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Abstract

The purpose of this thesis is to describe the implementation of realtime vol-

umetric shadow algorithms in the virtual reality software EON Studio. The

standard shadow volume algorithm is covered first, along with the modi-

fications needed in order to handle occluders of arbitrary geometry. We

also discuss the implementation of the recently presented penumbra wedge

algorithm for volumetric soft shadows, though our conclusion is that this al-

gorithm will need more hardware support before it can be used in a general

setting such as EON Studio.

Sammanfattning

Syftet med detta examensarbete är att beskriva implementationen av vol-

umetriska skuggor för realtidsrendering i virtual reality programmet EON

Studio. Först beskrivs standardalgoritmen för skuggvolymer och därefter hur

denna kan generaliseras för att hantera godtycklig geometri. Vi diskuterar

även implementationen av den nya s.k. penumbra wedge algoritmen för att

generera mjuka skuggvolymer. V̊ar slutsats är dock att denna sistnämnda al-

goritm behöver mer h̊ardvarustöd innan den verkligen blir användbar under

generella omständigheter som i EON Studio.
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1 Introduction

Any end user of computer graphics software will attest to the importance of

shadows in adding a sense of depth, proportion and location to a rendered

three dimensional scene. The question of how best to compute and render

shadows, however, is far from straightforward, and despite vast improvements

in graphics hardware over the last years, the addition of shadow-rendering

capabilities to a real-time rendering engine is still very much an exercise in

balancing quality against performance.

Today, the two commonly used algorithms for real-time volumetric shadow

generation are the shadow volume and shadow map algorithms. These algo-

rithms have in common the property that they operate on point light sources,

and as a result the computed shadows are sharp, or hard, with instantaneous

transitions from dark to light. The real-time computation of soft shadows,

i.e. shadows with properly computed penumbra regions, is at present largely

an unsolved problem, but considerable effort is being expended in this direc-

tion, for the simple reason that soft shadows are far more visually pleasing

than hard shadows.

This thesis concerns the implementation of the shadow volume algorithm

in the virtual reality software package EON Studio. Our choice of the shadow

volume algorithm was determined to some extent by the desire to implement

a recently developed soft shadow algorithm, the penumbra wedge algorithm,

[2], which is built on top of the shadow volume algorithm.

The shadow volume algorithm is often claimed to be limited to occlud-

ers with closed geometry. In many applications, games for instance, this

is not a big issue, because the models are usually under the control of the

developers, but in our case it would not be practical to impose this require-

ment, since models are typically provided by the users of EON Studio, and

therefore beyond our control. There are however several ways to extend the

shadow volume algorithm to non-closed models, and part of our work will be

concerned with this issue.
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The implementation of the penumbra wedge algorithm is also a focus of

this thesis, and the relative merits of our implementation in EON Studio will

be discussed.
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2 Background

The two real-time volumetric shadow algorithms in common use today are

the shadow map and shadow volume algorithms. We will present only a

brief overview here, since these algorithms are already very well documented

elsewhere, e.g. [1].

2.1 Shadow map algorithm

The shadow map algorithm requires a scene to be rendered first from the

point of view of the light, while storing the resulting depth values in a special

texture, commonly referred to as the shadow map. The shadow map is then

used as the scene is rendered from the point of view of the camera. For each

fragment the screen position and the distance to the light is calculated and

compared with the corresponding distance value stored in the shadow map

at that screen position, and the results of this comparison determine whether

the fragment is occluded or not.

This is an inherently robust method, in the sense that anything that can

be rendered can be used as an occluder. It is also well supported by most

hardware, and for this reason is quite fast. However, the visual quality of

these shadows often leaves something to be desired. Individual pixels on the

outline of the occluder are usually clearly visible on the edges of the shadow,

giving the shadow a blocky, jagged look. Also, care needs to be taken to

ensure that the limited precision of the depth buffer doesn’t cause sporadic

self occlusion.

2.2 Shadow volume algorithm

The shadow volume algorithm was first presented by Crow in 1977, [9]. The

stencil buffer implementation described below was first proposed by Hei-

dmann [10], using the z-pass formulation, and the z-fail formulation was

described in 2000 by Bilodeau and Songy [11], and Carmack [12].
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Given a light source, occluder and viewpoint there is a simple procedure

for determining for any other point whether it is occluded, as follows. First

we generate the shadow volume of the occluder, by projecting the silhouette

of the occluder away from the light by a potentially infinite distance, and cap

it on both ends by the front and back of the occluder. We then draw the ray

emanating from the viewpoint and passing through the point P which is to

be tested. Figures 1 and 2 illustrate the procedure for three different points.

P3

Light

Eye

P1
P2

Figure 1: Shadow volumes.

If we move along this ray, from the viewpoint, counting up by 1 each time

we enter the shadow volume and down by 1 each time we exit the shadow

volume, we find that when we reach P the count will tell us whether P is

occluded or not. If the viewpoint is outside the shadow volume, we start the

count at 0, otherwise at 1, and we conclude that P is occluded if and only if

the count is non-zero when we reach P.
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Figure 2: Shadow volumes - schematic.

If we instead start at P, with a count of zero, and proceed away from the

viewpoint, we conclude that P is occluded if and only if the count, when we

reach infinity, is non-zero.

This is the fundamental idea of the shadow volume algorithm. Counting

entry/exits between the viewpoint and P is called the z-pass formulation,

while counting entry/exits between P and infinity is called the z-fail formu-

lation.

There are some important differences between z-pass and z-fail, that need

to be kept in mind:

1. z-pass requires knowledge of whether the viewpoint is in shadow; z-fail

does not.

2. z-pass entry/exits always occur on the sides of the shadow volume; z-

fail entry/exits occur on the sides and also on the near and far caps of

the shadow volume.
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Because of (2), the z-pass formulation is faster, since the shadow volume

near and far caps can safely be ignored. However, because of (1), z-pass is

very difficult to implement in a robust fashion when the viewpoint is moving

in and out of shadows, and for this reason z-pass is really only useful when

the viewpoint is known to be outside of all shadows. For general situations,

it is usually necessary to use the z-fail formulation instead.

2.2.1 Implementation

Calculating shadow volume intersection points and counting entry/exits may

at first glance seem to be a computationally awkward task, but the stencil

buffers available on modern graphics hardware can be utilized to do this in

a straightforward fashion, as follows.

Assume that the scene has been rendered, with the corresponding depth

values written to the depth buffer, and that the stencil buffer has been cleared

and contains only zeros. If we now render the shadow volume geometry,

we can simply increment/decrement in the stencil buffer for each frontfac-

ing/backfacing primitive that passes the depth test, with the result that

after the shadow volume has been rendered, the stencil buffer will contain

the z-pass entry/exit count for each pixel.

To get the z-fail entry/exit counts, we proceed in exactly the same fash-

ion, except that we only apply the increment/decrement operations when

incoming fragments fail the depth test. Also, since stencil values cannot be

negative, we need to ensure that more increments are applied than decre-

ments, so it is necessary to apply the increment on backfacing fragments,

since in the z-fail formulation there will always be at least as many shadow

volume exits as entries.

Listing 1 demonstrates how one might proceed using OpenGL and C++.
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#include <opengl / g l . h>

void disableShadowCast ingLight ( ) ;

void enableShadowCastingLight ( ) ;

void renderScene ( ) ;

void renderShadowVolume ( ) ;

void renderShadowVolumeToStencil ( )

{
glColorMask ( 0 , 0 , 0 , 0 ) ; // Disab l e co l o r b u f f e r wr i t i n g

glDepthMask ( 0 ) ; // Disab l e depth b u f f e r wr i t i n g

glDepthFunc (GL LESS ) ; // Set depth t e s t to d e f a u l t

// Render back fac ing t r i s wi th +1 s t e n c i l opera t ion on z f a i l

g lCul lFace (GL FRONT) ;

g lS t enc i lFunc (GL ALWAYS, 0 , ˜ 0 ) ;

g lS tenc i lOp (GL KEEP, GL INCR , GL KEEP) ;

renderShadowVolume ( ) ;

// Render f r on t f a c i n g t r i s wi th −1 s t e n c i l operat ion on z f a i l

g lCul lFace (GL BACK) ;

g lS t enc i lFunc (GL ALWAYS, 0 , ˜ 0 ) ;

g lS tenc i lOp (GL KEEP, GL DECR, GL KEEP) ;

renderShadowVolume ( ) ;

glColorMask ( 1 , 1 , 1 , 1 ) ; // Enable co l o r b u f f e r wr i t i n g

glDepthMask ( 1 ) ; // Enable depth b u f f e r wr i t i n g

}

void renderSceneWithShadows ( )

{
// Un l i t pass

disableShadowCast ingLight ( ) ;

renderScene ( ) ;

enableShadowCastingLight ( ) ;

// Li t pass

renderShadowVolumeToStencil ( ) ;

glDepthFunc (GL LEQUAL) ;

g lS t enc i lFunc (GL EQUAL, 0 , ˜ 0 ) ;

renderScene ( ) ;

}

Listing 1: Shadow volumes in C++/OpenGL

7



2.2.2 Shadow volume generation

For the entry/exit counts to give a physically correct indication of the shad-

owed regions, it is necessary and sufficient that the shadow volume geometry

itself is such that it partitions space into two disjoint parts; points that are

inside it and points that are not. This is in turn equivalent to the condition

that the shadow volume geometry be closed. In fact, we can take this to be

the definition of a closed geometry: a geometry is closed if it partitions space

into two disjoint parts. This definition can be shown to be equivalent to a

more practical definition: a geometry is closed if and only if every edge in

the geometry is shared by exactly two triangles.

So the question is: how do we generate closed shadow volume geometries,

and what conditions does this impose on the occluder geometry?

For now we will just make the following observation. If the occluder ge-

ometry itself is closed, then its silhouette with respect to the light will consist

of disjoint closed loops, and the shadow volume geometry can then be con-

structed by projecting these loops away from the light, using the lightfacing

polygons of the occluder to cap the near end of the shadow volume, and

the projected non-lightfacing polygons of the occluder to cap the far end.

This results in a single closed shadow volume, so for occluders with closed

geometry the issue is closed [sic].

A more practical issue that needs to be dealt with when rendering a

shadow volume is the effect of the near and far clip planes of the camera

projection, since either of these planes may well cull parts of the shadow

volume geometry, in effect slicing it open, resulting in bands of incorrectly

shadowed pixels that are usually glaringly obvious.

Near plane clipping is irrelevant when using the z-fail formulation, since

it doesn’t affect the parts of the shadow volume where the z-fail entry/exit

counts are taking place. As for the z-pass formulation, since we only use it

in situations where the eye is known to be some distance from the shadow,

near-plane clipping doesn’t matter in that case either.

8



Far plane clipping is a more serious matter, though, at least with the z-

fail formulation. We have to ensure that the shadow volume is wholly inside

of the far clip-plane, or else essential parts of the shadow volume will be

clipped. The easiest solution to this problem is to use a camera projection

that in effect places the far clip-plane at an infinite distance from the camera

[6]. The alternative is to extrude the silhouettes a finite, occluder-specific

distance such that the shadow volume geometry ends up inside the far clip-

plane. For z-pass, far-plane clipping is irrelevant.

In our case, we chose the approach of modifying the projection matrix,

since it was acceptable from the viewpoint of the rest of EON Studio’s internal

rendering process.

2.3 Relative merits

The shadow volume algorithm, as opposed to the shadow map algorithm,

provides pixel accuracy, while still providing proper volumetric and self-

shadowing effects. It also handles automatically scenes where a light source

has occluders spread in a circle around it, a situation where it is not imme-

diately apparent how to apply the shadow map algorithm.

These advantages come at a cost though, the primary ones being the

requirements on the occluder geometries, requirement of a stencil buffer, and

considerable fill rate consumption.

Continual advances in graphics hardware reduce the importance of the

last two issues, and as for the first issue, it turns out that the algorithm can

be modified to handle general occluders, albeit at a drop in performance.

Given the relative robustness and superior visual quality of shadow volume-

generated shadows, and the ever-improving capabilities of graphics cards,

our conclusion was that shadow volumes represented a better choice for our

purposes.
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3 Shadow volumes with general occluders

We have already seen that the shadow volume algorithm works well with

closed occluders. To deal with non-closed occluders, from now on referred to

as open occluders, we have two basic alternatives. The first is to manually

close the model, by adding geometry to the model in such a way that the

result is closed, while preferably maintaining a resemblance to the original.

The second is to leave the model as it is and instead find a way to apply the

shadow volume algorithm to give correct results anyway, preferably without

any performance penalties.

3.1 Manual closure

In NVIDIA’s md2shader demo, available from [5], we found an example of

using the shadow volume algorithm on models that are originally not closed.

The models are preprocessed, in order to find loops of open edges, i.e. edges

that belong to only one face, and then these loops are capped. The result is,

in many cases, a closed model, and the shadow volume algorithm can then

be applied. Note that this closure does not affect the usual rendering of the

object, since the capped model is only used to generate the shadow volume

geometry.

This changes the topology of the model in a nontrivial way, however. If

we consider a cube with one face removed, a smaller (closed) model sitting

inside it, and a light shining into the open side of the cube, the shadow

volume of the cube would extend from the cap and away from the light, and

the object inside would appear to be in shadow, as would the inside of the

cube.

In this situation the correct closure is apparent - augmenting the 5-face

cube geometry with the same 5 faces, but with the new faces facing the

opposite direction from the originals. In other words, for each face in the

model, add the same face, with the same vertices, but with the opposite
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normal. This method works better, in general, but at the (high) price of

doubling the polygon count, albeit only for the shadow volume generation

stage.

Trying to find a middle road between these two extremes proved to be

fruitless for us. What the correct, or even the most useful, closure of a

model is depends on the intentions of the models author and the models

user, so some kind of interactivity would be necessary. One could use capping

closures by default, and then let the user decide when this is insufficient, and

for these cases use backface closure instead. In the example with the open

cube, the user might choose to use capping if the cube is very small and

contains no other geometry, while backface closure might be necessary if the

cube plays a more substantial role in the scene. Requiring user input is an

added complexity though, and the performance penalty of adding backfaces

is intimidatingly high.

Our conclusion is that the hit-and-miss nature of this approach disquali-

fies it as the primary solution to our problem, and that it is better suited for

optimizations in special cases.

3.2 Modifying the shadow volume algorithm

The second approach, that of modifying the shadow volume algorithm itself,

has been outlined by Bergeron, in [3]. In order to provide some motivation

for the otherwise somewhat mysterious modifications, let us first consider

how one would apply the shadow volume algorithm in the following simple

cases.

1. If an occluder consists of one triangle, we can generate a closed shadow

volume by projecting the three sides and capping both ends, and the

shadow volume algorithm can then be applied.

2. If an occluder consists of two disjoint triangles, we construct two dis-

joint shadow volumes, and apply the algorithm as usual.

11



3. If an occluder consists of two triangles sharing an edge, with common

orientation, then we can once again consider them as disjoint and gen-

erate two disjoint shadow volumes. Here we make a key observation

though: if the shared edge is not a silhouette edge, then the two shadow

volume quads generated from it can be removed from the shadow vol-

ume geometry without modifying the entry/exit counts, since an entry

into one automatically entails an exit from the other, and vice versa.

If on the other hand the shared edge is a silhouette edge, then the two

shadow volume quads generated from it can be identified, as long as

we increment and decrement by two each time we pass through it.

Consider now the case of a general occluder. We can get the correct re-

sult by generating a closed shadow volume for each triangle in the occluder

geometry, and then applying the shadow volume algorithm to the union of

these shadow volumes. Using the observation above, though, we can elimi-

nate many of the redundancies in this process. Let us by closed edge denote

an edge that is shared by exactly two consistently oriented triangles, and

by open edge any edge that is not closed. In effect, quads from closed non-

silhouette edges should contribute nothing to the entry/exit counts, quads

from closed silhouette edges should contribute +2/-2, and quads from open

edges should contribute +1/-1. The near cap will consist of the complete

occluder geometry, and the far cap will consist of the complete projected

occluder geometry.

With these modifications then, the shadow volume algorithm will properly

handle any kind of occluder geometry, regardless of whether the geometry is

closed or not. A simple example is detailed in Figure 3.
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(without modifications) (with modifications)

Figure 3: Shadow volumes with general models.

3.3 Performance

On a theoretical level, the performance hit of the generalized shadow volume

algorithm comes mainly in the form of higher polygon counts in the near and

far caps. For closed models, it was enough to use the lightfacing half of the

occluder in the near cap, and the non-lightfacing half on the far cap, but for

general occluders we have to use the whole geometry for both caps.

On a practical level, there is a more serious handicap: the stencil buffers

on graphics cards in use today do not offer +2/-2 operations in hardware,

only the usual +1/-1 operations. This means that shadow volume quads

generated from closed silhouette edges must be rendered twice with +1/-1

to get the desired values in the stencil buffer.

Another practical issue is that of stencil buffer wraparound/overflow.

With an 8 bit stencil buffer, there are 256 possible values for each pixel, so

correct results can only be guaranteed if rays emanating from the viewpoint

encounter less than 256 shadow volumes. With open occluder geometries,
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the entry/exit counts have been doubled, so artefacts may appear already at

a shadow volume count of 128.

Note also that the generalized shadow volume algorithm only needs to be

applied to non-closed occluders in the scene; closed occluders can be handled

by the usual algorithm, since the entry/exit counts from the two algorithms

do not invalidate each other.

3.4 Conclusion

We decided to proceed with Bergerons generalized shadow volume method.

Its principal advantage, from our point of view, is that it does not require any

modifications to the geometry of individual models. It is a better blanket

solution than blindly adding backfaces to a whole model, and it is easily

configured to automatically yield zero overhead for closed models.

The two alternatives that we have described are not mutually exclusive

though, and capping closures, in particular, are worthy of consideration.

Even if not a general solution, in many real-world situations they give a

wholly acceptable result, with little or no runtime penalty. For this reason

we decided to implement capping closures as an optional optimization and

leave it to the users discretion whether to use it or not.
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4 Soft shadows with general occluders

Real-time generation of volumetric soft shadows is the subject of active re-

search in the field of computer graphics, but as far as we know there are

as of yet no consumer-level graphics software packages that implement the

proposed algorithms, simply because it has not been possible to combine

real-time framerates with acceptable visual quality.

The most promising approach seems to be the penumbra wedge algorithm,

proposed in [2]. Under benign conditions, this algorithm is indeed capable

of real-time performance, as has been demonstrated [4].

Our intent was to implement this algorithm in EON Studio, and thus it

was necessary to ensure that it was possible to use it with open models. It

turned out that the penumbra wedge algorithm can be modified along the

same lines as the shadow volume algorithm to handle non-closed occluders.

The penumbra wedge algorithm itself is described in detail elsewhere [2], so

we will only give a cursory review of it here.

The penumbra wedge algorithm starts by using the shadow volume algo-

rithm to render a hard shadow into a light map texture. In a second step,

this light map is then modulated by rendering a penumbra wedge for each

silhouette edge. This second step adds and subtracts fractional luminance

quantities from the existing values in the light map, and results in a light

map, which when clamped to the [0,1] range, gives a soft shadow of generally

high quality.

The modifications required to support open models are quite straight-

forward; we use the generalized shadow volume algorithm, and when render-

ing the penumbra wedges we double the increments/decrements for wedges

generated from closed edges, and leave them as is for wedges generated from

open edges.

The not inconsiderable technical details of implementing the penumbra

wedge algorithm will be covered in the sequel.
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5 Shadows in EON Studio

5.1 About EON Studio

EON Studio is a program for the Windows platform for constructing inter-

active 3D-scenes. It uses a graphical user interface and is designed to allow

both professionals and beginners to build simple to advanced scenes with no

programming skills required.

A scene in EON Studio is a scene graph built up from predefined prim-

itives where each such primitive, or node, has a specific functionality. A

node may hold data, like the geometry or texture of a model, or may specify

some behaviour, like camera movement or how an object in the scene can be

manipulated. All these types of nodes are available from the start and it is

up to the user to choose which nodes to insert into the scene graph and to

modify their default values. The overall structure of the scene graph then

defines the visual appearance and functionality of the entire scene.

Figure 4: An EON Studio session (left) and the resulting simulation (right).
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5.2 Planar soft shadows

Prior to the new shadow volume nodes one were limited to have planar

shadows in EON Studio. These planar shadows are added to a scene by

using a node called SoftShadow. Given a light source, an occluder and a

receiver the SoftShadow node will project the occluder’s geometry away from

the light source and onto a plane defined by the receiver. To simulate soft

shadows one may specify a number of point light sources which will result in

an artificial penumbra region when the shadow samples are blended together.

Planar shadows have the advantage of being very fast and can easily be

pre-rendered to a texture if there is a static relationship between the light,

occluder and receiver.

There are however many limitations to generating shadows this way, of

which the two most apparent are that shadow receivers must be planar and

that occluders cannot self-shadow. Other limitations concern visual quality.

If the shadow is rendered to a texture, as is the case in EON Studio, the

texture must be scaled to fit the receiving plane in screen space. This will

result in the shadows edges becoming increasingly jagged as the shadowed

object is magnified. Also, because a plane is used to apply the texture

instead of applying it directly onto the receiver itself, the shadow may extend

over the edges of the receiver if it is not large enough to hold the entire

shadow (Figure 5). Another limitation concerning visual quality resides in

the fact that soft shadows are simulated using several point light sources.

Theoretically, the transition between light and shadow can be made entirely

smooth by using sufficiently many samples, but in practice there is a rather

low upper bound before the frame rate will drop below interactive rates.
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Figure 5: Planar soft shadows in EON Studio.

5.3 Hard shadow volumes

The new ShadowVolumeHard node in EON Studio implements the standard

shadow volume algorithm for producing hard shadows but is generalized to

handle open geometry. It is used much like the SoftShadow node described

above but since the shadow volume algorithm automatically shadows all af-

fected objects in the scene there is no need for specifying any shadow re-

ceivers.

Many of the limitations of planar shadows are eliminated when using

shadow volumes. Arbitrary objects may receive shadows and occluders will

display correct self-shadowing. Also, since the shadow calculation is done

in screen space there is pixel-accuracy along the shadows edges regardless of

the viewers position.
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The main drawback of choosing shadow volumes over planar shadows is

that of frame rate. The cost of using hard shadow volumes is significantly

higher than that of hard planar shadows. By optimizing the available options

in the ShadowVolumeHard node, some of the extra cost may be eliminated.

If the viewer is known never to be inside a shadowed region the z-pass op-

tion should be used. Using the z-fail option instead allows the viewer to

move in and out of shadow but also requires some additional calculations.

If an occluders geometry is known to be closed the corresponding option

should be set accordingly to achieve higher frame rate. The biggest drop in

frame rate occurs when multi pass rendering is turned on. Multi pass will

ensure that shadows cast from different light sources intersect correctly with

a darker shadowed region, but is much more expensive than using single pass

rendering.

In all, the ShadowVolumeHard node should be used more as a complement

to than a replacement of the SoftShadow node.

5.4 Soft shadow volumes

The ShadowVolumeSoft node implements the recently developed penumbra

wedge shadow volume algorithm for achieving a penumbra region around

the shadows edges. Although the algorithm is very similar to the standard

shadow volume algorithm, the node is entirely separate from the ShadowVol-

umeHard node. In addition to the original penumbra wedge algorithm there

is support for handling models with open geometry.

The properties previously listed for hard shadow volumes also apply to

soft shadow volumes. The limitation of the SoftShadow node where the

transition from light to shadow isn’t entirily smooth is resolved in the Shad-

owVolumeSoft node, since the penumbra is calculated in screen space.

An option not found in the ShadowVolumeHard node allows for auto-

matically closing a possibly open geometry of an occluder so the original

algorithm can be applied directly. The reason for doing so is not mainly to
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Figure 6: Hard shadow volumes in EON Studio.

gain frame rate but visual quality; when an occluder has open geometry the

shadow will look slightly larger and the penumbra region somewhat more

compact when compared to the shadow cast from a corresponding closed

geometry. This is seldom a problem but can become obvious if a shadow

cast from an open occluder is displayed next to a shadow cast from a closed

occluder.

The computations for producing the penumbra rely on the light source

having an area or volume. The larger the light source, the wider the penum-

bra region will become. There is an option for setting the radius of the light

source since only spherical lights are supported. Increasing the radius of

the light source can also be used as a quick hack to remedy the case men-

tioned previously with open occluders where the penumbra region looks too

compact.

The last option not found in the ShadowVolumeHard node is that of
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shadow weight. The shadow weight is a floating point number between zero

and one, indicating how dark the shadow will appear. It is an easy and

intuitive way to get the desired darkness of the shadow but is not as physically

correct as in the ShadowVolumeHard node where the darkness of a shadow

is implicitly computed considering all the affecting light sources.

The calculations involved in generating soft shadow volumes require a

modern graphics card supporting programmable vertex and pixel shaders.

Even on a high-end machine the use of the ShadowVolumeSoft node may

prove to be impractical in general scenes because of the extreme penalty in

frame rate. The biggest bottleneck on today’s graphics cards is the rendering

of the penumbra region of the shadow. Therefore the best way to reduce this

performance drop is to decrease the light source radius, thereby making the

penumbra region smaller.

Figure 7: Soft shadow volumes in EON Studio.
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6 Implementation in EON Studio

6.1 Initial plan

The main objective of this final thesis project was to extend the shadow vol-

ume algorithm and to implement these ideas in the environment of EON Stu-

dio. However, implementing the soft shadow volume algorithm from scratch

is a great undertaking and would require much more focus on implementation

details than on the theoretical aspects of the project. Therefore we decided to

use the work of another final thesis group as a starting point and extend their

implementation of the penumbra wedge algorithm to handle open geometry.

As always when it comes to software development, things have a tendency

of being delayed and so when we were ready to move from theory to practice

the code we needed just wasn’t finished. To avoid any idle time in our

schedule we decided to start our work in EON Studio by implementing the

hard shadow volume algorithm, adding support for open geometry. Then,

when the other final thesis group was finished, we should be able to move the

new code into EON Studio with much of the supporting code already being

in place.

6.2 The ShadowVolumeHard node

When we were ready to begin implementing hard shadow volumes in EON

Studio we had already proven that the ideas for handling open geometry

worked by modifying the Infinite Shadow Volumes demo by NVIDIA [7].

During that time we had also familiarized ourselves with the basic structure

of an implementation of shadow volumes as well as some potential difficulties.

The task at hand was then to transfer the core of the algorithm from our

modified demo into the EON Studio environment and adapt it to work with

the EON system and its internal geometry format.

The incorporation of hard shadow volumes in EON Studio was done by
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means of a new node. To create the first trembling lines of code we used an

existing tool called the EON Node Wizard which generates skeleton code for

a new node. Since we also had access to the source code for the SoftShadow

node we had very little problems understanding how a node worked, what

the different methods were used for and which ones we needed to implement.

Each node in the scene graph is accessed through a set of methods. If

a node wants to render something to the screen, it must implement the

rendering method which is then called once each rendering pass. If a node

wants to be updated or maybe do some calculations before a rendering pass,

the corresponding methods must be implemented and so on. This hierarchy

of function calls means that though a specific node has full control over

itself, it has very little possibilities of affecting other nodes. In our context

of shadow volumes this means that our new node has too little control over

each rendering pass. Since the shadow volume algorithm needs to render the

scene multiple times we need to gain control at a higher level in the hierarchy.

The top level rendering function is located in something called GLRM,

which is basically a collection of classes and functions for doing the actual

rendering of a scene. To allow GLRM and the shadow volume nodes to

communicate without disturbing the existing structure too much we designed

a small interface (Figure 8). Through this new interface a shadow volume

node can record itself in a registry and thereby notify GLRM of its presence

and how it is configured. By collecting information from this registry GLRM

can then calculate how the scene should be rendered.

Things are somewhat complicated by the fact that there may be several

shadow volume nodes present in the same scene. This means that a light

source may be used as a shadow casting light by several different nodes. For

the multi pass nature of the shadow volume algorithm to work correctly in

this case we must extract the light sources from all nodes prior to rendering.

The reason for doing this is that each render pass must be performed on a

per light source basis and not on a per node basis.
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Figure 8: GLRM, the nodes and the new interface.

6.3 One node becomes two

By the time the soft implementation we had been waiting for was completed,

we already had a working implementation for doing hard shadow volumes

supporting open geometry in EON Studio. Not only did this implementation

work quite well but it also had no special requirements on the graphics card

other than the presence of a stencil buffer.

The newly obtained code for doing soft shadow volumes made extensive

use of OpenGL extensions throughout the implementation and thereby had

much greater requirements on the graphics card. Although the new code

had built in support for hard shadow volumes as well, we were reluctant to

replace the existing code in EON Studio. That would mean that users would

be forced to buy more expensive hardware than was really needed for doing

hard shadow volumes. Therefore we decided to split the implementation of

shadow volumes in EON Studio into two nodes; a simpler one for doing hard

shadows with modest requirements on the graphics card and a second one

for doing soft shadows targeting high-end systems.
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6.4 The ShadowVolumeSoft node

The penumbra wedge algorithm is technically more difficult to implement

than the shadow volume algorithm. Among other things, it is no longer

practical to use an 8-bit stencil buffer to define the shadow. The stencil

buffer can only mask out hard-edged areas of the screen, so it is necessary to

use some other mechanism to define and apply the shadow.

Instead of the stencil buffer, it becomes necessary to use textures, together

with the render-to-texture capabilities available on modern graphics card. A

typical texture will have 32 bits available for each pixel, and this data is avail-

able in the vertex transformation and lighting stage of the graphics pipeline.

Instead of using GL_INCREMENT/GL_DECREMENT on the stencil buffer, we tar-

get a texture and render special color values, with the rasterizer configured

for additive blending. Since it is not possible to do subtractive blending, it

becomes necessary to use two textures; one for additive contributions and

one for subtractive contributions. In a final stage the shadow value can then

be computed by sampling both textures and taking the difference.

The actual application of the shadow to the screen must also be done

differently from the shadow volume algorithm, since the shadow is stored in

a pair of textures and not in the stencil buffer.

The most accurate way of applying the shadow is to do per-pixel lighting

using dedicated pixel shaders, and in these shaders the per-pixel shadow

value can be computed from the additive/subtractive shadow textures, and

then used to modulate the result of the lighting computation.

This method may not be applicable in all situations though, in particular

scenes that are being rendered with a fixed-function graphics pipeline or with

per-vertex lighting. In these cases, one can resort to applying the shadow

in a post-rendering pass, using alpha blending to render a screen-sized black

rectangle to the screen, with the alpha values calculated from the shadow

textures. This results in a darkening of the areas of the screen that are in

shadow, but with some loss of accuracy. The most apparent artefact is that
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specular highlights from occluded lights will still be visible, albeit darkened,

but the results are in most cases passable.

In EON Studio, it is possible to associate Cg shader programs with objects

in a scene. When executed, the Cg programs are automatically supplied

with various parameters from the rendering engine, such as the coordinate

transformation matrices currently in use. By default, objects do not have

shaders associated with them, and it is necessary for the user to supply and

associate the shaders with the corresponding objects. One of the appeals of

using Cg shaders is that they provide a substantial measure of extensibility;

the shaders can be written by anyone, perhaps originally for other purposes,

but still be seamlessly integrated into EON Studio’s rendering process.

To use the first shadow application method, then, it would become nec-

essary for all shadow receivers to use Cg shader programs. Furthermore,

all such shaders, irrespective of origin and author, would have to implement

code to retrieve and apply the shadow values from the shadow textures.

We deemed this to be impractical, and settled on the second method

instead. This had the happy consequence that the architecture of the Shad-

owVolumeSoft node became considerably simpler than that of the Shad-

owVolumeHard node. There is a priori no longer any reason to interact

with the GLRM DLL; in a post-render callback function we simply trigger

the shadow computation, and then apply the shadow to the screen, on top

of what has already been rendered.

Implementing the ShadowVolumeSoft node turned out to be quite time-

consuming though, but for reasons that had mainly to do with the internal

complexities involved with computing the shadow textures. As previously

mentioned, we had at our disposal a functioning implementation [4], but the

strong coupling of the shadow code to the rest of the application made it

difficult to extract the requisite code without breaking anything, and our

task was further complicated by the fact that there were in essence two

separate rendering paths, depending on the available graphics hardware (ATI
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or NVIDIA), of which we only had access to one at a time.

The modifications needed to handle open occluders were implemented in a

relatively straight-forward way. As mentioned previously, penumbra wedges

are rendered with single or double contributions depending on whether they

were generated from open or closed edges.
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7 Conclusion

In general, our work with this thesis had considerably more practical than

theoretical emphasis.

Our initial problem was to apply the shadow volume algorithm in a gen-

eral setting, without restrictions on occluder geometry, and we found a so-

lution to this problem at a relatively early stage. As noted previously, our

approach is suitable for an application like EON Studio, where there is a

priori no knowledge of the models which need to be handled. In situations

where the models are known beforehand, as is often the case, the whole issue

of occluder geometry becomes to some extent irrelevant, since the models

can be doctored to yield correct results.

The remainder of our work was concerned with the implementation in

EON Studio of the shadow volume and penumbra wedge algorithms.

Despite the relative simplicity of the shadow volume algorithm, imple-

menting it in the context of a large and pre-existing codebase was not wholly

straightforward. Implementing the shadow volume algorithm required modi-

fications to the rendering engine itself, and these modifications needed to be

accessed by the user interface; this meant that some additional infrastructure

was needed, that would not interfere with any of the pre-existing code.

In retrospect, it would have been wise to commence some boilerplate

coding in EON Studio at the outset, instead of waiting until we knew what

we wanted to implement. Getting up to speed with the build environment

and EON Studio itself took quite a bit of time, and could well have been

done in parallel with our previous activities, which would easily have saved

us two or three weeks.

By the time we turned to implementing soft shadows using the penum-

bra wedge algorithm, we were better versed in the ways of EON Studio, and

almost all the time we spent on this portion was concerned with internal

details in the algorithm and the implementation of it that we had at hand.

The EON-specific details were relatively simple; the only complication that
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we came across was needing to learn and write some simple Cg shader pro-

grams.

We have not had the time to do proper profiling and optimization of

our two implementations, and for this reason we have not presented any

performance figures. The soft shadow frame rates vary widely with hardware,

but with the hardware we have tested it is not likely that they would be

practical in typical scenes. The hard shadows provide a well functioning

alternative, especially in dynamic scenes where the differences between hard

and soft shadows are not as noticeable.
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Figure 9: The ShadowVolumeHard node used in a more complex scene.

Figure 10: Hard shadow volumes generated from all objects in the room.
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Figure 11: Hard shadows at 60 fps on an NVIDIA Quadro FX 3000.

Figure 12: Soft versus hard at 4 fps on an NVIDIA Quadro FX 3000.
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