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Introduction 
Spherical Harmonic lighting (SH lighting) is a technique for 
calculating the lighting on 3D models from area light sources that 
allows us to capture, relight and display global illumination style 
images in real time. It was introduced in a paper at Siggraph 2002 
by Sloan, Kautz and Snyder as a technique for ultra realistic 
lighting of models. Looking a little closer at it’s derivation we can 
show that it is in fact a toolbox of interrelated techniques that the 
games community can use to good effect. 

The results are compelling and the code to compute them is 
actually straightforward to write, but the paper that introduces it 
assumes a lot of background knowledge from the first time reader. 
This paper is an attempt to provide this background, add some 
insights into the “why” questions, and hopefully give you all you 
need to add SH lighting to your game. 
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Illumination Calculations 
If you have spent any time coding a 3D engine you should be 
familiar with the common lighting models, and concepts like 
specular highlights, diffuse colors and ambient lights should be 
second nature to you.  

The simplest lighting model that you probably use is the diffuse 
surface reflection model sometimes known as “dot product lighting”. 
For each light source the intensity (often expressed as an RGB 
colour) is multiplied by the scalar dot product between the unit 
surface normal N and the unit vector towards the light source L. 
This value is then multiplied by the surface colour giving the final 
reflected result: 
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One way of looking at this code fragment is to say that it first 
calculates the total amount of incoming light from all directions, 
then scales it by the cosine of the angle between N and L and 
multiplies the result by the surface reflection function (which for a 
diffuse surface is just a constant colour for all directions).   

This is a simplification of the rendering equation, a formulation of 
the problem of producing images in computer graphics that is 

Equation 1. Diffuse Surface 
Reflection 
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based only on physics. It is the gold standard by which all realistic 
computer graphics lighting must be measured.  

The problem with the rendering equation is that it is difficult to 
compute, and definitely not a real-time friendly operation. It is an 
integral over a hemisphere of directions where L, the light 
intensity function we are looking to calculate, appears on both 
sides of the equation: 

( ) ( ) ( ) ( ) ( ) ( )∫ ′′′→+=
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where 

( )oL ω
r,x  = the intensity reflected from position x in direction ωo 

( )oeL ω
r,x  = the light emitted from x by this object itself 

( )oirf ωω
rr

→,x  = the BRDF of the surface at point x,    
  transforming incoming light ωi to reflected light ωo 

( )iL ω
r,x′  =  light from x’ on another object arriving along ωi 

( )xx ′,G  =  the geometric relationship between x and x’ 
( )xx ′,V  =  a visibility test, returns 1 if x can see x’, 0 otherwise 

 
To anyone used to writing raytracers the only difficult concept is 
the use of differential angles to represent rays and solving the actual 
integral itself, but the background is quite simple. I urge you to 
learn more about global illumination solutions as for this tutorial 
all I can give you is a taster. 

Imagine that time is stationary. Picture a volume of space filled 
with photons – each cube of space can be said to have a constant 
photon density. Picture this field of photons in linear motion. At the 
very heart of rendering, we need to find out how many photons 
collide with a stationary surface for each unit of time, a value 
called flux which measured in joules/second or watts.  

dt

dA θ

 

To calculate the flux, note that all the photons that will hit the 
surface within a unit of time t lie within the volume swept behind 
the surface in the direction of flow – as the angle gets shallower, 
less photons hit the surface per unit of time because the swept 
volume is smaller. The relationship turns out to be proportional to 
the cosine of the angle between the surface normal and the 
direction of flow. As the lengths of the sides of this patch tend 
towards zero, we get the differential area of the patch. Dividing 

Figure 1. The origins of projected 
angle – calculating flux density. 

Equation 2. The Rendering Equation, 
differential angle form. For more 
background on differential angles, see 
“Radiosity and Realistic Image 
Synthesis” by Cohen and Wallace, 
Academic Press, 1993 



4  SPHERICAL HARMONIC LIGHTING 

the flux by the differential area, we get a value called the 
irradiance, measured in watts/meter2. 

That’s the idea for one small patch and one direction of incoming 
light,  but the relationship also holds when we consider all 
directions visible from a surface, as shown in Figure 2. As the 
angle gets shallower the projected area approaches zero. This is the 
reason behind the cosine (or dot product) in the diffuse shading 
equation. 

θ

 

That was just a quick taste of the background to the rendering 
equation, but I hope you can see that by looking more carefully at 
the derivation of our shading models and paying attention to the 
details we should be able calculate extremely realistic images 
based on purely physical principles. The only question left is how 
can we do this in real time? As a games programmer you may 
look at the rendering equation and throw your hands up in 
horror. An integral inside the inner loop of a shader? And how do 
we “integrate over a hemisphere”? How does this relate to any 
kind of hardware operations we have available? The rest of this 
document aims to take these abstract definitions and propose 
methods for calculating global illumination solutions and 
displaying them in a game friendly manner. 

Monte Carlo Integration 
We have a function to integrate, the function describing incoming 
light intensity, but we have no idea what that function looks like 
so there is no way we can calculate a result symbolically. The key 
to unlocking the puzzle is called Monte Carlo Integration, and it’s 
all related to probability. 

First, some background in probability theory. A random variable is 
a value that lies within a specific domain with some distribution of 
values. For example, rolling a single 6-sided dice will return a 
discrete value from the set fi = {1,2,3,4,5,6} where each value has 
equal probability of occurring of pi = 1/6. The cumulative 
distribution function P(x) is just a function that tells us the 
probability that when we roll a die, we will roll a value less than x. 
For example the probability that rolling a die will return a value 
less than 4 is P(4) = 2/3. If a variable has equal probability of 
taking any value within it’s range it is known as a uniform random 

Figure 2. Projected Solid Angle. 

For more, see  Siggraph 2001, “State of 
the Art in Monte Carlo Ray Tracing”, 
Course 29 
 
Peter Shirley,”Realistic Ray Tracing”, 
A. K. Peters, 2001 
 
Matt Pharr, “Design of a Realistic Image 
Synthesis System”, 2002, available at 
http://graphics.stanford.edu/~mmp
/book.pdf 
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variable. Rolling a die returns a discrete value for each turn – there 
are no fractional values it could return - but random variables can 
also have a continuous range, for example picking a random 
number within the range [3,7]. One continuous variable that turns 
up time and time again is the uniform random variable that 
produces values in the range [0,1) (i.e. including 0, excluding 1), 
and it is so useful for generating samples from other distributions 
it is sometimes called the canonical random variable and we will 
denoted it with the symbol ξ. 

The function we are most likely to be working with is the 
probability density function (PDF) which tells us the relative 
probability that a variable will take on a specific value, and is 
defined as the derivative of the cumulative distribution function. 
Random variables are said to  be distributed according to a 
particular PDF, and this is denoted by writing f(x) ~ p(x). PDFs 
have positive or zero values for every valid number in the range 
and the function must integrate to 1.  

( ) ( ) 01 ≥=∫
+∞

∞−
xpdxxp where  

The probability that a variable x will take a value in the range [a,b] 
is just the integral between a and b of the PDF. 
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Every function using a random variable has an average value, the 
mean value, that it will tend to return most often if you take many, 
many samples. This is termed the expected value of the function, 
written E[f(x)], which is calculated as: 

( )[ ] ( ) ( )∫= dxxpxfxfE  

For example, let’s find the expected or mean value for f(x)=2-x 
over the range [0..2]. In order for the function to integrate to 1 over 
the range, we need to set p(x)=1/2. The integral gives us: 
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Another way of calculating the expected value of a function is to 
take the mean of a large number of random samples from the 
function, which can be shown to converge towards the correct 
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answer as the number of samples approaches infinity (called the 
Law of Large Numbers): 
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We can combine these two results in one of the sneakiest tricks in 
the whole of Engineering Mathematics to give us an estimate of 
the integral of a function 
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We just take lots and lots of point samples of the function f(x), 
scale each one by the PDF, sum the result and divide by the 
number of samples at the end. Intuitively you can see that samples 
with a higher probability of occurring are given less weight in the 
final answer. The other intuition from this equation is that 
distributions that are similar to the function being integrated have 
less variance in their answers, ending up with only a single 
sample being needed when p(x) = f(x). Another way of writing the 
Monte Carlo Estimator is to multiply each sample by a weighting 
function w(x) = 1/p(x) instead of dividing by the probability, 
leading us to the final form of the Monte Carlo Estimator: 
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If we can guarantee that p(x) is a uniform distribution over the 
space we want to sample then we can just take point samples of 
our function, sum them, divide by the number of samples times 
w(x) and we have calculated an approximation to the integral of 
our function saving many multiplies. We know from the 
rendering equation that we want to integrate over the surface of a 
sphere, so all we need to do is generate evenly distributed points 
(more technically called unbiased random samples) over the surface 
of a sphere. Taking a pair of independent canonical random 
numbers ξx and ξy we can map this “square” of random values 
into spherical coordinates using the transform: 

( )( ) ( )θ,φπ, yx →− ξ2ξ1arccos2  

The probability that we will sample any point on the surface of 
this unit sphere is the same for all samples, meaning that our 
weighting function is just the constant value 1/the surface area of 
a sphere, giving us a weighting function of w(x) = 4π. The 
resulting distribution of points is shown below. 

Equation 3. The Monte Carlo 
Estimator 

Equation 4. Mapping [0..1,0..1] 
random numbers into spherical 
coordinates. 
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An additional tool, to lower the variance of our sampling scheme, 
is to generate a grid of jittered samples. Divide the input square 
into N×N sample cells and pick a random point inside each cell. 
This sampling technique is called stratified sampling and it is 
provable that the sum of variances for each cell will never be 
higher than the variance for random samples over the whole 
range, and is often much lower. There are many more sampling 
tricks to make Monte Carlo integration more accurate for fewer 
samples, but this is all that is necessary for basic SH lighting. 

Here is some code for setting up a table of jittered samples. Don’t 
worry, we’ll be defining the meaning of the function SH() in a 
moment. 

struct SHSample { 

 Vector3d sph; 

 Vector3d vec; 

 double *coeff; 

}; 

 

void SH_setup_spherical_samples(SHSample samples[], int sqrt_n_samples) 

{ 

 // fill an N*N*2 array with uniformly distributed 

 // samples across the sphere using jittered stratification 

 int i=0; // array index 

 double oneoverN = 1.0/sqrt_n_samples; 

 for(int a=0; a<sqrt_n_samples; a++) { 

  for(int b=0; b<sqrt_n_samples; b++) { 

   // generate unbiased distribution of spherical coords 

   double x = (a + random()) * oneoverN; // do not reuse results 

   double y = (b + random()) * oneoverN; // each sample must be random 

   double theta = 2.0 * acos(sqrt(1.0 - x)); 

   double phi = 2.0 * PI * y; 

   samples[i].sph = Vector3d(theta,phi,1.0); 

   // convert spherical coords to unit vector 

   Vector3d vec(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)); 

   samples[i].vec = vec; 

   // precompute all SH coefficients for this sample 

   for(int l=0; l<n_bands; ++l) { 

    for(int m=-l; m<=l; ++m) { 

     int index = l*(l+1)+m; 

     samples[i].coeff[index] = SH(l,m,theta,phi); 

Figure 3. 10,000 unbiased stratified 
samples on a sphere. Presented in 
(θ,φ) angle space and in 3D 
projection. 
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    } 

   } 

   ++i; 

  } 

 } 

} 

Orthogonal Basis Functions 
The SH lighting paper assumes knowledge of the use of basis 
functions. Basis functions are small pieces of signal that can be 
scaled and combined to produce an approximation to an original 
function, and the process of working out how much of each basis 
function to sum is called projection. To approximate a function 
using basis functions we must work out a scalar value that 
represents how much the original function f(x) is like the each 
basis function Bi(x). We do this by integrating the product f(x)Bi(x) 
over the full domain of f. 

       

∫ × = c1

∫ × = c2

∫ × = c3

 

Using this projection process over all our basis functions returns a 
vector of approximation coefficients. If we scale the corresponding 
basis function by the coefficients… 

× =c1

× =c2

× =c3
 

… and sum the results we obtain our approximated function. 

                                 
ΣciBi =
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In the above example we have used a set of linear basis functions, 
giving us a piecewise linear approximation to the input function. 
There are many basis functions we can use, but some of the most 
interesting are grouped into a family of functions mathematicians 
call the orthogonal polynomials. 

Orthogonal polynomials are sets of polynomials that have an 
intriguing property – when you integrate the product of any two 
of them, if they are the same you get a constant value and if they 
are different you get zero. 
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We can also specify the more rigorous rule that integrating the 
product of two of these polynomials must return either 0 or 1, and 
this sub-family of functions are known as the orthonormal basis 
functions. Intuitively, it’s a like the functions do not “overlap” each 
other’s influence while still occupying the same space, the same 
effect that allows the Fourier transform to break a signal into it’s 
component sine waves.  

These families of polynomials are often named after the 
mathematicians who studied them, names like Chebyshev, Jacobi 
and Hermite. The one family we are most interested in are called 
the Legendre polynomials, specifically the Associated Legendre 
Polynomials. Traditionally represented by the symbol P,  the 
associated Legendre polynomials have two arguments l and m, are 
defined over the range [–1,1] and return real numbers (as opposed 
to the ordinary Legendre Polynomials which return complex 
values – be careful not to confuse the two).  

P
2
2(x)

P
2
1(x)

P
2
0(x)

P
1
0(x)

P
1
1(x)

P
0
0(x)

–1

1

2

3

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

 

The two arguments l and m break the family of polynomials into 
bands of functions where the argument l is the band index and takes 
any positive integer value starting from 0, and the argument m 
takes any integer value in the range [0,l]. Inside a band the 
polynomials are orthogonal w.r.t. a constant term and between 

Figure 4. The first six associated 
Legendre polynomials. 
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bands they are orthogonal with a different constant. We can 
diagram this as a triangular grid of functions per band, giving us a 
total of n(n+1) coefficients for an n band approximation: 
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The process for evaluating Legendre polynomials turns out to be 
quite involved, which is why they’re rarely used for 
approximating 1D functions. The usual mathematical definition of 
the series is defined in terms of derivatives of imaginary numbers 
and requires a series of nasty cancellations of values that alternate 
in sign and this is not a floating point friendly process. Instead we 
turn to a set of recurrence relations (i.e. a recursive definition) that 
generate the current polynomial from earlier results in the series. 
There are only three rules we need: 

1 ( ) ( ) ( ) m
l

m
l

m
l PmlPlxPml 21 112 −− −+−−=−  

The main term of the recurrence takes the two previous bands l–1 
and l–2 and generates a new higher band l from them.  

2 ( ) ( ) ( ) 2/21!!121 mmm
m xmP −−−=  

The expression is the best place to start from as it is the only rule 
that needs no previous values. Note that x!! is the double factorial 
function which, as (2m–1) is always odd, returns the product of all 
odd integers less than or equal to x. We can use P00(x) = 1 as the 
initial state for an iterative loop that hoists us up from 0 to m. 

3 ( ) m
m

m
m PmxP 121 +=+  

This expression allows us to lift a term to a higher band. 

The method for evaluating the function is first to try to generate 
the highest Pmm possible using rule 2, which if l=m is the final 
answer. Since m<l in all remaining cases, all that is left is to raise 
the band until we meet the required l. We do this by calculating 
Pm+1m using rule 3 only once (stopping if l=m+1) and finally 
iterating rule 1 until the correct answer is found (noting that using 
rule 1 has less floating point roundoff error than iterating rule 3). 

double P(int l,int m,double x) 

{ 

 // evaluate an Associated Legendre Polynomial P(l,m,x) at x 

 double pmm = 1.0; 

 if(m>0) { 

  double somx2 = sqrt((1.0-x)*(1.0+x)); 

For more, see “Numerical Methods 
in C: The Art of Scientific 
Computing”, Cambridge 
University Press, 1992, pp 252-
254 
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  double fact = 1.0; 

  for(int i=1; i<=m; i++) { 

   pmm *= (-fact) * somx2; 

   fact += 2.0; 

  } 

 } 

  if(l==m) return pmm; 

  double pmmp1 = x * (2.0*m+1.0) * pmm; 

  if(l==m+1) return pmmp1; 

 double pll = 0.0; 

  for(int ll=m+2; ll<=l; ++ll) { 

  pll = ( (2.0*ll-1.0)*x*pmmp1-(ll+m-1.0)*pmm ) / (ll-m); 

    pmm = pmmp1; 

    pmmp1 = pll; 

 } 

  return pll; 

} 

 

Spherical Harmonics 
This is all fine for 1D functions, but what use is it on the 2D 
surface of a sphere? The associated Legendre polynomials are at 
the heart of the Spherical Harmonics, a mathematical system 
analogous to the Fourier transform but defined across the surface 
of a sphere. The SH functions in general are defined on imaginary 
numbers but we are only interested in approximating real 
functions over the sphere (i.e. light intensity fields), so in this 
document we will be working only with the Real Spherical 
Harmonics. When  we refer to an SH function we will only be 
talking about the Real Spherical Harmonic functions.  

Given the standard parameterization of points on the surface of a 
unit sphere into spherical coordinates (which we will look at more 
closely in a later section on coordinate systems): 

( ) ( )zyx ,,cos,sinsin,cossin →θϕθϕθ  

the SH function is traditionally represented by the symbol y 
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where P is the same associated Legendre polynomials we look at 
earlier and K is just a scaling factor to normalize the functions: 

Equation 6. The real spherical 
harmonic function y. 

Equation 5. The standard 
conversion from spherical to 
Cartesian coordinates. 
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( ) ( )
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In order to generate all the SH functions, the parameters l and m 
are defined slightly differently from the Legendre polynomials – l 
is still a positive integer starting from 0, but m takes signed integer 
values from –l to l. 

( ) lmllyml ≤≤−∈ + ,, R  whereϕθ  

Sometimes it is useful to think of the SH functions occurring in a 
specific order so that we can flatten them into a 1D vector, so we 
will also define the sequence yi  

( ) ( ) ( ) mlliyy i
m
l ++== 1,,         whereϕθϕθ  

The code for evaluating an SH function looks like this: 

double K(int l, int m) 

{ 

 // renormalisation constant for SH function 

 double temp = ((2.0*l+1.0)*factorial(l-m)) / (4.0*PI*factorial(l+m)); 

 return sqrt(temp); 

} 

 

double SH(int l, int m, double theta, double phi) 

{ 

 // return a point sample of a Spherical Harmonic basis function 

 // l is the band, range [0..N] 

 // m in the range [-l..l] 

 // theta in the range [0..Pi] 

 // phi in the range [0..2*Pi] 

 const double sqrt2 = sqrt(2.0); 

 if(m==0) return K(l,0)*P(l,m,cos(theta)); 

 else if(m>0) return sqrt2*K(l,m)*cos(m*phi)*P(l,m,cos(theta)); 

 else return sqrt2*K(l,-m)*sin(-m*phi)*P(l,-m,cos(theta)); 

} 

 
(Note: the fastest and most accurate way to implement 
factorial(x) is as a table of precalculated floating point values. 
You will never need more than 33 entries in the table.) 

Traditionally, at about this point, papers using the SH functions 
like to show you tables of confusing polynomials, but I think it’s 
more interesting to show what the functions actually look like 
when plotted as spherical functions. 
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Note how the first band is just a constant positive value – if you 
render a self-shadowing model using just the 0-band coefficients 
the resulting looks just like an accessibility shader with points 
deep in crevices (high curvature) shaded darker than points on 
flat surfaces. The l = 1 band coefficients cover signals that have 
only one cycle per sphere and each one points along the x, y, or 
z-axis and, as you will see later, linear combinations of just these 
functions give us very good approximations to the cosine term in 
the diffuse surface reflectance model. 

SH Projection 
The process for projecting a spherical function into SH coefficients 
is very simple. To calculate a single coefficient for a specific band 
you just integrate the product of your function f and the SH 
function y, in effect working out how much your function is like 
the basis function: 

( ) ( )∫=
S

m
l

m
l dssysfc  

(Note: The equation above is very carefully written not to include 
any mention of the parameterization we will use to generate 
points on the surface of the sphere – the value s merely represents 
some choice of a sample point. We will transform these equations 
into concrete, parameterized versions that we can actually 
calculate with in a moment, but for now we will stick with the 
abstract idea of sample points over the sphere S.) 

To reconstruct the approximated function (notated by f capped 
with a tilde), we just take the reverse process and sum scaled 
copies of the corresponding SH functions: 
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Now you can see why an n-th order approximation will require n2 
coefficients. It can be proven that the true function f could be 
reconstructed if we summed the infinite series of all SH 
coefficients, so every reconstruction we will make will be an 
approximation to the true function, technically known as a band–
limited approximation where band–limiting is just the process of 
breaking a signal into it’s component frequencies and removing 
frequencies higher than some threshold. 
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Let’s work through a concrete example of projecting a function 
into SH coefficients using Monte Carlo integration. First we need 
to decide on a parameterization of our sphere, so let’s use the 
spherical coordinate system we defined earlier for the SH 
functions. Let’s also choose a nice low-frequency function to 
integrate so that we don’t have to generate too many coefficients 
to illustrate our point. How about two large monochromatic light 
sources at 90 degrees to each other and slightly rotated off-axis. 
We’ll define these directly in spherical coordinates for now, but in 
our full program we’ll be using a ray tracer to evaluate functions 
like this directly from geometry. 

( )( )
( ) ( )( )35.2cos*sin4,0max

4cos5,0max),(
−−−−

+−=
ϕπθ

θϕθlight
 

 

 

Integrating some function f in spherical coordinates is done using 
the formula: 

( )∫ ∫
π π

ϕθθϕθ
2

0 0

sin, ddf  

Figure 6. SH 
projection of 
functions with 
increasing orders of 
approximation. 

Figure 7. An example lighting 
function displayed as a color and a 
spherical plot. 
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(Why the sin(θ) in there? Remember that integration is all about 
summing small patches of area on the surface of the sphere, and 
the integral is just the limit as the edge lengths of these square 
patches tend to zero. In this rectangular spherical coordinate 
parameterization, patches around the equator are going to have 
more effect on the final answer than the tiny patches around the 
pole and the sin(θ) term encodes this effect. Don’t worry, it’s about 
to disappear…) 

Remember that to project a function into SH coefficients we want 
to integrate the product of the function and an SH function so we 
can write out our parameterised function for one coefficient as: 

( ) ( )∫ ∫=
π π

ϕφθϕθϕθ
2

0 0

sin,, ddylightc ii  

This equation is great for symbolic integration using a package 
like Mathematica or Maple, but we have to do this numerically. 
We must evaluate this integral using Monte Carlo integration, so 
recalling the Monte Carlo estimator from earlier: 

( ) ( )∑∫
=

≈
N

j
jj

S

xwxf
N

dsf
1

1
 

where xj is our array of pre-calculated samples and the function f 
is the product f(xj) = light(xj)yi(xj).  

As we have chosen all our samples to be unbiased w.r.t. area on 
the sphere, each sample has equal probability of appearing 
anywhere on the sphere giving us a probability function of 
p(xj) = 1/4π and so a constant weighting function w(xj) 
= 1/p(xj) = 4π. Also, the use of unbiased samples means that any 
other parameterization of the sphere would yield the same set of 
samples with the same probabilities, so we have magically 
factored out the parameterization of the sphere and our sin(θ) 
term disappears. 

( ) ( )

( ) ( )∑

∑

=

=

=

=

N

j
jij
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xyxlight
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xyxlight
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Using the SH_setup_spherical_samples function from earlier 
we can precalculate our jittered, unbiased set of samples and the 
SH coefficients for each band we want to SH project. Our 
integration code is then just a simple loop of multiply-accumulates 
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into the correct elements of the SH vector, followed by a simple 
rescale of the results: 

typedef double (*SH_polar_fn)(double theta, double phi); 

 

void SH_project_polar_function(SH_polar_fn fn, const SHSample samples[], 

double result[]) 

{ 

 const double weight = 4.0*PI; 

 // for each sample 

 for(int i=0; i<n_samples; ++i) { 

  double theta = samples[i].sph.x; 

  double phi   = samples[i].sph.y; 

  for(int n=0; n<n_coeff; ++n) { 

   result[n] += fn(theta,phi) * samples[i].coeff[n]; 

  } 

 } 

 // divide the result by weight and number of samples 

 double factor = weight / n_samples; 

 for(i=0; i<n_coeff; ++i) { 

  result[i] = result[i] * factor; 

 } 

} 

 
Applying this process to the light source we defined earlier with 
10,000 samples over 4 bands gives us this vector of coefficients: 

] 0.09126- 0.00062,- 0.16427,- 0.30458, 0.12290,   0.00072,- 
0.09359,- 0.00098,   0.13159, 0.00040,- 0.31530,- 

0.28277, 0.28687,   0.21075,- 
0.39925,  [

 
Reconstructing the SH functions for checking purposes from these 
16 coefficients is simply a case of calculating a weighted sum of 
the basis functions: 

( ) ( ) ( ) ( )

( )∑
=

=

+++=
2

1

332211 ...~

n

i
ii syc

sycsycsycsf
 

 giving us this low frequency approximated light source: 
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Not a bad approximation given that it’s only 16 coefficients. Note 
that it does seem to have some residual “fins” sticking out the 
back, and these will be manifested as unexpected illumination on 
the dark side of an object. These are caused by the high frequency 
components of the lighting function when we clamp it at 0 with 
the max() function – the discontinuity gives rise to “ringing” in 
the reconstructed signal. With higher and higher order 
approximations these fins will eventually disappear but a better 
method, which we’ll come to in the section on designing light 
sources, is to window your input data by pre-filtering it with a 
Gaussian before SH-projecting it. Even though we’re working on 
the surface of a sphere, all the old rules of signal processing still 
apply. 

Properties of SH Functions 
The SH functions have a bunch of interesting properties that make 
them more desirable for our purposes than other basis functions 
we could choose. Firstly, the SH functions are not just orthogonal 
but orthonormal, meaning if we integrate yiyj for any pair of 
i and j, the calculation will return 1 if i = j and 0 if i ≠ j. 

The SH functions are also rotationally invariant, meaning that if a 
function g is a rotated copy of function f, then after SH projection 
it is true that: 

( ) ( )( )sRfsg ~~ =  

In other words, SH projecting the rotated function g will give you 
exactly the same results as if you had rotated the input to f before 
SH projecting. You’re right, that is pretty confusing. It may not 
sound like such a big deal but this property is something that a lot 
of other compression methods cannot claim, e.g. JPEG’s Discrete 
Cosine Transform encoding is not translation invariant which is 
what gives us the blocky look under high compression. In 
practical terms it means that by using SH functions we can 
guarantee that when we animate scenes, move lights or rotate 

Figure 8. The reconstructed low 
frequency lighting function displayed 
as a color and a spherical plot. 
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models, the intensity of lighting will not fluctuate, crawl, pulse or 
have any other objectionable artifacts. 

The next property is the killer one. We need to do lighting, so in 
general terms we will be taking some description of incoming 
illumination and multiplying it by some kind of description of the 
surface reflectance (which we will be calling a transfer function) to 
get the resulting reflected light, but we need to do this over the 
entire sphere of incoming light. We need to integrate: 

( ) ( )∫
S

dsstsL  

where L is the incoming light and t is the transfer function. If we 
project both the illumination and transfer functions into SH 
coefficients then orthogonality guarantees that the integral of the 
function’s products is the same as the dot product of their 
coefficients: 

( ) ( ) ∑∫
=

=
2

0

~~ n

i
ii

S

tLdsstsL  

We have collapsed an integration over the sphere into a single dot 
product over the SH coefficients, just a series of multiply-adds. 
This is the key to the whole process – by projecting functions into 
SH space we can convert integration over a sphere into a very fast 
operation. 

This dot product returns a single scalar value which is the result of 
the integration, but there is another technique we can use for 
transforming SH functions. Here’s how the argument goes: 

Say we have some arbitrary spherical light source function a(s) 
that we don’t know yet. We also have some shadowing function 
for a particular point on the surface b(s) that describes how light at 
that point is shadowed (e.g. there’s a nose above us that will block 
light coming from that direction), and we can evaluate it using a 
ray tracer. We want a way to transform the coefficients of the 
incoming light into another set of coefficients for a light that has 
been masked by the shadow function, and we’ll call the result c(s). 
We can construct a linear operation that maps the SH projection of 
the light source a(s) directly to the SH projection of the shadowed 
light source c(s) using a transfer matrix without having to know the 
lighting function a(s). To build the transfer matrix M, where each 
element of the matrix are indexed by i and j, the calculation is: 

( ) ( ) ( ) dssysysb
S

jiij ∫=M  

Equation 7. Integrating the product of 
two SH functions by evaluating a dot 
product of their coefficients. 

Equation 8. The triple product for 
calculating elements of a transfer 
matrix. 
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The result is a matrix that we can use to transform from a light 
source into a shadowed light source using a simple matrix-vector 
multiply: 

∑
=

=
2

1

n

j
iiji ac M  

Let’s try an explicit example. What would happen if we found a 
magic shadowing function that looks exactly like one of the SH 
functions; for example what if b(s) = y22(s)? This means we will be 
calculating a triple product of SH functions: 

( ) ( ) ( )dssysysy
S

ji∫ 2
2  

The resulting matrix is mostly sparse, and a plot of the non-zero 
elements in a 25×25 matrix looks like this: 

 

Applying the matrix to the SH coefficients of a light source gives 
us another vector of SH coefficients, which gives us exactly the 
same results as if we had multiplied the light source with the 
mask before SH projecting: 

 

As you can see this is a different way of recording shadowing at a 
point on a model without forcing us to do the final integral, and 

Figure 9. The non-zero entries in 
matrix M in our contrived triple-
product transfer matrix example. 

Figure 10. The 
result of applying 
the example 
transfer matrix to 
a light source. 

Equation 9. Applying a transfer 
matrix to a vector of SH coefficients. 
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we will use it to good effect when we preprocess view dependant 
glossy specular surfaces. 

Rotating Spherical Harmonics 
The last property of SH functions is the most difficult to code, and 
probably the place where most people will get stuck. We have 
asserted that SH functions are rotationally invariant, but how do 
we actually rotate an SH projected function? The answer is not 
simple. The first question to answer is “what form of rotation are 
you talking about?” Do you want rotations in terms of Euler 
angles (α,β,γ), and if so which order of axes are you rotating 
about? XYZ, ZYX or ZYZ? How about specifying an axis and 
angle rotation by using a quaternion? How about generalizing 
rotations into 3×3 rotation matrices with all the associated 
redundancy of symmetries? Despite Sloan, Kautz and Snyder 
saying that SH functions have “simple rotation”, they aren’t 
telling the whole story. 

What we can say about the SH rotation process, from the rules of 
orthogonality, is that it is a linear operation and that coefficients 
between bands do not interact. In practical terms this means that 
we can rotate a vector of SH coefficients into another vector of SH 
coefficients using a single n2×n2 rotation matrix and that the 
matrix will be block diagonal sparse, looking something like this: 
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So true, using the rotation operation could be seen as “a simple 
computation” once you have the rotation coefficients handy but 
constructing the rotation coefficients efficiently is far from simple. 

As a quick aside, let’s look at another representation for the SH 
functions. So far we have been expressing SH functions in terms of 
spherical coordinates, but we can just as easily convert them to 
implicit functions on (x,y,z) by substituting in the spherical to 
Cartesian coordinate conversion formula and canceling out terms. 
Doing so we come up with a surprisingly simple set of 
expressions: 

Kautz et al, “Fast, Arbitrary BRDF 
Shading”, 13th Eurographics 
Workshop on Rendering, 2002, 
Section 3 and Appendix. 
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where 

( )1222 =++= rzyxr  usually n.b.     

To use these functions simply pick a point (x,y,z) on the unit 
sphere and crank it through the equation above to calculate the SH 
coefficient in that direction. It is possible to use this form of 
equation for SH projection, but they turn out to be more useful to 
us as symbolic expressions. 

We can build a rotation matrix for SH functions by building a 
matrix where each element is calculated using symbolic 
integrating of a rotated SH sample with an unrotated version: 

∫=
S

jiij dssysy )()(RM  

This will build a n2×n2 matrix of expressions that will map an 
unrotated vector of SH coefficients into a rotated one. For 
example, using the explicitly parameterised formulation: 

( ) ( ) ( ) ϕθθϕθαϕθ
π π

ddyy
o jiij ∫ ∫ +=
2

0
sin,,M  

for the first three bands gives us a 9×9 matrix for rotating about 
the z-axis: 

Equation 10. 
Cartesian version 
of the first few 
real SH functions. 
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This matrix expands into higher bands as you would expect, with 
band N using the sine and cosine of Nα. 

This technique looks great for  low order SH functions – you 
simply decompose any rotation into a series of simpler rotations 
and recompose the results. In reality it quickly turns into a royal 
pain-in-the-ass for anything larger than a 2nd order SH function. 

Firstly, what is the minimum number of rotations we need to 
allow us to transform an SH function to any possible orientation? 
If we use a ZYZ formulation we can get away with only two 
rotations, and one of them we already have the formula for! So, 
how to rotate about the y-axis? We can decompose it into a 
rotation of 90° about the x-axis, a general rotation about the z-axis 
followed finally a rotation by -90° about the x-axis. Great, the x-
axis rotation is a fixed angle so we can just tabulate it as an array 
of constant floats: 
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Taking a step back, let’s look at the computational cost of this 
process. In matrix notation, we are calculating: 

( ) αβγγβα ZXZXZR 9090,, +−=SH  
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That’s 4 different 9×9 matrix multiplications, plus associated trig 
functions. Given that cost of matrix-matrix multiplication is O(n3), 
a naïve implementation would use 2916 multiply adds. We can 
use the sparsity of the matrices to get this down to around 340 
multiplies for a 5th order rotation, but it’s not as cheap as it could 
be. 

How about combining the rotations and multiplying through the 
whole operation into one big explicit expression? For bands higher 
than 1 this turns out to produce some very scary trig expressions. 
Here is the matrix for the first two bands: 
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This matrix is useful for debugging, but to use it we have to 
convert our game engine to ZYZ rotations with all the associated 
gimbal lock problems when rotations end up aligning. Wasn’t this 
the reason we all converted to quaternions? There is a trick we can 
use to prevent us from entering this arena of pain and also speed 
up the calculation. One of the fundamental properties of rotation 
matrices in 3D is their numerous symmetries and we can exploit 
these to our advantage. Given an ordinary 3×3 rotation matrix R: 
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we can reconstruct the trigonometric functions of the ZYZ Euler 
angles (α,β,γ) directly using these identities: 
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This formulation breaks down when sin β = 0, but in this case the 
rotation matrix would be written: 

Equation 11. Analytical solution for 
the SH rotation matrix by ZYZ Euler 
angles (α,β,γ) for the first two bands. 
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So we can arbitrarily decide how to divide the total z-rotation 
between α and γ. Forcing γ = 0 gives us the special case identities: 

0sin1cos

sincos

==

−==

λγ

αα YXYY RR
 

Both of these formulations work fine as a stopgap for the first 
couple of bands of SH coefficients, but we really need a fast, 
general case solution for any number of bands. This is where we 
hit the unexplored, bleeding edge of current game research. 

To solve this we need to dig into the roots of where the SH 
functions originally came from. The SH functions were originally 
devised to describe the distribution of angular momentum in a 
single atom at the quantum level and this explains why the 
arguments l and m are integers – they are the indivisible quantum 
numbers describing the state of the atom. The area of science with 
most experience of writing programs using SH functions is called 
Computational Chemistry, in which researchers try to model the 
interactions of atoms inside molecules at the quantum level to 
better understand how they function. As recently as 1999 papers 
of basic research have been published describing new ways of 
rotating real SH functions that are far more efficient that the 
traditional Wigner D functions. The emphasis of these papers until 
recently has been on explicit formula for axis-aligned special cases 
(great for modeling lattices of atoms), but we need a more general 
formulation for our computer graphics work. 

We really need a set of recurrence relations, recursive functions that 
build SH rotation matrices for band l+1 from band l. This way, low 
order approximations are guaranteed less compute complexity 
than higher order ones. Research has uncovered three papers on 
recurrence relations for rotating real spherical harmonics and they 
have many similarities: 

1 Ivanic J and Ruedenberg K, “Rotation Matrices for Real Spherical 
Harmonics, Direct Determination by Recursion”, J. Phys Chem. A, 
Vol. 100, 1996, pp 6342-6347. See also “Additions and Corrections: 
Rotation Matrices for Real Spherical Harmonics”, J. Phys Chem. A, 
Vol. 102, No.45, 1998, pp 9099-9100 
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2 Choi, Cheol Ho et al, “Rapid and stable determination of rotation 
matrices between spherical harmonics by direct recursion”, J. Chem. 
Phys. Vol 111, No. 19, 1999, pp 8825-8831 

3 Blanco, Miguel A et al, “Evaluation of the rotation matrices in the 
basis of real spherical harmonics”, J. Molecular Structure (Theochem), 
419, 1997, pp19-27  

I have successfully implemented Blanco’s paper but would 
recommend either Ivanic or Choi’s papers as they are more 
efficient algorithms, if you can fight your way through the math.  
Choi reports in a personal email that working in the complex 
space is up to 10 times faster than working in the real space but 
requires a complex to real postprocess (“Complex makes life 
easier!” he writes). I am working on implementing both 
algorithms for a later paper. For a little more information on 
Ivanic’s algorithm, see Appendix 1 of this document. 

SH Lighting Diffuse Surfaces 
Now we have covered the properties of SH functions and coded 
up some tools for manipulating them we can finally get to use 
them for generating some lighting for our models. We will go 
through a number of lighting techniques showing how each one is 
defined and how it is implemented. 

Let’s assume we have already loaded a description of our 
polygonal model into an internal database. We are only interested 
in point sampling the world using a raytracer, so all we need is a 
list of vertices, normals and triangles. First we process the vertex-
normal pairs into a set of unique “lighting points” by duplicating 
vertices with multiple normals and concatenating vertices that are 
shared across smooth surfaces (this can be done very quickly 
using an STL map). Next we loop through all the lighting points in 
the model calculating a transfer function for each. The transfer 
function is a function that when dotted with an incoming 
luminance function (i.e. multiplied and integrated), gives us the 
approximated lighting for that point. 

There are three different types of transfer function we can 
generate for diffuse surfaces, each one progressively more 
complex to calculate so we’ll go through them in order. 

 

1 Diffuse Unshadowed Transfer 
Returning to the Rendering Equation we can strip it down to it’s 
barest essentials, just a light source and a surface point assumed to 
lie on some oriented flat plane, to generate an unshadowed image 
using only direct illumination 
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N

ω i
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( ) ( ) ( ) ( )∫=
S

iiiiioro dHLfL ωωωωωω ,,,,, xxxx  

where: 
 

( )oL ω,x  = the amount of light leaving point x along vector ωo 

( )iorf ωω ,,x  = The BRDF at point x 

( )iiL ω,x  = incoming light at point x along vector ωi 

( )iH ω,x  = the geometric or cosine term, as described earlier. 
 
Remembering that a diffuse BRDF reflects light equally in all 
directions, so we can optimize this equation quite dramatically. 
Light is reflected equally so the lighting is view independent and 
our viewing angle ωo disappears. Our BRDF is just a simple, 
constant scalar which can be taken outside of the integral leaving 
us with just three elements: The light source Li, a simplified cosine 
term and a linear scale factor. 

( ) ( ) ( )∫ •=
S

iiiiDU d,LL ωωω
π
ρ 0,max x
x Nxx  

where 

xρ  = the surface albedo at point x. 

xN  = the surface normal at point x. 

(Note for pedants: here we have switched to using the albedo ρx as 
the measure of reflectivity for Lambertian diffuse reflection. The 
albedo is the ratio of emitted radiance over irradiance, and for 
diffuse surfaces it collapses to πρx so we need only specify a scalar 
ρx that takes on values in the range [0,1]. Just like RGB colors.) 

Separating out the light source from the transfer function (which 
we shall call MDU for diffuse unshadowed transfer) we get the 
function we are looking to approximate with an SH function. It’s 
just the geometric term, the cosine of the angle between the 
normal and the light source, clamped at zero: 

For proof, see Cohen and Wallace, 
“Radiosity and Realistic Image 
Synthesis”, Academic Press 
Professionsal, 1993, pp32-33  
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( )0,max sN •=DUM  

In order to calculate this function we will take our list of 
precalculated rays and SH coefficients and run through them, 
dotting each one with the surface normal at our sample point to 
see if it is inside the upper hemisphere. 

// for each sample 

for(int i=0; i<n_samples; ++i) { 

 // calculate cosine term for this sample 

 double H = DotProduct(sample[i].vec, normal); 

 if(H > 0.0) { 

  // ray inside upper hemisphere so... 

  // SH project over all bands into the sum vector 

   for(int j=0; j<n_coeff; ++j) { 

    value = Hs * sample[i].coeff[j]; 

    result[j + red_offset  ] += albedo_red   * value; 

    result[j + green_offset] += albedo_green * value; 

    result[j + blue_offset ] += albedo_blue  * value; 

   } 

 } else { 

  // ray not in upper hemisphere 

 } 

} 

// divide the result by probability / number of samples 

double factor = area / n_samples; 

for(i=0; i<3*n_coeff; ++i) { 

 coeff[i] = result[i] * factor; 

} 

 
This will produce pictures much like normal dot-product lighting, 
except using arbitrarily complex SH area light sources. 

 

 

2 Shadowed Diffuse Transfer 
By adding a visibility term to the simplified Rendering Equation, 

Figure 11. A rendering using 5th order 
diffuse unshadowed SH transfer 
functions (25 coefficients). In effect, 
lighting using just the geometric term. 
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we can add self shadowing to the lighting model, and our lighting 
starts to really get interesting. 

( ) ( ) ( ) ( )∫
Ω

•= iiiii dV,LL ωωωω
π
ρ 0,max x
x Nxx  

where 

( )iV ω  = visibility test that returns 0 if the ray ωi is blocked by 
self, 1 otherwise. 

With only this tiny change, points on the surface of an object are 
no longer assumed to be sitting on an infinite plane but instead 
interact with their surrounding geometry and have access to their 
fields of view of incoming area light sources. The resulting 
transfer function for diffuse shadowed lighting MDS is: 

( ) ( )0,max ii
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This one effect, sometimes called occluded ambient, is the most 
powerful difference between traditional CG and Global 
Illumination images. Calculating the transfer function requires us 
to trace a ray from the current point through the polygon database 
to find any hits – note that we don’t need any geometric 
information from the hit, just a boolean that it occurred. 

// for each sample 

for(int i=0; i<n_samples; ++i) { 

 // calculate cosine term for this sample 

 Hs = DotProduct(sample[i].vec, normal); 

 if(Hs > 0.0) { 

  // ray inside upper hemisphere... 

  if(!self_shadow(pos,sample[i].vec)) { 

   // ray hits nothing, add in its the contribution: 

   for(int j=0; j<n_coeff; ++j) { 

    value = Hs * sample[i].coeff[j]; 

    result[j + red_offset  ] += albedo_red   * value; 

    result[j + green_offset] += albedo_green * value; 

    result[j + blue_offset ] += albedo_blue  * value; 

   } 
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  } else { 

   // ray hits self... 

  } 

 } else { 

  // ray not in upper hemisphere 

 } 

} 

// divide the result by number of samples 

double factor = area / n_samples; 

for(i=0; i<3*n_coeff; ++i) { 

 coeff[i] = result[i] * factor; 

} 

 
How do we implement the self_shadow() function? That’s up to 
your raytracer, but there are some things to note about the SH 
projection process make the code easier to write. 

Firstly, if you decide to use an acceleration data structure like a 
voxel grid, hierarchical bounding box tree or BSP tree, remember 
that every ray origin will be inside the object’s bounding box so 
there is no need for an initial ray-box intersection to find the 
starting point for the raytrace. Just hash the starting point into the 
data structure and start there. 

Secondly, the point of self_shadow is to find occlusions so we 
want our shadow feelers to hit the object and we are going to be 
throwing out rays in all directions from a vertex on the model.  
The problem is that polygons adjacent to the vertex are always 
going to be coplanar to many rays. Any ray tested against a 
polygon that included the ray origin as a vertex will at best return 
a hit at the origin (requiring an epsilon tests to exclude hits too 
close to the origin) or at worst a hit somewhere along the ray. This 
can lead to incorrect shadowing on your object if you are not 
careful, so if possible retain some face adjacency information when 
loading your model and exclude polygons that share the current 
vertex from your shadow tests. 

A

B

C

 

The third issue is to do with single sided polygon tests. In order 
for ray-poly tests to correctly return occlusion we cannot use 
single-sided polygon tests. Excluding a ray-polygon test because 
the polygon “faces away” from the ray does not work if the ray 

Figure 12. Examples of ray-polygon 
gotchas when tracing rays from a 
vertex on a polygon model. 
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started from within the model, (intersections A and C in the 
illustration above) as is the case for many shadow rays. This 
limitation also means that, in general, we must have manifold 
objects – objects with fully enclosed skins. Objects with self 
intersecting surfaces will have incorrect shadowing (after 
reconstruction with Gouraud shading) if there are no vertices at 
the intersections. Be careful when lighting single-thickness objects 
that you are sure that any shadow feeler will be correctly occluded 
by other objects (as the illustration below fails to do correctly on 
the back wall!) 

Shadow rays are also free to return an intersection as soon as an 
occluding polygon is found (intersection B) as the order of 
intersection is not important, just that one exists.  

 

 

3 Diffuse Interreflected Transfer 
The last method of diffuse lighting is the most striking. The 
interesting part of the Rendering Equation is where it recursively 
adds in light not arriving directly from a light source, but as 
secondary reflected light from other polygons visible to a point on 
the model. Expressing this in an integral we can write: 
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where 

( )xDSL  = diffuse shadowed lighting from previous section. 

( )iV ω  = visibility test from previous section. 

( )iL ω,'x  = light reflected from another point x’ on the same 
          model towards point x. 

The interreflected light transfer function is difficult to 
mathematically describe compactly and not really that 

Figure 13. A rendering using 5th 
order diffuse shadowed SH transfer 
functions. Note the soft shadowing 
from the constant hemisphere light 
source. 
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illuminating, but the algorithm for generating it is easier to 
describe. There are four steps: 

a) For each shading point x on the model, calculate the direct 
lighting transfer function at that point (i.e. diffuse shadowed 
lighting from the previous section). 

b) Next, fire a rays from your current point until one hits another 
triangle on the object. Linearly interpolate the SH functions at 
each corner of the triangle using the barycentric coordinates of 
the hit. This transfer function is the amount of light being 
reflected back towards your shading point. 

c) Multiply this reflected light by the dot product between the 
ray and the surface normal at x (a vector-scalar multiply that 
scales how much this interreflected light is reflected according 
to the cosine term) and sum it into an empty SH vector. Once 
all rays have been cast, divide the accumulated values by the 
number of samples and Monte Carlo weighting term as usual. 

d) Once all shading points have been calculated, this new set of 
SH vectors is one bounce of diffusely interreflected light, and 
only the interreflected light. For additional bounces, repeat the 
raytracing using this new set of values as the starting light 
intensities at each triangle vertex. Repeat until no energy has 
been transferred, or until you reach N bounces. Finally, sum 
all bounces plus the direct illumination into one list of SH 
vectors. 

A

B
 

Geometrically, the idea of interreflected light is simple. Each point 
on the model already knows how much direct illumination it has, 
encoded in the form of a transfer function. We fire rays to find 
sample points that can reflect light back onto our position and add 
a cosine weighted copy of that transfer function back into our 
own. For example, point A in the illustration above has fired a ray 
and hit point B. The transfer function at B is added to A like this: 

Figure 14. A single sample of diffuse 
self transfer, the downward facing 
plane A fires a ray. 
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Note that all SH functions occur in the same coordinate system so 
summing them is a valid operation. See how point A, when lit by 
an SH lightsource, will be illuminated by light from above, even 
though it cannot directly see any. The assumption here is that 
illumination doesn’t vary across the model (i.e. point B has exactly 
the same lighting function as point A). This is the key to SH 
lighting: Low frequency light sources and very small light source 
variance across an object. 

This time your raytracer has more work to do. Not only do you 
have to find intersections with the model, but you need to find the 
closest hit. If the closest hit faces towards the lighting point we 
need to find the exact SH lighting function at that point. We can 
speed up the process by remembering which rays in the previous 
pass were occluded by self as these are the ones that will be 
reflecting light back at us. Two ways of doing this – the SH 
lighting paper uses a subdivided icosahedron of “buckets” where 
each bucket contains the rays that exit through it’s triangle. Each 
bucket is marked with a bit saying whether any rays in it have hit 
self. My program went for the simpler per-lighting-point STL 
vector<bool> where a set bit indicates a self hit. Much less 
elegant, wasteful of huge chunks of memory but surprisingly 
quick. But, hey, what is cheap RAM for anyway if you can’t waste 
it to speed up an offline preprocessor? Note that all reads and 
writes of the STL container are done in order, so the container 
could be optimized for uni-directional iteration. 

void self_transfer_sh() 

{ 

 const double area = 4.0*PI; 

 double *sh_buffer[n_bounces+1]; // list of light bounce buffers. 

 

 // allocate and clear buffers for self transferred light 

 sh_buffer[0] = sh_coeff; // already calculated from direct lighting 

 for(int i=1; i<=n_bounces; ++i) { 

  sh_buffer[i] = new double[n_lighting * 3 * n_coeff]; 

  memset(sh_buffer[i], 0, n_lighting*3*n_coeff*sizeof(double)); 

 } 

 

 // for each bounce of light 

 for(int bounce=1; bounce<=n_bounces; ++bounce) { 

  // loop through all lighting points redistributing self light 
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  for(int i=0; i<n_lighting; ++i) { 

   // find rays that hit self 

   bitvector::iterator j; 

   int n = 0; 

   double u = 0.0, v = 0.0, w = 0.0; 

   Face *fptr = 0; 

   double sh[3*n_coeff]; 

   // get the surface albedo of the lighting point. 

   double albedo_red   = mlist[plist[i].material].kd.x / PI; 

   double albedo_green = mlist[plist[i].material].kd.y / PI; 

   double albedo_blue  = mlist[plist[i].material].kd.z / PI; 

   // loop through boolean vector looking for a ray that hits self… 

   for(j=hit_self[i].begin(); j!=hit_self[i].end(); ++n,++j) { 

    if(*j) { 

     // calc H cosine term about surface normal 

     float Hs = DotProduct(sample[n].vec, plist[i].norm); 

     // if ray inside hemisphere, continue processing. 

     if(Hs > 0.0) { 

      // trace ray to find tri and (u,v,w) barycentric coords of hit 

      u = v = w = 0.0; 

      fptr = 0; 

      bool ret = raytrace_closest_triangle(plist[i].pos, 

                                           sample[n].vec, 

                                           face_ptr, u, v); 

      // if (surprise, surprise) the ray hits something... 

      if(ret) { 

       // lerp vertex SH vector to get SH at hit point 

       w = 1.0 - (u+v); 

       double *ptr0 = sh_buffer[bounce-1] + 

                       face_ptr->vert[0]*3*n_coeff; 

       double *ptr1 = sh_buffer[bounce-1] + 

                           face_ptr->vert[1]*3*n_coeff; 

       double *ptr2 = sh_buffer[bounce-1] + 

                       face_ptr->vert[2]*3*n_coeff; 

       for(int k=0; k<3*n_coeff; ++k) { 

           sh[k] = u*(*ptr0++) + v*(*ptr1++) + w*(*ptr2++); 

       } 

       // sum reflected SH light for this vertex                   

       for(k=0; k<n_coeff; ++k) { 

        sh_buffer[bounce][i*3*n_coeff + k+0*n_coeff] += 

                         albedo_red   * Hs * sh[k+0*n_coeff]; 

        sh_buffer[bounce][i*3*n_coeff + k+1*n_coeff] += 

                          albedo_green * Hs * sh[k+1*n_coeff]; 

        sh_buffer[bounce][i*3*n_coeff + k+2*n_coeff] += 

                           albedo_blue  * Hs * sh[k+2*n_coeff]; 

       } 

      } // ray test 

     } // hemisphere test 

    } // hit self bit is true 

   } // loop for bool vector 

  } // each lighting point 

  // divide through by n_samples 



  SPHERICAL HARMONIC LIGHTING 35 

  const double factor = area / n_samples; 

  double *ptr = sh_buffer[bounce]; 

  for(int j=0; j<n_lighting * 3 * n_coeff; ++j) 

   *ptr++ *= factor; 

  } 

 } // loop over all bounces 

 

 // sum all bounces of self transferred light back into sh_coeff 

 for(i=1; i<=n_bounces; ++i) { 

  double *ptra = sh_buffer[0]; 

  double *ptrb = sh_buffer[i]; 

  for(int j=0; j<n_lighting * 3 * n_coeff; ++j) 

   *ptra++ += *ptrb++; 

 

 // deallocate SH buffers 

 for(i=1; i<=n_bounces; ++i) { 

  delete[] sh_buffer[i]; 

 } 

 return; 

} 

 
Global illumination and radiosity programmers will recognize this 
is a probabilistic gathering solution, where each point on the model 
blindly searches for neighbors that can see it and drags in light 
from the outside world, with the effect that the model is slowly lit 
by completely solving one lighting point at a time. It is quite 
possible to implement a non-probabilistic version that has pre-
calculated which vertices are visible to each other and loops over 
only them. Another option is to implement a shooting solution 
where each surface distributes it’s energy outwards to every 
surface it can see so that the lights slowly come up, converging on 
the solution all at once. (It’s is good to keep a sorted list or heap of 
lighting points ordered by intensity so that the lights come up as 
fast as possible.) Both techniques have their place, especially when 
we introduce emissive surfaces into the preprocessor. The 
drawback of the non-probabilistic methods are that we have to 
calculate SH coefficients for each ray as we generate them instead 
of blasting through a list of precalculated vectors and SH 
coefficients. It’s a balancing act between accuracy and efficiency 
but compared to the cost of ray-model intersections, calculating a 
few SH coefficients costs peanuts. (Importance sampling is 
another area to play with, especially when we start using glossy 
BRDFs). 

Our new, more picky raytracer will have more issues with non 
manifold objects and coplanar polygons than the self shadowing 
version as it has to find barycentric coordinates for each hit. If you 
find that vertices inside concavities are returning bad values, one 
quick fix up you can do is to offset the origin of the ray a small 
epsilon distance along the geometric mean normal of the vertex 
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(add all normals of polygons adjacent to the vertex and 
renormalize). This will usually move the ray origin outside of the 
model and give better looking interreflection deep into concavities 
at the cost of a slightly increased number of false positive self hits. 

 

Using SH lighting over time will start to affect how you look at 3D 
models. You will start looking for flat shaded models without 
shadows baked into the texture as the SH lighting will handle all 
this for you. You will start to recognize how often artists leave out 
subtle concavities in real-time models as normal lighting just does 
not show them up. You will start asking for models that break up 
large flat areas into grids of triangles so that these areas get more 
lighting samples across their span, helping to capture shadows 
more effectively. Over time you will develop an eye for models 
that will look good under SH lighting and see how to adapt other 
models to put vertices in the interesting lighting points. Putting 
the tools of SH lighting into the hands of your artists is the best 
way to update your art path for SH lighting, as low order SH 
preprocessing can be done at near interactive rates. 

Rendering SH Diffuse Surfaces 
Now we have a set of SH coefficients for each vertex, how do we 
build a renderer using current graphics hardware that will give us 
real-time frame rates? Going back to the properties of SH 
functions, the basic calculation for SH lighting is the dot product 
between an SH projected light source and the SH transfer 
function: 
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This calculation will give us a single channel light intensity for a 
vertex, and we approximate the complete solution over an object 
by filling in the gaps between vertices using Gouraud shading. 
Remember that all SH calculations happen in object space so if 

Figure 15. A rendering using 5th order 
diffuse SH transfer functions with self 
interreflection. Note the soft shadows 
and color bleeding onto the white cup.
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you want to reorient the object in world space or rotate a lighting 
function, you will need to rotate the light into object space first. 

At this point we get some choices to make. If we assume that the 
illumination is a white light source (the same for red, green and 
blue), the calculation per vertex is: 

for(int j=0; j<n_coeff; ++j) { 

 vertex[i].red   += light[j] * vertex[i].sh_red[j]; 

  vertex[i].green += light[j] * vertex[i].sh_green[j]; 

  vertex[i].blue  += light[j] * vertex[i].sh_blue[j]; 

}  

 
A colored light source will have a different SH function for each 
color channel, making calculation: 

for(int j=0; j<n_coeff; ++j) { 

 vertex[i].red   += light_red[j]  * vertex[i].sh_red[j]; 

  vertex[i].green += light_green[j]* vertex[i].sh_green[j]; 

  vertex[i].blue  += light_blue[j] * vertex[i].sh_blue[j]; 

}  

 
Note that nowhere in either calculation is the surface normal 
mentioned – it’s already implicitly encoded in the SH coefficients 
as is the ambient term, so we get diffuse shading with occluded 
ambient built in. 

One optimization is to note that if the model has not too much 
emphasis on hard shadows (like a human face), the cosine term is 
well approximated by just the first two orders of SH functions, 
giving us a 4-coefficient drop in replacement for the normal 
diffuse shading term that gives us soft self-shadowing for no extra 
multiply-adds per vertex and no extra storage. This 4-coefficient 
system also translates well into 4-way SIMD operations, using 
exactly the same code as a 3 parallel light source plus ambient 
matrix. 

Another option is to use a single channel white light source, 
encode just self shadowing and ignore self transfer. The resulting 
lighting calculation requires only one transfer function and one 
colour per vertex and can be re-colored on the fly: 

for(int j=0; j<n_coeff; ++j) { 

 vertex[i].red   += k_red   * light[j] * vertex[i].sh[j]; 

  vertex[i].green += k_green * light[j] * vertex[i].sh[j]; 

  vertex[i].blue  += k_blue  * light[j] * vertex[i].sh[j]; 

} 

 
We can mix and match SH lighting and normal lighting because 
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light sums linearly, so we can use SH lighting for the ambient and 
diffuse part of a shader and add a specular term over the top. This 
is exactly what we did for the image of the car at the beginning of 
this document, first rendering the car body diffusely with SH 
lighting and alpha blending a pre-filtered specular environment 
map over the top. 

   

So far we have been using infinite light sources that are the same 
all over an object, but there is a way to fake a local light source 
illuminating the model. This only works if we have only self-
shadowing and no self-transfer as it breaks the assumption of low 
lighting variance across the model. To do local lighting we 
construct a small number of samples (e.g. 6 or 8) of the local 
lighting environment from a few well spaced precalculated points 
on the surface of the model, calculating the lighting function as if 
the model was absent. If there are emitters close by each of these 
spherical samples will see the local light source at slightly 
different positions. We reconstruct correct local lighting by 
calculating a weighted sum of the lighting samples for each 
vertex, weighting by the distance from the vertex to the light 
sample point. The example in Sloan, Kautz and Snyder’s SH paper 
used the weighting scheme: 
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between vertex i and lighting point j where n = 10 in the example 
image of Max Planck to emphasize the effect of local lighting. 

Other researchers have found a quicker, looser method. Take the 
N lighting sample positions and construct a very low poly 
triangulated polyhedron. Next break the model into groups of 
vertices based on which polygon they are closest to. To 
precalculate the distribution of light to the vertices in a group we 
project the vertex onto the lighting triangle and calculate the 2D 
barycentric coordinate of that projected point. We then use these 
weights to lerp the three light sources for that vertex. This 
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technique has the added advantage that it can be calculated in 
hardware. 

We have only scratched the surface of techniques for 
reconstructing SH lighting so have a go and see if you can come 
up with some better and more flexible effects. The current holy 
grail is to extend SH lighting from being a static model technique 
to one that works on animated models. Blending SH vectors the 
same way we use blending matrices for joints works well for the 
cosine term, but the shadow function V is just too random and 
unpredictable to represent as the linear combination of a few 
snapshots. More work on this problem is needed. 

Creating Light Sources 
In 1955, the CIE, the international standards body tasked with 
defining the science of illumination and colour, produced a paper 
defining three standard reference light sources by which 
architectural designs should be judged. The standard is available 
from the CIE for around €10 and is copyright, so I can only give 
you the single-channel versions stolen from the web. 

Starting with the CIE Overcast model which gives the lighting 
function for an evenly overcast day: 
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where 

ZL = sky luminance at the zenith (top of the sky) in kilo candela 
per meter2. 
β  = angle between zenith and P, in radians. 

Single channel CIE Sky Models 
available from 
http://www.softcom.net/users/ 
daylight/thesis.pdf 
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The CIE Clear Sky model is a bit more complex as we have to take 
into account the position of the sun and it’s different scattering 
effects as it nears the horizon. 
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where 

ϕθ ,L = luminance at point P at (θ,φ) on the sphere, in kcd/m2. 

ZL  = sky luminance at the zenith, in kcd/m2. 
θ = angle between zenith and P, radians 
α = azimuth angle (on the ground) between sun and P, radians.  
S = angle between sun and zenith, radians. 
γ = planar angle between the sun and P, radians 

Quite an impressive equation. The resulting light source is very 
realistic. 

Figure 16. CIE Overcast Sky 
illuminance model. 
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The CIE Partly Cloudy model is a halfway house between the two 
and a little simpler than the clear sky model. 
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where the definitions for the Clear Sky model still hold. 

 

Another type of illumination model we can use are the  high 
dynamic range light probes made popular by Paul Debevec. HDR 
images are encoded bitmaps of floating point RGB values 
captured from the real world using a special process of camera 
calibration and multiple exposures that encode the full range of 
light energy in a scene. Using the freely available program 
HDRShop we can generate angle map projections of HDR scenes 
and save them out as arrays of float RGB pixels. 

Figure 17. CIE Clear Sky illuminance 
model. 

Figure 18. CIE Partly Cloudy 
illuminance model. 
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The angle map projection is simple to access using either spherical 
or Cartesian coordinates, and we can plug this straight into an SH 
projection function giving us SH coefficients that approximate the 
lighting function. 

typedef Vector3d (*SH_vector_fn_rgb)(float dx, float dy, float dz); 

 

Vector3d hdr_lightsource(Vector3d *hdr_image, int image_size, 

                         float dx,float dy, float dz) 

{ 

 // assume angle map projection 

 const float one_over_pi = 1.0f / PI; 

 float invl = 1.0f / sqrtf(dx*dx+dy*dy); 

 float r = one_over_pi * acosf(dz) * invl; 

 float u = dx * r;  // -1..1 

 float v = dy * r;  // -1..1 

 // map to pixel coordinates 

 int x = int(u * image_size + image_size) >> 1; 

 int y = int(v * image_size + image_size) >> 1; 

  // return the float RGB value at (x,y) 

 return hdr_image[y*image_size + x]; 

} 

 

void SH_project_vector_function_rgb( SH_vector_fn_rgb fn, 

                                    int n_bands, 

                                    int sqrt_n_samples, 

                                    const SHSample sh_samples[], 

                                    Vector3d result[] ) 

{ 

 int n_coeff = n_bands*n_bands; 

 int n_samples = sqrt_n_samples*sqrt_n_samples; 

 const double area = 4.0*PI; 

 

 // for each sample 

 for(int i=0; i<n_samples; ++i) { 

  Vector3d color = fn(sh_samples[i].vec.x, 

                      sh_samples[i].vec.y, 

                      sh_samples[i].vec.z); 

Figure 19. An example HDR light 
probe as an N×N bitmap of RGB float 
values using an angle map projection. 
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  for(int n=0; n<n_coeff; ++n) { 

   result[n] += color * float(sh_samples[i].coeff[n]); 

  } 

 } 

 // divide the result by number of samples 

 double factor = area / n_samples; 

 for(i=0; i<n_coeff; ++i) { 

  result[i] = result[i] * factor; // NOTE: vector-scalar multiply 

 } 

} 

 
The real problem with HDR images once you start playing with 
them is that there is no standard normal intensity for an HDR 
image. There is no clear “brightest” setting to scale them to, so you 
have to start building renderers that have exposure settings built 
in from day one. It looks like exposure settings are part of the 
future of renderers. 

The final form of light source we can generate are totally synthetic 
light sources, generated directly as SH coefficients. By 
symbolically integrating a spherical function f(theta,phi) that 
returns 1 if theta is less than a threshold t, we can create a circular 
light source around the z-axis: 
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We can then use symbolic integration in Mathematica or Maple to 
generate an analytical solution for the SH projection of the light: 
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This gives us a direct algorithm for generating a light source. All 
we need do next is rotate this light source to the correct 
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orientation using our SH rotation code, and sum it with other light 
sources. 

inline double is_positive(double x) { return x>0 ? 1.0 : 0.0; } 

 

void synth_light(double cutoff, double sh[]) 

{ 

  // clear all values to 0.0 

 memset(sh, 0, 16*sizeof(double)); 

 // symbolic integration automatically generated by Maple. 

 double t3 = is_positive(-cutoff + PI); 

 double t5 = cos(cutoff); 

 double t6 = t3*t5; 

 double t9 = is_positive(-cutoff); 

 double t11 = t9*t5; 

 double t14 = sin(cutoff); 

 double t15 = t14*t14; 

 double t16 = t3*t15; 

 double t18 = t9*t15; 

 double t21 = t5*t5; 

 double t22 = t21*t5; 

 double t31 = t21*t21; 

 sh[0] = 3.544907702 - 1.772453851*t3 - 1.772453851*t6 – 

         1.772453851*t9 + 1.772453851*t11; 

 sh[2] = 1.534990062*t16 - 1.534990062*t18; 

 sh[6] = -1.98166365*t3*t22 + 1.98166365*t6 + 1.98166365*t9*t22 – 

          1.98166365*t11; 

 sh[12] = 2.930920062*t3 - 2.930920062*t3*t31 - 3.517104075*t16 -   

           2.930920062*t9 + 2.930920062*t9*t31 + 3.517104075*t18; 

} 

 
Alex Evans of Lionhead has suggested using a similar technique 
for creating proxy shadows on SH light sources. Firstly, each object 
gets it’s own copy of the common lighting function. Next, instead 
of generating a “cap” of light we generate the inverse function – 
everything except the cap. We next find out where external objects 
are in object space and calculate a rotation from the that direction 
to the z-axis. We then rotate the lighting function with that 
rotation and “multiply” it with the SH light source to subtract 
light in that direction. 

There are two ways to implement this multiplication, one by 
circular convolution and one by generating an analytical transfer 
matrix by symbolic integration. Either way we must rotate the 
light so that the shadow direction is along the z-axis, do the 
convolution and rotate the light back to object space so we can 
carry on with lighting as normal. That’s two SH rotations per 
shadow per object. 
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Advanced SH Techniques 
SH lighting of glossy surfaces will be covered in an extended 
version of this paper, available soon from: 

 http://research.scea.com/ 

hopefully incorporating notes and example code on: 

• Untangling the mix of coordinate spaces. 

• Using graphics hardware to calculate SH transfer functions. 

• Extending the preprocessor for models with mixed materials. 

• Extending the preprocessor for static, emissive surfaces. 

• Adding reflected caustics to the preprocessor. 

• Diffuse volumetric lighting for relighting clouds in real time. 

• Projected transfer for sampling the shadow around an object. 

• Real Time Translucency. 

Conclusion 
Hopefully we have shown how SH lighting can be used to 
produce extremely realistic images on both static and dynamic 
models using just a little extra processing power. We have shown 
how to preprocess your static models with interreflection, how to 
generate transfer functions for diffuse shadowing and how it 
affects the way you design your models. SH lighting can be used 
as a drop-in replacement for the diffuse and ambient terms of a 
normal renderer for static objects, and we have covered a range of 
options for updating global and local lighting in real time. 

I hope you will find a use for SH lighting for your next project so 
that we can all take game graphics to the next stage of realism. I 
am looking forward to seeing how people use SH functions for 
unexpected tasks that require encoding and manipulating 
spherical functions. Remember to write up and share your ideas! 
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Appendix 1: Fast SH Rotations 
The 1996 paper “Rotation Matrices for Real Spherical Harmonics” 
by Ivanic et al (with errata factored in) contains the following 
recurrence relations for generating SH rotation matrices. Firstly 
we need to permute the normal 3×3 rotation matrix into a new 
order and rename it Rmn: 
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The SH rotation matrix M is defined for band l as 
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where integer arguments m and n vary from –l to l to fill in the 
entries of the matrix. The following tables define expressions for 
coefficients u, v, w as well as functions U, V, W and P. 
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(Note: If you get hold of the original paper, you will see that I 
have renamed variables m’ to n and Rl  to Ml for clarity. The 
original authors admit that the printing was less than clear.) 


