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Abstract  
Shadows are important elements in three-dimensional computer graphics. They enhance the level 
of realism and provide visual cues that help determine spatial relationships. Point light sources 
generate only fully shadowed regions, i.e., there is an abrupt transition from no shadow to full 
shadow. These shadows are often referred to as hard shadows. Soft shadows on the contrary, are 
produced when area or volumetric light sources are present in a scene. Each shadow can have a 
fully shadowed region, called the umbra, and a partially shadowed region, called the penumbra. 
Soft shadows are generally preferable, because they let the viewer know that the shadow is 
indeed a shadow and not actual geometrical features. Soft shadows are also more realistic, and 
they further help in understanding distances in a scene. 
This thesis focuses on an OpenGL implementation of the soft shadow volume algorithm 
presented by Assarsson and Akenine-Möller [1, 2]. The algorithm extends the well-known 
shadow volume algorithm for hard shadows presented in 1977 by Crow [3], and consists of two 
passes. The first pass uses the classic shadow volume algorithm to generate hard shadows as an 
approximation of the umbra region; the second pass provides the softness of the shadow, the 
penumbra region. This is achieved by generating penumbra wedges and rasterizing them using a 
fragment program that computes the light intensity for each pixel from the uncovered area of the 
light source. 
The result of this thesis is an OpenGL implementation capable of real-time soft shadow volumes. 
The implementation produces high-quality shadows for area and volumetric light sources that 
cast properly on arbitrary surfaces. A simple load-balancing scheme that enables trade-off 
between quality and performance is also presented. 
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Sammanfattning 
Skuggor är ett viktigt inslag i rendering av tredimensionell datorgrafik. De förstärker realismen 
och förser användaren med viktig information om spatiala förhållanden och positioner. 
Punktformiga ljuskällor genererar enbart fullt skuggade områden, vilket innebär att det finns en 
diskontinuerlig övergång mellan skugga och icke-skugga. Dessa skuggor kallas ofta hårda 
skuggor. Mjuka skuggor uppstår när ljuskällor har en utbredning, i form av antingen en area eller 
en volym. Varje skugga kan ha en fullt skuggad del, kallad kärnskugga, och en delvis skuggad 
del, kallad halvskugga. Mjuka skuggor är oftast att föredra, eftersom hårda skuggor lätt kan 
misstas för geometriska detaljer. 
Den här rapporten fokuserar på en implementation i OpenGL av den algoritm för mjuka skuggor 
som utvecklats av Assarsson och Akenine-Möller [1, 2]. Algoritmen består av två renderingspass 
och bygger på Crows välkända algoritm för skuggvolymer från 1977 för hårda skuggor [3]. Det 
första passet genererar en överapproximation av kärnskuggan med hjälp av ovanstående algoritm, 
varefter det andra passet bidrar med den mjuka delen av skuggan, halvskuggan. Denna rastreras 
med ett fragmentprogram som beräknar ljusintensiteten för varje pixel utifrån den synliga delen 
av ljuskällan. 
Resultatet av detta examensarbete är en OpenGL-implementation av mjuka volumetriska skuggor 
i realtid. Implementationen genererar högkvalitativa skuggor som kastas på godtyckliga ytor för 
ljuskällor med area eller volym. Dessutom presenteras en enkel lastbalanseringsstrategi som 
möjliggör avvägning mellan kvalitet och prestanda. 
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1 Introduction 
Shadows enhance realism and provide important visual cues about spatial relationships. Without 
shadows, images tend to look flat and it is difficult to determine sizes and positions of objects in 
the scene. 
Currently most shadow algorithms for real-time applications are limited to hard shadows, which 
are generated by point light sources. Real world light sources have an area or volume, thus hard 
shadows do not occur in reality. It should be noted though, that the soft region of the shadow can 
be small, and therefore hard shadows can sometimes be a reasonable approximation. 
Area and volumetric light sources produce soft shadows, which have a smooth transition from no 
shadow to full shadow. The fully shadowed region is called the umbra, and the transition is called 
the penumbra. The umbra region of a soft shadow (Figure 2) is not equivalent to a hard shadow 
generated by a point light source (Figure 1); instead the umbra region of a soft shadow is 
decreasing in size the larger the light source. 

 
Figure 1: Hard shadows. 1) Light source. 2) Shadow caster. 3) Umbra region. 

 
Figure 2: Soft shadows. 1) Light source. 2)  Shadow caster. 3) Umbra region. 4) Penumbra region. Note how 
the umbra region decreases in size the larger the light source. 

The visual quality of soft shadows compared to that of hard shadows is very high, as shown in 
Appendix A. It is thus desirable to be able to apply real-time soft shadows in real-time 
applications such as computer games. 
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This report presents an optimized implementation using OpenGL of the soft shadow volume 
algorithm presented by Assarsson and Akenine-Möller [1, 2], and a suggestion for a simple 
speed-up technique. Our main goal has been to show that the algorithm is well suited for games 
and other real-time applications were many calculations such as physical simulation and AI 
occupy the CPU.  
In writing this thesis, we have assumed that the reader is familiar with common computer 
graphics (CG) terms and concepts.  
 

2 Thesis Organization 
First we give a brief presentation of previous work and real-time shadow techniques, and then 
follow a section describing our implementation. Then follow a discussion, a summary of results 
and suggestions for future work that would improve the soft shadow volume technique. 
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3 Previous Work 
Various rendering techniques such as ray tracing [4], photon mapping [5] and radiosity [6] 
compute approximated lighting by considering a visibility function. For these techniques the 
visibility functions are simple to implement, making it trivial to produce computer generated 
images where shadows are included. However, the only feasible solution for real-time rendering 
is currently rasterization of triangles. 
In this chapter we shall see that various algorithms exist that extend the rasterization approach 
with a visibility function for direct illumination. We first give an overview of the most common 
real-time shadow algorithms. We focus on the shadow volume algorithm, which currently is used 
in many real-time applications. 
 

3.1 Real-Time Rendering of Shadows 

3.1.1 Hard Shadows 

Overview 
There are many different shadow techniques with real-time performance. Simple shadows such as 
a dark rectangle under an object has been used in games for a long time since any shadow often is 
better than no shadow at all.  
One of the major problems with the approach above is that the shadows do not cast properly on 
objects or walls. There are many algorithms that behave this way, and operate in scenes with very 
restrictive assumptions. Another example of this is the projective shadow algorithm [7], which 
assumes that the shadow receiver is a plane with known orientation and position.  
The two most widely used techniques that are able to cast shadows on arbitrary geometry are 
shadow volumes and shadow mapping. The shadow mapping algorithm [8], renders a depth 
image, called a shadow map, as seen from the light source. Shadows are then created by 
rendering the scene from the eye, and for every pixel its distance to the light source is compared 
to the depth value in the shadow map, which determines whether the point is in shadow or not. 
The shadow mapping algorithm was first introduced by Williams in 1978 [8], and one of the most 
important additions to it has been the paper by Segal et al. [9], in which it is noted that the 
required computations are very similar to the computations already implemented in hardware. 
Since shadow maps can be hardware-accelerated it is fast, and many computer games use it. The 
technique has one major drawback; the discretization and limited precision of the shadow map 
can result in aliasing artifacts in the form of jagged shadow edges. The pixel precision seen in 
shadow volumes have not yet been achieved with shadow maps although several attempts have 
been made [10, 11, 12]. A detailed description of the shadow volume algorithm [3] follows in the 
next section. 

Hard Shadow Volumes 
A method based on Crow's shadow volume algorithm [3] uses the stencil buffer to cast shadows 
onto arbitrary objects. The technique is called shadow volumes, or volumetric shadows. To 
understand what a shadow volume is, imagine a point light source positioned above a triangle. 
Extending vectors from the light source through the vertices of the triangles yields a pyramid. 
The part of the pyramid under the triangle describes a volume in which all points are in shadow, 
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hence the name, shadow volume. 
The classic version of the algorithm works as follows [13]. First, the stencil buffer is cleared. 
Then the whole scene is rendered using only ambient lighting, and the depth information of the 
scene is rendered into the Z-buffer. A pass follows where each silhouette edge of an object as 
seen from the light source creates a shadow volume quadrilateral which is rendered to the stencil 
buffer, using only Z-buffer testing. Quads facing the viewer that pass the depth test add one to the 
stencil buffer, while back facing quads subtract one. This means that the stencil buffer contains a 
mask where zero indicates no shadow, and non-zero indicates shadow. Finally the whole scene is 
rendered with specular and diffuse lighting where the stencil buffer is zero. 
The shadow volume technique works well in most cases, but there are some limitations. Since the 
stencil buffer only stores one object's shadow state per pixel, transparent objects cannot receive 
shadows correctly. The algorithm also assumes that shadow casters consist of opaque triangles 
and that light sources are modeled as point light sources. 

Problems 
The stencil shadow volume algorithm as described above is quite fast, but it has a serious 
drawback that has limited its use for years. The problem with the original algorithm for shadow 
volumes [3], is that it does not properly handle the case when the viewer is inside a shadow 
volume, since shadow volumes will be clipped against the near plane, resulting in incorrect 
shadows. Below follows a description of how this problem can be solved. For further 
improvements of the algorithm, we refer to the techniques presented by Everitt and Kilgard for 
optimizing shadow volumes [14]. 
For shadow volume algorithms to work properly, the silhouettes of the shadow casting objects 
with respect to the position of the light source must be closed loops. This means that the objects 
must be closed, sometimes referred to as 2-manifold. Most polygonal objects are not closed; 
hence they must be capped. In section 4.3 we suggest a simple approach to cap triangular meshes 
in order to avoid erratic shadows. Another method is to add/subtract 2 for non-open edges and 
add/subtract 1 for open edges [15]. 

Eye Inside Shadow Regions: Z-fail vs. Z-pass 
In 2000, John Carmack presented a solution to the problem, known as the Z-fail algorithm, or 
Carmack’s reverse [16]. The idea is to render the shadow volumes that are obscured by visible 
geometry. Z-fail was also independently discovered by Billodeau and Songy [17]. 
In the first pass, all back facing shadow volume quadrilaterals are rendered and the stencil buffer 
is incremented when the polygon is equal to or farther than the stored depth value. The second 
pass renders all front facing quads and decrements the stencil count when the polygon is equal to 
or farther than the stored depth value. The algorithm is called Z-fail because the shadow volumes 
are drawn only when the Z-buffer test has failed.  
In the original algorithm, called the Z-pass algorithm, a point is found to be in shadow if the 
number of intersections with frontfacing polygons and a virtual ray from the eye is larger than the 
number backfacing polygons intersecting the same virtual ray. In the Z-fail version, a point is in 
shadow if the number of backfacing polygons not seen is larger than the number of frontfacing 
polygons not seen. The difference is that all shadow volume quads in front of surfaces, including 
the ones which could encompass the eye, are not rendered, so most viewer location problems are 
solved. 
Now that the depth test has been changed, it is necessary to render the original polygons on the 
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caster generating the quadrilaterals to properly maintain the count. The shadow volumes must be 
closed, capped, at their far ends, and this cap must be inside the far plane to avoid causing 
shadowing errors.  
Generating the required top and bottom cap for an arbitrary mesh can be complicated, but 
assuming a closed mesh it is much simpler. For a closed mesh we can use the front facing 
triangles, relative to the light, as the top cap. The bottom cap can be generated from the back 
facing triangles by projecting them away from the light. 
The changes to the original algorithm described above enable correct shadow calculation when 
the eye is inside a shadow volume and is a very robust and practical algorithm. The only 
drawback using Z-fail is that in most cases, z-pass will fill fewer pixels overall. Therefore, Z-fail 
may be slower, and Z-pass should be used whenever possible. 

3.1.2 Soft Shadows 

Overview 
The shadows generated by the techniques described in the previous sections do not handle soft 
shadows; there is no smooth transition from no shadow to full shadow. This is a consequence of 
the limitation of the techniques: light sources must be points. Real world shadows are in most 
cases soft, with a smooth transition from no shadow to full shadow, since light sources have an 
area or a volume. Such light sources give rise to soft shadows since there are points where only a 
part of the light is visible. These points constitute the penumbra region. The set of points where 
the light is completely obscured and the geometry is in full shadow is called the umbra region. 
Chan and Durand at MIT have an approach that builds on the shadow map algorithm by attaching 
geometric primitives, called smoothies [18], to the objects’ silhouettes. These smoothies give rise 
to fake shadows that appear like soft shadows, at a low cost. The soft shadow edges hide some of 
the aliasing artifacts that are noticeable with ordinary shadow maps. Wyman and Hansen 
approximate soft shadows by introducing the penumbra map [19] that also extend the shadow 
map technique. This penumbra map is generated by using the objects’ silhouette edges as seen 
from the center of an area light. Both algorithms allow arbitrary dynamic models that shadow 
themselves and their environment. 
The soft shadow volume algorithm using penumbra wedges [20] extends the hard shadow volume 
algorithm so that area or volume light sources can be used. The algorithm renders soft shadows in 
real time from arbitrary shadow casters on arbitrary surfaces. We will present a brief description 
of the soft shadow volume algorithm. A great survey on real-time soft shadow algorithms is 
presented by Hasenfratz et al [21]. 

Soft Shadows Using Penumbra Wedges 
The algorithm introduces a new rendering primitive, the penumbra wedge, illustrated in Figure 3. 
These wedges are used in the computation of a visibility buffer (V-buffer), which is used as a 
mask to add shadows to the final image. 
To compute this V-buffer, the hard shadow quadrilaterals are rendered into the buffer by using 
the standard shadow volume algorithm for hard shadows. The silhouette edges are then used to 
create penumbra wedges, which encompass the penumbra volumes. The wedges are split in two 
by the hard shadow quads, which yields an inner and outer half. 
For all points located in the inner half of the wedge, a fragment program computes how much 
each point can see of the light source, with respect to the silhouette edge of the wedge. This 
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fraction is added to the V-buffer, and compensates for the over-estimated umbra created by the 
hard shadow pass. 
For points in the outer half of the wedge, the fragment program computes how much of the light 
source that is covered with respect to the silhouette edge, and this fraction is subtracted from the 
V-buffer. 
The effect of this calculation is a visibility mask that represents the shadow containing both 
umbra and penumbra regions. 

 
Figure 3: Penumbra Wedge. 
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4 A Soft Shadow Rendering Framework 

4.1 Overview 
One goal of our work has been to implement the soft shadow volume algorithm efficiently in 
OpenGL, and show its fitness for real-time applications such as games. Software of this type 
requires a lot of supporting code, e.g. window and input management, timing, camera handling, 
and scene representation. This functionality is implemented in a separate framework, independent 
of the actual shadow algorithm. Much of our work has been focused on developing this 
framework. The implementation is based on a series of articles, [1, 2, 22, 23], in which the 
technique described above as the soft shadow volume algorithm was presented by the authors. 
In this section follows a description on how to implement the soft shadow volume algorithm 
using OpenGL. Our implementation is based on the shaders from the original DirectX 
implementation of the algorithm by Dougherty and Mounier1, and handles non-textured spherical 
and rectangular light sources as well as textured rectangular light sources. The main difference 
between these three types is the fragment programs rasterizing the penumbra wedges. These 
fragment programs will be presented in detail. We suggest an automatic capping algorithm which 
enables correct shadows from arbitrary polygonal objects. We also suggest a simple speedup 
technique which can greatly reduce the number of pixels rasterized for each penumbra wedge.  

4.2 Soft Shadow Volumes in OpenGL 

4.2.1 Introduction 
This section describes a way to implement soft shadow volumes in OpenGL. Our implementation 
runs in real time, but there are some problems related to limitations on current graphics hardware 
that have serious impact on performance. However, these problems are likely to disappear within 
the next few generations of graphics cards. In this section we discuss some of the identified 
problems along with the solutions we have applied to implement the algorithm on current 
hardware. 
The standard stencil shadow volume algorithm requires a stencil buffer that holds information for 
every pixel whether it is in shadow or not. The soft shadow volume algorithm requires a similar 
buffer, but it must be able to represent several levels of intensity for the shadow. This visibility 
buffer (V-buffer) is the essential part of the algorithm and we will therefore focus on how it is 
computed and used. 
In the following sections we will describe the implementation of the V-buffer, the V-buffer 
computation steps, and finally describe how the V-buffer used when rasterizing the scene. When 
computing the V-buffer, access to the world positions of the fragments representing the shadow 
receivers is required. Since this information is not available in fragment programs on current 
hardware, it must be provided through a buffer accessible in the fragment programs. We start by 
describing how this position buffer is implemented. 

4.2.2 Position Buffer 
The position buffer is a two-dimensional lookup texture required when rasterizing the penumbra 

                                                 
1 Full source code available from “http://www.ce.chalmers.se/staff/tomasm/soft/”. 
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wedges. Since there are no information available on which pixels that are in shadow, the texture 
must be updated for all visible pixels. This texture is implemented as a floating point pixel-buffer, 
where the rgb components of each pixel hold the world space coordinates (xyz) for the 
corresponding pixel in the framebuffer. 
Computing this position buffer is the first step of each frame. This is accomplished by rendering 
the entire scene into the buffer using a combination of one vertex and one fragment program. The 
fragment program receives the interpolated world position of each fragment through the texture 
coordinates sent to it from the vertex program. This information is then written to the buffer as 
color values. An example of the contents of the position buffer is shown in Figure 4. 

 
Figure 4: Position buffer, rgb values represent the xyz world coordinates of each fragment. 

4.2.3 Visibility Buffer 
The visibility buffer (V-buffer) holds a mask with coverage values, where a value of 0.0 represent 
full shadow and a value above or equal to 1.0 represent no shadow. The V-buffer is implemented 
as two 8-bit per component rgba-buffers, in the form of a double-buffered pixelbuffer. One of the 
buffers holds the additive luminance contribution, and the other holds the subtractive 
contribution.  
Since blending with more than eight bits is not supported by today’s graphics hardware, splitting 
values across several eight bit components is necessary to increase precision in order to avoid 
banding effects. Note that using split values will not be necessary when hardware has evolved.   
We reserve the highest five bits of each color channel for overflow, and use the three lowest bits 
for the coverage value, see Figure 5. These five overflow bits allow addition of split values (See 
Figure 6) and overlapping shadow geometry. A one-dimensional texture is used to split the 
coverage values across four 8-bit components. Indexing the texture with a value between zero 
and one gives the corresponding split value. The split values are recombined with a dot product 
that scales each channel and adds them together. See Figure 7. 
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Figure 5: A 12 bit coverage value is split across four channels. The highest 5 bits of each component is 
reserved for overflow, and the lower 3 bits are used for the coverage value. 

 
Figure 6: The split visibility masks are accumulated into a single split visibility mask. 

 
Figure 7: The split value is recombined by shifting the four components and adding them to yield a visibility 
mask. This operation can be performed with a single dot product. 

Every frame before rendering the shadows of the scene, the V-buffer is cleared to the value one, 
representing no shadow. This is achieved by clearing the subtractive layer of the V-buffer to zero, 
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and the additive layer to one. Figure 8 is a visualization of how the V-buffer is derived from the 
additive and subtractive contributions. 

 
Figure 8: Subtracting the subtractive contribution from the additive yields the final visibility values. (Note 
that the intensities in the additve and subtractive contributions have been divided by two for visualization 
purposes) 

4.2.4 Silhouette Edges 
We have described how shadow volume algorithms use the silhouette loops of a 2-manifold 
shadow caster to create the shadow volume geometry. An edge is part of the silhouette if one of 
the triangles connected to it faces the light, while the other does not. Once the silhouette has been 
calculated, it is used to create the geometry of the penumbra wedges and the shadow volume.  

4.2.5 Constructing Penumbra Wedges 
The penumbra region for a given edge and a light source is found by sweeping a cone from one 
vertex of the edge to the other. The cone is generated by reflecting the light source through the 
sweeping point on the edge. But instead of calculating the exact penumbra volume in real time, a 
bounding volume for the penumbra region is created. 
A wedge is created as follows: let a silhouette edge e be defined by the two vertices e0 and e1. 
First it is determined which of the two vertices is furthest from the light source center, lc. This 
vertex is moved towards the light center until the two vertices are at the same distance from lc. 
Assume that e0 was at the shortest distance from the light source. We then denote the translated 
vertex e1’. The two vertices e0 and e1’ defines a new edge above the original edge, which will be 
the top of the wedge. This edge guarantees that the wedge contains the entire penumbra volume 
of the original edge, but the original edge is still used for visibility computation. Second, an 
orthogonal base is formed with the edge as x-axis and the vector from the edge to the light source 
as z-axis. 
An axis-aligned bounding rectangle is created for the light source in this xy-plane. Each edge in 
this bounding rectangle together with one or both of the edge vertices define the front, back and 
side planes of the wedge. An additional middle plane separating the wedge in two halves is 
defined by the edge and the center of the light source, lc. 
The inner half is used for rasterizing the additive luminance contribution, and the outer half is 
used for the subtractive contribution. The middle plane coincides with the quadrilaterals 
generated with the standard shadow volume algorithm. Figure 9 shows the triangles that 
constitute a penumbra wedge. All triangles are necessary to avoid cracks between the hard 

- = 
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shadow quadrilateral and the wedge geometry. 
In order to extend the soft shadow volume algorithm to handle the case when the eye is in 
shadow, we have implemented a Z-fail version. The solution is to add bottom caps to the 
penumbra wedges and modify the way wedges are rasterized in the same manner as for standard 
stencil shadow volumes (See section 3.1.1). The cap, visualized in Figure 9 c, consists of eight 
additional triangles. 

 
Figure 9: a) The eight triangles constituting the standard penumbra wedge. b) The six triangles representing 
the middle plane that separates the wedge in its front and back halves. c) The eight Z-fail bottom cap 
triangles. 

4.2.6 Rasterizing Umbra Approximation 
The V-buffer is initially cleared to 1, which indicates no shadow. Using the standard shadow 
volume algorithm, hard shadows are then rendered to the V-buffer. Front facing shadow volume 
quadrilaterals are additively blended to the subtractive luminance texture, thus subtracting 1.0 
from the V-buffer for every pixel covered by the quad. Back facing quads are rendered to the 
additive luminance texture, thus adding 1.0 for every rasterized pixel. The result of this step is an 
over-approximation of the umbra region. 

4.2.7 Rasterizing Penumbra Wedges 
Rendering the penumbra wedges compensates for the over-estimated umbra, and computes the 
visibility factor for all points inside the wedges. The visibility factor for a point in the penumbra 
is defined as the area of the light source visible from the point divided by the total light source 
area. Note that the inner half of a wedge is rendered to the additive layer of the V-buffer while 
the outer half is rendered to the subtractive layer. 
To reduce the amount of expensive per-fragment operations we first determine the visible pixels 
inside the penumbra wedge and mark these in the stencil buffer using the same technique [2] as 
for stencil shadow volumes. This requires that the depth information is present. The procedure is 
described in Figure 10 for Z-pass and Figure 11 for Z-fail. 

b) c) a) 
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Figure 10: Z-pass stencilling. Front faces of the wedge half that pass the depth test, are rendered to the stencil 
buffer. Back faces that pass the depth test are then subtracted from the stencil buffer, which yields the 
penumbra region for the wedge half. 

 
Figure 11: Z-fail stencilling. Back faces of the wedge half that fail the depth test are rendered to the stencil 
buffer. Front faces that fail the depth test are then subtracted from the stencil buffer. This results in the same 
mask as for Z-pass stenciling. 

Our implementation handles three different types of light sources; spherical, rectangular, and 
textured rectangular light sources. The penumbra wedges originating from these three types have 
to be rasterized using three different fragment programs. These fragment programs, along with 
descriptions of the visibility computations are described below.  

Fragment Program: Spherical Light Source 
The fragment program first transforms the silhouette edge into light space. In light space, the 
light source is represented by a circle (orthogonal projection of the sphere along the z-axis) with 
its center located at z=1 on the z-axis, the radius is one, and the point to be shaded is located at 
the origin. An orthogonal basis for the transform is constructed with a z-axis directed from the 
point to be shaded to the light source. This basis combined with a scaling matrix transforms the 
edge points to light space. The scaling matrix multiplies the z coordinate by the inverse distance 
between the light source and the point to be shaded, and multiples the x and y coordinates by the 
inverse light radius. 
A cone which encompass the light source and its top located at the point to be shaded now has the 
equation x2 + y2 = z2. The line described by the transformed points is clipped against this cone in 
homogenous space by solving the equation of the intersection of the line and cone. Points below 
the xy-plane are rejected. A division by z projects the clipped points onto the z=1 plane. 
The resulting points are used to do a texture lookup in an atan2 cubemap to obtain the two angles 

- = 

- = 
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used when calculating the coverage. These angles characterize the minor arc defined by the 
intersections of the rays from the light center to the points and the unit circle. The angles are used 
in another texture lookup to obtain the area defined by the circle center and the minor arc, Figure 
12 a. This area is subtracted by the area resulting from the cross product of the two points (Figure 
12 b) and divided by the area of the unit circle to yield the final coverage (Figure 12 c). 
In a final step, the coverage value is converted to a split value, as described in section 4.2.3, and 
added to either the additive or subtractive layer of the V-buffer. The currently active rendering 
target determines which layer is written to. 

 
Figure 12:  Coverage calculation for spherical light sources. a) Area defined by the light source center and the 
minor arc. b) Area of triangle defined by the light source center and the two clipped and projected edge 
points. c) The resulting coverage. 

Fragment Program: Rectangular Light Source 
The fragment program for the rectangular light source first transforms the point to be shaded into 
light space coordinates. As we have already described, the center of the light source is located at 
z=1 on the z-axis and the point to be shaded is located at the origin. A shear and scale matrix is 
constructed from the point to be shaded and the light extents (Figure 13). The silhouette edge is 
transformed into light space by this matrix and clipped against planes in homogeneous space. 
These planes coincide with the edges of the light source and the point to be shaded. 

 
Figure 13: Transformation to light space. 

As with the spherical light source the clipped points are projected onto the z=1 plane by a 
division by z and used to do a texture lookup that yields the two angles described in the previous 
section. These angles are used with a pre-calculated texture to lookup the area defined by the 
intersection between the rays from the light center to the points and the unit square (Figure 14 a). 

a) b) c) 

z 

p, z = 0 

p 

lc lc, z = 1 
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Subtraction of the area of the triangle defined by the light source center and the clipped and 
projected edge points (Figure 14 b) yields the final coverage value (Figure 14 c). 
The fragment program ends by converting the computed coverage value to a split value, and 
update the V-buffer in the same manner as for the fragment program for spherical light sources.  

 
Figure 14: Coverage calculation for rectangular light sources. a) Area defined by the light source center and 
the minor arc clipped against a square. b) Area of triangle defined by the light source center and the two 
clipped and projected edge points. c) The resulting coverage. 

Fragment Program: Textured Rectangular Light Source 
This fragment program is very similar to the fragment program for non-textured rectangular light 
sources. The difference is that instead of computing the angles, we use the projected edges to do a 
lookup in a four-dimensional pre-calculated coverage texture. Since there is no support for four-
dimensional textures, the texture is implemented as a two-dimensional texture, see [1] for details. 

4.2.8 Putting it all together 
The result of the steps above is a visibility buffer (V-buffer) containing the information of 
shadow intensities for the scene. To enhance the visual quality of the final image, we combine the 
V-buffer with per-pixel lighting derived from the previously created position buffer. Adding the 
diffuse color contributions from the textures of the scene yields the final image. Figure 15 shows 
how the V-buffer is combined with per-pixel lighting. This results in a complete lighting 
representation including visibility function. Figure 16 shows how the diffuse contributions from 
the textures of the scene are added to yield the final image. 

 
Figure 15: Adding per-pixel lighting. 

⊗ = 
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Figure 16: Adding diffuse texture contributions. 

4.3 Capping of Triangle Meshes 
Since shadow volume algorithms require shadow caster objects to be two-manifold, unless 
Bergeron’s trick is used, holes in non-closed meshes must be capped. We present an automatic 
capping algorithm that is part of the framework that handles triangular meshes, which enables 
correct shadows from arbitrary polygonal objects. Even though Bergeron’s algorithm might be 
possible to adapt for soft shadow volume usage, the double incs and decs of the stencil buffer are 
likely more expensive than capping the geometry. 
A triangle mesh consists of at least one triangle. The front- and back faces of a triangle are 
determined by the winding order of its edges. Without loss of generality we will throughout the 
rest of this section assume we have a counter-clockwise (CCW) winding for all triangles. See 
Figure 17. 
To connect two triangles, their winding order must be identical. When two edges are connected 
they have opposite direction, thus forming a bidirectional edge. The two connected triangles form 
a triangular mesh where any unidirectional edges form a CCW directed loop.  
If more triangles and/or meshes are connected in the same manner, the result is always a mesh 
where any unidirectional edges form one or more CCW directed loops. As long as these loops 
exist they form holes in the surface and the mesh is not 2-manifold. In order to remove the holes 
we cap them with triangles. 

 
Figure 17: Connecting two triangles. a) Two triangles. b) Resulting mesh. Note the winding order of the edges. 

We choose from a loop two edges that share a vertex and duplicate them. Their directions are 
reversed and a third directed edge is added to form a new triangle. This triangle has a CCW 
winding and is added to the mesh by connecting it to the two original edges (Figure 18 b). If the 
hole is triangular the third edge is also connected (Figure 18 c, d). 

a) b) 
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The method above has the effect of replacing two unconnected edges with at most one and 
thereby decreasing the total amount of edges in the loop. By repeatedly applying this method the 
holes are guaranteed to be capped with a time complexity of O(n) where n is the number of 
edges, since we remove at least one edge for each repetition. Note that this requires a structure 
that stores information on adjacent edges. 
In our implementation we have chosen only to use the capping triangles in the silhouette 
calculation since automatic texture coordinate generation does not give the desired result in most 
cases. 

 
Figure 18: Capping of a hole in an arbitrary mesh. a) The hole is a loop of directed edges. b) A capping 
triangle has been added. c, d) The last three edges are connected with a triangle and the hole is closed. 

4.4 A Simple Load Balancing Scheme 
Due to the complexity of the fragment programs, the frame rate of our implementation depends 
on how many pixels containing penumbra that are rasterized in the V-buffer. In order to limit the 
number of rasterized pixels, we have experimented with resizing the V-buffer. The results are 
presented in Figure 20, Figure 21 and Figure 22. This technique could be extended to adaptively 
resize the V-buffer in order to achieve a constant frame rate. 
One way of implementing a V-buffer with variable size is to use several layers with different 
resolution and switching between them. Another way could be to use one full resolution buffer, 
but drawing only to parts of it. The first method is easily implemented, but since several buffers 
are needed memory usage is increased. The second method is harder to implement, but since we 
need only one buffer less memory is needed and any V-buffer size can be chosen as long as it is 
smaller than the original buffer. 
Bilinear interpolation of the sized V-buffer could reduce artifacts, but since split values cannot be 
interpolated directly, we have chosen to use point sampling to avoid a second rendering pass.  

a) b) 

c) d) 
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As seen in the result images, “shadow bleeding” artifacts appear around the edge of objects not in 
shadow in front of shadowed regions (Figure 19). This is because texels in the V-buffer generally 
covers more than one pixel in the frame buffer, causing shadow/non-shadow to appear where it 
should not. Despite this, scalability is sometimes an important property, why scaling of the V-
buffer can prove to be useful. See Appendix A. 

 
Figure 19: Shadow bleeding. 
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5 Discussion and Results 
In this thesis we have investigated the theoretical and practical aspects of both hard and soft real-
time shadows, and an implementation of the soft shadow volume algorithm [1, 2, 22, 23] using 
OpenGL has been presented. This algorithm extends the standard shadow volume algorithm, and 
implements a general solution for real-time soft shadows with arbitrary shadow casters and 
receivers. We have suggested a simple technique for load balancing in section 4.4. 
Furthermore, we have shown that the algorithm fits well for real-time applications such as games 
and other virtual reality simulations by implementing the algorithm in real game settings as 
shown in Appendix B. The images render at real-time frame rates. By implementing a Z-fail 
version of the algorithm, we have improved the robustness of our implementation. 
The algorithm has some limitations that cause artifacts. One such limitation is that a silhouette is 
calculated with respect to the center of the light source, which works fine as long as the silhouette 
is identical for all points inside the light source. Artifacts in the form of “popping shadows” 
appear when the light source center moves between two positions which generate different 
silhouettes. Another limitation comes from the fact that edges are treated independently, and too 
much shadow can be applied in the penumbra region when different edges cover the same portion 
of the light source. 
We hope that our work will inspire developers to implement and further improve the soft shadow 
volume algorithm to enhance realism in games and other real-time applications. Soft shadows in 
real-time are here to stay, we can never go back. 
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6 Future Work 
In the near future, several new features are expected to be implemented in graphics hardware. 
These features include, but are not limited to, superbuffers [24] and more than eight bits 
blending. Superbuffers allow textures and vertex buffers to be handled in a uniform way, 
enabling for instance rendering directly to vertex buffers, which may be useful for generating 
wedges. Our current implementation is limited to a 12-bit V-buffer, enabled by splitting values 
over four 8-bit values in a 32-bit texture. This splitting will be unnecessary and therefore increase 
performance when more than eight bits blending will be allowed. The higher bit-depth will also 
make more overlap of shadow volumes possible, preventing overflow. Implementation of a 
textured colored rectangular light source will also be possible with increased bit depth in 
blending operations since several color channels can be used. 
Currently, the depth information of the scene has to be rendered once for each pixelbuffer. If the 
depth-buffers can be shared between these pixelbuffers, performance will be improved. To 
further improve performance, the techniques described in the GDC presentation “Optimized 
Stencil Shadow Volumes” [14] should be utilized.  
An interesting subject to further investigate is the use of pre-rendered lightmaps in conjunction 
with the soft shadow volumes for static environments to improve performance and/or visual 
appearance. This would be particularly useful for indoor scenes with complex static geometry, as 
is common in many first person shooters.  
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Appendix A: Resizing of the V-buffer 

 
Figure 20: Full resolution V-buffer, 1024x1024 pixels. Frame rate ~16 Hz. 
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Figure 21: Resized V-buffer, 512x512 pixels. Frame rate ~45 Hz. 
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Figure 22: Resized V-buffer, 256x256 pixels. Frame rate ~85 Hz. 
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Appendix B: Screenshots 

 
Figure 23: Multiple colored dynamic light sources 

 
Figure 24: Multiple shadow casters 
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Figure 25: Rectangular light source 

 
Figure 26: Arbitrary shadow receivers 

 
Figure 27: Arbitrary shadow receivers 
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Figure 28: Multiple shadow casters 

 
Figure 29: Dynamic colored light source 


