

Real-Time Fluid Dynamics
for Virtual Surgery

Lars Andersson

Master’s Thesis

Engineering Physics Program

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Engineering

Göteborg 2005

Abstract

This thesis report documents the work performed to investigate and implement a number of
algorithms for real-time visualization of blood and smoke in the context of virtual surgery
applications. More specifically, the effects that we want to implement are blood squirting
in free space, blood drops running down a surface, blood dissolving in a fluid and smoke
generated by a tissue burning instrument. The work started with a period of initial research
to get a better overview of the subject and the possibilities available. This was followed by
experiments and implementation of the most promising methods. An uncoupled particle
system rendered as a set of spheres is used for the blood splash and drip effects. Blood trails
are rendered directly onto the surface texture. The results are not very realistic visually
or physically, but may still be usable to give the user visual cues about what is going
on in the simulator. The simulation of blood dissolving in a fluid is based on a real-time
approximation of the Navier-Stokes equations and is more physically correct. It allows
quite realistic real-time interaction with a fluid in two dimensions. The smoke effect is
implemented as a simple particle system and probably looks realistic enough to be usable.
However, the simulation is not physically based and needs to be modified if interaction
with the smoke is required.

Sammanfattning

Den här rapporten beskriver arbetet som utförts för att undersöka och implementera ett
antal algoritmer för visualisering av blod och rök i realtid. Mer specifikt är effekterna
vi vill åstadkomma blod som skvätter och droppar som rinner utmed en yta, blod som
löser sig i en annan vätska och rök fr̊an ett värmeinstrument. Arbetet började med en
period av efterforskning för att f̊a en bättre överblick av ämnet och tidigare arbeten. Detta
åtföljdes av experiment och implementering av de mest lovande metoderna. Ett okopplat
partikelsystem med partiklar renderade som sfärer används för skvätt och droppeffekterna.
Blodsp̊ar renderas direkt till texturen p̊a den yta som blodet befinner sig. Resultaten är inte
speciellt realistiska varken visuellt eller fysikaliskt, men skulle änd̊a kunna vara användbara
för att ge visuella ledtr̊adar om vad som händer i den simulerade omgivningen. Simuleringen
av blod i vätska är baserad p̊a en realtidsapproximation av Navier-Stokes och är mer
fysikaliskt korrekt. Modellen till̊ater realtidsinteraktion med vätskan i tv̊a dimensioner.
Rökeffekten är implementerad som ett enkelt partikelsystem och ser antagligen tillräckligt
realistiskt ut för att vara användbar. Den är dock inte fysikaliskt baserad och behöver
förbättras om realisktisk interaktion med röken krävs.

Contents

1 Introduction 1

1.1 The Goals of the Thesis . 1

1.2 Work Flow . 2

2 Overview and Previous Work 4

2.1 Basic Fluid Dynamics . 4

2.1.1 The Navier-Stokes Equations . 4

2.1.2 The Continuity Equation . 5

2.2 Grid Based Techniques . 5

2.2.1 Surface and Heightfield Methods 5

2.2.2 Stable Fluids . 7

2.2.3 Conclusions . 10

2.3 Particle Based Techniques . 11

2.3.1 Uncoupled Particle Systems . 11

2.3.2 Coupled Particle Systems . 12

2.3.3 Smoothed Particle Hydrodynamics 13

2.4 Other Techniques . 15

2.4.1 Procedural Noise . 17

2.4.2 Advected Textures . 17

2.4.3 The Lattice Boltzmann Model . 18

2.5 Programmable Graphics Hardware . 18

2.6 Conclusions . 19

2.6.1 Blood Splashes . 19

2.6.2 Blood Drops . 19

2.6.3 Blood in Fluid . 20

2.6.4 Smoke . 20

i

3 Experiments and Implementations 21

3.1 Smoothed Particle Hydrodynamics . 21

3.2 Particle Systems for Splashes and Drops 25

3.2.1 Particle Environment . 25

3.2.2 Collision Detection . 27

3.2.3 Particle Motion . 28

3.2.4 Particle Rendering . 28

3.2.5 Blood Trails . 29

3.2.6 Coupling the Particles . 30

3.3 Blood Dissolving in Fluid . 31

3.3.1 Density Solver . 31

3.3.2 Velocity Solver . 32

3.3.3 Visualization . 32

3.4 Smoke . 32

4 Results and Discussion 34

4.1 Smoothed Particle Hydrodynamics . 34

4.2 Particle System Splashes and Drops . 35

4.3 Blood in fluid . 37

4.4 Smoke . 38

5 Conclusions 40

5.1 Splashes and Drops . 40

5.2 Blood in Fluid . 41

5.3 Smoke . 41

ii

Chapter 1

Introduction

Virtual surgery simulators are becoming an important tool in the education of surgeons and
medicine students. Techniques and procedures can be practiced in a virtual environment
before conducting the corresponding operations on real human beings. One of the most
important applications is simulation of minimally invasive surgery, also called laparoscopy.
The basic idea of laparoscopy is trying to avoid serious damage to the tissue surrounding
the actual area of medical significance. Instead of cutting through muscles and other tissue
lying in the way of the organs or joints of interest, a fiber optic camera and surgical tools are
inserted through a small number of portals in the skin. The medical procedure can then
be performed by a surgeon operating the instruments through the portals using visual
feedback from the inserted camera. This has often proved to reduce the unnecessary tissue
damage, physical pain and time of recovery significantly.

However, not being able to see the affected area directly makes things much harder for
the surgeons. Successfully using a television screen or computer monitor as the only visual
feedback during surgery requires a great deal of practice. This is a situation where virtual
surgery simulators can be of great value. Instead of practising on animals or plastic models
which may have both ethical, technological and economical drawbacks, the affected envi-
ronment and the medical procedures can be simulated and visualized using mainstream
PC hardware. Visual feedback is provided by rendering and updating the simulated envi-
ronment in real-time. Haptic feedback is provided by a set of artificial surgical tools. The
artificial tools are manipulated by the practicing surgeon and affected by physical models
of the simulated environment to provide a realistic feeling of interaction. With a simulator
like this the user may practice and repeat any procedure as much as is needed to gain the
skills required.

1.1 The Goals of the Thesis

This thesis project was suggested by Mentice AB in Gothenburg, a company developing
simulators for medical procedures such as laparoscopy. The main purpose of the project

1

is to investigate and evaluate different methods and algorithms for real-time simulation
and visualization of dynamic, free surface fluids, with an emphasis on virtual surgery
applications. After the initial research, one or more of the most promising methods will be
implemented using OpenGL for visualization. In addition, the possibilities of accelerating
these algorithms using modern programmable graphics hardware will be briefly examined.

If successful, the technology developed could be used to visualize effects such as floating
and dripping blood, smoke and water irrigation. To be more specific, a few distinct effects
that we want to investigate and preferably implement have been lined up.

� Blood splashes. A solid splash of blood, for example emanating from a damaged
blood vessel, moving in free air before colliding and interacting with the surrounding
tissue.

� Blood drops. Drops of blood from a smaller or lower blood pressure cut running
down a tissue surface, probably leaving a streak of blood behind.

� Blood in fluid. A transparent, saline water solution is sometimes injected into the
operation space during minimally invasive surgery. Blood mixing and dissolving in
this fluid should be simulated and visualized.

� Smoke. A tissue burning instrument is sometimes used during surgery, for example
to make cuts or to make blood coagulate in order to prevent excessive bleeding. The
fourth goal is to animate and visualize smoke generated by an instrument of this
kind.

The performance requirements are quite high. A lot of things are going on in a real-
time surgery simulation. For example, the tissue-instrument interaction physics and force
feedback simulation need to run at about 500 Hz in order to provide the user with a realistic
feeling of interaction. This means that fluid simulation and visualization can only use a
very limited share of the total CPU and GPU resources available.

Thus, when running on their own, the effects described above probably need to run at a
minimum of 100 frames per second or more on modern hardware to be usable in a real
world surgery simulator. This puts quite hard constraints on the type of algorithms and
the level of realism that can be implemented. The situation is in many ways similar to the
one that game developers are facing when trying to add nice special effects to a modern
computer game. A great number of subsystems all want their share of CPU or GPU cycles
and striking a good balance is an important part of the overall design.

1.2 Work Flow

The work has been divided into three major parts. Initial research, implementation and
documentation. The first five weeks of the project were spent on research alone. A large
number of research papers, books and articles were located and quickly evaluated in order

2

to acquire a good general overview of the subject. The sources of information that appeared
to contain useful information and algorithms were studied in more detail. This part of the
project is basically documented in chapter two of this report.

After the initial period of research and investigation, some ideas about the best ways to
solve the problems presented fortunately started to pop up. The methods that appeared
to be most promising were studied in more detail and experiments was performed. A basic
OpenGL based framework for trying out ideas was developed and a number of different
algorithms were tested. This work has been documented in chapter three.

The final part of the project consisted of documenting the initial research, the experiments
conducted, implementations coded and conclusions drawn. In short, it involved creating
the document you are looking at right now.

3

Chapter 2

Overview and Previous Work

In this chapter some of the most relevant techniques for computational fluid simulation in
the field of computer graphics will be presented. Many of these are not suited for interactive
simulation but are still included to present a broader overview of the subject. We will
also take a quick look at the possibilities of accelerating these techniques using modern
programmable graphics hardware. First of all though, we will start with a brief introduction
to the basic equations of fluid dynamics.

2.1 Basic Fluid Dynamics

Computational fluid dynamics (CFD) has been an important tool for scientists and en-
gineers ever since the performance of computers reached useful levels during the 1960’s.
Many technological feats, such as going to the moon and back, modern jet fighter aircraft
and nuclear submarines would have been more or less impossible to achieve without the
help of CFD [3]. It is a huge subject that has received a great deal of attention and research
funding during the last decades, partly due to the obvious military applications. Here we
will just scratch the surface and review a couple of the most fundamental equations relevant
to fluid simulation in the context of computer graphics and visualization. See for example
[2] for an in-depth derivation of the equations presented here.

2.1.1 The Navier-Stokes Equations

The fundamental equations governing the motion of a fluid are the Navier-Stokes equations,
derived independently by the French engineer Claude Navier and the Irish mathematician
George Stokes in the first half on the nineteenth century. These equations can take many
forms depending on the assumptions made. We will assume that our fluids are incompress-
ible and Newtonian [2], and thus the Navier-Stokes equations take the following form

∂v

∂t
= −(v · ∇)v + µ∇2v − 1

ρ
∇p + f , (2.1)

4

where v is the fluid velocity, ρ is the density, p is the pressure, µ is the kinematic viscosity
and f is the external body force. The first term on the right, −(v · ∇)v is called the
convection term. It basically represents the change of velocity of a fluid particle caused
when the particle moves from one region of the velocity field into another region with
different velocities. It can be seen as a “transport of velocity” by the velocity field itself.
The second term is the viscosity term, representing the internal friction and normal stresses
generated between fluid particles as they move in relation to each other. The third term is
the pressure term, stating that particles are pushed in the direction of the negative pressure
gradient. The last term represents body forces, such as gravity or a magnetic field, acting
directly on the matter constituting the particle.

2.1.2 The Continuity Equation

To describe the motion of a physical fluid the Navier-Stokes equations need to be comple-
mented with an equation assuring that no mass is created or destroyed in the process. This
fact is described by the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (2.2)

It states that the rate of density change of an infinitesimal fluid element equals the total
amount of mass per volume entering and leaving the volume occupied by the element. In
other words, mass is conserved.

2.2 Grid Based Techniques

Computer graphics generated by grid based (Eulerian) simulation of fluids has been used by
the entertainment and special effects industry for at least two decades. One of the earliest
examples is the movie “Abyss” from 1989 in which a computer generated water creature
moves through a real world submarine vessel. A more recent example is the giant ocean
waves hitting New York City in “Day After Tomorrow”. Although realistic and impressive,
all of these simulations are far away from being able to reach interactive frame rates. Also,
apart from being very time-consuming, direct application of standard CFD methods to
computer graphics are hard to set up, use and control correctly for people who do not have
an in-depth understanding of the underlying principles and equations. In order to come
up with something that is actually useful in practice it is often necessary to restrict the
simulations in one way or another. Since the beginning of the 90’s there has been a lot of
research in this direction. A few highlights will now be briefly presented.

2.2.1 Surface and Heightfield Methods

One of the earliest computer graphics related attempts to speed up the simulation of
fluids by sacrificing accuracy and generality was done by Kass and Miller [16]. They use

5

simplified versions of the “shallow water equations” in two dimensions and a heightfield
representation of the fluid surface to simulate waves in water of varying depth. This method
works good for many specialized situations and enables reflection and refraction of waves,
net fluid transport and dynamic boundary conditions. On the other hand, due to the 2D
heightfield representation, it does not easily permit simulation of truly three-dimensional
effects such as breaking waves and interaction with solid objects submerged into the fluid.
In short, their method is suitable for simulation of situations such as a calmly flowing river
and waves approaching a beach at moderate speed. Raghupathi [33] uses an algorithm
based on this method to animate the surface of accumulated blood and irrigation fluid in
a minimally invasive surgery simulator.

Another method was presented by Foster and Metaxas [7] in 1996. It solves the full Navier-
Stokes equations in 3 dimensions on a low resolution grid to capture a coarse state of the
pressure and density fields of the fluid. This is combined with a surface tracking algorithm
based on heightfields that follow the evolution of the fluid surface in more detail in order to
enable high quality rendering. Boundary conditions such as solid objects and surrounding
air are incorporated in the simulation, aligned to grid cell coordinates and treated as
fluid cells with special properties. The Navier-Stokes equations are then solved across the
entire environment, using a finite difference approximation. Incompressibility is assured by
solving the continuity equation iteratively for the resulting velocity field. Their method
supports complex fluid behavior such as rotational eddies, vorticity and splashing, as well
as submerged objects and obstacles. In [8] the same authors suggest a similar method
to simulate the flow of hot, turbulent gases. The work of Foster and Metaxas has many
advantages, but unfortunately it hardly reaches real-time performance even on today’s
hardware. A couple of screenshots generated by this method are shown in figure 2.1 below.

(a) Partially submerged soda cans floating
around and colliding with static objects.

(b) Waves interacting with an underwater
rock.

Figure 2.1: Pictures from the work of Foster and Metaxas [7].

A more recent model for animation and rendering of dynamic water surfaces is presented in
an article by Jensen and Golias [13]. It is partly based on the same origin as the methods just

6

described above but complements it with other techniques, for example particle systems,
to simulate effects such as foam and spray. It also takes advantage of the stable fluid solver
algorithms by Stam [39] described below. In addition, modern programmable graphics
hardware is used to accelerate some of the calculation and visualization. The result is a
fast and flexible simulation of planar water surfaces that could probably run in realtime on
today’s hardware if implemented correctly. A few screenshots from the article are shown
in the figure below.

(a) Dynamic ocean surface. The fine details
are rendered using bump mapping.

(b) Simulation of water foam using particle
systems.

Figure 2.2: Pictures from the work of Jensen and Golias [13].

2.2.2 Stable Fluids

In 1999 Jos Stam introduced a new and efficient method for solving the Navier-Stokes
equations on a grid [39, 40, 41]. Stam used a so called “semi lagrangian” scheme that
is unconditionally stable regardless of the size of the time step taken between successive
iterations. The “method of characteristics” is used to solve the advection term in a stable
manner and conservation of mass is achieved by applying a mathematical result called
Helmholtz-Hodge Decomposition to the resulting velocity field. Since this method has found
many uses in visualization of fluids we will take some time to review it in more detail.

According to the theory of Helmholtz-Hodge Decomposition any vector field w can be
decomposed into the form:

w = u +∇q, (2.3)

where u is a mass conserving (or divergence-free, ∇ · u = 0) vector field and q is a scalar
field. In other words, any vector field can be expressed as a sum of a mass conserving field
and a gradient field. A projection operator P that projects any field into its divergence-free
component can be defined as:

u = P(w) = w −∇q. (2.4)

7

By applying this projection to the original Navier-Stokes equation (2.1) we get

∂v

∂t
= P(−(v · ∇)v + µ∇2v + f), (2.5)

where we have used the fact that P(v) = v since the velocity field v is divergence-free and
P(∇v) = 0 since ∇v is a gradient (conservative) field. The differential equation (2.5) is
the basis of Stam’s method. To evaluate the velocity field, starting from an initial state
u(x,0), a four step procedure is used to advance to the solution by a time step ∆t. Let
w0(x) = u(x, t). The terms are then evaluated sequentially in the following order:

w0(x) → w1(x) Body forces
w1(x) → w2(x) Advection
w2(x) → w3(x) Diffusion
w3(x) → w4(x) = u(x, t + ∆t) Projection

(2.6)

Body Forces
The force term is easy. The body force, specified as force per unit mass, is simply integrated
over the time step ∆t using the Euler-forward scheme:

w1(x) = w0(x) + ∆tf(x, t) (2.7)

Advection
Advection can be seen as a kind of “transport of velocity”, or as the velocity field transport-
ing itself. A disturbance in the velocity field propagates according to the advection term
−(v · ∇)v. It is this term that makes the Navier-Stokes equation non-linear and is thus to
be blamed for much of the complexities and difficulties of computational fluid dynamics. It
can be solved using standard finite difference methods as described in [7]. However, finite
difference discretization of the nabla operator ∇ usually needs quite small time steps to
guarantee stability. Stam instead proposed a “semi-lagrangian” technique, based on the
method of characteristics used to solve partial differential equations. In this case, it can be
understood intuitively by considering a single fluid particle x at time t. During the last
time step ∆t it was moved to its current location by the velocity field. To find the particle’s
current velocity, we move backwards in the velocity field from the point x by ∆t. The trace
defines a path p(x, t) corresponding to a partial stream-line of the velocity field that the
particle followed during the last time step. The new velocity of the particle at x is then set
to the velocity it had at its previous location a time ∆t ago:

w2(x) = w1(p(x,−∆t)) (2.8)

Although an approximation, this method has at least two clear advantages over using finite
differences. Most importantly, it is unconditionally stable. The velocity can never “blow
up” since the maximum velocity of the new field is never larger than the maximum value
of the previous field. This enables us to use time steps as large as we please, at the cost

8

of accuracy. Another advantage is that the algorithm is easy to implement and optimize,
making it ideal for real time algorithms.

Diffusion
The viscosity term generates diffusion and has a smoothing effect on the velocity field. It
has the form of a standard diffusion equation

∂w2

∂t
= µ∇2w2 (2.9)

This is a well-known equation that can be solved using a number of different numerical
methods. As for the advection term, a finite difference scheme and explicit time stepping
could be used but would not result in an unconditionally stable solver. Stam instead refor-
mulates the equation as

(I− ν∆t∇2)w3(x) = w2(x). (2.10)

After the diffusion operator ∇2 is discretized, this results in a sparse system of linear equa-
tions. This system needs to be solved in order to find w3(x). As described in [41], Stam
suggests using an iterative, implicit scheme called Gauss-Siedel relaxation to calculate the
new velocity field w3(x). This results in a simple, reasonably efficient and unconditionally
stable algorithm.

Projection
In the final step, we need to make sure mass is conserved by projecting the resulting field
back to its divergence free component according to equation 2.4. By multiplying both sides
of equation 2.3 with ∇ and remembering that P(∇v) = 0 we get the following equations
for the projection

∇2q = ∇ ·w3

w4 = w3 −∇q
(2.11)

The first equation is a variation of the Poisson equation. Like in the diffusion step, the
diffusion operator ∇2 can be discretized and the resulting sparse, linear system can be
solved using an implicit, iterative method. When this step has been completed, we have
advanced the velocity field by ∆t.

Using the computed velocity field, a scalar density field can be evaluated in a similar
way. The density field could represent the thickness of hot smoke rising in air, or the
concentration of one fluid being mixed with another. A few screenshots from the fluid
solver presented by Stam in [41] are shown in figures 2.3 and 2.4.

The stable fluids method was an important contribution to research in fluid dynamics for
computer graphics. However, the methods used to solve equation 2.5 are in some ways quite
approximate. It would in most situations not be accurate enough to be used in engineering
applications where strictly physical behavior is needed. For example, the solver tends to
suffer from too much “smoothing” of the density and velocity fields, i.e. the flows dampen
too fast compared to reality. However, this is usually not a serious problem in the context

9

of computer graphics. If needed, one way of compensating for the numerical diffusion by
introducing an artifical force field is presented in [6]. Another limitation with the solver
as described in [39] is that it does not support free surface flows. The fluid simulated is
expected to completely fill up the space simulated. The stable fluid algorithm has been used
in the context of surgical simulation by Zátonyi et al. [45] to visualize blood dissolving in
a transparent liquid.

(a) (b) (c)

Figure 2.3: Pictures from the work of Stam [41], showing the evolution of a rising smoke cloud.

Figure 2.4: Picture from the work of Stam [41], showing the characteristic Von Karman vortex
street produced behing an obstacle in a moving fluid.

2.2.3 Conclusions

Due to the grid based world description of the models just presented they are not very
suitable for simulation of situations when the fluid breaks apart into many separated pieces.
Another problem with grid based methods is the efficiency of interaction with dynamic and
deformable objects. As the environment changes, the properties of the space subdivision
has to be updated, something that tends to be both slow and complicated. To solve these
problems, a completely different approach, based on particle systems, can be used.

10

2.3 Particle Based Techniques

Ever since being formally introduced to the computer graphics community by Reeves [34]
in 1983, particle systems have been an important tool for real-time graphical effects. Par-
ticle systems can be either uncoupled or coupled. In an uncoupled particle system, each
particle moves independently of the other particles, usually according to the laws of sir
Isaac Newton. In a coupled particle system, the particles also interact with each other in
order to simulate more realistic behavior. Another common, but not neccessary feature
of particle systems is that they often use stochastically defined attributes, such as initial
velocity or particle color.

2.3.1 Uncoupled Particle Systems

Uncoupled particle systems have been used in computer games for ages. One of the very first
examples is the old classic game Space War, developed on a PDP-1 in 1961, initially using
a converted oscilloscope as the display device! Although not really based on any strictly
physical principles for the system as a whole, uncoupled particle systems are still frequently
used in computer games to visualize everything from splattering blood, flocking birds and
falling rain to smoke and explosions. Thanks to the simple principles used to update each
particle, a large number of particles can be used which helps making the effects more
visually convincing. However, since there is no connection between the particles, uncoupled
particle systems are not ideal for simulation of substances in which internal forces have
a notable effect on the behavior. In spite of this though, uncoupled particle systems have
frequently been used to model this kind of substances with good visual results.

(a) Fluid particles flowing over a bumpy
surface using “slide” collision detection
and friction.

(b) Fountain of water. To emphasize
their motion and direction, the parti-
cles are stretched out along their veloc-
ity vector.

Figure 2.5: Pictures rendered using “Rune’s Particle System”, an extension to POV-Ray based
on uncoupled particles.

11

2.3.2 Coupled Particle Systems

Coupling the system by letting the particles interact with each other generates many
possibilities to make the particle system as a whole behave more realistically. For example,
a simple way to make the system act more like a continous fluid would be to let the particles
affect each other by some kind of Lennard-Jones potential, i.e. by letting the particles
repulse each other when they are very close, attract each other at medium distances and
letting the force approach zero as the distance is further increased. This simple model
may be extended by incorporating functions emulating effects such as internal friction and
mechanical damping. This approach was taken by Murta and Miller in [28] to simulate the
motion of dripping and splashing fluids. They use Lennard-Jones interaction as described
above and a simple Euler scheme with small time steps to integrate the resulting particle
accelerations.

To enable interaction between the fluid and static objects, ray-polygon intersection is
performed for each particle as it moves. If the path of a particle intersects a surface at high
speed the particles’ velocity along the surface normal is reversed. A random deviation is
also added to the velocity vector to encourage more natural, non-deterministic splashing
behavior. Fluid particles hitting a surface at low speed are unlikely to possess enough kinetic
energy to overcome the adhesion forces generated. Their velocities are instead adjusted to
make them slide along the surface. An additional force is added to simulate the friction
between the fluid and the surface.

(a) Water running down a metal bar,
breaking into separate pieces as it falls
through the air.

(b) Another example. A splash of fluid
splashing and separating into drops as
it hits a surface.

Figure 2.6: Pictures from the work of Murta and Miller [28].

Another idea introduced by Murta and Miller is particle splitting and merging. While big
chunks of fluid can be represented by relatively few, large particles, small droplets and
splashes usually need higher detail. This problem is solved by allowing large particles to

12

split into smaller ones in situations of high dynamic stress. For example, when a particle
hits a surface, it is subdivided into about 4-6 smaller particles to catch the fine details of
the resulting splash. The reverse process is also used and lets small neighboring particles
with similar velocities merge back into a larger particle.

Surface Generation
The particle system is rendered by creating an isosurface of the particle densities. The
surface is implicitly defined by all points x in three dimensions satisfying f(x) = c, for
some function f and isosurface constant c. Each particle generates a spherical density field
around itself. The function f is defined as the sum of the density field of all particles. In
[28] the following form of the total density function f for all particles i is suggested

f(x) =
∑

i

{
2d3

i

R3 − 3d2
i

R2 + 1 if di < R;
0 otherwise,

(2.12)

where R is some cutoff distance and di is the distance between x and the position pi of
particle i, weighted by the particle size mi

di =
|x− pi|

mi

(2.13)

The implicit surface defined by f(x) = c can be visualized using ray tracing as in [28], or
polygonized using for example the Marching-Cubes algorithm [19].

2.3.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics, SPH in short, is another form of coupled particle sys-
tem. It was invented in 1977 by Lucy [20], and Gingold and Monaghan [10] for simulation of
astrophysical phenomena such as star formation and galaxy collisions. The fluid is made up
by a large number of particles with properties such as mass, density and velocity. In effect,
the particles represent interpolation points occupying a certain region of space rather than
real, physical fluid particles. The basic idea is to define a continous field from the values
at a set of discrete points, the particles, using a radially symmetric weighting function W
called the Smoothing kernel. A scalar quantity f is estimated at a location r by a weighted
sum of contributions from all particles according to

f(r) =
∑

j

fj
mj

ρj

W (r− rj, h), (2.14)

where j iterates over all particles, mj is the mass of particle j, rj its position, ρj the
density and fj the field quantity itself at the location rj. The argument h passed on to the
smoothing kernel W determines the size of its core radius. As an example, to evaluate the
density ρ at any location r, equation 2.14 turns into

ρ(r) =
∑

j

mjW (r− rj, h), (2.15)

13

Derivatives of field quantities, such as pressure gradients, are evaluated by analytic differ-
entiation of the smoothing kernel. We thus get the following expression for the gradient of
a scalar field f

∇f(r) =
∑

j

fj
mj

ρj

∇W (r− rj, h), (2.16)

To simulate a physical fluid we need an equation of state that relates fluid pressure to
density changes in the fluid. One of the standard equations of state used in SPH was
suggested by Monaghan [22] and takes the form

P (ρ) = B

((
ρ

ρ0

)γ

− 1

)
, (2.17)

where p0 is the initial particle density, γ = 7 and B is a constant. We can see that small
variations in density will produce large variations in pressure, which is the behavior we
want when simulating nearly incompressible fluids such as water or blood. In order to use
this equation the density needs to be evaluated at the center of each particle. This could be
done using equation 2.15, but this has a couple of serious drawbacks. In practice, another
method based on calculating the rate of change of density at each particle center using the
continuity equation is used. This rate of change of density can then be integrated in time
for each particle using some standard scheme such as Runge-Kutta or Leap-frog integration.

In a nonviscous fluid, the force on each fluid element is proportional to the local pressure
gradient. An equation of motion based on pressures evaluated using equation 2.17 can thus
be derived to update the velocity and location of each fluid particle. Additional force terms
such as artificial viscosity and gravity are often added to the final equation of motion. This
has been a very brief introduction to the fundamental equations of SPH. See [21] or [36]
for more details and full derivations of the equations.

SPH was originally developed for simulation of compressible gases but has been adapted
to better approximate free surface flows of stiff, practically incompressible fluids like water
[22, 24]. However, using a stiff equation of state to simulate nearly incompressible fluids
has a negative impact on the numerical stability of the method, making it necessary to
advance the simulation by very small time steps. The popularity of SPH in recent years
has resulted in several investigations regarding the stability properties of SPH. Monaghan
suggests introducing artificial stresses in the fluid to stabilize the system [23].

Most of the advantages of SPH is related to its Lagrangian (particle based) nature. For
example, it is easy to define arbitrary shaped boundaries and there are few restrictions to
the way the fluid may deform or separate into disjoint pieces.

Recent work in the field of SPH includes an adaptation for better real-time performance
by Müller et. al. [26]. They use specialized smoothing kernels to improve the stability
in order to enable larger time steps and to increase performance. Surface tension is also
simulated, based on the principles discussed in [25]. Another article by Müller focuses on
the application of SPH to virtual surgery [27]. Blood flowing through vessels, free surface
splats and splashes are successfully simulated in real-time. The problems solved in [27]

14

have much in common with the goals of this thesis. A few pictures from the work of Müller
are shown in figure 2.7 below.

(a) Blood pouring out from a damaged
artery. The particle nature of the fluid is
easily spotted by noting the individual par-
ticles constituting the drops at the bottom.

(b) Water leaking out of a broken con-
tainer. The simulation is running in real
time on a fast Athlon XP based system.

Figure 2.7: Pictures from the work of Müller et al. [26, 27].

2.4 Other Techniques

Over the years, many specialized techniques for fluid visualization in specific situations
have been developed. A short review of the ones most useful for our purposes will now be
presented.

A combination of several different techniques to simulate splashing of fluids hit by solid
objects was presented by O’Brien and Hodkins in [30]. They represent the water body as
a grid of connected columns. The flow of fluid between neighboring columns is calculated
by using physical laws for hydrostatical pressure due to gravity and external forces. The
height of each column is simply determined by dividing the volume by the bottom area.
The surface model enables external objects to interact with the fluid. Objects that collide
with the surface mesh generate forces that are propagated as external pressure to the
column based volume model. As a final touch, a particle system is added to simulate spray
generated as liquid droplets are disconnected from the surface. This model is in many ways
able to simulate, although less accurately and realistically, the same effects as the more
computationally expensive model by Jensen and Golias [13] described above.

Basdogan et al. [4] use an auxilary surface to visualize blood from a surgical cut spreading
on a tissue surface. The auxillary surface representing the surface of the blood is initialized

15

as a rectangular 2D grid mapped onto the region of interest. The grid is placed just below
the tissue surface. When a bleeding occurs the wave equation is solved on the grid to
calculate the height of each gridpoint. The blood surface is thus raised above the tissue
surface and appears as fluid waves spreading across the tissue surface.

A method specifically targeted for simulation of liquid droplets running down a surface
is discussed by Fournier et al. in [9]. The surface on which the droplets are moving is
represented as a simple mesh of triangles where each triangle has individual properties
such as roughness and wetness. The computation of droplet motion and droplet shape is
treated separately. In the case of motion, each droplet is represented by a single particle
and is accelerated by forces such as gravity, friction and surface adhesion. The shape of
the droplet is computed by using a quite complex model based on physical constraints
such as incompressibility and the tendency of droplets to form a surface making minimal
contact with the surrounding air and maximum contact with the underlying solid. Due to
the detailed model, the calculation of the droplet shape is more than a hundred times more
time consuming than calculating the movement of the droplets.

(a) A tear running down the cheek of a cry-
ing surface mesh. At the distance used here
the sophisticated calculation of the droplet
shape is hardly visible.

(b) Water droplets on the windshield of a
moving car. The droplets are affected by
external forces such as wind, gravity and
surface friction.

Figure 2.8: Pictures from the work of Fournier et al. [9] and Kaneda et al. [15].

A similar method is used by Kaneda et al. in [15] to model water droplets on a transparent,
curved surface, such as the windshield of a vehicle. Compared to the complex calculation of
droplet shape used in [9], a less accurate but much faster way of modeling and rendering the
droplets is used, making this algorithm potentially interactive. Another, related technique
to simulate simple fluid flow over a bump mapped surface is presented by Jonsson and Hast
in [14]. They use the normals stored in the bump maps to affect the small scale movement
of the fluid. A couple of pictures from the work of Fournier and Kaneda are shown in figure
2.8.

16

2.4.1 Procedural Noise

A number of techniques specifically targeted at simulation and visualization of gaseous
phenomena such as smoke and fire, as opposed to general fluids including water, has been
proposed.

One approach is to model the evolution of gas density using some kind of random noise
function or procedural texturing. A frequently used form of smoothed random data called
Perlin noise was introduced by Perlin [32] in 1985. It is created by summing up functions
of different amplitude and frequency, each defined by smooth interpolation between the
random values at a set of discrete points. For example, a simple 2D simulation of dynamic
smoke could be implemented by a 3D Perlin noise function, where the third dimension
would represent time. Another way to use Perlin noise is described in [5]. They use bill-
boards painted with Perlin noise textures moved along animated, timedependent spline
paths to simulate smoke generated by a tissue burning instrument. These methods often
require considerable amounts of tweaking and implementation of ad-hoc features before
producing convincing simulations. However, if the right parameters are chosen, noise based
algorithms can be very useful.

An attempt to combine procedural noise functions with the skills of a human animator was
presented by Stam and Fiume in [37, 38]. They use a diffusion process controlled by density
and temperature to evolve particles along a time dependent velocity field, completely de-
fined by the animator. However, in order to capture small scale details and turbulence, the
user defined velocity field is perturbed by a procedural noise function. The techniques used
to generate the small scale noise velocity field are quite sophisticated in order to guarantee
features such as conservation of momentum and total velocity sum equaling zero. Despite
not being based on any physical principles this method can give very visually convincing
results in the hands of a talented animator. Holtkämper [12] uses a similar approach for the
small scale turbulence but employs a regular particle system and Newtonian dynamics to
update the system at the large scale. This enables easier simulation of interaction between
the gas and solid objects.

2.4.2 Advected Textures

Another way to combine physical simulation with artistic talent is to perform the physical
calculations on a quite coarse grid and fill in the details by mapping textures onto the
resulting image. The textures could either be based on real photos, hand drawn by an
artist or based on procedural turbulence functions. Ideas on how to advect a texture along
a dynamic velocity field such as a fluid simulation are presented by Neyret in [29]. The
basic idea is to map a grid of polygons onto the simulated fluid surface and let their texure
coordinates be advected as massless particles by the simulated velocity field. The texture
coordinates are periodically reset back to their original values in order to avoid too much
stretching of the texture image. To ensure time-continuity of the animation the texture is
scaled by a weight factor fading to zero at the start and end of the period. By blending

17

three sets of textures phase shifted by 2π/3, a constant weight and continous animation is
achieved. Neyret also suggests more advanced algorithms based on procedurally generated
Flownoise to better capture the small scale details of the flow.

2.4.3 The Lattice Boltzmann Model

A completely different approach to fluid dynamics, based on cellular automata, is the
Lattice Boltzmann Model. Cellular automata was originally proposed by computing legend
John Von Neumann as a formal model for self-reproducing organisms. The model defines
a spatial lattice of cells having a set of discrete properties. For each cell and time step,
these properties are updated locally based on the previous state of the cell and its nearest
neighbors. A famous example of cellular automata is “the game of life”, a classic screen saver
effect of the 90’ties. In the Lattice Boltzmann model, several states are defined at each cell
to indicate if microscopic packets representing fluid particles are moving in a set of discrete
directions. When taking a time step the states of a cell and it’s neighbors are combined and
updated according to a set of rules designed to preserve mass and momentum. It can be
proved that simulation using a large number of cells statistically satisfies the Navier-Stokes
equations for an incompressible fluid. The Lattice Boltzmann model has been used quite
frequently in computer graphics research. Wei et al. use it to simulate smoke, fire and other
gaseous phenomena [42, 43]. Much of the recent interest is generated by the fact that the
algorithm is well suited for acceleration in hardware on modern GPUs.

2.5 Programmable Graphics Hardware

During the last couple of years, consumer level graphics hardware has evolved from being
specialized rendering devices into fast, parallelized, general purpose, floating point compu-
tational engines. Complex programs executed at the vertex and pixel level can be written
in high level languages such as OpenGL Shading Language or Cg. As an example, an Nvidia
6800 GPU supports 32 bit floating point pixel manipulation and program lengths up to
65536 instructions. A Pentium4 CPU running at 3GHz has a theoretical floating point per-
formance of about 6 GFLOPS. An Nvidia 6800 GPU has an observed performance of 40
GFLOPS. Researchers have recently started to look for ways to use all this floating point
power for tasks other than graphics and rendering. The flexibility and programmability of
recent GPU’s makes it possible to accelerate many different algorithms on graphics hard-
ware. Due to their parallel nature, many fluid simulation algorithms are quite suitable for
GPU implementation. An early GPU implementation of Stam’s stable fluid algorithms is
described by Harris [11]. The density and velocity fields are represented as floating point
textures and updated using repeated application of relatively simple fragment programs.
A similar but more advanced approach is presented by Lui et al. in [44, 18]. Their work
allows simulation in a 3D environment with complex obstacles and boundary conditions.
Using GPU’s for this kind of simulations is clearly the way to go in the future.

18

2.6 Conclusions

This chapter has been an attempt to briefly review some of the most common methods
for simulating and visualizing dynamic fluids. It is now time to come up with conclusions
as to which methods would be most suitable for solving each of the problems described in
chapter one. Let us go through one at a time.

2.6.1 Blood Splashes

This is arguably the most difficult of the four problems presented in the first chapter.
The blood splashes that we want to visualize have a very dynamic free surface boundary
and could easily split into several distinct pieces when hitting an obstacle. A grid based
algorithm could thus most likely be ruled out as an efficient real-time solution to this
problem. This basically leaves some kind of particle system as the most promising approach.
Something along the lines of the work by Murta and Miller, as shown in figure 2.6, would
definitively provide a nice visualization, but would also be much too slow on current and
near future hardware. On the other hand, using some kind of simple and efficient coupling
between the particles should not be impossible. A real-time implementation of a Lennard-
Jones form of interaction or a simulation based on smoothed particle hydrodynamics may
be fast enough. The work by Müller et al. shown in figure 2.7 is probably still using up a
bit too much resources to be used as part of a real world simulator, but it feels like the
way to go in the future. One of the most performance critical steps in this kind of effect
is generation and rendering of the surface implicitly defined by the set of particles. The
Marching-Cubes algorithm [19] is a straightforward way to generate a polygonized surface,
but to get nice results a relatively high resolution grid must be used and it tends to be
quite slow. Alternative methods such as surface splatting [46, 17] or GPU isosurface mesh
generation [31] may provide a more efficient way to render the surface. Surface generation
however is a little bit out of scope for this thesis. I will thus concentrate on trying to
implement some kind of coupled or uncoupled particle system to achieve this effect.

2.6.2 Blood Drops

Drops running down a surface could probably be implemented using the same methods
used for blood splashes. Both effects need to interact with the surrounding tissue surface.
The situation is a bit more restricted in the case of drops though. This is something that
we may be able to take advantage of in order to speed things up a bit. The work by
Fournier et al. provides some good ideas but is much too inefficient as presented in [9].
Their sophisticated model for the shape of the drops could be replaced with something
much simpler, or even just using a simple nondeformed sphere as the shape. Another
idea is to use a vertex-program to stretch the sphere a little bit along the direction of
the droplet’s current velocity vector. The blood trace left behind moving droplets could
probably be implemented by constructing some kind mesh or leaving a set of droplets along
the path. A less realistic but more efficient approach might be to actually render a trace of

19

the path into the texture used for the surface in question. This method would result in no
performance overhead at all for the blood streaks when the drops have stopped moving.

2.6.3 Blood in Fluid

This is clearly a job for a grid based fluid solver as the effect has no free surface interfaces
and presents well defined boundary conditions. Stam’s unconditionally stable algorithm
appears to be exactly what we need. Running a full 3D simulation using Stam’s solver will
not be fast enough to be usable in a real world simulator right now. This may be a problem
in some situations, but as long as the viewpoint is static a 2D simulation will probably
provide quite reasonable visual feedback. A compromise may be to use full grid resolution
in the plane perpendicular to the viewing direction, and something like two or three grid
layers stacked along the line of sight. Another advantage of Stam’s algorithm is that it
seems to be quite easily accelerated on modern GPU’s.

2.6.4 Smoke

Simulating smoke can be done in many different ways. It’s not really obvious to me which
method would clearly be the best to achieve the wanted effect. An uncoupled particle
system using transparent, textured and animated billboards to render the particles could
be made to look quite realistic. But using just an uncoupled particle system would also
make it difficult to correctly simulate physical interaction between the smoke and a surgery
instrument for example. If physical realism and interaction is needed, Stam’s stable fluid
solver may prove to be a good solution for this effect as well. A problem could be that the
smoke may appear a bit too much like a fluid in liquid form. A possible solution to this is
to calculate a low resolution velocity field using Stam’s solver and then move animated and
textured particles around using this velocity field. Due to its simplicity, efficiency and ease
of implementation I have decided to implement the smoke effect using a simple uncoupled
particle system.

20

Chapter 3

Experiments and Implementations

In this chapter, the experiments conducted and the algorithms that have been tried out in
practice will be described in more detail. Not all of the methods that were tried worked
out as expected but the less successful attempts will also be described shortly in order to
document the work performed. Three different methods of simulation, SPH, uncoupled and
coupled particle systems were tried out as a way to simulate squirting and dripping blood.
Stam’s stable fluid solver was used for blood in fluid simulation, and a simple particle
system was implemented to simulate smoke.

3.1 Smoothed Particle Hydrodynamics

The first experiment was to implement a simple fluid simulation using Smoothed Particle
Hydrodynamics (SPH). As concluded in the second chapter, SPH is still a little bit too
CPU demanding to really be useful in a real world surgery simulator, but it would still
be an interesting and useful experience to give it a quick try. I first tried to reproduce
the results presented by Monaghan in [22], particularly the breaking dam experiment as
illustrated in figure 3.1.

0.3m

0.6m

0.2m

0.2m

Wall removed at t=0

20z20
 Particles

Figure 3.1: Breaking dam simulation at t = 0.

21

The simulation is performed in 2 dimensions according to the basic principles of SPH as
outlined in section 2.3.3. A static block of fluid is initially held in place by a wall that is
removed at t = 0. The standard, normalized cubic spline smoothing kernel as shown in
figure 3.2 is used. In 2 dimensions it takes the following form mathematically

W (rij, h) =
1

h2
f

(
|rij|
h

)
, (3.1)

where,

f(s) =
10

7π

1− 2s2/2 + 3s3/4, if 0 ≤ s < 1;
(2− s)3/4, if 1 ≤ s < 2;
0, if s ≥ 2

(3.2)

−2

−1

0

1

2

−2

−1

0

1

2
0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: 3D plot of the cubic spline smoothing kernel described by equations 3.1 and 3.2.

There are a lot of ad-hoc parameters and constants that can be tweaked in an SPH simu-
lation. Many different configurations have been tried, but here is a list of some reasonable
default values for the parameters that turned out to work pretty well in this particular
setup.

SPH Parameters:

Initial separation: r0 ≈ 0.01m
Gravity: g = 9.81m/s2

Height of fluid: H = 0.2m
Length scale: L0 = 0.06m
Velocity scale: V0 =

√
2gH

Smoothing length: h = 1.55r0

Velocity of sound: c =
√

200gH

22

Several equations of state were tried out. The equation of state determines the stiffness or
incompressibility of the fluid and has an important effect on the stability of the algorithm.
For most experiments the usual formula given in equation 2.17 was used.

As mentioned in chapter 2, equation 2.15 could be used to evaluate the density at the
center of each particle, but there are better ways to do it. First of all, an extra loop over all
particles would be needed to evaluate the densities in this way. In addition, equation 2.15
will produce incorrect results when simulating fluids with free surfaces since the particles
near the surface boundary will be assigned densities that are too small. A better way to
update the density of particle i is to use the relation

dρi

dt
= −ρ∇ · vij =

∑
j

mjvij · ∇W (rij, h), (3.3)

where rij = ri − rj and vij = vi − vj. The density derivative is then integrated each
time step. In this way the density becomes directly available for use in the calculation of
pressure forces without an extra iteration over all particles each frame. The equation of
motion applied was the standard one as suggested by Monaghan [22].

dvi

dt
= −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
∇W (rij, h) + Fi, (3.4)

where Fi is the body force per unit mass acting on particle i, which in this case is gravity.
The formula for artificial viscosity Πij between two particles i and j, also suggested by
Monaghan [22], takes the following form.

Πij =

−αcµ̃ij + βµ̃2

ij

ρ̃ij

, if vij · rij < 0;

0, otherwise.

(3.5)

µ̃ij =
hvij · rij

r2
ij + 0.01h2

(3.6)

The solid boundaries are represented by a set of specialized boundary particles exerting a
Lennard-Jones force per unit mass on the fluid particles according to

f(r) = D
((r0

r

)p1

−
(r0

r

)p2
) r

r2
(3.7)

where r is the distance between particles, p1 = 4, p2 = 2 and D = 5gH.

Implementation

The particles are initially placed on a rectangular 2D grid of cells with side lengths 2h.
Since the smoothing kernel is zero outside a radius of 2h only particles in the same and
the neighboring cells contribute to the properties of a particle in any given cell. Each

23

cell contains a linked list of free particles and a linked list of boundary particles. After
updating the position of each particle a test is performed to see if it has passed on into
a neighboring cell. If it has, the linked lists of both cells are updated as appropriate. The
Leap-frog scheme is used for numerical integration of the density and velocity differential
equations. This gives second order accuracy of integration without having to evaluate the
density and velocity derivatives more than once per time step. In successive iterations, the
variables are advanced by a time step ∆t according to

v
(
t + ∆t

2

)
= v

(
t− ∆t

2

)
+ ∆t

dv

dt
(t) ,

ρ
(
t + ∆t

2

)
= ρ

(
t− ∆t

2

)
+ ∆t

dρ

dt
(t) ,

x (t + ∆t) = x(t) + ∆tv
(
t + ∆t

2

)
,

(3.8)

In the above formula dv
dt

(t) and dρ
dt

(t) depends on the velocity v(t) and density ρ(t) of each
particle at time t. These values are thus predicted using the following formulas:

v (t) = v
(
t− ∆t

2

)
+

∆t

2

dv

dt

(
t− ∆t

2

)
,

ρ (t) = ρ
(
t− ∆t

2

)
+

∆t

2

dρ

dt

(
t− ∆t

2

)
,

(3.9)

Due to various factors, one of the biggest problems with the SPH implementation has been
to keep the numerical integration stable. To avoid complete numerical blowups, the time
step ∆t has been kept very small, usually about 0.0002 seconds. The algorithm can be
summarized by the following steps:

1. Calculate initial density and velocity gradients using equations (3.3) and (3.4).

2. Calculate initial density, velocity and position. Set t = ∆t.

3. Predict current density and velocity using (3.9).

4. Calculate new density and velocity gradients using (3.3) and (3.4).

5. Update density, velocity and position using (3.8).

6. Render particles using OpenGL.

7. t = t + ∆t.

8. Goto 3

24

The grid data structure used should theoretically result in O(n) complexity, where n is the
number of particles used. To verify this in practice a set of timed test runs were executed,
each running 1000 simulation steps with a varying number of particles. The results are
shown in figure 3.3 and confirms the expectation of linear complexity. The tests were run
on a 933MHz Pentium3 CPU with 256Mb of RAM. However, despite the linear relation
between time and number of particles the current performance of the implementation is
not very impressive. A couple of hundred particles can be simulated in real-time on the
system mentioned, but not much more. Further analysis of the performance and visual
results will be presented in the next chapter.

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

S
ec

on
ds

Number of Particles

Figure 3.3: Time complexity of the grid based SPH implementation. The relation between com-
putation time and number of particles is clearly linear.

3.2 Particle Systems for Splashes and Drops

As the initial experiments with SPH simulation did not turn out exactly as expected, an-
other approach was tested. In the search for better performance, using a simple, uncoupled
particle system seemed like a reasonable thing to try next.

3.2.1 Particle Environment

In order to try out a particle system and its interaction with the surrounding environment,
the first thing we need to consider is how to represent this environment in an efficient
manner. To get some data to play with a 2D heightfield was first created using Perlin noise

25

functions as described in section 2.4.1. A triangulated 3D surface was then constructed
using this heightfield.

One of the most important questions is how to efficiently detect collisions between a particle
and its environment, in this case represented by a heightfield and a set of triangles. Testing
all triangles for intersection would clearly be much too slow. Several different spatial data
structures could be used to improve the situation. I have chosen to implement a grid
structure. It is created by splitting up the required portion of space in a Cartesian grid
of fixed size cells. The list of triangles is then recursively split up in two pieces along one
axis into a set of sublists. These sublists are each split up along the other two axes in the
same way. When reaching a “leaf” in the recursion of all axes, the triangles remaining in
the current list are added to the grid cell corresponding to that leaf. The resulting space
subdivision is illustrated in figure 3.4.

Figure 3.4: Visualization of the spatial grid structure used to speed up particle-surface collision
detection.

Triangles overlapping cell boundaries are added to all cells that they touch. The number of
triangles ending up in each cell depends on triangle density and grid resolution. Choosing
a grid resolution that results in about 10-20 triangles in each cell seems to be a good
compromise in this particular case.

Using this structure, the triangles that possibly need to be checked when performing a
particle-surface collision detection are quickly located. In short, the origin coordinates of
the grid are subtracted from the particle coordinates and the resulting vector is divided by

26

the length of the cell size. This will give the three indices used to find the right cell in the
three-dimensional grid matrix.

3.2.2 Collision Detection

Using the grid structure just described, the number of triangles that need to be checked
for each particle is narrowed down to about 12-16. When the position of a particle is
updated, the ray between its old and new position is checked for intersection with each of
the triangles in the current cell. The ray-triangle intersection code used is based on the
algorithm described in [1]. It is quite fast, and early rejection tests are used so that the full
computation is not executed for non-intersecting triangles. In addition, since the triangles
are assumed to represent a surface, it is not very likely that the ray will intersect more
than one triangle. This means that the intersection test loop can be exited when the first
ray-triangle intersection is found.

Final position

Position after movement1

Old position0

Triangle 1

New position

Triangle 2

1-t

t

Figure 3.5: Collision detection and response.

When a particle hits a triangle the ray-triangle intersection code returns the fraction t
of the original path length that the particle can be moved before hitting the surface. A
colliding particle is first moved by this fraction of the original path so that it just touches
the surface. It is then moved up a bit along the normal of the surface and after that moved
along the surface by the remaining fraction 1− t of the original distance.

However, if the surface has concavities, the second movement should also be tested for
collision, or the particle may end up below the surface and eventually pass right through
it. This is illustrated in figure 3.5. If the second movement also generates a collision, the
resulting deflected path has to be checked in the same way again. For a particle sliding on

27

the surface, this means we will have to loop through and check intersections for all triangles
in the current cell at least twice, maybe more. This is a bit too inefficient, but if we only
check once, particles will easily slip through the surface. However, we may take advantage
of the heightfield created to represent the surface. The real ray-triangle intersection test
is only performed once. The elevation of the surface at the new particle location is then
calculated by trilinear interpolation of the four heightfield samples closest to the particle.
If the particle is located below the surface level it is simply moved up a bit so that it ends
up perfectly aligned with the surface. Of course, this is not entirely physically correct, but
no part of this simulation really is, and the difference is not noticeable.

Using this combination of ray-triangle intersection and heightfield test works very well. We
both get the sliding motion that we are looking for and a stable, efficient implementation
that never lets particles slip through the surface no matter how concave it is or how fast
they move.

3.2.3 Particle Motion

The motion of the particles in free space is very simple. They are affected only by gravity
and accelerated according to Newton’s second law, a = F/m. When simulating a blood
splash for example, a particle emitter is placed at the desired origin of the splash. Particles
are then emitted at a constant rate with a velocity vector nearly parallel to the current
surface normal. The initial position and velocity are slightly perturbed in a random fashion
to make the distribution of particles less uniform and the blood splash spread out.

When the particles hit a surface, friction forces comes into play. The collision response
as described above produces completely inelastic collisions. Blood drops never bounce off
when they hit the surface. Actually, making drops bounce if they hit a surface with high
enough velocity may be something worth trying.

A very simple model for friction has been implemented. When a particle moves on the
surface it is affected by a constant force in the opposite direction of its current velocity
vector. No consideration is taken to factors such as velocity dependence of the frictional
coefficient or variable surface roughness.

3.2.4 Particle Rendering

Shading and rendering a surface represented by a set of point samples in real-time is quite
a difficult problem. Ideally, we would like to assign some kind of density distribution to
each particle, similar to the one given in equation 2.12. The density of all particles could
then be summed up to generate a scalar density field in space. The fluid could be rendered
as a fully shaded isosurface to this field. This was the approach taken by Murta and Miller
[28] and produces nice results as shown in figure 2.6. Their work was far from reaching
real-time performance though. Calculating a density field and generating isosurfaces can
be really slow.

28

The most common way to render a particle system is to render each particle as a possibly
animated billboard facing the viewer at all times. This works very well for glowing or
transparent effects with a “fuzzy” surface such as fire, smoke or explosions. A fluid existing
in free space on the other hand, has a very well-defined surface. To appear realistic it needs
to be lit and shaded in order to reproduce visual features such as specular highlights and
reflected environment. Despite this, unanimated billboards drawn using a circular texture
with alpha smoothed edges was the first method tried to render the particle system. This
worked reasonably well for the case when the blood splash was moving in free space but
did not look good at all when the drops hit the surface.

After some thought, another way to achieve shading and specular highlights without the
need to generate an actual surface was tried. Instead of rendering each particle as a two-
dimensional billboard it is rendered as a small sphere in 3 dimensions. The spheres are
not very detailed. Since they usually end up quite small on the screen, something along
the lines of 100 to 200 triangles is usually enough. The sphere geometry is stored as an
OpenGL display list which usually means that they can be rendered very quickly with very
limited CPU intervention. The spheres are rendered using gouraud shaded triangles with
diffuse and specular lighting.

3.2.5 Blood Trails

When a drop or splash of blood touches a surface it will usually leave a trail of fluid behind
as it moves. This effect could of course be implemented by forking off a large number of
static particles along the path of each drop. However, more and more static “trail” particles
would be accumulated as drops interact with the surface. This would eventually slow down
the simulation considerably.

The blood trail effect has instead been implemented by rendering the blood trails directly
to the surface texture. The WGL ARB render texture OpenGL extension would be ideal
for this, but unfortunately it is only available under the Windows OS. Instead, a more
portable solution is implemented by using OpenGL pbuffers. In short, a pbuffer is
an offscreen buffer that can be rendered to just like the standard frame buffer. During
initialization, a pbuffer with the same dimensions as the surface texture is initialized and
the original texture image is rendered into this buffer. As a particle moves on the surface
during the simulation loop, a circular blood splat is blended into the pbuffer at the location
corresponding to the current position of the drop. When all drops have been updated and
all splats rendered, the contents of the pbuffer are copied back into the original surface
texture using a call to the OpenGL function glCopyTexSubImage2D. The surface is then
rendered using the updated texture.

Another OpenGL extension, GL SGIS generate mipmap, is also enabled to automatically
generate new filtered mipmaps when the original texture image is modified by the call to
glCopyTexSubImage2D. The scaling and filtering of the mipmaps is done entirely on the
graphics card on most modern hardware and has a very small impact on the overall perfor-
mance. By using this method trails after blood particles can be generated very efficiently.

29

In fact, when there are no moving particles on the surface there will be no performance
penalty at all.

3.2.6 Coupling the Particles

The experiments with uncoupled particles turned out quite well. Updating particle states is
fast and it looks good enough in many cases. Unfortunately, the system as a unit does not
really behave as a fluid physically. This will sometimes produce quite unrealistic results.
As an attempt to make things a bit more physically valid, a coupled particle system was
tried.

The particles were set up to interact with each other using a Lennard-Jones force function
similar to equation 3.7. The shape of the Lennard-Jones curve is shown in figure 3.6 below.
As can be seen, the particles strongly repulse each other as they get close to each other,
while mildly attracting each other at longer distances. The steep spike of repulsion in the
original Lennard-Jones function goes to infinity very fast as the particles approach. If they
for some reason get a little bit too close, the resulting force may be huge. This will result
in all kinds of stability problems. As an attempt to make things more stable, another kind
of inter-particle force was tested. It has the same shape as a Lennard-Jones force on larger
distances but uses a cubic spline patch that does not go to infinity as the particles get
closer.

0 1 2 3 4 5 6 7

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Particle distance

P
ot

en
tia

l e
ne

rg
y

Figure 3.6: Shape of the Lennard-Jones function used for particle interaction. The red, dotted
curve shows the spline patch used to avoid very large repulsive forces.

The first version used a very simple O(n2) approach. As the force on a particle was cal-
culated all other particles were taken into account. Naturally, doing it this way simply

30

becomes too slow even for a particle count as low as about a hundred. Fortunately, as can
be seen in figure 3.6, the strength of interaction between particles becomes very small as
the distance is increased. In the case of figure 3.6 for example, we could safely ignore the
forces between particles that are more than 7 distance units apart.

We thus need a quick way to find the closest neighbors of a particle. This is the same
problem as the one that was faced when trying to speed up the SPH implementation. The
same solution, a spatial grid structure dividing space into a set of uniform cells also works
here. When updating a particle, only particles in the same and the 26 nearest neighbor
cells are considered. The cell size is selected so that particles in cells other than the nearest
neighbors can be neglected. As particles move, checks are made to see if they have passed
on into another cell. If so, the linked lists of particles in each cell are updated.

As a particle is updated, the total force from all neighboring particles is summed up and
used to calculate the current acceleration of the particle. The acceleration is then inte-
grated in time using a second order Leap-frog scheme. Several variations of force potential,
integration scheme, model of friction etc were tried.

3.3 Blood Dissolving in Fluid
The implementation of a fluid solver based on Stam’s algorithms as summarized in section
2.2.2 has been well described in several papers [39, 40, 41]. The current and previous state
of the simulation are each stored in a couple of discretized, two-dimensional fields. One
scalar field containing the density and one vector field containing the velocity. Both fields
are simply stored in a couple of linear arrays of floats.

To solve the sparse linear systems that appear in the computation of the diffusion and
projection steps a method called Gauss-Seidel relaxation is used. It is an implicit, iterative
algorithm used to solve systems of the type Ax = b. Each element of the solution matrix
A is updated according to the following formula.

Ak+1
i,j = A0

i,j + a
(Ak

i−1,j + Ak
i+1,j + Ak

i,j−1 + Ak
i,j+1)

1 + 4a
, (3.10)

where A0 is the initial state of the matrix at the start of the relaxation process. The constant
a is a parameter affecting the convergence rate and needs to be adjusted depending on the
size of the time step taken. To take one step towards convergence, equation 3.10 is applied
to all elements i, j of the solution matrix A. This process is repeated a number of times
until the required accuracy is reached. Stam mentions that using about 20 iterations is
usually enough [41]. The effect of the iteration is basically a “diffusion” operation that in
this particular case can be used to solve a linear system of equations.

3.3.1 Density Solver

Three main steps are taken to update the density field. The first thing done is to add the
contribution from any external sources of density. The density sources for a given frame are

31

simply provided in an array that is initialized by code that calls the solver. For example, in
the demo application developed, sources of density can be added by clicking with the left
mouse button in the simulation window. Higher densities in this case represent a higher
concentration of blood in the otherwise transparent fluid.

In the second step, diffusion is performed by applying Gauss-Seidel relaxation to the density
field. The parameter a in equation 3.10 is taken to be dN2∆t, where ∆t is the current time
step, d is a constant of diffusivity and N the resolution of the grid [41]. As the final step,
the density is advected by the current velocity field as described in section 2.2.2.

3.3.2 Velocity Solver

The velocity field is updated in much the same way as the density field. Forces, or in other
words, sources of velocity are applied instead of density sources. The demo application
lets the user manipulate the fluid by creating sources of velocity using the mouse. The
diffusion and advection steps are basically identical. However, to satisfy the conservation
of mass laws, the final projection step as described in section 2.2.2 needs to be applied to
the velocity field. In practice, this step means solving the Poisson equation ∇2q = ρ. This
is another problem on which the Gauss-Seidel solver can be applied.

3.3.3 Visualization

As mentioned, the values of the density field represent the concentration of blood in an
otherwise transparent fluid. By default, a grid with resolution 64x64 is used. To visualize
the fluid, each grid cell is drawn as a red quad with alpha values at each corner defined by
the density at that grid location.

3.4 Smoke

An uncoupled particle system is used to visualize smoke. The same basic particle system
code is used for the smoke as for the blood simulation. No collision detection is done though,
which makes updating the particles much simpler and faster.

Currently, a very simple model is implemented for the large scale movement of the smoke.
Particles are emitted from the surface with a slightly randomized velocity vector. After
that, they are simply moved in the opposite direction of the gravity vector, emulating
the behavior of a hot gas rising in a colder environment. The movement in the horizontal
plane is only affected by resistance from the surrounding medium. The original horizontal
velocity is thus decreased during the life time of a particle.

The particles are rendered using a static billboard, rotated so that is always faces the
viewer. A color and alpha value is specified for each particle before it is rendered. The
constant alpha value depends on the age of the particle. Particles get more transparent
as they age. The billboard image is used as a secondary alpha channel. As the particle is

32

rendered the original, constant particle alpha value is multiplied by the alpha value from
the billboard texture as shown in figure 3.7.

Figure 3.7: An inverted version of the texture bitmap used as alpha channel when rendering
smoke particles.

The size of the billboards is also increased as the particles age. This is a simple trick to sim-
ulate the process of diffusion of smoke density. In addition to their large scale movement,
particle coordinates are also slightly disturbed by a periodical function with varying fre-
quency and amplitude as they move. This makes the rendered billboard images interact and
interfere with each other in a constantly varying and pseudo-random pattern, effectively
emulating the visual properties of small scale turbulence.

33

Chapter 4

Results and Discussion

This chapter will try to present the results of the experiments described in the previous
chapter. Accurately depicting a dynamic, interactive animation using nothing but words
and static pictures is not always very successful. Additional screenshots and animations
from the demo applications developed can be found on the thesis webpage [3].

4.1 Smoothed Particle Hydrodynamics

The SPH implementation described in section 3.1 did not run very fast, but it did seem
to reproduce the basic characteristics of a real fluid in motion quite well. The results of
the breaking dam simulation were visually compared to the ones presented in [22]. As far
as I can tell, both simulations produced similar fluid behavior on the large scale. Features
such as fluid viscosity and mass momentum can be observed quite easily. However, the
quantitative accuracy of these effects has not been very well investigated and should not
be trusted. It looks like something that behaves similar to water, but the numerical results
are definitively not valid for any kind of engineering applications. For visualization purposes
though, they may be quite adequate. A set of screenshots from a simulation of a breaking
dam with a small downstream obstacle is shown in figure 4.1.

Even if my SPH implementation may produce results that are reasonable enough to be
used for visualization, it simply does not run fast enough in its current state. The most
basic optimization, i.e. getting rid of the O(n2) complexity using a grid structure helped
a lot, but not enough. The main problem is clearly the stability of the simulation. The
time steps in the current implementation must be very small. This means that hundreds
of simulation steps need to be executed each frame. If the stability could be improved
enough to enable time steps comparable to the wanted frame rate this would definitively
be a real-time algorithm. It is not obvious how to improve the situation. Entire Ph.D
theses have been written on the subject of SPH stability. The smoothing kernel used has
a big impact on the numerical properties of the algorithm. The scheme of integration is
also an important factor for stability. I started experimenting with the smoothing kernels

34

and equations suggested by Müller et al. in [26, 27] but did not come up with anything
satisfying. Coding an efficient and stable implementation of SPH probably requires a bit
of mathematical talent and interest, along with a few “tricks of the trade” best learned
from people with a lot of experience in the subject.

(a) t = 0s (b) t = 0.080s (c) t = 0.160s

(d) t = 0.240s (e) t = 0.320s (f) t = 0.400s

(g) t = 0.480s (h) t = 0.560s (i) t = 0.640s

Figure 4.1: Pictures from an SPH simulation of a breaking dam with a downstream obstacle.

4.2 Particle System Splashes and Drops

Implementing a particle system to simulate blood splashes and drops proved to be a pleas-
ant and intuitive experience compared to SPH. The visual results of the simulation of
splashes and flows on a surface are shown in figure 4.2. Although not very realistic, espe-
cially not when viewed as a static picture, the resulting animation may still be useful.

Since the particles are completely uncoupled, the system as a whole will behave very
unrealistically in many situations. For example, a large splash of blood may float along
the surface down into a “valley” in which all particles will end up at the same location

35

on the bottom, basically reducing the size of the fluid body to that of a single particle.
The same goes for fluid floating over a bump or hill. Since there is no internal forces of
tension or viscosity, the particles will spread out a lot more then they are supposed to.
This is definitively a serious problem. However, there are also situations in which the simple
uncoupled particle system works pretty well.

(a) A blood splash moving in free air and
splashing down on a surface.

(b) A stream of blood peacefully flowing
down the orange hills.

Figure 4.2: Screenshots from simulation of blood splashes.

As can be seen in the picture to the left, the trick of rendering fluid particles using 3D
spheres as a quick and dirty way to shade the splash of blood is very apparent. This
problem is not quite as easy to spot when the splash is animated, but it is still looking
much too bumpy. The demo shown in figure 4.2 uses a maximum of 400 particles at a time.
Rendering more than 400 spheres starts to put some pressure on the rendering pipeline on
a standard video card. Using more particles would probably improve the situation when it
comes to the visual flaws generated by rendering the system as a set of spheres. However,
using some kind of splatting technique to reconstruct and shade the fluid surface may be
more efficient and might produce better results than simply adding more spheres.

To simulate small drops of blood running down a surface a single, slightly larger blood
particle was used for each drop. When a particle moves on the surface the collision detection
code makes its centerpoint stay just above the surface level. Thus only the portion of the
sphere that is above the surface will be visible. This will make the spherical particle look
slighly smeared out on the surface, just the way we want it to look. The render to texture
technique described in section 3.2.5 is used to make the drop leave a trail of blood on the
surface as it moves.

The experiments with coupled particles was quite interesting and almost produced useful
results. The general behavior of a system of particles coupled by a Lennard-Jones potential
is in most situations much more realistic than the behaviour of an uncoupled system. For

36

example, the fluid wants to maintain a certain volume and will not compress or diverge as
easily. However, in the same way as for the SPH simulation, stability problems and small
time steps made the simulation too slow. A video showing a coupled particle system in
action is available on the thesis webpage [3].

4.3 Blood in fluid

The simulation of blood dissolving in a transparent fluid using Stam’s fluid solver algo-
rithms worked out really well. It does however require quite a bit of CPU power. Simulation
on a 64x64 grid, including visualization, runs at about 60 frames per second on a 933MHz
Pentium3. On a more recent CPU this should be fast enough to be integrated into a real
world simulator. If it still does not run fast enough, the simulation could probably be done
on a grid of even lower resolution, but rendered at higher detail by interpolating densities
in between grid points. A screenshot from a simulated bleeding is shown in figure 4.3 below.
The background image and the simulation are both 2D.

Figure 4.3: Simulation of blood from injured tissue dissolving in a transparent fluid.

37

A simple demo application has been developed that lets the user initiate a bleeding and
manipulate the velocity and density fields using the mouse. It should be quite easy to
implement effects such as interaction between the dissolved blood and a surgical instrument
by simply letting the instrument affect the velocity field. In order to achieve realistic
simulation of interaction between the fluid and various instruments the fields probably
needs to be represented and updated in all three dimensions. As an approximation, using a
very low grid resolution along the depth axis may work pretty well. If we need to translate
and rotate the camera arbitrarily however, a full 3D simulation is probably necessary. This
is still too slow to implement on a CPU though, but it may work just fine on a modern
GPU.

4.4 Smoke

Despite using a very simple, uncoupled particle system and no collision detection, the
smoke effects generated look quite good. The overlapping and interfering billboards emulate
small scale turbulence in a visually convincing way. A couple of screenshots from a smoke
simulation are shown in figure 4.4.

(a) A smoke source on the surface generates
a rising cloud of white smoke. Horizontal air
resistance makes the cloud turn upwards.

(b) A closer look. Note the small scale details
generated by overlapping billboards. When
animated, these nicely emulate the visual
properties of small scale turbulence.

Figure 4.4: Screenshots from simulation of smoke.

The large scale movement of the smoke particles is not very realistic though. As mentioned
in section 3.4, the particles are simply moved upwards with a constant speed, and slowed
down in the horizontal plane to simulate the resistance and velocity diffusion created by
the surrounding medium. If more realism is needed, the particles could instead be moved
around by a dynamic velocity field updated using Stam’s fluid solver. A more physical

38

model for the force generated by the temperature difference between the smoke and the
environment is also needed.

A couple of hundred billboards is usually enough to create a nice smoke effect. Updating
positions and other particle characteristics on the CPU is cheap and could easily be done
on several thousand particles each frame. Rendering all particles on the other hand can
be quite slow. When the system is viewed from a distance and each billboard covers only
a small portion of the screen area rendering performance is not an issue. When moving
close to a smoke system though, each billboard may cover all or big parts of the rendering
window. Rendering a couple of hundred screen sized billboards quickly consumes huge
amounts of fillrate and slows down animation even on the fastest of GPU:s. This needs to
be taken into consideration if using a system like this in real life. Perhaps the size of the
billboards could be checked and several large, transparent ones could be combined into a
single, less transparent billboard before rendering.

39

Chapter 5

Conclusions

In this chapter I will try to briefly summarize the most relevant insights that have been
the result of my work. A few suggestions regarding possible directions of future work
based on the experiences made will also be given. One thing that I have realized is that
computational fluid dynamics is an extensive subject. At one point I had almost a hundred
different research papers covering large parts of my tiny room, but it still felt as I had
barely scratched the surface. As a matter of fact, it still does.

First of all, have the goals of the thesis as specified in the first chapter been achieved? Well,
a few separate solutions to the specific problems mentioned have indeed been presented
and implemented. Let us take a look at each problem at a time and discuss how useful the
suggested solution could be in a real world situation.

5.1 Splashes and Drops

The visual and physical realism of the splash and drop effects could definitively be im-
proved. In a situation where realistic, physically based interaction with a fluid or visual
realism is crucial for a valid simulation experience, the methods described in this report
are simply not accurate enough.

In other situations however, with proper adjustment and tweaking, I actually believe that
the algorithms and methods examined and implemented for free surface fluids could be
useful in a real life virtual surgery application. The effects may not be very realistic, but
they are still valid enough to provide the user of a simulator with visual cues and feedback
that is helpful to understand what is going on in the simulated environment. A blood
splash may look and behave more like a bunch of red apples than a real life fluid, but
in the context of a virtual surgery simulator it should be pretty obvious that the visual
effect represents blood rather than apples. However, this part of the work is the one that
was least successful. Alternatives to the suggested and quite naive implementation should
definitively be examined. For someone with the numerical and mathematical skills required,
implementing a coupled particle system fast enough for practical real-time use should not

40

be impossible. Combining this with GPU based methods for surface generation, such as
surface splatting, would probably produce quite nice results. That is the direction I would
take to improve this effect.

5.2 Blood in Fluid

The blood in fluid effect is the one described in this report that gets closest to physical
reality. Using a high resolution grid in three dimensions should produce quite accurate
results, at least visually. A 3D simulation running on the CPU will probably be too slow
for use in a real application, unless a multiprocessor system is used and a separate CPU
could be dedicated to fluid simulation alone. However, the best way to run this kind of
simulations is definitively on a modern GPU. The GPUs released during the second half of
2004 should be fast enough to run a 3D simulation with decent grid resolution in real-time.
Implementing a GPU version of Stam’s fluid solver would be the next step to improve this
effect.

5.3 Smoke

Although not strictly based on physical principles, the smoke simulation looks quite good
but also needs some tweaking. The length scale of the current test implementation is not
correct for virtual surgery. It looks more like a smoke cloud from a large fire or chimney on
a cold day rather than a tiny smoke stream generated by a tissue burning instrument. This
could be improved to look better by adjusting diffusion rate, small scale motion frequency
etc. Experiments would probably be the quickest way to come up with something useful.
As mentioned, if more physical realism is needed the model described could be combined
with a real fluid solver updating a velocity field used to move smoke particles around.

41

Bibliography

[1] T. Akenine-Möller, E. Haines, Real-Time Rendering, A K Peters, 2002.

[2] J. D. Anderson, Jr, Computational Fluid Dynamics, The Basics with Applications,
McGraw-Hill, 1995

[3] L. Andersson, Thesis Project Web Page, Real Time Fluid Dynamics for Virtual Surgery,
http://www.dd.chalmers.se/~f99laan/exjobb/, 2004.

[4] C. Basdogan, C. H Ho , M. A Srinivasan, Simulation of Tissue Cutting and Bleeding
for Laparoscopic Surgery Using Auxiliary Surfaces, Precedings of the Medicine Meets
Virtual Reality Conference, 38-44, January 1999.

[5] H. K, Çakmak, U. Kühnapfel, Animation and Simulation Techniques for VR-Training
Systems in Endoscopic Surgery, Computer Animation and Simulation 2000, Proceedings
of the Eleventh Eurographics Workshop, 173-185, 2000.

[6] R. Fedkiw, J. Stam and H. W. Jensen, Visual Simulation of Smoke, In SIGGRAPH
2001 Conference Proceedings, Annual Conference Series, 15-22, August 2001.

[7] N. Foster, D. Metaxas, Realistic Animation of Liquids, Graphical Models and Image
Processing, 58(5), 471-483, 1996.

[8] N. Foster, D. Metaxas, Modeling the motion of a hot, turbulent gas, Proceedings of the
24th annual conference on Computer graphics and interactive techniques, 181-188, 1997.

[9] P. Fournier, A. Habibi, P. Poulin, Simulating the Flow of Liquid Droplets, Proceedings
of Graphics Interface 98, 133-142, 1998.

[10] R. A, Gingold, J. J Monaghan, Smoothed Particle Hydrodynamics: Theory and Appli-
cation to Non-Spherical Stars. Monthly Notices of the Royal Astronomical Society, 181,
375-389, 1977.

[11] M. J, Harris. Fast Fluid Dynamics Simulation on the GPU, GPU Gems, Addison-
Wesley, 2004.

42

[12] T. Holtkämper, Real-time Gaseous Phenomena - A Phenomenological Approach to
Interactive Smoke and Steam, Proceedings of the 2nd international conference on Com-
puter graphics, virtual Reality, visualisation and interaction in Africa, 25-30, 2003.

[13] L. S Jensen, R. Golias, Deep-Water Animation and Rendering, Gamasutra,
http://www.gamasutra.com/gdce/2001/jensen/jensen 01.htm, September 2001.

[14] M. Jonsson, A. Hast, Animation of Water Droplet Flow on Structured Surfaces,
SIGRAD2002, The Annual SIGRAD Conference, 17-22, November 2002.

[15] K. Kaneda, S. Ikeda, H. Yamashita, Animation of Water Droplets Moving Down a
Surface, The Journal of Visualization and Computer Animation, 10 (1), 15-26, 1999.

[16] M. Kass, G. Miller, Rapid, Stable Fluid Dynamics for Computer Graphics, SIGGRAPH
1990 Conference Precedings, pp. 49-57, 1990.

[17] J. Křivánek, Representing and Rendering Surfaces With Points, Postgraduate Study
Report no. DC-PSR-2003-03. Dept. of Computer Science and Engineering, CTU Prague,
2003.

[18] Y. Liu, X. Liu, E. Wu, Real-Time 3D Fluid Simulation on GPU with Complex Obsta-
cles, Computer Graphics and Applications, 12th Pacific Conference on (PG’04) October
06-08, 2004

[19] W. Lorensen, H. Cline, Marching cubes: A high resolution 3D surface construction
algorithm, Proceedings of the 14th annual conference on Computer graphics and inter-
active techniques, 163-169, 1987.

[20] L. B Lucy, A Numerical Approach to the Testing of the Fission Hypothesis, Astronom-
ical Journal, 82, 1013-1024, 1977.

[21] J. J Monaghan, Smoothed Particle Hydrodynamics, Annual Review of Astronomy and
Astrophysics, 30, 543-574, 1992.

[22] J. J Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational
Physics, 110, 399, (1994)

[23] J. J Monaghan, SPH without a Tensile Instability, Journal of Computational Physics,
159(2), 290-311, 2000.

[24] J. P Morris, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal
of Computational Physics, 136, 214-226, 1997

[25] J. P Morris, Simulating Surface Tension with Smoothed Particle Hydrodynamcs, In-
ternational Journal for Numerical Methods in Fluids, 33(3), 333-353, 2000.

43

[26] M. Müller, D. Charypar, M. Gross, Particle-Based Fluid Simulation for Interactive
Applications, Proceeding of 2003 ACM SIGGRAPH Symposium on Computer Anima-
tion, 154-159, 2003.

[27] M. Müller, S. Schirm, M. Teschner, Interactive Blood Simulation for Virtual Surgery
Based on Smoothed Particle Hydrodynamics, Journal of Technology and Health Care,
12(1), 25-31, February 2004.

[28] A. Murta, J. Miller, Modelling and Rendering Liquids in Motion, Proceedings of
WSCG’99, 194-201, February 1999.

[29] F. Neyret, Advected Textures, Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 147-153, 2003.

[30] J. F O’Brien, J. K Hodgins, Dynamic Simulation of Splashing Fluids, Proceedings of
Computer Animation ‘95, 198-205, April 1995.

[31] V. Pascucci, Isosurface Computation Made Simple: Hardware Acceleration, Adaptive
Refinement and Tetrahedral Stripping, Joint Eurographics - IEEE TVCG Symposium
on Visualization (VisSym), 293-300, 2004.

[32] K. Perlin, An Image Synthesizer, ACM Computer Graphics (SIGGRAPH ’85), 19(3),
287-296, July 1985.

[33] L. Raghupathi, Simulation of Bleeding and other Visual Effects for Virtual Laparo-
scopic Surgery, Master thesis, University of Texas at Arlington, 2002

[34] W. T. Reeves, Particle Systems - A Technique for Modeling a Class of Fuzzy Objects,
Computer Graphics, 17 (3), 359-376, 1983.

[35] T. M Roy, Physically Based Fluid Modeling Using Smoothed Particle Hydrodynamics,
Master thesis, Willamette University, 1988

[36] B. Schlatter, A Pedagogical Tool Using Smoothed Particle Hydrodynamics to Model
Fluid Flow Past a System of Cylinders, Dual MS Project, Oregon State University, June
11th, 1999.

[37] J. Stam and E. Fiume. Turbulent Wind Fields for Gaseous Phenomena, In SIGGRAPH
93 Conference Proceedings, 369-376, August 1993.

[38] J. Stam and E. Fiume. Depiction of Fire and Other Gaseous Phenomena Using Dif-
fusion Processes, In SIGGRAPH 95 Conference Proceedings, 129-136, August 1995.

[39] J. Stam, Stable Fluids, SIGGRAPH 99 Conference Proceedings, Annual Conference
Series, 121-128, August 1999.

[40] J. Stam, Interacting with Smoke and Fire in Real Time, Communications of the ACM,
43 (7), 76-83, 2000

44

[41] J. Stam, Real-time Fluid Dynamics for Games, Precedings of the Game Developer
Conference, March 2003.

[42] X. Wei, W. Li, K. Mueller, A.Kaufmann, Simulating fire with texture splats, Proceed-
ings of the conference on Visualization ’02, 227 - 235, 2002.

[43] X. Wei, W. Li, K. Mueller, A.Kaufmann, The Lattice-Boltzmann Method for Simulat-
ing Gaseous Phenomena, IEEE Transactions on Visualization and Computer Graphics,
10(2), 164-176, March 2004.

[44] E. Wu, Y. Liu and X. Liu. An Improved Study of Real-Time Fluid Simulation on GPU.
Computer Animation & Virtual World, 15(3-4), 139-146, July 2004.

[45] J. Zátonyi, R. Paget and G. Székely and M. Bajka, Real-time Synthesis of Bleeding
for Virtual Hysteroscopy, Procs. of the 6th International Conference on Medical Image
Computing and Computer-Assisted Intervention, Vol 1, 67-74, 2003

[46] M. Zwicker, H. Pfister, J. van Baar, M. Gross, Surface Splatting, Proceedings of SIG-
GRAPH 2001, 371-378, 2001.

45

