicit augmentation by distance (with α = 1),
where the destination distribution of course makes no difference.

nearest neighbors, as well as a single outgoing long-
range contact. The out-degree of each vertex is thus
still fixed, but the in-degree varies as a result of target
popularity.

In our experiments, we produce a random order of
the vertices, and consider each vertex x’s position in
this order, p(x), as its popularity ranking. We then se-
lect the targets of queries using power-laws, of the form

P(choosing x as a target) ∝ p(x)−β (3)

for β ranging from 0 to 2. As well as evaluating the
performance of the destination sampling under these
conditions, we also study the resulting degree distribu-
tions to see if a power-law is actually recovered.

4.2 Results

Figures 13 – 14 show our results when we return to
a homogeneous grid, but instead let the popularity of
vertices as destinations vary. As in the cases above, we
find the destination sampling excels, producing shorter
paths than explicit augmentation. In fact, as β increases
in (3), we find that destination sampling gives shorter
and shorter paths. Intuitively, this follows from the fact
that since most searches are going to a limited set of
vertices, most shortcuts also lead to those vertices, al-
lowing most of the routing to occur within a small sub-
set of the whole graph. This is most clear when β > 1,
in which case one can for any ε > 0 fix an m such
that at least 1 − ε of the queries are destined for the
m most popular vertices, independent of the graph size
n. Indeed, one can see in Figure 13 that we observe no
increase in the path lengths for β = 2 after a certain
point (it stays below 2.1 mean steps for all sizes). In
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Fig. 14 Degree distributions of the graphs created by destina-
tion sampling when choosing choosing destinations by power-law,
for different values of the exponent (β) in (3). The network has
256,000 vertices, each with out-degree one. The plots show the
fraction of vertices with each total in-degree (rounded up to the
nearest multiple of ten).

contrast, both the distance based augmentation as well
as rank based augmentation, which assign fixed proba-
bilities independently of the popularity distribution, of
course do not take advantage of the non-uniform pop-
ularity distribution at all.

The resulting degree distributions are described in
Figure 14. One can see that when the destination is se-
lected according to a power-law distribution, the degree
of the vertices also end up following such a distribu-
tion. This is not particularly surprising, given the way
the algorithm functions, but shows that we can gener-
ate power-law (“scale-free”) graphs without sacrificing
navigability.

5 Combined

For completeness, we look at what happens when per-
forming destination sampling on the Swedish popula-
tion model from the first section, while at the same
time using a biased popularity distribution as in the
second.

As expected from the above results, destination sam-
pling functions well also when combining both a non-
homogeneous geographical population density, and a
power-law distribution of destination, see Figure 15.
The mean path length is considerably shorter than that
attained under either the distance or rank based aug-
mentations.

6 Clauset and Moore’s rewiring scheme

To round off our experiments, we attempt a comparison
of our results using destination sampling with those of
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Fig. 15 Performance of greedy routing when combining the Swe-
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Fig. 16 An illustration of Clauset and Moore’s algorithm on
them same augmented grid as in Figure 3 before and after a
rewiring, with τ = 4. The blue vertices and edges represent a
greedy path from red towards green. Because green has been
reached after τ steps, red’s shortcut is rewired to point to where
the path ended.

a different rewiring algorithm described by Clauset and
Moore [6]. Like Algorithm 21, the CM algorithm starts
from a graph with only self-loops as shortcuts, and sim-
ulates a large number of queries. Using the same defi-
nitions as in 21, the main steps of their algorithm are
as follows:

1. Choose ys+1 and zs+1 randomly from V .
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Fig. 17 The number of rewire events needed for destination
sampling and Clauset and Moore’s algorithm to reach optimal-
ity. Plotted also are the lines for 2n and 9n + 0.0304n1.77: the
number of paths simulated respectively. Note that both axis are
logarithmic.

2. Let d = dG(ys+1, zs+1) be the distance from ys+1 to
zs+1 in the base graph, and select τ uniformly from
1, 2, . . . , d.

3. If the chosen vertices are distinct, do a greedy walk
in Gs from ys+1 to zs+1 stopping when zs+1 is reached,
or when τ steps have been taken (whichever comes
first). Let x0 = ys+1, x1, x2, ..., xt denote the points
of this walk.

4. If t = τ , replace one of ys+1’s shortcuts with one to
xt.

This algorithm is equivalent to “giving up” routing
if the destination has not been reached within τ steps,
and then attempting to shorten the route by rewiring
the starting vertex’s shortcut to point to the vertex at
which routing stopped. See Figure 16 for an illustration.
In [6], the authors show experimental results indicating
that this algorithm does lead to a navigable graph when
using a one dimensional base graph and distance func-
tion. They estimate, based on simulations, that about

9n + 0.0304n1.77

requests are needed to reach the optimum path length.
This is considerably more than the n to 2n iterations
which we estimate are needed for destination sampling
(see Figure 6). Part of this can be explained by the fact
that destination sampling rewires several vertices per
request, while Clauset and Moore’s algorithm rewires at
most one (and in practice much fewer), but destination
sampling is considerably faster also in terms of rewire
events (see Figure 17).

Compared to those in [6], our results for 2-dimensional
continuous settings are less conclusive. The results of
simulations according to CM have been included in Fig-
ures 7 (with Uniform population density) and 9 (with
the Random density model). These two models were
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Fig. 18 Comparison of Destination Sampling with Clauset and
Moore’s algorithm with biased popularity distributions, as in Sec-
tion 4.

chosen because they are representative of the different
behaviors observed in the simulations above. In order
to make sure that convergence times are not an issue,
we simulated twice as many iterations for these experi-
ments as [6] indicates is necessary3. In absolute terms,
the results look good, with CM beating the distance
and rank based augmentations for all network sizes. The
performance is not degraded when moving from the uni-
form to the random population distribution, indicating
that CM, like destination sampling, adapts. The plotted
lines are not unambiguously linear however, and so it is
unclear what asymptotic trend is indicated. Whether or
not we are seeing true navigability emerge with CM is
unclear, and even after considerable effort we are forced
to leave the question unanswered.

We also simulated comparisons of destination sam-
pling and CM in the popularity distribution models dis-
cussed in Section 4. Here CM leads to greedy routes of
comparable length to destination sampling, although it
still requires many more simulated requests for conver-
gence. See Figure 18.

7 Conclusion

We find, as has been observed before, that in geographic
networks the augmentation process is sensitive to the
environment and distribution of the vertices. If the dis-
tribution deviates sufficiently in structure from a uni-
form placement of the vertices, otherwise effective meth-
ods of assigning shortcuts will not work in a number of
cases. The destination sampling algorithm, however, is

3 Doing more iterations than this, or simulating even larger
sizes, becomes difficult without parallelization, since our largest
simulations already require around 236 routing operations. Paral-
lelization is clearly possible, but it is hard to estimate what effect
this will have on the convergence rate.

adaptive and will create navigable graphs in all cases
that we have studied.

Likewise, when the popularity of the different ver-
tices as destinations for searches is uneven, the destina-
tion sampling algorithm will adapt and is able to utilize
this to find even shorter paths.

Given its remarkable ability to create augmenta-
tions reflective of each situation, we believe that in any
case where navigable augmentation is possible (see [8]
[12] for a discussion on the limits of this) destination
sampling can be used to achieve navigability. We also
note that the formulation of the algorithm requires no
understanding of the actual situation - the same exact
procedure will work regardless of geographic or popu-
larity distribution, which is not true, for instance, when
augmenting by rank.
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