
GENERATING CLIMBING PLANTS USING L-SYSTEMS

Johan Knutzen1, Suguru Saito2, Masayuki Nakajima3

Department of Computer Science
Graduate School of Information Science & Engineering

Tokyo Institute of Technology
W8-70 2-12-1 Ookayama Meguro-ku 152-8552, Japan

Email: {yohan1, suguru2, nakajima3}@img.cs.titech.ac.jp

ABSTRACT

We propose a novel method of procedurally generating climb-
ing plants using L-systems. The goal of this research is
to generate geometry for 3D-modelers, where procedurally
generated content is used as a base for the final design.

The algorithm is fast and efficiently simulates external
tropisms such as gravitropism and heliotropism, as well pseudo-
tropisms. The structure of the generated climbing plants
is discretized into strings of particles expressed using L-
systems. The tips of the plant extend the branches by adding
particles in its path, forming internodes.

A climbing heuristic has been developed that uses the
environment as leverage when the plant is climbing, and ef-
fectively covers objects on which it grows. A fast method
that sprouts leaves on the surface on which the plant is grow-
ing has also been developed, along with a heuristic that sim-
ulates the decrease in length, radius and leaf size.

Keywords: Climbing Plants, Oriented Particles, L-Systems,
Procedural Content Creation

1. INTRODUCTION

This paper proposes a method of generating climbing plants
procedurally using L-systems [7]. The L-system used is a
graph grammar based language designed by Ole Kniemeyer [6].
This is an abstract language which extends L-systems with a
graph rewriting formalism called Relational Growth Gram-
mars [12]. The implementation of this language is called the
XL programming language [5] and is a derivative of Java.

1.1 Motivation

One motivation behind this research is that in recent years
content creation for computer games has become increas-
ingly demanding. More content requires handcrafting by
the designers, and much of the work is often repetitious.

One approach to minimize costs for the creation of game
worlds regards reusing textures and geometries for objects
that occur frequently throughout the game, such as trees and
crates. Another approach is to generate recurring objects or

We would like to thank Noriaki Shinoyama for providing us with 3D
models.

even entire game worlds in a so-called procedural approach,
yielding unexpected outcomes in form of appearance [2].

1.2 Climbing Plants

When describing the contents of a given scene in nature, the
most obvious objects that could come to mind would be e.g.
the trees, stones and houses. We perceive these as being the
main contents of the scene, but just modeling these objects
in a 3D-modeler would create a dull scene for rendering.

What makes nature beautiful in a sense, is its power
to make each object look dynamic in synthesis. Climbing
plants are excellent examples of a variety of plants which
binds objects in a scene together. They try to dominate an
area, striving for sunlight and coverage, with the aid of the
environment. We argue that by adding these kinds of climb-
ing plants, realism of a scene is increased.

2. PREVIOUS WORK

Benes and Millan [1] and Luft [8] use a particle system
approach to grow climbing plants, where each branch is
a string of particles. Another way of modeling climbing
plants is to discretized the space into voxels and have the
models grow from predefined geometric elements, accord-
ing to rules based on intersection, proximity, and occlu-
sion [3].

3. ALGORITHM

In order to generalize our system, emphasis is not put on
strict definitions in the XL programming language. The
system is instead abstracted to high-level L-system pseudo
code, as the XL programming language is simply an imple-
mentation of an L-system.

3.1 Justification of Parameters

Patterns in nature arise as a result of evolution where plants
strive for some optimum. If we study these patterns and
map these as rules, we can effectively simulate plants. Lin-
denmayer saw this in his original work of simulating the

growth of algae [7]. In the case of climbing plants, we stud-
ied climbing plants in the wild and derived rules from our
observations.

3.2 Growth of a Tip

(a) A tree with one internode
split into two internodes; sepa-
rated by a node.

(b) A tip with constant length
and radius.

Fig. 1: The growth of a tip.

Consider fig. 1(a). A branch is discretized into a string
of particles that are called internode segments. Each intern-
ode segment contains an affine transformation and a radius
variable that represents its contribution to the curvature of
the branch. The transformation Mi of an internode segment
i is defined in eq. 1, and illustrated in fig. 1(b).

D : direction vector of the internode segment
N : normal vector of the internode segment
X : D ×N
P : translation of the internode segment

Mi = (X,N,D, P) (1)

The P vector in eq. 1 is the length of the internode segment
and in the ideal case of infinitesimal steps should be near
zero in length.

The transformation from world-space to the local-space
of the tip can be written as the product of the internode seg-
ments from the root of the tree to the tip, as shown in eq.
2.

T =
∏
i=0

Mi (2)

Moreover, since our L-System production rules are kept in a
graph, all transformations can be found in O(n) by travers-
ing with e.g. depth-first. However, to increase performance,
the transformation is cached in the Tip; resulting in an O(1)
lookup.

3.3 Production Rules

Consider the rules defined in program 1. A set of rules are
applied to the tip at every time-step, resulting in a modifi-
cation of the tip, and an extension of the internode. Each
rule is applied every rules[i].l segments, with a probabil-
ity of rules[i].prob. The basic rules of the tip can be de-
fined as in table 1. The rules {Tropism, Collision Avoidance,
Decrease} are applied at every time-step, and {Die, Place
Leaf} at an empirically chosen frequency.

Program 1 Executing Production Rules
IF tip.alive()

Tip -> segment(Tip) Tip
Tip.segments += 1
FOR each rules 0 ... i
IF Tip.segments modulo rules[i].l = 0

and probability(rules[i].prob)
THEN

rules[i].apply(Tip)

Table 1: L-System Production Rules

Tropism Rotate the tip towards the tropisms.
Decrease Decrease size of radius, length and

leaf scalar.
Collision Avoidance Avoid collision with the environ-

ment.
Die Remove the tip.

Place Leaf Place a leaf node.
Branch Place a node, representing a split-

ting point.

3.4 Tropisms

Apart from adding internode segments in its path, the tip
undergoes rotation due to tropisms. The strengths of the
tropisms are chosen empirically, to meet the effect sought
by the designer and to fit well with a given scene. Pseudo-
tropisms can also be added; the effect of wind or just a
vector that ensures that the plant grows towards a desired
growth direction. For example, the designer might want the
plant to skew across a wall, with less impact of gravity when
growing up a wall, as if the plant was growing in a windy
environment.

To rotate the tip towards a tropism direction, we first
need to calculate the axis of rotation. With the world-space
to local-space transformation from eq. 2, the axis of rotation
in world-space can be evaluated as in eq. 3.

T−1 : local-space to world-space transformation
D : direction of the tip in local-space
a′ : axis of rotation in local-space
a : axis of rotation in world-space
v : direction of the tip in world-space
d : direction of the tropism in world-space

v = T−1D

a = v × d
a′ = Ta

(3)

Now, using the axis of rotation in local-space a′ from eq. 3,
the new transformation for the tip can be calculated. This is
evaluated by multiplying the transformation of the tip Mtip

with the equivalent rotation matrix R(a′, φ) of the rotation
of φ degrees around a′, as shown in eq. 4.

M ′tip = MtipR(a′, φ) (4)

3.5 Collision Avoidance

Benes and Millan [1] and Greene [3] use voxels for collision
detection to check occupancy of a voxel by either the plant
or some scene object. Our method uses ray-mesh intersec-
tion tests to query the environment for collisions and is dif-
ferent from previous work in that we use a BVH (Bounding
Volume Hierarchy) instead of a uniform space subdivision
scheme.

(a) Before the collision avoid-
ance: the tip intersects the plane
with a direction d.

(b) After the collision avoid-
ance: the tip grows parallel with
the plane with a new directionbd′.

Fig. 2: Collision of a tip with a plane with normal n.

Consider fig. 2. When the tip encounters an intersec-
tion it is rotated so that its direction D is parallel with the
plane of the intersected triangle, and so that the normal N
is parallel with the normal n of the triangle.

This simple heuristic which is defined in eq. 5, ensures
that the orthonormal vector X to N and D is parallel to the
plane, and is used for sprouting leaves on the plane on which
the tip is growing.

T : world-space to local-space transformation
I : intersection point in the plane
P : translation of the transformation of the tip
d′ : new direction of the tip in world-space
d : direction of the tip in world-space

d′ = d− n(n · d)

D′ = T d̂′

N ′ = Tn

X ′ = D′ ×N ′

P ′ = I − T−1P

(5)

3.6 Climbing Heuristic

Consider fig. 3. A tip can have two states depending on its
distance from the objects in the scene, either it is climbing
or not climbing. If near enough, the tip ceases to be affected
by gravity and instead starts to grow upwards, clinging to
the nearest object in the scene.

t : tropism direction
s : tropism strength

v = ts : tropism with strength s
v̂nc : total tropism direction when not climbing
v̂c : total tropism direction when climbing

v̂c =
vgravity + vlight + vrandom

||vgravity + vlight + vrandom||
(6)

(a) When the tip is close to the
pink area, it grows close on the
black walls.

(b) The branch has been se-
lected in blue when it is in a
climbing state, otherwise pink.

Fig. 3: Climbing heuristic of the system, depicted in 2D and 3D.

v̂nc =
vup + vlight + vadhesive + vrandom

||vgravity + vlight + vadhesive + vrandom||
(7)

Consider eq. 6 and 7. These tropism vectors are used
to compute the per time-step rotation the tip undergoes, in
respective climbing state.

The nearest distance to an object in the environment is
defined as the minimum distance between the tip and the
barycentric coordinate of the tip, projected onto the plane of
each triangle. If short enough (empirically chosen), tropism
vectors vadhesive, and vup replace vgravity , so that the tip is
rotated upwards towards the nearest triangle.

In either case, the final tropism of the tip is affected
by a random tropism vector vrandom and a heliotropism
vector vlight. The randomness has been incorporated as a
tropism to prevent artificial regularity, which deterministic
L-systems suffer from [10].

The corresponding rotation matrix to the tropism vector
v̂nc or v̂c is calculated, as described in section 3.4.

3.7 Branching Heuristic

(a) Branching of a Japanese Ivy
at the Ookayama Campus of
Tokyo Institute of Technology.

(b) Branching of a climbing
plant, using our method.

Fig. 4: The branching of Japanese Ivy.

The branching angle of Japanese Ivy generally differ
with circa 35 ◦−40 ◦ from the growth direction, as depicted
in fig. 4(a). In the system, this is equivalent to placing a
node at the splitting point, followed by a new tip. The node
rotates the new tip away from the growth direction of the
splitting tip, and results in two tips growing independently
of each other. The result of this is depicted in fig. 4(b).

As with tropisms, we add randomness to the branch-
ing frequency in order to reduce regularity. The amount of
randomness is proportional to how many nodes make up a
branch and how much variance in the branching pattern the
designer aims for.

3.8 Leaf Nodes

A leaf node signifies that leaves should be sprouted, and
holds a scalar that is multiplied with the default size of a
leaf. This scalar is set by the constructor of the leaf node
and is retrieved from the tip.

3.9 Internode Segment Length, Radius and Leaf Size

Fig. 5: Above: Japanese Ivy in the wild. Below: An internode
with an internode segment leaf spacing of of 2, decrease in leaf
size per segment of 0.94, and a radius and length decrease of 0.97
per segment.

Consider our observation of Japanese Ivy in fig. 5. From
this observation, we extracted the decrease in length, radius
and leaf size between each internode segment. A general
formula for how the radius, length and leaf size of branches
is decreased can be written as in eq. 8.

a, b, c : empirical constants.
i : ith segment in an internode.

radiusi+1 = radiusi × a
lengthi+1 = lengthi × b

leafsizei+1 = leafsizei × c

(8)

In our system we apply a rule which decreases these three
variables at each time-step in the tip. A rendering with these
relations is depicted in fig. 5.

3.10 Generating Geometry

The system consists of two procedures. The first one builds
up a graph of productions with the XL programming lan-
guage, until the production rules come to an end. By de-
fault the plant stops growing when a certain depth in the tree
has been met, but the designer can also stop the production

(a) A cylindrical NURBS sur-
face with varied radius. The
black squares are vertices, with
the same transformation as the
internode segments.

(b) Above: An observation
of the sprouting of leaves of
Japanese Ivy. Below: Our
sprouting heuristic, based on
observations.

Fig. 6: Geometrical representation of the climbing plants.

manually. In the second procedure, the system traverses the
nodes in the graph to create geometry.

Consider fig. 6(a). Branches are created, using cylindri-
cal NURBS surfaces, where each internode segment signi-
fies a vertex with a radius.

Leaves are created by sprouting two parallelograms at
each leaf node. These parallelograms are sprouted parallel
to the plane of the N axis of the leaf node, which is parallel
with the plane on which the plant is growing. The parallel-

Fig. 7: Textures used for leaves. Original Photos taken at
Ookayama Campus at Tokyo Institute of Technology.

ograms are also rotated from the growth direction, at which
angles we have determined from observations, as illustrated
in fig. 6.

The leaves are textured with random textures, chosen
from the ones illustrated in fig. 7.

4. RESULTS

The first procedure to generate the productions, runs in
O(n(log(m)+m)), where n equals the amount of internode
segments added to the tree, and m equals to the amount of
triangles. O(log(m)) is the time required to query the envi-
ronment for intersections, and O(m) is the time required to
find the nearest triangle.

The second procedure which generates geometry takes
O(n), where n equals the amount of nodes in the production
graph. The amount of tessellation for the branches is user-
defined; an advantage from using NURBS surfaces.

Our method was implemented in Java, and can grow
four plants in real-time with a model of 63,000 triangles,
using seven internode segments per branch. The main bot-
tleneck lies in the environment queries which scale with the
amount of triangles. We experienced that this was not a
big obstacle when working with larger models, since a low
polygon model can be used as a substitution when generat-
ing the geometry.

It should also be noted that the spacing between intern-
ode segments need to be small enough, relative to the size
of a triangle, in order to avoid unpredictable tip rotations.

To evaluate the realism of our method in contrast to an-
other method, both methods must be applied to the same
data. Unfortunately, we could not obtain an implementation
of the work of Benes and Millan [1] and Greene [3], so we
will focus on comparing our method to the one by Luft [8].

Fig. 8: Generated branches without leaves. Above: Luft’s method.
Below: Our method.

In our model we have implemented a branching heuris-
tic, and the structural difference between ours and Luft’s
is illustrated in fig. 8. We believe that our method con-
forms better with our observation in fig 4, creating more

self-similar structures.

Fig. 9: A branch growing on a flat surface. Above: Luft’s method.
Below: Our method.

Our climbing heuristic is similar to that of Luft’s method
in that the plant grows close to the nearest triangle in the
scene. However, we have improved upon the method by
incorporating a leaf sprouting heuristic.

Consider fig. 9. Our method decreases the length and
radius of each internode segment as well as the leaf size
over time; conforming to our observations. Moreover, the
effectiveness of our simple collision avoidance heuristic is
demonstrated, along with the benefits of using NURBS sur-
faces instead of connected cylinders, as in Luft’s implemen-
tation.

Our method benefits from using L-systems because we
can create patterns by introducing production rules. An-
other benefit from using L-systems is that we can reproduce
a set of productions, by simply saving the initial states and
random seeds of the plants. Furthermore, since all tips are
independent of each other, their production rules can be ap-
plied in parallel.

5. CONCLUSIONS

We have shown that simple heuristics can model collision
avoidance and the effects of tropisms efficiently to generate
geometry of climbing plants. Although biophysiologically
inaccurate, our method is fast and easy to implement, with
no reliance on infinitesimal steps to satisfy any numerical
solver.

6. FUTURE WORK

When it comes to branches, a more clever way of generating
the shape of the internodes comes close to mind. A back-
ward propagating algorithm defining the radius of the in-
ternode segments could be developed, perhaps implement-
ing the pipe-model as proposed by Shinozaki et. al [11].
The climbing heuristic of the plant can also be improved by
swapping the closest triangle queries with a distance field
algorithm, many of which are surveyed by Jones et. al [4].

The shape of leaves could also be improved, though at
the expense of more complicated geometry. They could
be modeled to bend, using e.g. NURBS surfaces. Other
improvements include leaf fading, animation of leaves and
branches as well as better sewing of the geometry where
branches merge.

Fig. 10: Renderings of the climbing plants, ray-traced using PovRay [9].

7. REFERENCES

[1] Bedrich Benes and Erik Uriel Millan. Virtual climb-
ing plants competing for space. Computer Animation,
2002.

[2] Greuter et al. Undiscovered worlds – towards a frame-
work for real-time procedural world generation. In
Proceedings of the Fifth Intern. Digital Arts and Cul-
ture Conference, 2003.

[3] N. Greene. Voxel space automata: modeling with
stochastic growth processes in voxel space. In SIG-
GRAPH ’89: Proceedings of the 16th annual con-
ference on Computer graphics and interactive tech-
niques, pages 175–184, New York, NY, USA, 1989.
ACM.

[4] Mark W. Jones, J. Andreas Bærentzen, and Milos
Sramek. 3d distance fields: A survey of techniques
and applications. IEEE Transactions on Visualization
and Computer Graphics, 12(4):581–599, 2006.

[5] Ole Kniemeyer. Rule-based modelling with the
xl/groimp software. In Ulrike Brüggemann Har-
ald Schaub, Frank Detje, editor, The Logic of Arti-
ficial Life. Proceedings of 6th GWAL, pages 56–65.
Akademische Verlagsgesellschaft Berlin, 2004.

[6] Ole Kniemeyer. Design and Implementation of a
Graph Grammar Based Language for Functional-
Structural Plant Modelling. PhD thesis, BTU Cottbus,
2008.

[7] A. Lindenmayer. Mathematical models for cellular in-
teraction in development. Journal of Theoretical Biol-
ogy, Parts I and II(18):280–315, 1968.

[8] Thomas Luft. Ivy generator.
http://www.ivy-generator.com,
Accessed 18 February, 2008.

[9] Persistence of Vision Pty. Ltd. (2004). Persistence of
vision raytracer (version 3.6).
http://www.povray.org/download/ ,
Accessed 22 August, 2008.

[10] P. Prusinkiewicz and Aristid Lindenmayer. The algo-
rithmic beauty of plants. Springer-Verlag New York,
Inc., New York, NY, USA, 1990.

[11] Kichiro SHINOZAKI, Kyoji YODA, Kazuo
HOZUMI, and Tatuo KIRA. A quantitative analysis
of plant form - the pipe model theory i. basic anal-
ysis. Japanese Journal of Ecology, 14(3):97–105,
19640601.

[12] Gerhard Buck-Sorlin Winfried Kurth, Ole Kniemeyer.
Relational growth grammars - a graph rewriting ap-
proach to dynamical systems with a dynamical struc-
ture. In Unconventional Programming Paradigms,
volume 3566/2005 of Lecture Notes in Computer
Science, pages 56–72. Springer Berlin / Heidelberg,
2005.

