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Abstract

We propose a novel method of procedurally generating climbing plants
using L-systems. The goal of this research is to generate geometry and tex-
tures for 3D-modelers, where procedurally generated content is used as a base
for the final design.

The algorithm is fast and efficiently simulates external tropisms such as
gravitropism, heliotropism and other pseudo-tropisms. The structure of the
generated climbing plants is discretized into strings of particles expressed
using L-systems. The tips of the plant extend the branches by adding par-
ticles in its path, forming internodes. The tip holds the growth direction of
an internode, and is affected by external factors such as scene objects and
tropisms.

A climbing heuristic has been developed that uses the environment as
leverage when the plant is climbing, and effectively covers objects on which
it grows. A fast method that sprouts leaves on the surface on which the plant
is growing has also been developed, along with a heuristic that simulates the
decrease in length, radius and leaf size.

Sammanfattning

Vi har tagit fram en modell som procedurellt genererar kléngvixter med
hjalp av L-system. Malet med var forskning &r att generera geometri och
texturer till 3D-modelerare, dér procedurellt generarat material anvinds som
bas for den slutgiltiga produkten.

Var algoritm &r snabb och kan simulera externa tropismer sasom fo-
totropism, gravitropism och andra pseudo-tropismer. De genererade klangvax-
ternas struktur beskrivs av sekvenser av partiklar uttryckta i L-system. En
vixts gren forlangs genom att ldgga till partiklar i dess vég, dar d&ndnoden
bestdmmer vixtens riktning. Andnoden paverkas av externa faktorer sasom
objekt i scenen och tropismer.

En kléatterheuristik har utvecklats som anvinder omgivningen som hjalp
for att klattra samt effektivt técka de objekt som véixten véixer pa. En snabb
metod som far 16v att gro pa ytan som véxten vixer pa har dven utvecklats,
samt en heuristik som simulerar hur ldngd, radie och 16vstorlek minskar.



Acknowledgements

First of all I would like to thank Ulf Assarsson and Suguru Saito for their
guidance throughout this project. I would also like to thank Ole Kniemeyer
and Reinhard Hemmerling for their support on using GroIMP and the XL
language.

Further appreciation goes to Nelson Max, Masayuki Nakajima, Alexis
Andre, Klaus Petersen,Ramin Honary, Jacob Lopez Montiel and David Gav-
ilan for reviewing the paper and participating in fruitful discussions about
the research.

Much kudos goes to Shinoyama Noriaki for providing me with 3d-models
and invaluable help in the preperations of my presentation. I would also
like to thank all of the members of Nakajima/Saito lab at Tokyo Institute of
Technology, for their support and comments during the seminar meetings.

Much appreciation also goes out to Deniz Dogan, Shahrouz Zolfaghari,
Ivan Majdandzic and Alexander Géransson for reviewing my paper for the
IWAIT2009 workshop, and for their friendly support when writing this thesis.

Last but not least, I would like to thank Eric Knutzen for reviewing the
final drafts of my paper.



1 INTRODUCTION

1 Introduction

This thesis proposes a method of generating climbing plants procedurally
using L-systems [21]. An abstract of this thesis was published at the Interna-
tional Workshop on Advanced Image Technology, 2009[12]. The research field
of this paper is Functional Structural Plant Modeling and Computer Graph-
ics. The L-system used is a graph grammar based language designed by Ole
Kniemeyer [18]. This is an abstract language which extends L-systems with
a graph rewriting formalism called Relational Growth Grammars(RGG) [43].
The implementation of this language is called the XL programming lan-
guage [17] and is a derivative of Java. The software used for developing
is called GroIMP [27] and is an Open-Source implementation of the XL lan-
guage. GrolMP’s features include the ability to export geometry, raytracing
with PovRay|[26] and ray-mesh collision detection.

1.1 Motivation

One motivation behind this research is that in recent years content creation
for computer games has become increasingly demanding. More content re-
quires handcrafting by the designers, and much of the work is often repeti-
tious. In the extreme case of modeling a forest, the designer would have to
handcraft every visible tree in order to create a unique scene. An example of
this kind of scene is illustrated in fig. [l This enables the designer to have

(a) Elder Scrolls IV: Oblivion developed (b) Too Human developed by Silicon
by Bethesda Game Studios. Knights.

Figure 1: Screenshots from games using the middleware SpeedTree [§].
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complete control in creating high quality custom scenes for games, drawing
parallels to the content creation for movies. Roden and Parberry [33] argued
that although content creation for computer games increasingly mirror that
of film development, this trend is at its end. They argued that procedural
content will soon become the dominant form of content creation for computer
games. According to Roden and Parberry handcrafted game content suffer
from four drawbacks [33]:

e Advances in technology mean artists need increasingly more time to
create content.

e Handcrafted content is often not easy to modify once created.

e Many widely used content creation authoring tools output content in a
different format than that used by proprietary game engines

e Interactive games have the potential to become much more expensive
than even the most epic film.

Recent research in the field of procedural content creation for the movie
and game industry presents similar evidence of this [16} [39] [5, [34]. We argue
that these drawbacks are related to the fact that regardless of how much
processing power the user has, it will never suffice to describe real life. Al-
though we are coming closer with the speed of Moore’s law, we are bound
to what hardware can process in real-time for computer games. With more
processing power, we need to render more things and one solution to this
could be to simply hire more designers, though often cost prohibitive.

One approach to minimize costs for the creation of game worlds regards
reusing textures and geometries for objects that occur frequently throughout
the game, such as trees and crates. Another approach is to generate recur-
ring objects or even entire game worlds in a so-called procedural approach,
yielding unexpected outcomes in form of appearance [4].

Not only can procedural techniques reduce costs and speed up the de-
velopment process, they can also yield better looking results. In the spirit
of Mandelbrot: “The geometry of Euclid describes ideal shapes - the sphere,
the circle, the cube, the square. Now these shapes do occur in our lives, but
they are mostly man-made and not nature-made” [20].

In the case of decorating a vase with the Koch snowflake[I9] by hand,
this fractal can easily be generated procedurally at virtually any depth, if
the heuristic is known. Plants also exhibit patterns which can be derived
from evolution, and are ideal candidates for procedural generation.
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When describing the contents of a given scene in nature, the most obvious
objects that could come to mind would be the trees, stones, mountains etc.
We perceive these as being the main contents of the scene, but just modeling
these objects in a 3D-modeler would create a dull scene for rendering.

What makes nature so beautiful in a sense is its power to make every
one of these objects look dynamic in synthesis. Grown trees in nature did
not just suddenly appear. The growth of a tree reflects interaction with the
environment for years before claiming their place in the scene. Stones are
not just geometry with a texture painted on, as they are often covered by
moss and other plants which grow on everything in the scene.

These plants rely on the environment to strive for some optimum con-
dition, such as optimum coverage or sunlight exposure etc. They interact
with the environment and create unique structures which blend and bind
the scene together. Climbing plants are excellent examples of these types
of plants. They try to dominate an area, striving for sunlight and coverage,
with the aid of the environment. We argue that by adding these kinds of
climbing plants, realism of a scene is increased.

1.2 Problem Statement

The goal of this research is to create a system which generates climbing plants
which interact with the environment. The problems of such a method can
be categorized as following.

Branches and Leaves How branches and leaves are represented with ge-
ometry, textures and materials. They way in which radial growth is
simulated; older branches should be thicker. The leaves also play a
major role in plants, how they sprout, their size etc.

Tropisms The effects of gravity, wind, and light exposure and their influence
on the growth of the plant.

Collision Detection In what way the plant probes the environment for
intersections with its growth direction.

Collision Reaction How the plant reacts to the environment in the event
of a collision.

Climbing Heuristic This is arguably the most important part of our method.
It is not only important to consider how the plant grows on planes, it is
also important to consider how it interacts with the environment. Some
plants (e.g. Japanese Ivy) try to attach to a close object in hopes of
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climbing it. Different climbing plants accomplish this in different ways,
by using thorns or adhesive materials for instance.

1.3 Application

The application of the system is generating content for the gaming or movie
industry. The output of the system is geometry and textures, which is essen-
tially the same in both industries. The gaming industry, however, requires a
more strict level of detail scalability, and this must be taken into considera-
tion when representing the geometry of the plant. Other unique applications
also arise in games, such as in the design of levels. One most interesting way
of using the system could be to integrate it into a game so that whenever a
level loads, procedural content such as climbing plants are generated anew.
This would result in a slightly different world where not only permanent ob-
jects such as trees, walls and stones are present, but new objects have been
added as well. Repetitive game artwork can be recognized by players and has
a detrimental effect on the illusion of a ‘realistic’ virtual space [34]. Through
the introduction of dynamic new worlds when entering new levels, game art-
work can instead stimulate player satisfaction, and potentially reduce player
fatigue.

We must stress the point that the motivation behind this research has
not been to simulate ivy in a biophysiologically accurate way. We are only
interested in the final shape of the branch; e.g. we do not take into account
the biomechanical properties of the material under stress by forces over time
etc. For our application in the gaming and movie industries, the designer
is not interested in whether or not the simulation is as close as possible to
the real thing. The focus has instead been put on creating a tool where the
designer can bend the rules in order to create what he wants.

1.4 Climbing Plants

Japanese Ivy was a major influence and the rules of the system have been
defined to model this type of plant. Pictures of this plant is illustrated in
fig. 2 That is to say, the system has not been designed to specifically
model Hedera Helix, but can be parameterized to generate it. Any type of
climbing plant which climbs in the sense that it grows around pre-existing
geometry in the scene can be parameterized. Climbing roses for instance do
not have the same adhesive mechanism as ivy when it grows up a wall, but
generate similar structural patterns. This is illustrated in fig. [3} The system
has been generalized to generate climbing plants so that the designer can
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(a) Growth around a tree. (b) Closeup of the leaves.

Figure 2: Pictures taken of Japanese Ivy at the Ookayama campus of Tokyo
Institute of Technology.

specify plant-specific rules like branching angles, leaf size and stem-length
for what he is modeling. Apart from specifying plant-specific characteristics
the system is automated in simulating different forces such as gravity, wind,
light conditions etc.

There is always a trade-off between user interaction and a fully automated
system in terms of results. If too much stress is put on the designers, they
might as well have modeled the plant using a 3D-modeler instead. On the
other hand, if too much is automated, the results may be satisfactory for
a specific scene but not for another. One set of parameters might generate
good results for a scene consisting of a flat wall, but not one where the scene
consists of a sphere.

The proposed system can use the same predefined parameters for gener-
ating plants for any type of scene. The designer can also add forces, make
them weaker, add more climbing plants, make the plant thicker etc.

2 Previous Work

2.1 Functional Structural Plant Models

FSPM (Functional Structural Plant Models) combines disciplines from var-
ious fields of research, so it is hard to file it under a specific branch of
science. In 1968 a biologist named Lindenmayer developed a formal lan-
guage that is now called L-systems or Lindenmayer language [21]. Initially
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(a) Climbing roses growing up a wall.. (b) Ivy growing up a wall.

Figure 3: Climbing plants in the wild.

L-systems were used to model cell growth but Lindenmayer later applied
them to plants. This application of L-systems is extensively covered in his
book with Prusinkiewicz [30].

As computer hardware became increasingly faster in the 80s, computer
scientists used L-systems for simulations of plant growth with the help of
computer graphics. This allowed for a particular plant described by the
Lindenmayer language to be represented graphically [29]. This spurred the
interest of plant biologists, who were interested in a graphical model for their
simulations.

However, purely biological models are usually not sufficient, so physicists
got involved in the research of biomechanics in plants. Mathematicians and
computer scientists also showed an interest in FSPM, in the development of
algorithms and graph theory for instance.

There are many different levels of research in FSPM. Some focus on the
cellular level [21], some on the individual plant level [30] and others on a
forest level. Sometimes a combinations of these are required, for instance
in the research of tissue development (cellular, individual plant). Therefore,
FSPM is an area of research where scientists from many backgrounds can
collaborate.

2.2 L-Systems

When modeling the growth of trees and bushes, L-systems have tradition-
ally been chosen because of their simplicity. Much research has been put
into expanding existing L-systems to reflect the characteristics of different
vegetation. L-systems are not universal and one technique for modeling a
particular tree can not easily be transferred to model a tree of different char-
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acteristics. Highly parameterized L-system languages have been developed to
address this issue, and one good example is the L+C modeling language [15].

It is important to be aware, however, that one set of rules that can gen-
erate the structure of a bush, cannot be bent to generate a tree without a
change of parameters or even an expansion of them. Some argue that this
is an acceptable trade-off since L-systems have proven adequate enough to
generate realistic vegetation. Commercial middle-ware such as X-frog [22]
and Speedtree [8] use L-systems to generate plants and are highly used in
the industry.

Some authors argue that L-systems suffer from the drawback that they
recursively generate branches regardless of previous data and parallel gen-
erated branches [I4]. Newly expanded branches usually only consider the
branch from which it adheres. This brings up the problem of dealing with
highly intersecting branches, which L-systems in particular suffer from [14].
However, L-systems are not restricted to the simple structure of that origi-
nally outlined by Lindenmayer. Some L-systems have been developed that
consider the biomechanics involved in growth such as tropism and grav-
ity [37, 25, [10} 11, 38].

The reaction of the stem of the plant to gravity is called negative grav-
itropism, and can be simulated in different ways. Jirasek [11] simulates this
with torsional springs interconnecting internode segments which resulted in
S-shaped branches. This corresponds to the biomechanical model presented
by Fournier et. al [24], which takes radial growth in account with negative
gravitropism. Jirasek [11] has good results when simulating hanging plants
and branches that grow freely without interaction with the environment, but
assumes that all rotations are occurring in the model are infinitesimal - as
such the model cannot properly handle branching points [38]. There is also
a problem of keeping the steps small enough for the numerical solver to the
differential equation at each torsional spring, in order to keep the system
stable [38].

Our method does not ignore the effects of gravity, and limits it to affecting
the transformation of the apical buds. The internode segments remain static
once placed and do not weigh down with time. The visual difference in
not having internode segments weigh down is an upside-down U-shape in
the branch with initial vertical elevation, instead of the more physiologically
correct S-shape.

Another drawback of traditional L-systems is that they lack a sense of
object-orientation and essentially just query a one-dimensional string for
patterns to rewrite. Kniemeyer et. al proposed an approach transitioning
from string rewriting grammars to graph grammars called Relational Growth
Grammars [43]. A concrete implementation of Relational Growth Grammars

10
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is illustrated by the high-level language XL which combines the rules-based
programming of graph grammars and L-systems with the object-oriented
programming paradigm of Java [17].

2.2.1 Definition

The recursive nature of L-systems leads to self-similarity and thereby fractal-
like forms that are easy to describe with an L-system. Plant models and
natural-looking organic forms are similarly easy to define, as by increasing
the recursion level the form slowly grows and becomes more complex. L-
systems are now commonly denoted as parametric L-systems, defined as
a tuple:

G={V.5w,P}
V is a set of symbols containing elements that can be replaced (variables)
S is a set of symbols containing elements that remain fixed (constants)

w (start, axiom or initiator) is a string of symbols from V defining the initial
state of the system

P is a set of production rules or productions defining the way variables can
be replaced with combinations of constants and other variables. A
production consists of two strings - the predecessor and the successor.

Fibonacci Example
variables: A B
constants: none
start: A
rules: (A — B), (B — AB)
This L-system produces the following sequence of strings:

n=0:A
n=1:B
n=2:AB
n=3: BAB

n =4 : ABBAB

n=>5: BABABBAB

n=6: ABBABBABABBAB

n=7: BABABBABABBABBABABBAB
If we count the length of each string, we obtain the famous Fibonacci sequence
of numbers:

1123581321 345589 ...

11
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Figure 4: A fractal plant for n = 6

Fractal Plant Example

variables: X F

constants: + -

start: X

rules: (X — F-[[X]+X]+F[+FX]-X),(F — FF)

angle: 25°
Here, F means "draw forward”, - means "turn left 25°”, and + means "turn
right 25°”. X does not correspond to any drawing action and is used to control
the evolution of the curve. | corresponds to saving the current values for
position and angle, which are restored when the corresponding | is executed.
See fig. [ for an example.

2.3 Particle Systems for Modeling Plant Growth

Another way of modeling plant growth which is different from using L-
systems is using a particle system instead. This idea was first introduced
by Reeves and Blau [32] but did not allow particle-particle and environment
interaction. Arvo and Kirk [1] later extended the model to deal with environ-
ment interaction. Greene [7] presented a similar model for simulating climb-
ing plants, with the biggest difference from the work of Arvo and Kirk being

12
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collision detection by means of a voxel space instead of ray-casting [2]. These
models are extended by the work of Benes and Millan [2] to model climbing
plants, adding e.g. traumatic reiteration to cope with collision problems.

When using a particle system, plants are discretized into strings of parti-
cles where each particle grows depending on local information. The behavior
of a particle is defined by its internal state and external conditions. External
conditions can be e.g. light exposure, gravity and wind forces. The internal
state of a particle defines the role of the particle in the plant, whether it be
e.g. a tip, leaf or internode. A particle system using these kinds of intelligent
particles is AMAP[3], which is now commercially available.

The differences between using an L-systems or a particle system can be
vague. If a plant is discretized into strings of symbols using only local in-
formation in an L-system, then it can be translated into a particle system
by representing each symbol with a particle. Conversely, the behavior of the
particles can be modeled with rules in an L-system and the particles can
be replaced by symbols. In this sense, they are interchangeable. However,
there are benefits from describing a particle system wusing L-systems. The
proposed system models particles with L-system rules and is therefore better
mathematically tractable as the rules are described using a formal grammar
such as L-systems.

2.4 Relational Growth Grammars

Relational Growth Grammars is an extension of L-systems where a graph is
being rewritten instead of a string of symbols.

2.5 XL Language and GroIMP

In the XL programming language, nodes and edges can represent segments of
a branch, transformations, shader setters and user defined attributes. Rules
define how graph nodes and edges should be rewritten and the state of the
graph can be saved in XML format. GroIMP parses the state of the graph
and replaces it with turtle graphics commands. This includes e.g. NURB
surfaces, rotations, translations and user-defined commands. Because the XL
programming language is a Java derivative, it is object-oriented and any code
in XL can be translated to Java. Moreover, since XL is graph-based, a given
graph state can easily be converted to a scene-graph for efficient rendering.

13
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(a) An ivy designed by Jerome Prevost. (b) An ivy designed by Leonardo Merlos.

Figure 5: Images generated using Thomas Luft’s Ivy Generator [23)].

2.6 Climbing Plants

There are two approaches typically used in computer graphics to model climb-
ing plants: particle systems and L-systems. Benes and Millan [2] and Luft [23]
use a particle system approach to grow climbing plants, where each branch
is a string of particles. Another way of modeling climbing plants is to dis-
cretized the space into voxels and have the models grow from predefined
geometric elements, according to rules based on intersection, proximity, and
occlusion [7].

The branch shape of climbing plants is important since their branches are
highly elastic. Biomechanical models of the shape of branches have been eval-
uated, such as the ones proposed by [37, 25, [10], [11], B8]. These demonstrate
realistically looking branch shapes but add extra computational overhead in
order to reorient all segments in the plant when new segments are added.

Another way of modeling biomechanics is to disregard the impact of added
weight caused by newly added segments, and have the newly added segments
orient only dependent on the general growth direction of the branch. Since
climbing plants grow upwards around geometry in the scene, newly added
segments are less burdened by the gravity of previous segments than in trees.
This is due to each segment being self-upholding by attaching to the geometry
in the scene with the help of an adhesive material. This is a property of
voluble plant species, which ensures that the entire branch is close to its
supporting object [2]. We believe that from a Computer Graphics point of
view the biomechanical shape of the branching model correctness is not that

14
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(a) Growth in a 300x300x300 voxel space, (b) A fence with a climbing plant, gener-
using Greene’s method [7]. ated using the method of Benes and Mil-
lan [2].

Figure 6: Images of generated climbing plants of previous work.

important in providing visual plausibility. Consider fig. , this illustrates
an ivy growing around a torus using the Ivy Generator by Thomas Luft [23].
The software uses a stochastic approach where branches do not have any
biomechanical properties but have plausible visual results.

The method proposed in this paper is similar to that of Thomas Luft [23]
in that branches grow towards a general growth direction, affected by gravity.
Other factors are also considered, such as phototropism, collision detection
and random influence.

15
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3 Generating Climbing Plants

3.1 Introduction

In this section, our method is explained in further detail. We start by first
establishing a common terminology for the structure of the branches and
leaves and then outline how these are formalized by symbols in an L-system.
Further evidence is presented to support using L-systems as a formalism to
simulate climbing plants and forces dictating growth. The justification of
how the parameters are chosen and how branching and sprouting heuristics
have been developed is explained in subsection [3.1.1] so that the reader is
familiarized with our way of simulating climbing plants from observations in
nature.

In order to generalize our system, emphasis is not put on strict definitions
in the XL programming language. The system is instead abstracted to high-
level L-system pseudo code, as the XL programming language is simply an
implementation of an L-system.

3.1.1 Justification of Parameters

Patterns in nature arise as a result of evolution where plants strive for some
optimum. These patterns form fractal patterns in a recursive fashion, creat-
ing structures in plants such as branches and leaves. Climbing plants have
adopted a strategy of covering as large an area as possible to compete with
other plants for sunlight. The plant is affected by heliotropism; it grows to-
wards a light source, the sun. They are also affected by gravitropism, which
they counter by levering themselves with surrounding structures e.g. trees
and stones.
If we study these patterns and map these as rules, we can effectively simulate
plants. Lindenmayer saw this in his original work of simulating the growth of
algae [21]. In the case of climbing plants, we studied climbing plants in the
wild and derived rules from our observations. Branching is symmetrical and
a classic example is the disc phyllotaxis of daisies and sunflowers, as depicted
in fig. [7] The shape of the florets follow fermats spiral, as proposed by Vogel
in 1979 [41]:
r=cyn
0 =nx1375°
137.5° is the golden angle which is approximated by the ratios of Fibonacci
numbers [30]

In our work, we studied Japanese Ivy in the wild and through our obser-
vations we sought the parameters and heuristic that dictate its growth.

16
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Figure 7: A picture of the florets of a daisy, creating the fractal pattern of Fermats
spiral.

3.2 Variables and Constants

The most important component of our system is the Tip class. The tips
extend the branches, split branches and add leaves according to our heuristics.
A branch, which is also denoted as an internode, is comprised of internode
segments. An internode segment is an affine transformation, which attributes
its contribution to the curvature, radius and length of the branch. A tip also
contains an affine transformation that defines the growth direction of the
internode.

Refer to appendix [A] for a summary of the variables and constants of a
tip, these will be referenced throughout this section.

3.3 Growth of a Tip

Consider fig. |8, In fig. a branch is discretized into a string of particles
that are called internode segments. Each internode segment contains an affine
transformation that represents its contribution to the curvature, radius and
length of the branch. The radius and length contribution of each internode
segment is depicted in fig. . The transformation of an internode segment

17
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Tips.radius

Tip. lengt
Node

@ Internode Segment
@ Tip

(a) A tree with one internode split into (b) A tip with constant length and radius.
two internodes; separated by a node. Two

tips extend the tree by adding new intern-

ode segments.

Internode

O Node
. Tip

. Internode Segment

T Growth Direction

Figure 8: The growth of a tip.

is defined in eq.

direction vector of the internode segment
normal vector of the internode segment
D x N

The length of the internode segment
X, N, D, P,

IEES

M — X, N, D, P,
' X. N, D, P,
0O 0 0 1

Internode segments are followed by either a node which represents a branch-
ing point, or by a tip that represents that the branch is still growing. A tip
extends an internode segment in the sense that it has the same transformation
but adds extra functionality to change its transformation as it grows.

A tip uses the growth direction D in eq. [I] to specify in what direction
it is growing. The tip extends the branch by placing Internode segments in
its path, i.e. placing an internode segment with the same transformation
as the Tip. The tip also passes its radius to the internode segment A, its
contribution to the width of the branch. While the radius of the branch is
kept as a separate variable in an internode segment, the length and curvature
contribution is kept in its transformation matrix.

18
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An L-System with such properties can be written as following:

variables: Tip

constants: A (an internode segment)

start: Tip

rules: Tip — A(Tip.transformation, Tip.radius) Tip

n=20:Tip

n=1:ATip

n=2:AATip
In every time-step (L-system rewrite operation) the tip extends the internode
and changes its transformation due to the effect of tropisms e.g. gravitropism
and heliotropism that change the growth direction. The P vector in eq.
is the length of the internode segment and in the ideal case of infinitesimal
steps should be near zero in length.

The rules in above L-System produce a string of internode segments form-
ing the curvature of the branch, and make up an internode. Consider eq. [2|
Each time an A is added in the path of the Tip, it inherits the transforma-
tion of the Tip as well as the radius. The radius is used to create a Vertex
node which is used when generating the geometry for the NURBS surface
of the internode. An internode segment can therefore be seen as a tuple of
{Transformation, Vertex}.

The transformation from worldspace to the localspace of the Tip can be

written as a product of the internode segments from the root of the tree to
the Tip.

T = H M;, where M; is the transformation of an internode segment. (2)
i=0
Moreover, since our L-System production rules are kept in a graph, all trans-
formations can be found in O(n) by traversing with e.g. depth-first.

At every time-step, the variable holding the amount of successive nodes
placed by the Tip is incremented. Referring to appendix [A] this corresponds
to incrementing the segmentLength of the tip. The tip dies, i.e. is removed
from the productions, when segmentLength exceeds the maximum allowed
successive internode segments with some probability. This can be written as:

rules:

1. if (segmentLength modulo maxBranchLength = 0

and probability(deathProbability))
then
Tip —
else
Tip — A Tip
2. Tip.segmentLength += 1
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3.4 Tropisms

Apart from adding internode segments in its path, the tip undergoes rota-
tion due to tropisms. By default the plant is affected by gravitropism and
heliotropism. Gravitropism means that the tip is rotated towards the earth,
and heliotropism means that the tip is rotated towards the general direction
of the sun. The strengths of the tropisms are chosen empirically, to meet the
effect sought by the designer and to fit well with a given scene.

Artificial tropisms can also be added; the effect of wind or just a vector
that ensures that the plant grows towards a desired growth direction. For
example, the designer might want the plant to skew across a wall with less
impact of gravity when growing up a wall, as if the plant was growing up a
flat wall in a windy environment.

To rotate the tip towards a tropism direction, we first need to calculate
the axis of rotation. With the worldspace to localspace transformation from
eq. [ the axis of rotation in worldspace can be evaluated as in eq. [3]

T-1: localspace to worldspace transformation
| direction of the tip in localspace

S

Qs o 85

axis of rotation in localspace

axis of rotation in worldspace

direction of the tip in worldspace

direction of the tropism in worldspace (3)

Now, using the axis of rotation in localspace a/ from eq. [3} the equivalent
rotation matrix of the tropisms impact on the tip can be calculated. This is
done by using the strength of the tropism ¢, as shown eq. ] A derivation of
eq. 4 can be found in [6 Chapter 5].
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3.4 Tropisms 3 GENERATING CLIMBING PLANTS

class Tip {
// The transformation of the tip.
transformation t;

// dir : Direction of the tropism
// e . Strength of the tropism
tropism ( Vectordd dir, float e) {
Vector axis; // Azis of
// rotation .
// The rotational matriz from localspace
// to worldspace of the tip.
Matrix toLocal = transformation (this);
Matrix toWorld = toLocal.inverse ();
// Transform dir into localspace of
// of the Tip.
Vector worldDir = toWorld. transform (t.z);
worldDir . normalize ();

// Get the rotational matriz of
// the rotation from the
// direction of the tip towards
// the direction of the tropism,
// with a strength of e.

axis = crossproduct (worldDir, dir);
toLocal.transform (axis);
Matrix rot = axis_rotation (axis, e);

// Apply the rotation to the local
// transformation of the tip.

t =1t % rot;

t.normalizeRotation ();

Figure 9: Pseudo code for a function that rotates the Tip towards the a tropism.
Note that the direction of the tip is the z composant of its affine transformation.
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a : axis of rotation

[0) angle

a:  cos(o)

B:  sin(0)

v 1 — cos(¢) (4)

a’ 2 a a a a’ aa~—ad
Riod) = (s s o fra ady o
7 a’za?fy—l—a’zﬁ a’a’yfy—a’ﬁ Z(ay)z—irax
¥z y Yz T z
By multiplying R(¢,a’) with the local transformation of the tip, the tip
can be rotated towards the direction of the tropism. Pseudo-code for this is

provided in fig. [9]

3.5 Collision Avoidance

Benes and Millan [2] and Greene [7] use voxels for collision detection to check
occupancy of a voxel by either the plant or some scene object. Our method
uses ray-mesh intersection tests to query the environment for collisions and
is different from previous work in that we use a BVH (Bounding Volume
Hierarchy) instead of a uniform space subdivision scheme.

Greene argues that a voxel representation makes it easier to obtain ge-
ometric information by scanning or sampling a voxel environment than by
ray casting a conventional model[7]. It is true that inspecting the nearest
neighbor has constant cost, but (in a naive implementation) requires mem-
ory usage scaling at a rate of O(n3) where n is the size of a voxel. This can
be unacceptable for large scenes consisting of millions or more triangles, but
then again this depends on the implementation of the voxel data structure.

An alternative data structure to voxels is the use of a BVH (Bounding
Volume Hierarchy), for instance a kD-tree. Constructing a kD-tree can be
done in O(n log n) [42]. Moreover, intersection tests can be done in O(log
n) [40, Chapter 9], which is not significantly higher than the constant time
required to find the nearest-neighbors in a voxel data structure. Wald et.
al also suggests that finding the k-nearest-neighbors can efficiently be done
using kD-trees, by reorganizing the tree for k-nearest-neighbors queries [9].

In our implementation we used another type of BVH, called an Octree,
to check the environment for intersections. KD-trees outperform octrees at
ray-mesh intersection queries, but the difference would not had sped up the
system drastically.

Consider fig. [0} When the tip encounters an intersection it is rotated so
that it its direction D is parallel with the plane of the intersected triangle,
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P d dl

(a) Before the collision avoidance: the tip (b) After the collision avoidance: the tip
intersects the plane with a direction d. grows parallel with the plane with a new
direction d’.

Figure 10: Collision of a tip with a plane with normal n.

and so that the normal N is aligned with the normal of the triangle. This
simple heuristic ensures that the orthonormal vector X to N and D is parallel
to the plane, and is used for sprouting leaves on the plane on which the tip
is growing.

The rotation required by the transformation of the tip in response to an
intersection with a plane with normal n is written in eq. [5, and is illustrated

in fig. [10]

worldspace to localspace of the tip transformation

direction of the tip in localspace

normal of the tip in localspace

x composant of the transformation of the tip

intersection point of the tip in the plane

translation of the transformation of the tip

new direction of the tip in worldspace, parallel to the plane
direction of the tip in worldspace (5)
normal of the plane in worldspace

d=d—n(n-d)
D=Td
N =Tn
X=DxN

P=1-T7'P

S A u~==208

Every time a tip intersects a triangle in the environment, its normal N is
aligned with the normal of the triangle. This ensures that the orthonormal
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vector X to D and N can be used as a direction for leaves to sprout out, and
is detailed in section [3.8]

3.6 Climbing Heuristic

A tip can have two states depending on its distance from the objects in the
scene, either it is climbing or not climbing. If near enough, the tip ceases to
be affected by gravity and instead starts to grow upwards, clinging to the
nearest object in the scene. This heuristic means to simulate how climbing
plants use for example adhesive materials or thorns to clasp branches onto
objects in the scene to climb upwards.

Mfed

by Gravity

Tip: *
Close enough
to climb:

Climbing
(a) When the tip is close to the pink area, (b) The branch has been selected in blue
it grows close on the black walls. when it is in a climbing state, otherwise
pink.

Figure 11: Climbing heuristic of the system, depicted in 2D and 3D.

At every time-step, the tip queries the environment for the nearest trian-
gle. If the triangle is near enough, gravity is replaced by a directional tropism
towards the triangle. An up vector is also added, so that the tip grows up-
ward. This ensures that the tip climbs upward and closely to the geometry
it is using as leverage. The strengths of these tropisms are decided empiri-
cally, and might be stronger or weaker depending on what kind of effect is
desirable.
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the tropism direction when not climbing

t.: tropism direction when climbing
Sne tropism strength when not climbing

Se tropism strength when climbing

up’ = up X Syp up tropism vector with length s,
9 =g X Sgravity gravitropism vector with length sg,qyity
I'=1X Siight heliotropism vector with length s;;gn
' =7 X Srandom random tropism vector with length s,qndom
a' = a X Sgdhesive . adhesive tropism vector with length s,gnesive
i)\c o Vgravity + UVlight + Urandom (6)

a varavity + UVlight + UrandomH

~ Vup + Vlight + Vadhesive + Urandom
Bne = (7)

||Ug7"avity + vlight + Vadhesive + Urandom“

Consider eq. [0l and [7} In eq. [7] the summed tropism direction and respective
strength is evaluated, for the case when the tip is not close enough to any
scene object. Whether or not it is close enough, is evaluated by querying
the environment for the distance between the nearest point on the nearest
triangle to the tip.

This corresponds to the distance between the barycentric coordinate of
the tip projected onto the plane of the triangle, and the position of the tip.
If short enough (empirically chosen), tropism vectors vadnesive, and vy, are
added, so that the tip is rotated upwards towards the nearest triangle.

In either case, the final tropism of the tip is affected by a random tropism
vector Urgndom and a heliotropism vector vjgn:,. The randomness has been
incorporated as a tropism to prevent artificial regularity, which deterministic
L-systems suffer from [30].

In our implementation this is done by traversing all of the triangles in
the scene, which might seem costly but did not turn out to be a bottleneck
for the models used. An obvious improvement to the system would of course
be to query the kD-tree for the nearest triangles instead, perhaps using a
technique similar to the one described by Wald [9].

In any case, the corresponding rotation matrix to the tropism vector v,
or 0, is calculated, as described in section [3.4]

Refer to fig. for two examples of our climbing heuristic; one drawn,
and one a screenshot from the system.

3.7 Branching Heuristic

Whereas section [3.3] is concerned with how a tip expands a branch, this
section deals with how branches are split to form trees. Internodes are split
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at nodes, and form the tree structure of the plant. This splitting operation
is denoted in L-systems with [z], where x is affected by all transformations
up until the split. These rules can be written in an L-system as:
rules:
1. if (segmentLength modulo branchLength = 0
and probability (branchingProbability))
then
Tip — [Mark Tip] Tip
else
Tip — A(Tip.transformation, Tip.radius) Tip
2. Tip.segmentLength += 1
The splitting rule of the above L-System results in two tips, sharing the

n=0:Tip — Ti
n=1:ATip /A Tlp

n=3: A A [Tip] Tip \ A—Tlp
n=3:AA[ATip] A Tip

(a) Visualized as a string of particles. (b) Visualized as a tree.
Figure 12: Withz = 2 and y = 1.0.

transformation as before the split, as illustrated in fig. [[2] A mark node is
also placed in the beginning of the new internode along with a new Tip. This
Mark node signifies a beginning of a new node and is used when generating

geometry, as outlined in sec. [3.10.1]

The branching heuristic of the plant needs to conform to our observations
in nature to produce convincing results. The branching angle of Japanese Ivy
generally differ with circa 35° — 40° from the growth direction, as depicted
in fig. [13(a)l This is equivalent to placing a node at the splitting point,
followed by a new tip. The node rotates the new tip away from the growth
direction of the splitting tip, and results in two tips growing independently
of each other. The result of this is depicted in fig. [13(b)]

As with tropisms, we add randomness to the branching frequency in order
to reduce regularity. The amount of randomness is proportional to how many
nodes make up a branch and how much variance in the branching pattern
the designer aims for.
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(a) Branching of a Japanese Ivy at (b) Branching of a climbing plant,
the Ookayama Campus of Tokyo In- based on our observations.
stitute of Technology.

Figure 13: The branching of Japanese Ivy.

3.8 Sprouting of Leaves

Leaves sprout in a similar manner to the heuristic controlling the splitting
of branches, as described in sec. If the segmentLength of a tip exceeds
segPerLeaf, a ToLeaf node is placed:
rules:
1. if (segmentLength modulo segPerLeaf = 0)
and probability(sproutingProbability))
then
Tip — ToLeaf(Tip.leafsize) Tip
else
Tip — A(Tip.transformation, Tip.radius) Tip
2. Tip.segmentLength += 1

A ToLeaf node signifies that leaves should be sprouted, and is comprised
by one variable: leafScale, which holds a scalar that is multiplied with the
default size of the leaf. This scalar is set by the constructor of the TolLeaf
and is retrieved from the Tip. The leafsize is decreased at each time-step
as described in sec. In this way, newer branches have bigger leaves and
vice versa. A ToLeaf node is a dummy node that is used when generating
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geometry for the leaves, as explained in sec. [3.10.2]
To view an example of this heuristic that sprouts leaves, please refer to

fig. [14]

e S35

Figure 14: The designer wants leaves to sprout every fourth segmentLength, with
a probability of 1.0. The above rendering was rendered in wireframe-mode using
OpenGL, and the one below was rendered using PovRay [20].

3.9 Internode Segment Length, Radius and Leaf Size

Consider our observation of Japanese Ivy in fig. [[5] From this observation,
we extracted the decrease in length, radius and leaf size between each intern-
ode segment. A general formula for how the radius, length and leaf size of
branches is decreased can be written mathematically as in equation [§

Figure 15: An observation of a Japanese Ivy growing outside of Ookayama Cam-
pus at Tokyo Institute of Technology.
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Figure 16: An internode with a segPerLeaf (segments per leaf) of 2, leafSizeDec
(decrease in leaf size per segment) of 0.94, and a radius and length decrease of 0.97
per segment.

i ith segment in an internode.

radius; 1 = radius; X a (8)
length; 1 = length; X b

leafsize; 1 = leafsize; X ¢

In our system we apply a rule which decreases these three variables at each
time-step in the Tip. A rendering with these relations is depicted in fig. [16]

As stated throughout the text, the transformation of each internode seg-
ment holds the length and curvature contribution to the internode, but an
internode segment is also comprised of a radius node containing the radius
of the internode segment. The radius node is used when generating the ge-
ometry of the branch, which is generated as a NURBS surface. More of how
this is done, is explained in sec. [3.10]

3.10 Geometry Representation

The system consists of two procedures. The first one builds up a graph
of productions with the XL-language until the production rules come to an
end. By default the plant stops growing when a certain depth in the tree
has been met, and the designer can also stop the production manually. The
first procedure places dummy nodes which will be used in the second pass to
generate geometry. These dummy nodes are stated in [0

ToSur face : replaced by the type of NURBS surface.
ToLeaf : replaced by geometry of a leaf.

(9)
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The ToSurface node replaces a tip whenever it dies, and signifies the end
of an internode. This can happen if the maximum internode length has
surpassed, as described in sec. [3.3] The ToLeaf node is placed by the tip
as described in sec. [3.8 and signifies that leaves should be sprouted at this
point in the internode. The resulting graph is therefore a minimal abstract
representation of the plant. This has a great advantage in terms of memory
usage when traversing the graph at each time-step, and also greatly reduces
the amount of information needed to save a generated plant.

In the second procedure, the system traverses the nodes in the graph and
replaces the dummy nodes with geometry with materials and textures. This
results in something that can be rendered and exported.

3.10.1 Branches

Branches are visualized as cylindrical NURBS surfaces, and can be generated
by replacing the ToSurface node with a NURBSSurface node. A NURBSSur-
face is a predefined node in GroIMP, and has a shader with a texture and a
flatness that defines the level of tessellation. When GroIMP renders a scene,
it first generates the geometry in form of triangles. It does this by traversing
the graph too look for geometric nodes such as NURBSSurfaces. To enable
the system to generate geometry the dummy ToSurface nodes are replaced
by NURBSSurface nodes with the following rule:
rules:

1. ToSurface — NURBSSurface

In order for GroIMP to create a NURBSSurface, it needs to find a start-
ing node called a Mark. A Mark signifies the beginning of a new internode,
and is used by GroIMP when creating a NURBS Surface. As explained in
sec. [3.7) marks are placed whenever a tip branches. GroIMP records the
transformation of the mark and continues to traverse until it encounters a
NURBSSurface node which marks the end of the NURBS surface. Along
the way it also records the vertices and their transformation, and interpo-
lates between these to form the curvature of the surface. The obtains the
radius between each internode segment is found interpolating the radius of
the vertices.

Fig. illustrates a NURBS surface with varied radius, generated in the
same manner as the internodes in the system.
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Figure 17: A cylindrical NURBS surface with varied radius. The black squares
are vertices, and the shape of the surface is obtained by interpolating between these.

3.10.2 Leaves

Leaves are generated in a similar manner as branches, but they are not
NURBS surfaces; they are parallelograms with textures. The textures for
the leaves in the system were created from real photos of Japanese Ivy in the
wild, which are portrayed fig. [18(b)] A leaf is created by placing a LeafNode,
which contains geometry, textures and shading information. When created,
a LeafNode randomly chooses a texture from the available ones in memory,
and scales the geometry according to the leafScale variable of the TolLeaf.
To add some variance in the size of leaves, the sizes are also varied with
leafSizeVariance.

To find the transformation for each leaf, the productions graph is tra-
versed until it encounters a ToLeaf node. The transformation is oriented so
that when the plant is near enough to any surface in the screen, the normal
of the matrix is parallel with the normal of the plane. This ensures that
the leaves sprout parallel on the plane by sprouting along the X vector of
the internode segment in worldspace; the orthogonal vector to the growth
direction and the plane of the matrix.

In the case of Japanese Ivy, two leaves are sprouted with an averaged
sprouting angle of 40° — 45°. One observation of this is illustrated in fig.
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(a) An observation of leaves with an av- (b) Textures used for leaves. Original
eraged sprouting angle of 40° — 45°. Photos taken at Ookayama Campus at
Picture taken at Ookayama Campus at Tokyo Institute of Technology.

Tokyo Institute of Technology.

Figure 18: Climbing heuristic of the system.

To conform with our observations, one leaf is extended from the
growth axis with a random angle between 40° — 45°, and another with an
angle between —40° — (—)45°. The parallelograms are rotated around the
normal of the transformation in worldspace of the internode segment, and
are placed parallel with its plane.

4 Results

In this section, our results are compared to previous work, and it is prudent
to keep in mind that the comparison of results in the form of images can
be highly subjective. As most research in the field of procedural content
creation is presented in the form of images, we will evaluate the realism of
our method in terms of how well it compares to our observations.

Moreover, to evaluate the realism of our method in contrast to another
method, both methods must be applied to the same data. This imposes some
restrictions as to what methods we can compare our method to. Unfortu-
nately, we could not obtain an implementation of the work of Benes and
Millan [2] and Greene [7], so we will focus on comparing our method to the
one by Luft [23].

Although unpublished, Luft’s implementation is freely available on his
website, along with a model of a wall that comes with the software. We will
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focus most of our comparisons of climbing plants generated using this model,
and directly compare our method with the one by Luft.

The biggest difference between our method and previous methods is that
we have contributed with improved:

e Branches
e Leaves
e Climbing Heuristic

e Geometry Representation

4.1 Branches

The branching of the internodes in plants is symmetrical, and is a result
of the evolution of the plant. Through observations we have captured this
symmetry, and created a model to reflect it. An observation with branching
nodes and internodes is illustrated in fig. and will be used as a reference.

L TR e V. B\
(a) The branching of Japanese Ivy at (b) Our branching heuristic seen
the Ookayama Campus at Tokyo In- from above, with no random influ-
stitute of Technology. ence.

Figure 19: The branching of climbing plants.
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We will compare our method with the one by Luft’s by using the same
3d-model as input, to make this comparison as unbiased as possible. What
we have introduced, which Luft’s model does not deal with, is a branching
heuristic. This model is detailed in sec. [3.6 and introduces a heuristic of how
the plant branches. The result of using our branching heuristic, in contrast
to the one by Luft is illustrated in fig. [20]

In our model we have implemented a branching heuristic, and the struc-

tural difference is most noticeable in fig. 20(a)|in comparison with fig. [20(b)|
It is hard to be objective when comparing the two, but we believe that our

method better conforms with the branching rules observed in fig .

The growth direction of both methods is influenced by randomness and
tropisms, but in our case we have accomplished a better self-similarity struc-
ture by introducing a branching heuristic. The evidence of this is clear when
studying fig. and fig. 20(c)} In our result in fig. [20(c)| we have a clearer
branching structure, with self-similar branches at all depths. Luft’s result in
fig. however, does not have any branching heuristic; resulting in a more
random structure. Another figure depicting the branching heuristic can be
seen from above in fig. [19(b)]

When it comes to the shape of the branches and leaves, much has been
improved. We have modeled a system where the spacing between internode
segments, placement of leaves and the decrease in size of branches and leaves
is simulated. To seek a comparison with our observations, please refer to fig.
21(a)] In this figure, the length and radius of each internode segment as well
as the leaf size decreases over time. We have effectively simulated this effect
in branches with a simple heuristic, as described in sec. 3.9

A comparison of the result of using Luft’s method to this ours is illustrated
in fig. 21} This figure also shows the effectiveness of our method in providing
realistic branches using NURBS surfaces, instead of connected cylinders as
in Luft’s implementation.

4.2 Leaves

Leaves differ in our work from previous methods in that the leaves are kept
close and flat to the surface on which they are growing. We accomplished this
without the use of any complex collision avoidance heuristic. We have also
developed a sprouting heuristic that conforms with that of our observations,
as described in sec. B8l

This sprouting heuristic corresponds to the observations in fig. , and

the result is illustrated in fig. [22(b)|
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(d) Branching of a climbing plant with leaves using Luft’s method.

Figure 20: The branching of Japanese Ivy.
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(c¢) Rendering of Luft’s result.

Figure 21: The decrease in radius, length of the internode segments as well as in
the leaf size.
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(a) Japanese Ivy at the Ookayama Cam- (b) A rendering using our method.
pus at Tokyo Institute of Technology.

Figure 22: The sprouting of leaves of climbing plants.

4.3 Geometry Representation

Using the XL-language, the climbing plants can be saved as a graph consist-
ing of nodes which can be exported into geometry and textures. This allows
for minimal space usage, as well as portability of the geometry representa-
tion. In the current prototype, branches are represented as NURBS surfaces
and leaves as parallelograms. This implementation can easily be changed
depending on how the graph is interpreted.

Moreover, in sec. [3.10] we have provided evidence that NURBS surfaces
prove superior over regular cylinder chains which are used in Luft’s method.

4.4 Climbing Heuristic

Our climbing heuristic is similar to that of Luft’s method in that the plant
grows closer to the nearest triangle in the scene. Furthermore, we have
improved upon the method by incorporating a leaf sprouting heuristic, which
sprouts leaves according to the objects in the scene which the plant is climbing
on. More of how this is done, is detailed in sec.

4.5 Performance

Extending tips of the internodes in the plant takes O(n) if the world to
localspace transformation is recalculated at each time-step, and O(1) if the
transformation is cached. The n variable is the number of nodes in the
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productions graph.

With a model of 35,000 triangles and 4 climbing plants, the system can
generate internode segments in real-time. The bottleneck of the method lies
in the collision detection code, where each tip needs to perform one ray-
intersection test and one closest triangle query per time-step.

If optimized, it is not inconceivable that the system can run in real-time,
even with highly complex models. Recent advances in real-time raytracing
are a proof of this. Examples includes the work of Shevtsov et. al, achieving
15.4 fps at a resolution of 1024x1024 with 1087K triangles, on mediocre
hardware [35]. The nearest triangle queries can also be sped up by using
distance fields, as surveyed by Jones et. al [13].

Generating geometry from the productions graph can be done in O(n),
where n is the number of nodes in the graph. The time required to generate
triangles from a NURBS surface depends on the amount of tessellation, but
could be calculated in near real-time.
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4.6 Renderings
Figures and [24] are results using our method.

Figure 23: The plant growing on the trunk of a tree, raytraced using PovRay.
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Figure 24: The plant growing on the porch of a house, raytraced using PovRay.
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Figure 25: The plant growing on a wall, raytraced using PovRay.

4.7 Conclusions

The modeling of plants comes down to choosing the application area. We
have shown that simple heuristics can model collision avoidance and the ef-
fects of tropisms efficiently to generate geometry of climbing plants. Although
biophysiologically inaccurate, our method is fast and easy to implement, with
no reliance on infinitesimal steps to satisfy any numerical solver.

The fact that designers prefer tools, which are easy to use and provide
powerful ways of procedurally generating content is clearly evident in the
popularity of Luft’s software. The realism of the climbing plants generated
by the tool is apparently not weighed by designers as heavily as the flexibility
and ultility of the tool which the designers work with. This is apparent when
generating plants using the tool and comparing these to the ones created by
artists, as published on his webpage [23].

We have embraced the concept of simplicity in providing a powerful tool
that improves and extends the model by Luft. Sticking to simplicity should
not be underestimated, as the most complicated fractal shapes can be gen-
erated with the simplest rules. Quoting Oppenheimer: “If one can model a
complex object through simple rules, one has mastered the complexity. The
proof (although subjective) is in the picture [28]”.
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5 Discussion

As for all things in nature, climbing plants are complex beings. No matter
how much more complex the model gets, it will never suffice to describe the
real thing. Some research on the modeling of plants focus on the molecular
level and some on the structural or forest level. One single model does not
adequate to describe a plant to any level of detail. In some cases, one model
may fail when a completely different one proves better and vice versa.

It is important for a model to aim at one particular application when
being developed. At the beginning of our research, much effort was put
into developing biophysiologically accurate models, only to result in slow
implementations that hardly provided any increase in realism. It is true that
a more biophysiologically accurate model would be nice, but to what extent
and at what price is disputable. In this research we have had a clear goal
of developing a useful prototype for the application of 3D-modelers, and we
believe that an accurate enough model has been developed.

We would also comment on the use of GroIMP as a platform for devel-
oping methods to generate plants. The software proved very useful when
creating a prototype, despite some parts requiring work-arounds. At the
time of this paper’s publication, GroIlMP is still relatively new, and provides
a great implementation of the XL-language. The software is open-source, and
has good documentation. When developing a prototype using many low-level
features of a framework, the benefits of using an open-source implementation
are very clear. Furthermore, whenever something was lacking or buggy, it
was easy to get in contact with the developers or simply fix the bug ourselves.

At the inception of the project other frameworks were considered, and
in retrospect we are very happy to have chosen GroIMP. An obvious closed-
source competitor developed at the University of Calgary is L-Studio [31],
and is very powerful in expressing L-systems. Although a valid alternative,
we believe that it would have proved limiting, simply in recognizing that
L-Studio is closed-source. Using closed-source gratis software can come with
serious ramifications. Examples include potentially not being able to fix
something broken, not being able to export productions into any format and
the most important for us: being limited to the abilities of the language of
the framework.

The XL-language implementation in GrolMP is a java derivative. As
such, anything coded in Java can also be coded in the XIL-language, which
that proves very useful in the developing process.
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6 Future Work

Although L-System frameworks prove very useful in creating prototypes, the
next step would be to write a plug-in for a major 3D-modeler. Maya would
be an obvious candidate, as it provides all the requisite tools required to
implement our method. Several improvements can be added to the system
itself. A gui would provide an easier way of configuring the climbing plants,
which can also be written in a plug-in.

When it comes to branches, a more clever way of generating the shape
of the internodes comes close to mind. A backward propagating algorithm
defining the radius of the internode segments could be developed, perhaps
implementing the pipe-model as proposed by Shinozaki et. al [36]. The
climbing heuristic of the plant can also be improved by swapping the closest
triangle queries with a distance field algorithm, many of which are surveyed
by Jones et. al [13].

The effect of gravity on branches could be modeled more realistically.
However, one should consider the impact on speed and stability when mod-
eling using differential equations. Especially if incorporating collision avoid-
ance in the same algorithm.

The shape of leaves could also be improved, though at the expense of more
complicated geometry. They could be modeled to bend, using e.g. NURBS
surfaces. Other improvements include leaf fading, animation of leaves and
branches as well as better sewing of the geometry where branches merge.
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A Variables and Constants

A.1 Internode Segments

The local variables of an Internode Segment
transformation | The transformation of the internode segment.
Vertex Hold the radius of the internode segment.

A.2 Tips

The global variables of a Tip
aliveTips ‘ Holds the amount of alive tips at any given time.

The local variables of a Tip
segmentLength | The length of the internode of the tip.
transformation | The transformation matrix of the tip, the same as an
internode segment.

depth The depth of the tip in the tree

radius The radius of the tip

length The length of the tip

leafsize The size of a leaf, if sprouted from the tip.
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A.3 Leaves

A VARIABLES AND CONSTANTS

The global constants of a Tip

maxRandomAngle | The maximum random angle that the random tropism
can differ from the growth direction.
branchLength The amount of segmentLength at which the tip may
branch.
branchingProbability | The branching probability of the tip when seg-
mentLength mod branchLength = 0.
sproutingProbability | The leaf sprouting probability of the tip when seg-
mentLength mod segPerLeaf = 0.
deathProbability The death probability of the tip when segmentLength
mod maxBranchLength = 0.
maxBranchLength | The maximum allowed length of a branch.
maxAliveTips Maximum allowed alive tips at any point in time.
maxDepth The maximum depth of all tips in the tree.
segPerLeaf The amount of leaves per internode segments, i.e. when
segmentLength mod segPerLeaf — place a ToLeaf.
minBranchingAngle | The minimum branching angle of a tip when it is split
by a node.
maxBranchingAngle | The max branching angle of a tip when it is split by a
node.
radiusDec The decrease in radius at every time-step.
lengthDec The decrease in length at every time-step.
leafSizeDec The decrease in leaf size at every time-step.
A.3 Leaves

The local variables of a TolLeaf

leafScale \ The scalar of the size of the leaf.

The global variables of a ToLeaf

nrOfLeaves The number of different leaf textures in the system.
leafSizeVariance | Random influence on the size of the leaf.

leafHeight Height of the starting size of a leaf in the plant

leafWidth Width of the starting size of a leaf in the plant

A.4 Nodes
The local variables of a Node
transformation | The Transformation of the node.
Mark A node symbolizing a branch.
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