
 SPHERICAL HARMONIC LIGHTING

Spherical Harmonic Lighting:
The Gritty Details
Robin Green,
R&D Programmer,
Sony Computer Entertainment America
robin_green@playstation.sony.com
January 16, 2003

Introduction
Spherical Harmonic lighting (SH lighting) is a technique for
calculating the lighting on 3D models from area light sources that
allows us to capture, relight and display global illumination style
images in real time. It was introduced in a paper at Siggraph 2002
by Sloan, Kautz and Snyder as a technique for ultra realistic
lighting of models. Looking a little closer at it’s derivation we can
show that it is in fact a toolbox of interrelated techniques that the
games community can use to good effect.

The results are compelling and the code to compute them is
actually straightforward to write, but the paper that introduces it
assumes a lot of background knowledge from the first time reader.
This paper is an attempt to provide this background, add some
insights into the “why” questions, and hopefully give you all you
need to add SH lighting to your game.

2 SPHERICAL HARMONIC LIGHTING

Illumination Calculations
If you have spent any time coding a 3D engine you should be
familiar with the common lighting models, and concepts like
specular highlights, diffuse colors and ambient lights should be
second nature to you.

The simplest lighting model that you probably use is the diffuse
surface reflection model sometimes known as “dot product lighting”.
For each light source the intensity (often expressed as an RGB
colour) is multiplied by the scalar dot product between the unit
surface normal N and the unit vector towards the light source L.
This value is then multiplied by the surface colour giving the final
reflected result:

()∑
=

⋅=
nlights

i
iilightcolsurfacecolI

1
** LN

One way of looking at this code fragment is to say that it first
calculates the total amount of incoming light from all directions,
then scales it by the cosine of the angle between N and L and
multiplies the result by the surface reflection function (which for a
diffuse surface is just a constant colour for all directions).

This is a simplification of the rendering equation, a formulation of
the problem of producing images in computer graphics that is

Equation 1. Diffuse Surface
Reflection

 SPHERICAL HARMONIC LIGHTING 3

based only on physics. It is the gold standard by which all realistic
computer graphics lighting must be measured.

The problem with the rendering equation is that it is difficult to
compute, and definitely not a real-time friendly operation. It is an
integral over a hemisphere of directions where L, the light
intensity function we are looking to calculate, appears on both
sides of the equation:

() () () () () ()∫ ′′′→+=
S

iioiroeo dVGLfLL ωωωωωω xxxxxxxx ,,,,,, rrrrr

where

()oL ω
r,x = the intensity reflected from position x in direction ωo

()oeL ω
r,x = the light emitted from x by this object itself

()oirf ωω
rr

→,x = the BRDF of the surface at point x,
 transforming incoming light ωi to reflected light ωo

()iL ω
r,x′ = light from x’ on another object arriving along ωi

()xx ′,G = the geometric relationship between x and x’
()xx ′,V = a visibility test, returns 1 if x can see x’, 0 otherwise

To anyone used to writing raytracers the only difficult concept is
the use of differential angles to represent rays and solving the actual
integral itself, but the background is quite simple. I urge you to
learn more about global illumination solutions as for this tutorial
all I can give you is a taster.

Imagine that time is stationary. Picture a volume of space filled
with photons – each cube of space can be said to have a constant
photon density. Picture this field of photons in linear motion. At the
very heart of rendering, we need to find out how many photons
collide with a stationary surface for each unit of time, a value
called flux which measured in joules/second or watts.

dt

dA θ

To calculate the flux, note that all the photons that will hit the
surface within a unit of time t lie within the volume swept behind
the surface in the direction of flow – as the angle gets shallower,
less photons hit the surface per unit of time because the swept
volume is smaller. The relationship turns out to be proportional to
the cosine of the angle between the surface normal and the
direction of flow. As the lengths of the sides of this patch tend
towards zero, we get the differential area of the patch. Dividing

Figure 1. The origins of projected
angle – calculating flux density.

Equation 2. The Rendering Equation,
differential angle form. For more
background on differential angles, see
“Radiosity and Realistic Image
Synthesis” by Cohen and Wallace,
Academic Press, 1993

4 SPHERICAL HARMONIC LIGHTING

the flux by the differential area, we get a value called the
irradiance, measured in watts/meter2.

That’s the idea for one small patch and one direction of incoming
light, but the relationship also holds when we consider all
directions visible from a surface, as shown in Figure 2. As the
angle gets shallower the projected area approaches zero. This is the
reason behind the cosine (or dot product) in the diffuse shading
equation.

θ

That was just a quick taste of the background to the rendering
equation, but I hope you can see that by looking more carefully at
the derivation of our shading models and paying attention to the
details we should be able calculate extremely realistic images
based on purely physical principles. The only question left is how
can we do this in real time? As a games programmer you may
look at the rendering equation and throw your hands up in
horror. An integral inside the inner loop of a shader? And how do
we “integrate over a hemisphere”? How does this relate to any
kind of hardware operations we have available? The rest of this
document aims to take these abstract definitions and propose
methods for calculating global illumination solutions and
displaying them in a game friendly manner.

Monte Carlo Integration
We have a function to integrate, the function describing incoming
light intensity, but we have no idea what that function looks like
so there is no way we can calculate a result symbolically. The key
to unlocking the puzzle is called Monte Carlo Integration, and it’s
all related to probability.

First, some background in probability theory. A random variable is
a value that lies within a specific domain with some distribution of
values. For example, rolling a single 6-sided dice will return a
discrete value from the set fi = {1,2,3,4,5,6} where each value has
equal probability of occurring of pi = 1/6. The cumulative
distribution function P(x) is just a function that tells us the
probability that when we roll a die, we will roll a value less than x.
For example the probability that rolling a die will return a value
less than 4 is P(4) = 2/3. If a variable has equal probability of
taking any value within it’s range it is known as a uniform random

Figure 2. Projected Solid Angle.

For more, see Siggraph 2001, “State of
the Art in Monte Carlo Ray Tracing”,
Course 29

Peter Shirley,”Realistic Ray Tracing”,
A. K. Peters, 2001

Matt Pharr, “Design of a Realistic Image
Synthesis System”, 2002, available at
http://graphics.stanford.edu/~mmp
/book.pdf

 SPHERICAL HARMONIC LIGHTING 5

variable. Rolling a die returns a discrete value for each turn – there
are no fractional values it could return - but random variables can
also have a continuous range, for example picking a random
number within the range [3,7]. One continuous variable that turns
up time and time again is the uniform random variable that
produces values in the range [0,1) (i.e. including 0, excluding 1),
and it is so useful for generating samples from other distributions
it is sometimes called the canonical random variable and we will
denoted it with the symbol ξ.

The function we are most likely to be working with is the
probability density function (PDF) which tells us the relative
probability that a variable will take on a specific value, and is
defined as the derivative of the cumulative distribution function.
Random variables are said to be distributed according to a
particular PDF, and this is denoted by writing f(x) ~ p(x). PDFs
have positive or zero values for every valid number in the range
and the function must integrate to 1.

() () 01 ≥=∫
+∞

∞−
xpdxxp where

The probability that a variable x will take a value in the range [a,b]
is just the integral between a and b of the PDF.

[]() ()∫=∈
b

a
dxxpbaxP ,

Every function using a random variable has an average value, the
mean value, that it will tend to return most often if you take many,
many samples. This is termed the expected value of the function,
written E[f(x)], which is calculated as:

()[] () ()∫= dxxpxfxfE

For example, let’s find the expected or mean value for f(x)=2-x
over the range [0..2]. In order for the function to integrate to 1 over
the range, we need to set p(x)=1/2. The integral gives us:

[]

1
4

2
22

2

0

2

2

0

=







−=

−
=− ∫

xx

dxxxE

Another way of calculating the expected value of a function is to
take the mean of a large number of random samples from the
function, which can be shown to converge towards the correct

6 SPHERICAL HARMONIC LIGHTING

answer as the number of samples approaches infinity (called the
Law of Large Numbers):

()[] ∑
=

≈
N

i
ixfN

xfE
1

)(1

We can combine these two results in one of the sneakiest tricks in
the whole of Engineering Mathematics to give us an estimate of
the integral of a function

() ()
() () ()

()∑∫ ∫
=

≈=
N

i xp
xf

N
dxxp

xp
xfdxxf

1

1

We just take lots and lots of point samples of the function f(x),
scale each one by the PDF, sum the result and divide by the
number of samples at the end. Intuitively you can see that samples
with a higher probability of occurring are given less weight in the
final answer. The other intuition from this equation is that
distributions that are similar to the function being integrated have
less variance in their answers, ending up with only a single
sample being needed when p(x) = f(x). Another way of writing the
Monte Carlo Estimator is to multiply each sample by a weighting
function w(x) = 1/p(x) instead of dividing by the probability,
leading us to the final form of the Monte Carlo Estimator:

() () ()∫ ∑
=

≈
N

i
ii xwxf

N
xf

1

1

If we can guarantee that p(x) is a uniform distribution over the
space we want to sample then we can just take point samples of
our function, sum them, divide by the number of samples times
w(x) and we have calculated an approximation to the integral of
our function saving many multiplies. We know from the
rendering equation that we want to integrate over the surface of a
sphere, so all we need to do is generate evenly distributed points
(more technically called unbiased random samples) over the surface
of a sphere. Taking a pair of independent canonical random
numbers ξx and ξy we can map this “square” of random values
into spherical coordinates using the transform:

()() ()θ,φπ, yx →− ξ2ξ1arccos2

The probability that we will sample any point on the surface of
this unit sphere is the same for all samples, meaning that our
weighting function is just the constant value 1/the surface area of
a sphere, giving us a weighting function of w(x) = 4π. The
resulting distribution of points is shown below.

Equation 3. The Monte Carlo
Estimator

Equation 4. Mapping [0..1,0..1]
random numbers into spherical
coordinates.

 SPHERICAL HARMONIC LIGHTING 7

An additional tool, to lower the variance of our sampling scheme,
is to generate a grid of jittered samples. Divide the input square
into N×N sample cells and pick a random point inside each cell.
This sampling technique is called stratified sampling and it is
provable that the sum of variances for each cell will never be
higher than the variance for random samples over the whole
range, and is often much lower. There are many more sampling
tricks to make Monte Carlo integration more accurate for fewer
samples, but this is all that is necessary for basic SH lighting.

Here is some code for setting up a table of jittered samples. Don’t
worry, we’ll be defining the meaning of the function SH() in a
moment.

struct SHSample {

 Vector3d sph;

 Vector3d vec;

 double *coeff;

};

void SH_setup_spherical_samples(SHSample samples[], int sqrt_n_samples)

{

 // fill an N*N*2 array with uniformly distributed

 // samples across the sphere using jittered stratification

 int i=0; // array index

 double oneoverN = 1.0/sqrt_n_samples;

 for(int a=0; a<sqrt_n_samples; a++) {

 for(int b=0; b<sqrt_n_samples; b++) {

 // generate unbiased distribution of spherical coords

 double x = (a + random()) * oneoverN; // do not reuse results

 double y = (b + random()) * oneoverN; // each sample must be random

 double theta = 2.0 * acos(sqrt(1.0 - x));

 double phi = 2.0 * PI * y;

 samples[i].sph = Vector3d(theta,phi,1.0);

 // convert spherical coords to unit vector

 Vector3d vec(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta));

 samples[i].vec = vec;

 // precompute all SH coefficients for this sample

 for(int l=0; l<n_bands; ++l) {

 for(int m=-l; m<=l; ++m) {

 int index = l*(l+1)+m;

 samples[i].coeff[index] = SH(l,m,theta,phi);

Figure 3. 10,000 unbiased stratified
samples on a sphere. Presented in
(θ,φ) angle space and in 3D
projection.

8 SPHERICAL HARMONIC LIGHTING

 }

 }

 ++i;

 }

 }

}

Orthogonal Basis Functions
The SH lighting paper assumes knowledge of the use of basis
functions. Basis functions are small pieces of signal that can be
scaled and combined to produce an approximation to an original
function, and the process of working out how much of each basis
function to sum is called projection. To approximate a function
using basis functions we must work out a scalar value that
represents how much the original function f(x) is like the each
basis function Bi(x). We do this by integrating the product f(x)Bi(x)
over the full domain of f.

∫ × = c1

∫ × = c2

∫ × = c3

Using this projection process over all our basis functions returns a
vector of approximation coefficients. If we scale the corresponding
basis function by the coefficients…

× =c1

× =c2

× =c3

… and sum the results we obtain our approximated function.

ΣciBi =

 SPHERICAL HARMONIC LIGHTING 9

In the above example we have used a set of linear basis functions,
giving us a piecewise linear approximation to the input function.
There are many basis functions we can use, but some of the most
interesting are grouped into a family of functions mathematicians
call the orthogonal polynomials.

Orthogonal polynomials are sets of polynomials that have an
intriguing property – when you integrate the product of any two
of them, if they are the same you get a constant value and if they
are different you get zero.

() ()




=
≠

=∫− mnc
mn

dxxFxF nm for
for 01

1

We can also specify the more rigorous rule that integrating the
product of two of these polynomials must return either 0 or 1, and
this sub-family of functions are known as the orthonormal basis
functions. Intuitively, it’s a like the functions do not “overlap” each
other’s influence while still occupying the same space, the same
effect that allows the Fourier transform to break a signal into it’s
component sine waves.

These families of polynomials are often named after the
mathematicians who studied them, names like Chebyshev, Jacobi
and Hermite. The one family we are most interested in are called
the Legendre polynomials, specifically the Associated Legendre
Polynomials. Traditionally represented by the symbol P, the
associated Legendre polynomials have two arguments l and m, are
defined over the range [–1,1] and return real numbers (as opposed
to the ordinary Legendre Polynomials which return complex
values – be careful not to confuse the two).

P
2
2(x)

P
2
1(x)

P
2
0(x)

P
1
0(x)

P
1
1(x)

P
0
0(x)

–1

1

2

3

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

The two arguments l and m break the family of polynomials into
bands of functions where the argument l is the band index and takes
any positive integer value starting from 0, and the argument m
takes any integer value in the range [0,l]. Inside a band the
polynomials are orthogonal w.r.t. a constant term and between

Figure 4. The first six associated
Legendre polynomials.

10 SPHERICAL HARMONIC LIGHTING

bands they are orthogonal with a different constant. We can
diagram this as a triangular grid of functions per band, giving us a
total of n(n+1) coefficients for an n band approximation:

()
() ()
() () ()

L

xPxPxP
xPxP

xP

2
2

1
2

0
2

1
1

0
1

0
0

,,

,

The process for evaluating Legendre polynomials turns out to be
quite involved, which is why they’re rarely used for
approximating 1D functions. The usual mathematical definition of
the series is defined in terms of derivatives of imaginary numbers
and requires a series of nasty cancellations of values that alternate
in sign and this is not a floating point friendly process. Instead we
turn to a set of recurrence relations (i.e. a recursive definition) that
generate the current polynomial from earlier results in the series.
There are only three rules we need:

1 () () () m
l

m
l

m
l PmlPlxPml 21 112 −− −+−−=−

The main term of the recurrence takes the two previous bands l–1
and l–2 and generates a new higher band l from them.

2 () () () 2/21!!121 mmm
m xmP −−−=

The expression is the best place to start from as it is the only rule
that needs no previous values. Note that x!! is the double factorial
function which, as (2m–1) is always odd, returns the product of all
odd integers less than or equal to x. We can use P00(x) = 1 as the
initial state for an iterative loop that hoists us up from 0 to m.

3 () m
m

m
m PmxP 121 +=+

This expression allows us to lift a term to a higher band.

The method for evaluating the function is first to try to generate
the highest Pmm possible using rule 2, which if l=m is the final
answer. Since m<l in all remaining cases, all that is left is to raise
the band until we meet the required l. We do this by calculating
Pm+1m using rule 3 only once (stopping if l=m+1) and finally
iterating rule 1 until the correct answer is found (noting that using
rule 1 has less floating point roundoff error than iterating rule 3).

double P(int l,int m,double x)

{

 // evaluate an Associated Legendre Polynomial P(l,m,x) at x

 double pmm = 1.0;

 if(m>0) {

 double somx2 = sqrt((1.0-x)*(1.0+x));

For more, see “Numerical Methods
in C: The Art of Scientific
Computing”, Cambridge
University Press, 1992, pp 252-
254

 SPHERICAL HARMONIC LIGHTING 11

 double fact = 1.0;

 for(int i=1; i<=m; i++) {

 pmm *= (-fact) * somx2;

 fact += 2.0;

 }

 }

 if(l==m) return pmm;

 double pmmp1 = x * (2.0*m+1.0) * pmm;

 if(l==m+1) return pmmp1;

 double pll = 0.0;

 for(int ll=m+2; ll<=l; ++ll) {

 pll = ((2.0*ll-1.0)*x*pmmp1-(ll+m-1.0)*pmm) / (ll-m);

 pmm = pmmp1;

 pmmp1 = pll;

 }

 return pll;

}

Spherical Harmonics
This is all fine for 1D functions, but what use is it on the 2D
surface of a sphere? The associated Legendre polynomials are at
the heart of the Spherical Harmonics, a mathematical system
analogous to the Fourier transform but defined across the surface
of a sphere. The SH functions in general are defined on imaginary
numbers but we are only interested in approximating real
functions over the sphere (i.e. light intensity fields), so in this
document we will be working only with the Real Spherical
Harmonics. When we refer to an SH function we will only be
talking about the Real Spherical Harmonic functions.

Given the standard parameterization of points on the surface of a
unit sphere into spherical coordinates (which we will look at more
closely in a later section on coordinate systems):

() ()zyx ,,cos,sinsin,cossin →θϕθϕθ

the SH function is traditionally represented by the symbol y

() ()
() ()

()








=

<

>

−= −

0

0

0

,cos

,cossin2

,coscos2

),(
00 m

m

m

PK

PmK

PmK

y

ll

m
l

m
l

m
l

m
l

m
l

θ

θϕ

θϕ

ϕθ

where P is the same associated Legendre polynomials we look at
earlier and K is just a scaling factor to normalize the functions:

Equation 6. The real spherical
harmonic function y.

Equation 5. The standard
conversion from spherical to
Cartesian coordinates.

12 SPHERICAL HARMONIC LIGHTING

() ()
()!

!
4

12
ml
mllK m

l +
−+

=
π

In order to generate all the SH functions, the parameters l and m
are defined slightly differently from the Legendre polynomials – l
is still a positive integer starting from 0, but m takes signed integer
values from –l to l.

() lmllyml ≤≤−∈ + ,, R whereϕθ

Sometimes it is useful to think of the SH functions occurring in a
specific order so that we can flatten them into a 1D vector, so we
will also define the sequence yi

() () () mlliyy i
m
l ++== 1,, whereϕθϕθ

The code for evaluating an SH function looks like this:

double K(int l, int m)

{

 // renormalisation constant for SH function

 double temp = ((2.0*l+1.0)*factorial(l-m)) / (4.0*PI*factorial(l+m));

 return sqrt(temp);

}

double SH(int l, int m, double theta, double phi)

{

 // return a point sample of a Spherical Harmonic basis function

 // l is the band, range [0..N]

 // m in the range [-l..l]

 // theta in the range [0..Pi]

 // phi in the range [0..2*Pi]

 const double sqrt2 = sqrt(2.0);

 if(m==0) return K(l,0)*P(l,m,cos(theta));

 else if(m>0) return sqrt2*K(l,m)*cos(m*phi)*P(l,m,cos(theta));

 else return sqrt2*K(l,-m)*sin(-m*phi)*P(l,-m,cos(theta));

}

(Note: the fastest and most accurate way to implement
factorial(x) is as a table of precalculated floating point values.
You will never need more than 33 entries in the table.)

Traditionally, at about this point, papers using the SH functions
like to show you tables of confusing polynomials, but I think it’s
more interesting to show what the functions actually look like
when plotted as spherical functions.

13

 SP
H

ER
IC

A
L

H
A

RM
O

N
IC

 L
IG

H
TI

N
G

Fi

gu
re

 5
. T

he
 fi

rs
t 5

 S
H

 b
an

ds
 p

lo
tte

d
as

 u
ns

ig
ne

d
sp

he
ri

ca
l f

un
ct

io
ns

 b
y

di
st

an
ce

 fr
om

 th
e

or
ig

in
 a

nd
 b

y
co

lo
ur

 o
n

a
un

it
sp

he
re

. G
re

en
 (l

ig
ht

 g
ra

y)
 a

re

po
si

tiv
e

va
lu

es
 a

nd
 re

d
(d

ar
k

gr
ay

) a
re

 n
eg

at
iv

e.

14 SPHERICAL HARMONIC LIGHTING

Note how the first band is just a constant positive value – if you
render a self-shadowing model using just the 0-band coefficients
the resulting looks just like an accessibility shader with points
deep in crevices (high curvature) shaded darker than points on
flat surfaces. The l = 1 band coefficients cover signals that have
only one cycle per sphere and each one points along the x, y, or
z-axis and, as you will see later, linear combinations of just these
functions give us very good approximations to the cosine term in
the diffuse surface reflectance model.

SH Projection
The process for projecting a spherical function into SH coefficients
is very simple. To calculate a single coefficient for a specific band
you just integrate the product of your function f and the SH
function y, in effect working out how much your function is like
the basis function:

() ()∫=
S

m
l

m
l dssysfc

(Note: The equation above is very carefully written not to include
any mention of the parameterization we will use to generate
points on the surface of the sphere – the value s merely represents
some choice of a sample point. We will transform these equations
into concrete, parameterized versions that we can actually
calculate with in a moment, but for now we will stick with the
abstract idea of sample points over the sphere S.)

To reconstruct the approximated function (notated by f capped
with a tilde), we just take the reverse process and sum scaled
copies of the corresponding SH functions:

() () ()∑∑ ∑
=

−

= −=

==
2

0

1

0

~ n

i
ii

n

l

l

lm

m
l

m
l sycsycsf

Now you can see why an n-th order approximation will require n2
coefficients. It can be proven that the true function f could be
reconstructed if we summed the infinite series of all SH
coefficients, so every reconstruction we will make will be an
approximation to the true function, technically known as a band–
limited approximation where band–limiting is just the process of
breaking a signal into it’s component frequencies and removing
frequencies higher than some threshold.

 SPHERICAL HARMONIC LIGHTING 15

Let’s work through a concrete example of projecting a function
into SH coefficients using Monte Carlo integration. First we need
to decide on a parameterization of our sphere, so let’s use the
spherical coordinate system we defined earlier for the SH
functions. Let’s also choose a nice low-frequency function to
integrate so that we don’t have to generate too many coefficients
to illustrate our point. How about two large monochromatic light
sources at 90 degrees to each other and slightly rotated off-axis.
We’ll define these directly in spherical coordinates for now, but in
our full program we’ll be using a ray tracer to evaluate functions
like this directly from geometry.

()()
() ()()35.2cos*sin4,0max

4cos5,0max),(
−−−−

+−=
ϕπθ

θϕθlight

Integrating some function f in spherical coordinates is done using
the formula:

()∫ ∫
π π

ϕθθϕθ
2

0 0

sin, ddf

Figure 6. SH
projection of
functions with
increasing orders of
approximation.

Figure 7. An example lighting
function displayed as a color and a
spherical plot.

16 SPHERICAL HARMONIC LIGHTING

(Why the sin(θ) in there? Remember that integration is all about
summing small patches of area on the surface of the sphere, and
the integral is just the limit as the edge lengths of these square
patches tend to zero. In this rectangular spherical coordinate
parameterization, patches around the equator are going to have
more effect on the final answer than the tiny patches around the
pole and the sin(θ) term encodes this effect. Don’t worry, it’s about
to disappear…)

Remember that to project a function into SH coefficients we want
to integrate the product of the function and an SH function so we
can write out our parameterised function for one coefficient as:

() ()∫ ∫=
π π

ϕφθϕθϕθ
2

0 0

sin,, ddylightc ii

This equation is great for symbolic integration using a package
like Mathematica or Maple, but we have to do this numerically.
We must evaluate this integral using Monte Carlo integration, so
recalling the Monte Carlo estimator from earlier:

() ()∑∫
=

≈
N

j
jj

S

xwxf
N

dsf
1

1

where xj is our array of pre-calculated samples and the function f
is the product f(xj) = light(xj)yi(xj).

As we have chosen all our samples to be unbiased w.r.t. area on
the sphere, each sample has equal probability of appearing
anywhere on the sphere giving us a probability function of
p(xj) = 1/4π and so a constant weighting function w(xj)
= 1/p(xj) = 4π. Also, the use of unbiased samples means that any
other parameterization of the sphere would yield the same set of
samples with the same probabilities, so we have magically
factored out the parameterization of the sphere and our sin(θ)
term disappears.

() ()

() ()∑

∑

=

=

=

=

N

j
jij

N

j
jiji

xyxlight
N

xyxlight
N

c

1

1

4

41

π

π

Using the SH_setup_spherical_samples function from earlier
we can precalculate our jittered, unbiased set of samples and the
SH coefficients for each band we want to SH project. Our
integration code is then just a simple loop of multiply-accumulates

 SPHERICAL HARMONIC LIGHTING 17

into the correct elements of the SH vector, followed by a simple
rescale of the results:

typedef double (*SH_polar_fn)(double theta, double phi);

void SH_project_polar_function(SH_polar_fn fn, const SHSample samples[],

double result[])

{

 const double weight = 4.0*PI;

 // for each sample

 for(int i=0; i<n_samples; ++i) {

 double theta = samples[i].sph.x;

 double phi = samples[i].sph.y;

 for(int n=0; n<n_coeff; ++n) {

 result[n] += fn(theta,phi) * samples[i].coeff[n];

 }

 }

 // divide the result by weight and number of samples

 double factor = weight / n_samples;

 for(i=0; i<n_coeff; ++i) {

 result[i] = result[i] * factor;

 }

}

Applying this process to the light source we defined earlier with
10,000 samples over 4 bands gives us this vector of coefficients:

] 0.09126- 0.00062,- 0.16427,- 0.30458, 0.12290, 0.00072,-
0.09359,- 0.00098, 0.13159, 0.00040,- 0.31530,-

0.28277, 0.28687, 0.21075,-
0.39925, [

Reconstructing the SH functions for checking purposes from these
16 coefficients is simply a case of calculating a weighted sum of
the basis functions:

() () () ()

()∑
=

=

+++=
2

1

332211 ...~

n

i
ii syc

sycsycsycsf

 giving us this low frequency approximated light source:

18 SPHERICAL HARMONIC LIGHTING

Not a bad approximation given that it’s only 16 coefficients. Note
that it does seem to have some residual “fins” sticking out the
back, and these will be manifested as unexpected illumination on
the dark side of an object. These are caused by the high frequency
components of the lighting function when we clamp it at 0 with
the max() function – the discontinuity gives rise to “ringing” in
the reconstructed signal. With higher and higher order
approximations these fins will eventually disappear but a better
method, which we’ll come to in the section on designing light
sources, is to window your input data by pre-filtering it with a
Gaussian before SH-projecting it. Even though we’re working on
the surface of a sphere, all the old rules of signal processing still
apply.

Properties of SH Functions
The SH functions have a bunch of interesting properties that make
them more desirable for our purposes than other basis functions
we could choose. Firstly, the SH functions are not just orthogonal
but orthonormal, meaning if we integrate yiyj for any pair of
i and j, the calculation will return 1 if i = j and 0 if i ≠ j.

The SH functions are also rotationally invariant, meaning that if a
function g is a rotated copy of function f, then after SH projection
it is true that:

() ()()sRfsg ~~ =

In other words, SH projecting the rotated function g will give you
exactly the same results as if you had rotated the input to f before
SH projecting. You’re right, that is pretty confusing. It may not
sound like such a big deal but this property is something that a lot
of other compression methods cannot claim, e.g. JPEG’s Discrete
Cosine Transform encoding is not translation invariant which is
what gives us the blocky look under high compression. In
practical terms it means that by using SH functions we can
guarantee that when we animate scenes, move lights or rotate

Figure 8. The reconstructed low
frequency lighting function displayed
as a color and a spherical plot.

 SPHERICAL HARMONIC LIGHTING 19

models, the intensity of lighting will not fluctuate, crawl, pulse or
have any other objectionable artifacts.

The next property is the killer one. We need to do lighting, so in
general terms we will be taking some description of incoming
illumination and multiplying it by some kind of description of the
surface reflectance (which we will be calling a transfer function) to
get the resulting reflected light, but we need to do this over the
entire sphere of incoming light. We need to integrate:

() ()∫
S

dsstsL

where L is the incoming light and t is the transfer function. If we
project both the illumination and transfer functions into SH
coefficients then orthogonality guarantees that the integral of the
function’s products is the same as the dot product of their
coefficients:

() () ∑∫
=

=
2

0

~~ n

i
ii

S

tLdsstsL

We have collapsed an integration over the sphere into a single dot
product over the SH coefficients, just a series of multiply-adds.
This is the key to the whole process – by projecting functions into
SH space we can convert integration over a sphere into a very fast
operation.

This dot product returns a single scalar value which is the result of
the integration, but there is another technique we can use for
transforming SH functions. Here’s how the argument goes:

Say we have some arbitrary spherical light source function a(s)
that we don’t know yet. We also have some shadowing function
for a particular point on the surface b(s) that describes how light at
that point is shadowed (e.g. there’s a nose above us that will block
light coming from that direction), and we can evaluate it using a
ray tracer. We want a way to transform the coefficients of the
incoming light into another set of coefficients for a light that has
been masked by the shadow function, and we’ll call the result c(s).
We can construct a linear operation that maps the SH projection of
the light source a(s) directly to the SH projection of the shadowed
light source c(s) using a transfer matrix without having to know the
lighting function a(s). To build the transfer matrix M, where each
element of the matrix are indexed by i and j, the calculation is:

() () () dssysysb
S

jiij ∫=M

Equation 7. Integrating the product of
two SH functions by evaluating a dot
product of their coefficients.

Equation 8. The triple product for
calculating elements of a transfer
matrix.

20 SPHERICAL HARMONIC LIGHTING

The result is a matrix that we can use to transform from a light
source into a shadowed light source using a simple matrix-vector
multiply:

∑
=

=
2

1

n

j
iiji ac M

Let’s try an explicit example. What would happen if we found a
magic shadowing function that looks exactly like one of the SH
functions; for example what if b(s) = y22(s)? This means we will be
calculating a triple product of SH functions:

() () ()dssysysy
S

ji∫ 2
2

The resulting matrix is mostly sparse, and a plot of the non-zero
elements in a 25×25 matrix looks like this:

Applying the matrix to the SH coefficients of a light source gives
us another vector of SH coefficients, which gives us exactly the
same results as if we had multiplied the light source with the
mask before SH projecting:

As you can see this is a different way of recording shadowing at a
point on a model without forcing us to do the final integral, and

Figure 9. The non-zero entries in
matrix M in our contrived triple-
product transfer matrix example.

Figure 10. The
result of applying
the example
transfer matrix to
a light source.

Equation 9. Applying a transfer
matrix to a vector of SH coefficients.

 SPHERICAL HARMONIC LIGHTING 21

we will use it to good effect when we preprocess view dependant
glossy specular surfaces.

Rotating Spherical Harmonics
The last property of SH functions is the most difficult to code, and
probably the place where most people will get stuck. We have
asserted that SH functions are rotationally invariant, but how do
we actually rotate an SH projected function? The answer is not
simple. The first question to answer is “what form of rotation are
you talking about?” Do you want rotations in terms of Euler
angles (α,β,γ), and if so which order of axes are you rotating
about? XYZ, ZYX or ZYZ? How about specifying an axis and
angle rotation by using a quaternion? How about generalizing
rotations into 3×3 rotation matrices with all the associated
redundancy of symmetries? Despite Sloan, Kautz and Snyder
saying that SH functions have “simple rotation”, they aren’t
telling the whole story.

What we can say about the SH rotation process, from the rules of
orthogonality, is that it is a linear operation and that coefficients
between bands do not interact. In practical terms this means that
we can rotate a vector of SH coefficients into another vector of SH
coefficients using a single n2×n2 rotation matrix and that the
matrix will be block diagonal sparse, looking something like this:







































=

OMMMMMMMMM

L

L

L

L

L

L

L

L

L

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

XXX
XXX
XXX

1

0000
0000
0000
0000
0000

000000
000000
000000
00000000

SHR

So true, using the rotation operation could be seen as “a simple
computation” once you have the rotation coefficients handy but
constructing the rotation coefficients efficiently is far from simple.

As a quick aside, let’s look at another representation for the SH
functions. So far we have been expressing SH functions in terms of
spherical coordinates, but we can just as easily convert them to
implicit functions on (x,y,z) by substituting in the spherical to
Cartesian coordinate conversion formula and canceling out terms.
Doing so we come up with a surprisingly simple set of
expressions:

Kautz et al, “Fast, Arbitrary BRDF
Shading”, 13th Eurographics
Workshop on Rendering, 2002,
Section 3 and Appendix.

22 SPHERICAL HARMONIC LIGHTING

2

22

22

222

22

15
2
115

2
125

4
115

2
115

2
12

3
2
13

2
13

2
11

1
2
10

21012

r
yx

r
zx

r
yxz

r
yz

r
yxl

r
x

r
z

r
yl

l

mmmmm

−−−
=

=

=

===−=−=

πππππ

πππ

π

where

()1222 =++= rzyxr usually n.b.

To use these functions simply pick a point (x,y,z) on the unit
sphere and crank it through the equation above to calculate the SH
coefficient in that direction. It is possible to use this form of
equation for SH projection, but they turn out to be more useful to
us as symbolic expressions.

We can build a rotation matrix for SH functions by building a
matrix where each element is calculated using symbolic
integrating of a rotated SH sample with an unrotated version:

∫=
S

jiij dssysy)()(RM

This will build a n2×n2 matrix of expressions that will map an
unrotated vector of SH coefficients into a rotated one. For
example, using the explicitly parameterised formulation:

() () () ϕθθϕθαϕθ
π π

ddyy
o jiij ∫ ∫ +=
2

0
sin,,M

for the first three bands gives us a 9×9 matrix for rotating about
the z-axis:

Equation 10.
Cartesian version
of the first few
real SH functions.

 SPHERICAL HARMONIC LIGHTING 23

() ()

() ()
() ()

() ()

() ()
() ()










































−

−

−

=

αα

αα

αα

α

αα

αα

α

2cos0002sin0000

0cos0sin00000

001000000

0sin0cos00000

2sin0002cos0000

00000cos0sin0

000000100

00000sin0cos0

000000001

aZ

This matrix expands into higher bands as you would expect, with
band N using the sine and cosine of Nα.

This technique looks great for low order SH functions – you
simply decompose any rotation into a series of simpler rotations
and recompose the results. In reality it quickly turns into a royal
pain-in-the-ass for anything larger than a 2nd order SH function.

Firstly, what is the minimum number of rotations we need to
allow us to transform an SH function to any possible orientation?
If we use a ZYZ formulation we can get away with only two
rotations, and one of them we already have the formula for! So,
how to rotate about the y-axis? We can decompose it into a
rotation of 90° about the x-axis, a general rotation about the z-axis
followed finally a rotation by -90° about the x-axis. Great, the x-
axis rotation is a fixed angle so we can just tabulate it as an array
of constant floats:











































−

−

−−

−

−

=−

2
1

2
3

2
3

2
1

90

0000000

000010000

0000000

000100000

010000000

000001000

000000010

000000100

000000001

X











































−

−−

−

−

−

=+

2
1

2
3

2
3

2
1

90

0000000

000010000

0000000

000100000

010000000

000001000

000000010

000000100

000000001

X

Taking a step back, let’s look at the computational cost of this
process. In matrix notation, we are calculating:

() αβγγβα ZXZXZR 9090,, +−=SH

24 SPHERICAL HARMONIC LIGHTING

That’s 4 different 9×9 matrix multiplications, plus associated trig
functions. Given that cost of matrix-matrix multiplication is O(n3),
a naïve implementation would use 2916 multiply adds. We can
use the sparsity of the matrices to get this down to around 340
multiplies for a 5th order rotation, but it’s not as cheap as it could
be.

How about combining the rotations and multiplying through the
whole operation into one big explicit expression? For bands higher
than 1 this turns out to produce some very scary trig expressions.
Here is the matrix for the first two bands:

()




































−







−
−

−








+







−

=

γα
βγαβα

γα
βγα

βγββγ

βγα
γαβα

βγα
γα

γβα

sinsin
coscoscossincos

cossin
cossincos0

sincoscossinsin0

coscossin
sincossinsin

cossinsin
coscos0

0001

,,SHR

This matrix is useful for debugging, but to use it we have to
convert our game engine to ZYZ rotations with all the associated
gimbal lock problems when rotations end up aligning. Wasn’t this
the reason we all converted to quaternions? There is a trick we can
use to prevent us from entering this arena of pain and also speed
up the calculation. One of the fundamental properties of rotation
matrices in 3D is their numerous symmetries and we can exploit
these to our advantage. Given an ordinary 3×3 rotation matrix R:














=

ZZZYZX

YZYYYX

XZXYXX

RRR
RRR
RRR

R

we can reconstruct the trigonometric functions of the ZYZ Euler
angles (α,β,γ) directly using these identities:

β
γ

β
γ

β
α

β
α

ββ

sin
sin

sin
cos

sin
sin

sin
cos

1sincos 2

YZXZ

ZYZX

ZZZZ

RR

RR

RR

=
−

=

==

−==

This formulation breaks down when sin β = 0, but in this case the
rotation matrix would be written:

Equation 11. Analytical solution for
the SH rotation matrix by ZYZ Euler
angles (α,β,γ) for the first two bands.

 SPHERICAL HARMONIC LIGHTING 25

() ()

() ()



















±±±−

±

±±±
=














γαγα

γαγα
γπα

cos0sin0

0100

sin0cos0

0001

,0,SHR

So we can arbitrarily decide how to divide the total z-rotation
between α and γ. Forcing γ = 0 gives us the special case identities:

0sin1cos

sincos

==

−==

λγ

αα YXYY RR

Both of these formulations work fine as a stopgap for the first
couple of bands of SH coefficients, but we really need a fast,
general case solution for any number of bands. This is where we
hit the unexplored, bleeding edge of current game research.

To solve this we need to dig into the roots of where the SH
functions originally came from. The SH functions were originally
devised to describe the distribution of angular momentum in a
single atom at the quantum level and this explains why the
arguments l and m are integers – they are the indivisible quantum
numbers describing the state of the atom. The area of science with
most experience of writing programs using SH functions is called
Computational Chemistry, in which researchers try to model the
interactions of atoms inside molecules at the quantum level to
better understand how they function. As recently as 1999 papers
of basic research have been published describing new ways of
rotating real SH functions that are far more efficient that the
traditional Wigner D functions. The emphasis of these papers until
recently has been on explicit formula for axis-aligned special cases
(great for modeling lattices of atoms), but we need a more general
formulation for our computer graphics work.

We really need a set of recurrence relations, recursive functions that
build SH rotation matrices for band l+1 from band l. This way, low
order approximations are guaranteed less compute complexity
than higher order ones. Research has uncovered three papers on
recurrence relations for rotating real spherical harmonics and they
have many similarities:

1 Ivanic J and Ruedenberg K, “Rotation Matrices for Real Spherical
Harmonics, Direct Determination by Recursion”, J. Phys Chem. A,
Vol. 100, 1996, pp 6342-6347. See also “Additions and Corrections:
Rotation Matrices for Real Spherical Harmonics”, J. Phys Chem. A,
Vol. 102, No.45, 1998, pp 9099-9100

26 SPHERICAL HARMONIC LIGHTING

2 Choi, Cheol Ho et al, “Rapid and stable determination of rotation
matrices between spherical harmonics by direct recursion”, J. Chem.
Phys. Vol 111, No. 19, 1999, pp 8825-8831

3 Blanco, Miguel A et al, “Evaluation of the rotation matrices in the
basis of real spherical harmonics”, J. Molecular Structure (Theochem),
419, 1997, pp19-27

I have successfully implemented Blanco’s paper but would
recommend either Ivanic or Choi’s papers as they are more
efficient algorithms, if you can fight your way through the math.
Choi reports in a personal email that working in the complex
space is up to 10 times faster than working in the real space but
requires a complex to real postprocess (“Complex makes life
easier!” he writes). I am working on implementing both
algorithms for a later paper. For a little more information on
Ivanic’s algorithm, see Appendix 1 of this document.

SH Lighting Diffuse Surfaces
Now we have covered the properties of SH functions and coded
up some tools for manipulating them we can finally get to use
them for generating some lighting for our models. We will go
through a number of lighting techniques showing how each one is
defined and how it is implemented.

Let’s assume we have already loaded a description of our
polygonal model into an internal database. We are only interested
in point sampling the world using a raytracer, so all we need is a
list of vertices, normals and triangles. First we process the vertex-
normal pairs into a set of unique “lighting points” by duplicating
vertices with multiple normals and concatenating vertices that are
shared across smooth surfaces (this can be done very quickly
using an STL map). Next we loop through all the lighting points in
the model calculating a transfer function for each. The transfer
function is a function that when dotted with an incoming
luminance function (i.e. multiplied and integrated), gives us the
approximated lighting for that point.

There are three different types of transfer function we can
generate for diffuse surfaces, each one progressively more
complex to calculate so we’ll go through them in order.

1 Diffuse Unshadowed Transfer
Returning to the Rendering Equation we can strip it down to it’s
barest essentials, just a light source and a surface point assumed to
lie on some oriented flat plane, to generate an unshadowed image
using only direct illumination

 SPHERICAL HARMONIC LIGHTING 27

N

ω i

θ
cos(θ)

() () () ()∫=
S

iiiiioro dHLfL ωωωωωω ,,,,, xxxx

where:

()oL ω,x = the amount of light leaving point x along vector ωo

()iorf ωω ,,x = The BRDF at point x

()iiL ω,x = incoming light at point x along vector ωi

()iH ω,x = the geometric or cosine term, as described earlier.

Remembering that a diffuse BRDF reflects light equally in all
directions, so we can optimize this equation quite dramatically.
Light is reflected equally so the lighting is view independent and
our viewing angle ωo disappears. Our BRDF is just a simple,
constant scalar which can be taken outside of the integral leaving
us with just three elements: The light source Li, a simplified cosine
term and a linear scale factor.

() () ()∫ •=
S

iiiiDU d,LL ωωω
π
ρ 0,max x
x Nxx

where

xρ = the surface albedo at point x.

xN = the surface normal at point x.

(Note for pedants: here we have switched to using the albedo ρx as
the measure of reflectivity for Lambertian diffuse reflection. The
albedo is the ratio of emitted radiance over irradiance, and for
diffuse surfaces it collapses to πρx so we need only specify a scalar
ρx that takes on values in the range [0,1]. Just like RGB colors.)

Separating out the light source from the transfer function (which
we shall call MDU for diffuse unshadowed transfer) we get the
function we are looking to approximate with an SH function. It’s
just the geometric term, the cosine of the angle between the
normal and the light source, clamped at zero:

For proof, see Cohen and Wallace,
“Radiosity and Realistic Image
Synthesis”, Academic Press
Professionsal, 1993, pp32-33

28 SPHERICAL HARMONIC LIGHTING

()0,max sN •=DUM

In order to calculate this function we will take our list of
precalculated rays and SH coefficients and run through them,
dotting each one with the surface normal at our sample point to
see if it is inside the upper hemisphere.

// for each sample

for(int i=0; i<n_samples; ++i) {

 // calculate cosine term for this sample

 double H = DotProduct(sample[i].vec, normal);

 if(H > 0.0) {

 // ray inside upper hemisphere so...

 // SH project over all bands into the sum vector

 for(int j=0; j<n_coeff; ++j) {

 value = Hs * sample[i].coeff[j];

 result[j + red_offset] += albedo_red * value;

 result[j + green_offset] += albedo_green * value;

 result[j + blue_offset] += albedo_blue * value;

 }

 } else {

 // ray not in upper hemisphere

 }

}

// divide the result by probability / number of samples

double factor = area / n_samples;

for(i=0; i<3*n_coeff; ++i) {

 coeff[i] = result[i] * factor;

}

This will produce pictures much like normal dot-product lighting,
except using arbitrarily complex SH area light sources.

2 Shadowed Diffuse Transfer
By adding a visibility term to the simplified Rendering Equation,

Figure 11. A rendering using 5th order
diffuse unshadowed SH transfer
functions (25 coefficients). In effect,
lighting using just the geometric term.

 SPHERICAL HARMONIC LIGHTING 29

we can add self shadowing to the lighting model, and our lighting
starts to really get interesting.

() () () ()∫
Ω

•= iiiii dV,LL ωωωω
π
ρ 0,max x
x Nxx

where

()iV ω = visibility test that returns 0 if the ray ωi is blocked by
self, 1 otherwise.

With only this tiny change, points on the surface of an object are
no longer assumed to be sitting on an infinite plane but instead
interact with their surrounding geometry and have access to their
fields of view of incoming area light sources. The resulting
transfer function for diffuse shadowed lighting MDS is:

() ()0,max ii
DS VM ωω •= N

This one effect, sometimes called occluded ambient, is the most
powerful difference between traditional CG and Global
Illumination images. Calculating the transfer function requires us
to trace a ray from the current point through the polygon database
to find any hits – note that we don’t need any geometric
information from the hit, just a boolean that it occurred.

// for each sample

for(int i=0; i<n_samples; ++i) {

 // calculate cosine term for this sample

 Hs = DotProduct(sample[i].vec, normal);

 if(Hs > 0.0) {

 // ray inside upper hemisphere...

 if(!self_shadow(pos,sample[i].vec)) {

 // ray hits nothing, add in its the contribution:

 for(int j=0; j<n_coeff; ++j) {

 value = Hs * sample[i].coeff[j];

 result[j + red_offset] += albedo_red * value;

 result[j + green_offset] += albedo_green * value;

 result[j + blue_offset] += albedo_blue * value;

 }

30 SPHERICAL HARMONIC LIGHTING

 } else {

 // ray hits self...

 }

 } else {

 // ray not in upper hemisphere

 }

}

// divide the result by number of samples

double factor = area / n_samples;

for(i=0; i<3*n_coeff; ++i) {

 coeff[i] = result[i] * factor;

}

How do we implement the self_shadow() function? That’s up to
your raytracer, but there are some things to note about the SH
projection process make the code easier to write.

Firstly, if you decide to use an acceleration data structure like a
voxel grid, hierarchical bounding box tree or BSP tree, remember
that every ray origin will be inside the object’s bounding box so
there is no need for an initial ray-box intersection to find the
starting point for the raytrace. Just hash the starting point into the
data structure and start there.

Secondly, the point of self_shadow is to find occlusions so we
want our shadow feelers to hit the object and we are going to be
throwing out rays in all directions from a vertex on the model.
The problem is that polygons adjacent to the vertex are always
going to be coplanar to many rays. Any ray tested against a
polygon that included the ray origin as a vertex will at best return
a hit at the origin (requiring an epsilon tests to exclude hits too
close to the origin) or at worst a hit somewhere along the ray. This
can lead to incorrect shadowing on your object if you are not
careful, so if possible retain some face adjacency information when
loading your model and exclude polygons that share the current
vertex from your shadow tests.

A

B

C

The third issue is to do with single sided polygon tests. In order
for ray-poly tests to correctly return occlusion we cannot use
single-sided polygon tests. Excluding a ray-polygon test because
the polygon “faces away” from the ray does not work if the ray

Figure 12. Examples of ray-polygon
gotchas when tracing rays from a
vertex on a polygon model.

 SPHERICAL HARMONIC LIGHTING 31

started from within the model, (intersections A and C in the
illustration above) as is the case for many shadow rays. This
limitation also means that, in general, we must have manifold
objects – objects with fully enclosed skins. Objects with self
intersecting surfaces will have incorrect shadowing (after
reconstruction with Gouraud shading) if there are no vertices at
the intersections. Be careful when lighting single-thickness objects
that you are sure that any shadow feeler will be correctly occluded
by other objects (as the illustration below fails to do correctly on
the back wall!)

Shadow rays are also free to return an intersection as soon as an
occluding polygon is found (intersection B) as the order of
intersection is not important, just that one exists.

3 Diffuse Interreflected Transfer
The last method of diffuse lighting is the most striking. The
interesting part of the Rendering Equation is where it recursively
adds in light not arriving directly from a light source, but as
secondary reflected light from other polygons visible to a point on
the model. Expressing this in an integral we can write:

() () () ()() ()∫
Ω

•−+= iiiiDSDI dV,LLL ωωωω
π
ρ 0,max1' x
x Nxxx

where

()xDSL = diffuse shadowed lighting from previous section.

()iV ω = visibility test from previous section.

()iL ω,'x = light reflected from another point x’ on the same
 model towards point x.

The interreflected light transfer function is difficult to
mathematically describe compactly and not really that

Figure 13. A rendering using 5th
order diffuse shadowed SH transfer
functions. Note the soft shadowing
from the constant hemisphere light
source.

32 SPHERICAL HARMONIC LIGHTING

illuminating, but the algorithm for generating it is easier to
describe. There are four steps:

a) For each shading point x on the model, calculate the direct
lighting transfer function at that point (i.e. diffuse shadowed
lighting from the previous section).

b) Next, fire a rays from your current point until one hits another
triangle on the object. Linearly interpolate the SH functions at
each corner of the triangle using the barycentric coordinates of
the hit. This transfer function is the amount of light being
reflected back towards your shading point.

c) Multiply this reflected light by the dot product between the
ray and the surface normal at x (a vector-scalar multiply that
scales how much this interreflected light is reflected according
to the cosine term) and sum it into an empty SH vector. Once
all rays have been cast, divide the accumulated values by the
number of samples and Monte Carlo weighting term as usual.

d) Once all shading points have been calculated, this new set of
SH vectors is one bounce of diffusely interreflected light, and
only the interreflected light. For additional bounces, repeat the
raytracing using this new set of values as the starting light
intensities at each triangle vertex. Repeat until no energy has
been transferred, or until you reach N bounces. Finally, sum
all bounces plus the direct illumination into one list of SH
vectors.

A

B

Geometrically, the idea of interreflected light is simple. Each point
on the model already knows how much direct illumination it has,
encoded in the form of a transfer function. We fire rays to find
sample points that can reflect light back onto our position and add
a cosine weighted copy of that transfer function back into our
own. For example, point A in the illustration above has fired a ray
and hit point B. The transfer function at B is added to A like this:

Figure 14. A single sample of diffuse
self transfer, the downward facing
plane A fires a ray.

 SPHERICAL HARMONIC LIGHTING 33

+ × =

Note that all SH functions occur in the same coordinate system so
summing them is a valid operation. See how point A, when lit by
an SH lightsource, will be illuminated by light from above, even
though it cannot directly see any. The assumption here is that
illumination doesn’t vary across the model (i.e. point B has exactly
the same lighting function as point A). This is the key to SH
lighting: Low frequency light sources and very small light source
variance across an object.

This time your raytracer has more work to do. Not only do you
have to find intersections with the model, but you need to find the
closest hit. If the closest hit faces towards the lighting point we
need to find the exact SH lighting function at that point. We can
speed up the process by remembering which rays in the previous
pass were occluded by self as these are the ones that will be
reflecting light back at us. Two ways of doing this – the SH
lighting paper uses a subdivided icosahedron of “buckets” where
each bucket contains the rays that exit through it’s triangle. Each
bucket is marked with a bit saying whether any rays in it have hit
self. My program went for the simpler per-lighting-point STL
vector<bool> where a set bit indicates a self hit. Much less
elegant, wasteful of huge chunks of memory but surprisingly
quick. But, hey, what is cheap RAM for anyway if you can’t waste
it to speed up an offline preprocessor? Note that all reads and
writes of the STL container are done in order, so the container
could be optimized for uni-directional iteration.

void self_transfer_sh()

{

 const double area = 4.0*PI;

 double *sh_buffer[n_bounces+1]; // list of light bounce buffers.

 // allocate and clear buffers for self transferred light

 sh_buffer[0] = sh_coeff; // already calculated from direct lighting

 for(int i=1; i<=n_bounces; ++i) {

 sh_buffer[i] = new double[n_lighting * 3 * n_coeff];

 memset(sh_buffer[i], 0, n_lighting*3*n_coeff*sizeof(double));

 }

 // for each bounce of light

 for(int bounce=1; bounce<=n_bounces; ++bounce) {

 // loop through all lighting points redistributing self light

34 SPHERICAL HARMONIC LIGHTING

 for(int i=0; i<n_lighting; ++i) {

 // find rays that hit self

 bitvector::iterator j;

 int n = 0;

 double u = 0.0, v = 0.0, w = 0.0;

 Face *fptr = 0;

 double sh[3*n_coeff];

 // get the surface albedo of the lighting point.

 double albedo_red = mlist[plist[i].material].kd.x / PI;

 double albedo_green = mlist[plist[i].material].kd.y / PI;

 double albedo_blue = mlist[plist[i].material].kd.z / PI;

 // loop through boolean vector looking for a ray that hits self…

 for(j=hit_self[i].begin(); j!=hit_self[i].end(); ++n,++j) {

 if(*j) {

 // calc H cosine term about surface normal

 float Hs = DotProduct(sample[n].vec, plist[i].norm);

 // if ray inside hemisphere, continue processing.

 if(Hs > 0.0) {

 // trace ray to find tri and (u,v,w) barycentric coords of hit

 u = v = w = 0.0;

 fptr = 0;

 bool ret = raytrace_closest_triangle(plist[i].pos,

 sample[n].vec,

 face_ptr, u, v);

 // if (surprise, surprise) the ray hits something...

 if(ret) {

 // lerp vertex SH vector to get SH at hit point

 w = 1.0 - (u+v);

 double *ptr0 = sh_buffer[bounce-1] +

 face_ptr->vert[0]*3*n_coeff;

 double *ptr1 = sh_buffer[bounce-1] +

 face_ptr->vert[1]*3*n_coeff;

 double *ptr2 = sh_buffer[bounce-1] +

 face_ptr->vert[2]*3*n_coeff;

 for(int k=0; k<3*n_coeff; ++k) {

 sh[k] = u*(*ptr0++) + v*(*ptr1++) + w*(*ptr2++);

 }

 // sum reflected SH light for this vertex

 for(k=0; k<n_coeff; ++k) {

 sh_buffer[bounce][i*3*n_coeff + k+0*n_coeff] +=

 albedo_red * Hs * sh[k+0*n_coeff];

 sh_buffer[bounce][i*3*n_coeff + k+1*n_coeff] +=

 albedo_green * Hs * sh[k+1*n_coeff];

 sh_buffer[bounce][i*3*n_coeff + k+2*n_coeff] +=

 albedo_blue * Hs * sh[k+2*n_coeff];

 }

 } // ray test

 } // hemisphere test

 } // hit self bit is true

 } // loop for bool vector

 } // each lighting point

 // divide through by n_samples

 SPHERICAL HARMONIC LIGHTING 35

 const double factor = area / n_samples;

 double *ptr = sh_buffer[bounce];

 for(int j=0; j<n_lighting * 3 * n_coeff; ++j)

 *ptr++ *= factor;

 }

 } // loop over all bounces

 // sum all bounces of self transferred light back into sh_coeff

 for(i=1; i<=n_bounces; ++i) {

 double *ptra = sh_buffer[0];

 double *ptrb = sh_buffer[i];

 for(int j=0; j<n_lighting * 3 * n_coeff; ++j)

 *ptra++ += *ptrb++;

 // deallocate SH buffers

 for(i=1; i<=n_bounces; ++i) {

 delete[] sh_buffer[i];

 }

 return;

}

Global illumination and radiosity programmers will recognize this
is a probabilistic gathering solution, where each point on the model
blindly searches for neighbors that can see it and drags in light
from the outside world, with the effect that the model is slowly lit
by completely solving one lighting point at a time. It is quite
possible to implement a non-probabilistic version that has pre-
calculated which vertices are visible to each other and loops over
only them. Another option is to implement a shooting solution
where each surface distributes it’s energy outwards to every
surface it can see so that the lights slowly come up, converging on
the solution all at once. (It’s is good to keep a sorted list or heap of
lighting points ordered by intensity so that the lights come up as
fast as possible.) Both techniques have their place, especially when
we introduce emissive surfaces into the preprocessor. The
drawback of the non-probabilistic methods are that we have to
calculate SH coefficients for each ray as we generate them instead
of blasting through a list of precalculated vectors and SH
coefficients. It’s a balancing act between accuracy and efficiency
but compared to the cost of ray-model intersections, calculating a
few SH coefficients costs peanuts. (Importance sampling is
another area to play with, especially when we start using glossy
BRDFs).

Our new, more picky raytracer will have more issues with non
manifold objects and coplanar polygons than the self shadowing
version as it has to find barycentric coordinates for each hit. If you
find that vertices inside concavities are returning bad values, one
quick fix up you can do is to offset the origin of the ray a small
epsilon distance along the geometric mean normal of the vertex

36 SPHERICAL HARMONIC LIGHTING

(add all normals of polygons adjacent to the vertex and
renormalize). This will usually move the ray origin outside of the
model and give better looking interreflection deep into concavities
at the cost of a slightly increased number of false positive self hits.

Using SH lighting over time will start to affect how you look at 3D
models. You will start looking for flat shaded models without
shadows baked into the texture as the SH lighting will handle all
this for you. You will start to recognize how often artists leave out
subtle concavities in real-time models as normal lighting just does
not show them up. You will start asking for models that break up
large flat areas into grids of triangles so that these areas get more
lighting samples across their span, helping to capture shadows
more effectively. Over time you will develop an eye for models
that will look good under SH lighting and see how to adapt other
models to put vertices in the interesting lighting points. Putting
the tools of SH lighting into the hands of your artists is the best
way to update your art path for SH lighting, as low order SH
preprocessing can be done at near interactive rates.

Rendering SH Diffuse Surfaces
Now we have a set of SH coefficients for each vertex, how do we
build a renderer using current graphics hardware that will give us
real-time frame rates? Going back to the properties of SH
functions, the basic calculation for SH lighting is the dot product
between an SH projected light source and the SH transfer
function:

() ()

...

~~

33221100

0

2

tLtLtLtL

tLdsstsL
n

i
ii

S

+++=

= ∑∫
=

This calculation will give us a single channel light intensity for a
vertex, and we approximate the complete solution over an object
by filling in the gaps between vertices using Gouraud shading.
Remember that all SH calculations happen in object space so if

Figure 15. A rendering using 5th order
diffuse SH transfer functions with self
interreflection. Note the soft shadows
and color bleeding onto the white cup.

 SPHERICAL HARMONIC LIGHTING 37

you want to reorient the object in world space or rotate a lighting
function, you will need to rotate the light into object space first.

At this point we get some choices to make. If we assume that the
illumination is a white light source (the same for red, green and
blue), the calculation per vertex is:

for(int j=0; j<n_coeff; ++j) {

 vertex[i].red += light[j] * vertex[i].sh_red[j];

 vertex[i].green += light[j] * vertex[i].sh_green[j];

 vertex[i].blue += light[j] * vertex[i].sh_blue[j];

}

A colored light source will have a different SH function for each
color channel, making calculation:

for(int j=0; j<n_coeff; ++j) {

 vertex[i].red += light_red[j] * vertex[i].sh_red[j];

 vertex[i].green += light_green[j]* vertex[i].sh_green[j];

 vertex[i].blue += light_blue[j] * vertex[i].sh_blue[j];

}

Note that nowhere in either calculation is the surface normal
mentioned – it’s already implicitly encoded in the SH coefficients
as is the ambient term, so we get diffuse shading with occluded
ambient built in.

One optimization is to note that if the model has not too much
emphasis on hard shadows (like a human face), the cosine term is
well approximated by just the first two orders of SH functions,
giving us a 4-coefficient drop in replacement for the normal
diffuse shading term that gives us soft self-shadowing for no extra
multiply-adds per vertex and no extra storage. This 4-coefficient
system also translates well into 4-way SIMD operations, using
exactly the same code as a 3 parallel light source plus ambient
matrix.

Another option is to use a single channel white light source,
encode just self shadowing and ignore self transfer. The resulting
lighting calculation requires only one transfer function and one
colour per vertex and can be re-colored on the fly:

for(int j=0; j<n_coeff; ++j) {

 vertex[i].red += k_red * light[j] * vertex[i].sh[j];

 vertex[i].green += k_green * light[j] * vertex[i].sh[j];

 vertex[i].blue += k_blue * light[j] * vertex[i].sh[j];

}

We can mix and match SH lighting and normal lighting because

38 SPHERICAL HARMONIC LIGHTING

light sums linearly, so we can use SH lighting for the ambient and
diffuse part of a shader and add a specular term over the top. This
is exactly what we did for the image of the car at the beginning of
this document, first rendering the car body diffusely with SH
lighting and alpha blending a pre-filtered specular environment
map over the top.

So far we have been using infinite light sources that are the same
all over an object, but there is a way to fake a local light source
illuminating the model. This only works if we have only self-
shadowing and no self-transfer as it breaks the assumption of low
lighting variance across the model. To do local lighting we
construct a small number of samples (e.g. 6 or 8) of the local
lighting environment from a few well spaced precalculated points
on the surface of the model, calculating the lighting function as if
the model was absent. If there are emitters close by each of these
spherical samples will see the local light source at slightly
different positions. We reconstruct correct local lighting by
calculating a weighted sum of the lighting samples for each
vertex, weighting by the distance from the vertex to the light
sample point. The example in Sloan, Kautz and Snyder’s SH paper
used the weighting scheme:

() ()
n

jidist
jiw 








=

,
1,

between vertex i and lighting point j where n = 10 in the example
image of Max Planck to emphasize the effect of local lighting.

Other researchers have found a quicker, looser method. Take the
N lighting sample positions and construct a very low poly
triangulated polyhedron. Next break the model into groups of
vertices based on which polygon they are closest to. To
precalculate the distribution of light to the vertices in a group we
project the vertex onto the lighting triangle and calculate the 2D
barycentric coordinate of that projected point. We then use these
weights to lerp the three light sources for that vertex. This

 SPHERICAL HARMONIC LIGHTING 39

technique has the added advantage that it can be calculated in
hardware.

We have only scratched the surface of techniques for
reconstructing SH lighting so have a go and see if you can come
up with some better and more flexible effects. The current holy
grail is to extend SH lighting from being a static model technique
to one that works on animated models. Blending SH vectors the
same way we use blending matrices for joints works well for the
cosine term, but the shadow function V is just too random and
unpredictable to represent as the linear combination of a few
snapshots. More work on this problem is needed.

Creating Light Sources
In 1955, the CIE, the international standards body tasked with
defining the science of illumination and colour, produced a paper
defining three standard reference light sources by which
architectural designs should be judged. The standard is available
from the CIE for around €10 and is copyright, so I can only give
you the single-channel versions stolen from the web.

Starting with the CIE Overcast model which gives the lighting
function for an evenly overcast day:

θ

Z

P

3
sin21 β

β
+

= zLL

where

ZL = sky luminance at the zenith (top of the sky) in kilo candela
per meter2.
β = angle between zenith and P, in radians.

Single channel CIE Sky Models
available from
http://www.softcom.net/users/
daylight/thesis.pdf

40 SPHERICAL HARMONIC LIGHTING

The CIE Clear Sky model is a bit more complex as we have to take
into account the position of the sun and it’s different scattering
effects as it nears the horizon.

θ

ϕ

γ

Z

P

S

()
()()32.023

cos
32.0

23

, 1cos45.01091.0

1cos45.01091.0

−−

−
−

−++









−++

=
eSe

ee
LL SZ

θγ

ϕθ

γ

where

ϕθ ,L = luminance at point P at (θ,φ) on the sphere, in kcd/m2.

ZL = sky luminance at the zenith, in kcd/m2.
θ = angle between zenith and P, radians
α = azimuth angle (on the ground) between sun and P, radians.
S = angle between sun and zenith, radians.
γ = planar angle between the sun and P, radians

Quite an impressive equation. The resulting light source is very
realistic.

Figure 16. CIE Overcast Sky
illuminance model.

 SPHERICAL HARMONIC LIGHTING 41

The CIE Partly Cloudy model is a halfway house between the two
and a little simpler than the clear sky model.

()
()()8.05.1

cos
8.0

5.1

, 15526.0

15526.0

−−

−
−

−+











−+

=
ee

ee
LL SZ

γγ

ϕθ

where the definitions for the Clear Sky model still hold.

Another type of illumination model we can use are the high
dynamic range light probes made popular by Paul Debevec. HDR
images are encoded bitmaps of floating point RGB values
captured from the real world using a special process of camera
calibration and multiple exposures that encode the full range of
light energy in a scene. Using the freely available program
HDRShop we can generate angle map projections of HDR scenes
and save them out as arrays of float RGB pixels.

Figure 17. CIE Clear Sky illuminance
model.

Figure 18. CIE Partly Cloudy
illuminance model.

42 SPHERICAL HARMONIC LIGHTING

The angle map projection is simple to access using either spherical
or Cartesian coordinates, and we can plug this straight into an SH
projection function giving us SH coefficients that approximate the
lighting function.

typedef Vector3d (*SH_vector_fn_rgb)(float dx, float dy, float dz);

Vector3d hdr_lightsource(Vector3d *hdr_image, int image_size,

 float dx,float dy, float dz)

{

 // assume angle map projection

 const float one_over_pi = 1.0f / PI;

 float invl = 1.0f / sqrtf(dx*dx+dy*dy);

 float r = one_over_pi * acosf(dz) * invl;

 float u = dx * r; // -1..1

 float v = dy * r; // -1..1

 // map to pixel coordinates

 int x = int(u * image_size + image_size) >> 1;

 int y = int(v * image_size + image_size) >> 1;

 // return the float RGB value at (x,y)

 return hdr_image[y*image_size + x];

}

void SH_project_vector_function_rgb(SH_vector_fn_rgb fn,

 int n_bands,

 int sqrt_n_samples,

 const SHSample sh_samples[],

 Vector3d result[])

{

 int n_coeff = n_bands*n_bands;

 int n_samples = sqrt_n_samples*sqrt_n_samples;

 const double area = 4.0*PI;

 // for each sample

 for(int i=0; i<n_samples; ++i) {

 Vector3d color = fn(sh_samples[i].vec.x,

 sh_samples[i].vec.y,

 sh_samples[i].vec.z);

Figure 19. An example HDR light
probe as an N×N bitmap of RGB float
values using an angle map projection.

 SPHERICAL HARMONIC LIGHTING 43

 for(int n=0; n<n_coeff; ++n) {

 result[n] += color * float(sh_samples[i].coeff[n]);

 }

 }

 // divide the result by number of samples

 double factor = area / n_samples;

 for(i=0; i<n_coeff; ++i) {

 result[i] = result[i] * factor; // NOTE: vector-scalar multiply

 }

}

The real problem with HDR images once you start playing with
them is that there is no standard normal intensity for an HDR
image. There is no clear “brightest” setting to scale them to, so you
have to start building renderers that have exposure settings built
in from day one. It looks like exposure settings are part of the
future of renderers.

The final form of light source we can generate are totally synthetic
light sources, generated directly as SH coefficients. By
symbolically integrating a spherical function f(theta,phi) that
returns 1 if theta is less than a threshold t, we can create a circular
light source around the z-axis:

()
()





 >−

=
otherwise

t
tf

0

01
,,

θ
ϕθ

We can then use symbolic integration in Mathematica or Maple to
generate an analytical solution for the SH projection of the light:

() ()∫ ∫
= =

=
π

ϕ

π

θ

ϕθθϕθϕθ
2

0 0

sin,,, ddytfc ii

This gives us a direct algorithm for generating a light source. All
we need do next is rotate this light source to the correct

44 SPHERICAL HARMONIC LIGHTING

orientation using our SH rotation code, and sum it with other light
sources.

inline double is_positive(double x) { return x>0 ? 1.0 : 0.0; }

void synth_light(double cutoff, double sh[])

{

 // clear all values to 0.0

 memset(sh, 0, 16*sizeof(double));

 // symbolic integration automatically generated by Maple.

 double t3 = is_positive(-cutoff + PI);

 double t5 = cos(cutoff);

 double t6 = t3*t5;

 double t9 = is_positive(-cutoff);

 double t11 = t9*t5;

 double t14 = sin(cutoff);

 double t15 = t14*t14;

 double t16 = t3*t15;

 double t18 = t9*t15;

 double t21 = t5*t5;

 double t22 = t21*t5;

 double t31 = t21*t21;

 sh[0] = 3.544907702 - 1.772453851*t3 - 1.772453851*t6 –

 1.772453851*t9 + 1.772453851*t11;

 sh[2] = 1.534990062*t16 - 1.534990062*t18;

 sh[6] = -1.98166365*t3*t22 + 1.98166365*t6 + 1.98166365*t9*t22 –

 1.98166365*t11;

 sh[12] = 2.930920062*t3 - 2.930920062*t3*t31 - 3.517104075*t16 -

 2.930920062*t9 + 2.930920062*t9*t31 + 3.517104075*t18;

}

Alex Evans of Lionhead has suggested using a similar technique
for creating proxy shadows on SH light sources. Firstly, each object
gets it’s own copy of the common lighting function. Next, instead
of generating a “cap” of light we generate the inverse function –
everything except the cap. We next find out where external objects
are in object space and calculate a rotation from the that direction
to the z-axis. We then rotate the lighting function with that
rotation and “multiply” it with the SH light source to subtract
light in that direction.

There are two ways to implement this multiplication, one by
circular convolution and one by generating an analytical transfer
matrix by symbolic integration. Either way we must rotate the
light so that the shadow direction is along the z-axis, do the
convolution and rotate the light back to object space so we can
carry on with lighting as normal. That’s two SH rotations per
shadow per object.

 SPHERICAL HARMONIC LIGHTING 45

Advanced SH Techniques
SH lighting of glossy surfaces will be covered in an extended
version of this paper, available soon from:

 http://research.scea.com/

hopefully incorporating notes and example code on:

• Untangling the mix of coordinate spaces.

• Using graphics hardware to calculate SH transfer functions.

• Extending the preprocessor for models with mixed materials.

• Extending the preprocessor for static, emissive surfaces.

• Adding reflected caustics to the preprocessor.

• Diffuse volumetric lighting for relighting clouds in real time.

• Projected transfer for sampling the shadow around an object.

• Real Time Translucency.

Conclusion
Hopefully we have shown how SH lighting can be used to
produce extremely realistic images on both static and dynamic
models using just a little extra processing power. We have shown
how to preprocess your static models with interreflection, how to
generate transfer functions for diffuse shadowing and how it
affects the way you design your models. SH lighting can be used
as a drop-in replacement for the diffuse and ambient terms of a
normal renderer for static objects, and we have covered a range of
options for updating global and local lighting in real time.

I hope you will find a use for SH lighting for your next project so
that we can all take game graphics to the next stage of realism. I
am looking forward to seeing how people use SH functions for
unexpected tasks that require encoding and manipulating
spherical functions. Remember to write up and share your ideas!

Acknowledgements
Dominic Mallinson and Attila Vass of SCEA R&D for their
support and giving me the freedom to pursue this area of research
as far as I have. Gabor Nagy for working so hard to add SH
lighting to his 3D editing system Equinox (downloadable at
http://www.equinox3d.com/) so that we could both play with it
interactively. Alex Evans of Lionhead for his rotation matrices, the
proxy shadow and barycentric local lighting ideas and general
enthusiasm and willingness to share. Peter-Pike Sloan, Jan Kautz
and John Snyder for their generous help and putting up with my
endless questions. Professor Klaus Ruedenberg, Dr Joe Ivanic and

46 SPHERICAL HARMONIC LIGHTING

Professor Cheol Ho Choi for generously sharing their code and
support in mastering the alien world of SH Rotations. Charles
Poynton for the assurance that typography and design is
important, even for technical documents. My wife Christiane, for
keeping my head in the real world.

Appendix 1: Fast SH Rotations
The 1996 paper “Rotation Matrices for Real Spherical Harmonics”
by Ivanic et al (with errata factored in) contains the following
recurrence relations for generating SH rotation matrices. Firstly
we need to permute the normal 3×3 rotation matrix into a new
order and rename it Rmn:



















=



















=

−

−

−−−−

1,10,11,1

1,00,01,0

1,10,11,1

RRR

RRR

RRR

RRR

RRR

RRR

R

XXXZXY

ZXZZZY

YXYZYY

mn

The SH rotation matrix M is defined for band l as

l
mn

l
mn

l
mn

l
mn

l
mn

l
mn

l
mn WwVvUuM ++=

where integer arguments m and n vary from –l to l to fill in the
entries of the matrix. The following tables define expressions for
coefficients u, v, w as well as functions U, V, W and P.

() ()
l

nm
l

nm
l

nm
l

nm
l
mn

m
l

nmm
l

nmm
l

nmm
l

nm
l
n

l
n

l
mn

l
mn

l
mn

l
n

l
mn

PPPPW

PPPPPPV

PPPU

mmm

,11,11,11,11

1,,111,,111,111,111111

0000

1111

000

+−−−−−−+

−−−−−++−−−−−

−+

−++−−++

<>=

δδδδ

()()
()()

()()
()()

()()()
()() () ()()()

()() ()

()()
()() () ()()

()() ()00

0
0

0
0

1
122

1
2
11

1
2
1

21
122
11

2
121

11
2
1

122

mm
l
mn

m
m

m
ml

mn

l
mn

ll
mlml

nlnl
mlml

w

ll
mlml

nlnl
mlml

v

ll
mlml

nlnl
mlmlu

lnln

δδ

δ
δ

δ
δ

−
−

+−+
−−

−+
−−−

−

−
−

+−++
−

−+
+−++

−
−+

−+
−+

=<

 SPHERICAL HARMONIC LIGHTING 47

1
1,1,

1
1,1,

1
1,1,

1
1,1,

1
0,

−
−−

−
+−

−
+−−

−
−

− +−

−==<

l
lai

l
lai

l
lai

l
lai

l
abi

l
abi MRMRMRMRMRP

lblblb

(Note: If you get hold of the original paper, you will see that I
have renamed variables m’ to n and Rl to Ml for clarity. The
original authors admit that the printing was less than clear.)

