

Real-Time Rendering of Water Caustics
Using Programmable Graphics Hardware

CHRISTOFFER SANDBERG
TOMAS FALEMO

Examensarbete
Civil ingenjörsprogrammet för datateknik

CHALMERS TEKNISKA HÖGSKOLA
Institutionen för data- och informationsteknik
Avdelningen för datorteknik
Göteborg 2005

Innehållet i detta häfte är skyddat enligt Lagen om upphovsrätt, 1960:729,
och får inte reproduceras eller spridas i någon form utan medgivande av för-
fattaren. Förbudet gäller hela verket såväl som delar av verket och inkluderar
lagring i elektroniska och magnetiska media, visning på bildskärm samt
bandupptagning.

 Ditt namn, Göteborg 2005.

Realtime Rendering of Water Caustics Using

Programmable Graphics Hardware

Christoffer Sandberg and Tomas Falemo

Computer Science and Engineering, Chalmers University of Technology, Sweden

April 19, 2005

1

Abstract

In this paper we present an improved method for rendering refractive water
caustics in real-time using modern graphics hardware. Our proposed method
improves on earlier methods of volumetric rendering of caustics by allowing
for arbitrary caustic receivers and non-planar light volumes. We accomplish
this on commodity hardware by moving all caustic intensity calculations to
programmable hardware shaders. In contrast to earlier implementations, the
frame rate of our method is independent of the number of receivers.

Sammanfattning

I den här rapporten presenterar vi en förbättrad metod för att rendrera re-
fraktiva vattencaustics i realtid med hjälp av modern grafikh̊ardvara. V̊ar
föreslagna metod bygger vidare p̊a tidigare metoder för volymetrisk rendrering
av caustics genom att stödja godtycklig form p̊a causticsmottagare samt icke-
plana ljusvolymer. Vi åstadkommer detta p̊a konsument-h̊ardvara genom att
lägga intensitetsberäkningarna för ljusbidraget fr̊an caustics i programmerbara
h̊ardvaru-shaders. Till skillnad fr̊an tidigare implementationer s̊a är uppdater-
ingsfrekvensen för v̊ar metod oberoende av antalet mottagare.

2

Contents

1 Introduction 5

2 Related Work 6

3 Caustics Rendering 8

3.1 Overview . 8

3.2 Caustic Volumes . 9

3.3 Point in Volume . 9

3.4 Illumination . 10

3.5 Implementation . 10

4 Results 12

5 Conclusion and Future Work 13

5.1 Adaptability of our method on future hardware 14

5.2 Future features . 15

References 16

List of Figures

1 Illustrating a triangle in a generator mesh creating a caustic volume. 7

2 Non-planar caustic volumes . 8

3 Showing caustics on objects in water 13

4 Dynamic setting rendered at 32 fps. 14

3

5 Comparison of different water resolutions 18

6 Distortion due to refraction mapping of pool-content texture. . . 19

7 Pots on the bottom of a pool . 19

List of Tables

1 Performance measures for the scene in Figure 4. 12

4

1 Introduction

Creation of realistic images is one of the most researched fields within computer
graphics today. Water often makes up some part of a scene and even if it only
is in the shape of a glass of water it plays huge part in the credibility of the
scene.

Realistic water-caustics is a vital component in rendering scenes which con-
tains any water at all. Low-quality or non-existent caustics make even the most
perfectly created scene look cheap and artificial. The existing methods for ren-
dering caustics are either too slow for real-time applications (Photon Mapping,
Ray Tracing), are not dynamic enough (Pre-generated caustic textures) or does
not scale well with scene-complexity (previous work on volume-based caustics).

In this paper, we present a method for rendering caustics using caustics-volumes
which is faster than Photon Mapping and Ray Tracing, is more dynamic than
Pre-generated caustic textures and scales better than the volume-based method
presented by Iwasaki et al. [IDN02][IDN03].

5

2 Related Work

Rendering Methods for Caustics has been an active topic within computer
graphics for almost 20 years. As better hardware has been made available
focus has shifted from creating complex patterns to drawing believable caustics
at high speeds.

Plenty of methods for rendering caustics have been proposed through the years.
In 1986 Arvo used backwards raytracing to accomplish caustics through illumi-
nation maps [Arv86]. Heckbert calculated the distribution of the illumination by
using adaptive radiosity textures and portrayed caustics due to a lens [Hec90].
At about the same time Watt developed backward beam tracing which he used
to render shafts of light and caustics [Wat90]. Further progress was made when
Collins presented an improved backwards raytracing technique [Col94]. This
method gave sharper and more exact caustics but was limited to planar re-
ceivers.

Jensen continued the evolution when he used photon mapping to handle arbi-
trary geometry [Jen96] and then added support for volume caustics and partic-
ipating media [JC98].

Brière and Poulin [BP01] presented an approach to handle the blockiness that
often appears when using uniform intensity over the caustic-polygons. The
method tracks the wavefront of each ray of the volume and uses barycentric
interpolation over each caustic triangle. This algorithm gives less blocky caus-
tics, but it is targeted for ray tracing, and rendering times of minutes up to
many hours are reported. Iwasaki et al [IDN02][IDN03] described how to ren-
der caustics by dividing the objects into slices. Unfortunately their method
does not scale well with increasing scene-complexity. This is due to the fact
that each receiver in the scene needs to be divided into planes which requires
extra rendering passes and thus yielding lower framerates.

Wand et al. [WS03] projects caustics from sample points of caustics generat-
ing objects. Each causics receiving surface is rendered with a pixel shader that
for a sample point on a caustics generating object, computes the reflected light
from that sample point, using an environment map to approximate the incom-
ing fully reflected light at the point. The contributions from all render passes
corresponding to all sample points are blended together. A filter is then used
to lower sampling artifacts. This method has real-time performanced for up
to a few hundred sample points, and would thus probably not be suitable for
large water surfaces. Furthermore, by using the environment maps, the light is
assumed to be infinitely far away.

Larsen et al. [LC04] simulates photon mapping, using GPU accelerated final
gathering. Caustic photons are traced on the CPU and then drawn using points

6

Figure 1: Illustrating a triangle in a generator mesh creating a caustic volume.

to a texture that fits the screen. This screen-space caustics map is then used
by a pixel shader to compute the illumination for a point, by approximating
the photon density from the closest texels corresponding to the point’s pixel
position and its neighboring pixels. Photon mapping is also the method for
Guenther et al. [GWS04], they achieve framerates that are close to real-time
using a cluster of 18 dual-CPU PCs.

Recently, Iwasaki et al [IYND04] presented a method which makes it possible
to render caustics from light passing through transparent objects at interactive
rates using a precomputed look-up table of pairing entry and exit positions for
the lightrays.

In order to provide better scalability we modify the method described by Iwasaki
et al[IDN03]. Our method use hardware vertex and fragment programs to ren-
der the caustic volumes directly into the framebuffer without the need to use
multipass object slices.

7

3 Caustics Rendering

In this section we propose a method of drawing caustics due to refracted light
using vertex and fragment shader based volume rendering.

Figure 2: Example of 3 caustic volumes showing how non planar sides of the
caustic volumes appear. In the example of a converging volume (middle figure)
and a more general warped volume (right figure) the sides are clearly not planar.

3.1 Overview

To render caustics effects, the reflection and refraction of incident light has to
be taken into account. An object causing caustics has to be either refractive,
reflective or both. We call these objects caustic generators. Objects to receive
caustic patterns are called receivers. In our method, arbitrary objects that can
be tesselated into triangle meshes can be generators and receivers, in particular
a generator can also be a receiver. The level of tesselation of receivers does not
effect the outcome of the quality of the caustics as this is a per pixel operation
on already rasterized geometry. In the following section we will go through, in
detail, the rendering of caustics due to a refractive water surface.

8

3.2 Caustic Volumes

The water surface is subdivided into a mesh of triangles. For each vertex in the
mesh, a refraction-vector, Ri, for the incident light is computed. Each triangle
in the generator mesh along with the three refracted rays, Ri from the triangle
vertices constitutes a caustic volume. The refracted rays are extended as far as
needed for the scene. In particular for underwater scenes this would be either
below the ocean/container bottom or as far down in the homogenous body of
water that the illumination approximately is zero, in case of the later a bottom
triangle should be calculated forming an enclosed caustic volume making sure
to capture any receiver that would possibly be in its path. The illumination cal-
culation is further discussed in detail in Figure 3.4. The caustic volume formed
by its generator triangle and the three refracted rays are used for receiver-point-
in-volume tests described in the following section. However this volume is ill
suited for rendering as it does not necessarily have flat sides as shown by 2. To
tesselate the surface would require extensive CPU power as for a normal appli-
cation the number of caustic volumes would be quite high, as well as dynamic
on a per frame basis. Drawing the caustic volumes with a screen sized quad on
the other hand would waste valuable fill rate. Instead, a tight body needs to
be constructed. If the caustic volume is fully enclosed and convex, the backface
culling in hardware can be used to drastically reduce the amount of pixels being
rasterized.

3.3 Point in Volume

For each pixel rasterized by a volume, a point in volume test is needed to see
if the receiving point P at the pixel position is within the volume or not. This
point, tested in world space, is defined by the z-coordinate from the z-buffer,
the x,y screen coordinate of the pixel, and the screen space to world space
transformation matrix. Note that a pixel may be in question for many point
in volume tests, and in particular may also be found to be in several volumes
due to warped caustic volumes. By forming a plane Π with the normal vector
N = (0, 1, 0) containing P and finding the intersection-points P ∗

i between Ri

and Π, the problem can be reduced into a point in triangle test instead. Since
P ∗

i and P are in a plane with Ny = 1 only the xz components of P ∗

i and P

needs to be used to perform the point in triangle test which can lead to more
efficient code in the fragment shader.

9

3.4 Illumination

We use a similar method as Iwasaki [IDN03]. If P is within the volume, the
intensity LP at P as seen from the eye can be expressed as

LP (λ) = I0e
−c(λ)dFP + LA(λ)

where λ is the wavelength sampled in RGB. I0 is the irradiance just below the
water surface, −c(λ) the attenuation coefficient, d is the distance the light has
traveled through the body of water, FP is the Flux-ratio between the generator
at the surface and the receiver and LA(λ) is the ambient light at P . Using
hardware additive blending, each caustic volume can be processed separately
and thus each generator triangle add only its own contribution to LP . LA(λ)
is the intensity of the receiver without caustic so it can be rendered separately
from the caustics. Since the rendering of caustic volumes are made with additive
blending, rendering LA before the caustic volumes would conserve framebuffer
bandwith as no readback from the framebuffer would be needed for ambient
rendering. The only variables affected by the caustic volume and P are d and
FP which must be calculated at the pixel, the remaining parts of the expression
are scene specific and constant. FP is calculated by taking the ratio between
the generator triangle area and the triangle formed at P .

3.5 Implementation

As the water surface is treated as a heightfield with evenly distributed xz coordi-
nates in worldspace, many already developed water simulating methods can be
applied to dynamicly update the watersurface movements such as Fast Fourier
Transform and Navier Strokes Equations. The process of creating caustic vol-
umes is done as soon as the water surface heightfield has been updated. Each
caustic volume contains 6 vertices, the 3 vertices from the generator triangle,
VGi and 3 vertices, Vi, calculated by adding Ri refracted ray vectors to VGi and
extending Ri enough for the vertices to be placed just below the pool bottom,
see Figure 1.

The rendering of a final image is split into three passes, where the caustics are
drawn in the second pass. The first pass is used to generate world space coordi-
nates for all receiver geometry. This is done using a vertex- and fragmentshader
that writes the receivers x,y and z worldspace coordinates to a floatingpoint
buffer. The buffer is then bound to a texture unit and used as a lookup table
in the next rendering pass.

The second pass is split into two stages, firstly all receiver geometry is once
again rendered, but using the geometry’s ordinary shading vertex and fragment
programs. In essence this is the step of rendering LA(λ) in 3.4. To render the

10

caustics, additive blending and backface culling is turned on and depth writing
is switched off. The additive blending mode is needed because each volume
only calculate the light intensity from its generator, and since volumes can
be warped, several caustic volumes may affect light intensity of a receiver pixel.
Depth writing to the Z buffer must be disabled because volumes are overlapping
each other and thus requires the ability to draw the volumes in arbitrary order.
Backface culling is not needed to achieve the correct caustic pattern, but it is
a significant speed optimization as all pixels which can be inside the volume is
covered by the front faces of the volume. The output of this pass is bound to a
texture used in the third and final pass.

The purpose of the third pass is to render the water surface, and at the same
time create a simple refraction effect. First all objects which are partially or
fully above the water surface are rendered, then the surface mesh is rendered
mapping the texture created in the second pass onto it. We calculate these
texture coordinates on the fly within the vertex shader and fragment shader
using a virtual plane approximating the average water level in the pool. This
plane is transformed using the same model-view-projection matrix and clip space
transformation as the real water surface vertices to act as texture coordinates
for the water surface mesh. This creates the illusion of refraction from the eye.

11

4 Results

System framerate
AMD 1.8Ghz, Radeon 9800Pro 10.5
AMD 1.2Ghz, Geforce 6800GT 16.7
Intel P4 3.2Ghz, Radeon X800Pro 21.4
AMD64 2.2GHz, Geforce 6800Ultra 32.3

Table 1: Performance measures for the scene in Figure 4.

The tested scene, as shown in Figure 4, is rendered with a water gridsize of
64x64 and pixel resolution of 512x512. All features of our method are turned on
during this rendering, which means that in between each frame the directional
light source is moving, the receiver objects worldspace positions are being re-
evaluated, and the water surface is being evaluated using a dynamic fluid solver
implementation [JJ95]. The results on a few testsystems can be seen in table 1.

Figure 7 shows our method applied for a pool with some pots added to the
bottom, representing caustics rendered on simple objects. Figure 5 shows a
comparison of different generator gridsizes for the same scene.

The described refraction effect becomes clearly visible in Figure 6, as the wave
front evolves. Finally, caustics rendering on complex receivers, which is the
strength of our method, is displayed in Figure 3.

12

Figure 3: Volumetric caustic on complex objects under a 128x128 water surface.
This image was rendered at 3fps in 1024x1024 pixel resolution. The same scene
rendered at 8.6 fps using 512x512 pixel resolution.

5 Conclusion and Future Work

In this paper, we have presented a method for rendering caustics using pro-
grammable graphics hardware. The algorith is designed to be run by standard
programmable graphics hardware on standard PCs with a bare minimum of
functions performed on the host system’s CPU. We have shown that the algo-
rithm performs well in realtime with as much as 32 fps running on our testscene
using high end hardware available on home consumer market.

The main characteristic of our method is that we allow arbitrary receivers with-
out any cost to the caustic rendering except for a rendering of underwater scene
objects to a special worldspace buffer bound as a texture. Also the design is to
run the algorithm on a GPU with little interaction with the host CPU, leaving
the CPU to perform other tasks, such as simulation of the environment in which
caustics are to be displayed in.

The method we have described allows for creation of refractive caustic due to

13

Figure 4: Displaying an empty pool which is rendered at 32 fps with full dynamic
waterwave simulation, moveable lightsource, re-evaluating the geometry in the
scene between every frame, as well as calculating the reduced intensity of the
lightbeams due to the participating homogenous watermedia.

light interaction with water surfaces. However, the concept of caustic volumes is
far more generic and can be used to render reflective caustic as well. To achieve
this, nothing in the concept of the actual caustic volumes need to be changed.
For reflective caustic the reflection of the light needs to be computed instead of
the refraction as presented in this paper. The caustic volume is then created
from these new rays. For a generic reflective object, there is a need to compute
which triangles are visible from the light source and add these to the generator
mesh. Other refractive objects, such as glass, can use caustic volumes for ren-
dering as well. The generator mesh for these can be constructed from a light
distribution formula describing how the light is reflected and refracted within
the body. Iwasaki et al. [IYND04] have presented a method for calculating such
light distribution functions within transparent bodies. However, such methods
might prove hard to perform in realtime.

5.1 Adaptability of our method on future hardware

Today’s rendering pipelines are capable of creating new triangles, and in fact
must do so when point sprites and line segments are to be rendered as the actual

14

hardware rasterizer normally only implements triangle rasterization. However
within rendering pipelines of today this stage is fixed and all triangle generating
functionality must lay on the host processor, as in the case of caustics vol-
umes, Microsoft intends to change this stage to become programmable in their
release of Windows Longhorn, which will include Windows Graphics Founda-
tion (WGF) [Bey03], the replacement of DirectX. When this stage becomes
programmable in hardware, which will be a requirement for hardware manu-
facturers to call their products WGF compliant, the entire process of rendering
caustics can be moved from the host processor to a GPU. The process of creating
and transmitting caustic volumes to the GPU is an expensive operation, with
this new programmable stage in the pipeline called Topology processing only the
surface triangles have to be sent down the pipeline along with batch-constant
values such as light direction. The Topology Processor then can calculate the
caustics volume associated with each surface triangle and feed this directly fur-
ther down the pipeline to the Vertex Processor.

5.2 Future features

In future work, we would like to add true refraction as seen from the eye through
the water surface. Also, as discussed in section 5.1, the creation of caustic vol-
umes should be moved to the GPU when it allows for non-abusive implementa-
tions, preferably through a generic topology processor.

15

References

[Arv86] Arvo J.: Backwards ray tracing. In Developments in Ray Tracing,
SIGGHRAPH Course, 1986.

[Bey03] Beyond3d: Directx next early preview.
http://www.beyond3d.com/articles/directxnext/, 2003.

[BP01] Brière N., Poulin P.: Adaptive representation of specular light
flux. Computer Graphics Forum, Vol.20, No.2, 2001, pages 149-159,
2001.

[Col94] Collins S.: Adaptive splattering for specular to diffuse light trans-
port. Fifth Eurographics Workshop on Rendering, pages 119-135,
June, 1994.

[GWS04] Guenther J., Wald I., Slusallek P.: Realtime caustics using
distributed photon mapping. Eurographic Symposium on Rendering,
pages 111-121, 2004.

[Hec90] Heckbert P.: Adaptive radiosity textures for bidirectional ray trac-
ing. Proc. SIGGRAPH 90, pages 145-154, 1990.

[IDN02] Iwasaki K., Dobashi Y., Nishita T.: An efficient method for
rendering underfwater optical effects using graphics hardware. Com-
puter Graphics Forum, 21(4):701-712, 2002.

[IDN03] Iwasaki K., Dobashi Y., Nishita T.: A fast rendering method
for refractive and reflective caustics due to water surfaces. EURO-
GRAPHICS, pages 283-291, 2003.

[IYND04] Iwasaki K., Yoshimoto F., Nishita T., Dobashi Y.: A rapid
rendering method for caustics arising from refraction by transparent
objects. Cyberworlds, 2004 International Conference, 2004.

[JC98] Jensen H. W., Christensen P. H.: Efficient simulation of light
transport in scenes with participating media using photon maps. In
Computer Graphics, SIGGRAPH, pages 311-320, 1998.

[Jen96] Jensen H. W.: Global illumination using photon maps. In Proceed-
ings of the 7th EUROGRAPHICS Workshop on Rendering, pages
21-30, 1996.

[JJ95] James O., Jessica H.: Dynamic simulation of splashing fluids.
proceedings of Computer Animation, pages 198-205, 1995.

[LC04] Larsen B. D., Christensen N.: Simulating photon mapping for
real-time applications. Eurographics Symposium on Rendering, 2004.

[Wat90] Watt M.: Light-water interaction using backward beam tracing.
SIGGRAPH 90, pages 377-385, 1990.

16

[WS03] Wand M., Strasser W.: Real-time caustics. Computer Graphics
Forum, 22(3):611-611, 2003.

17

18

Figure 6: Distortion due to refraction mapping of pool-content texture.

Figure 7: Displaying some pots on the bottom of a pool, the water surface mesh
size is 128x128 and the image was rendered at 512x512 pixels. Note that the
caustics correctly, on a per pixel resolution, are placed on the geometry of the
pots.

19

