
Here is an example of a Previous Work section using the Funnel Model. The context is Volumetric 

Video, which is a subset of 3D reconstruction and the research question is real-time volumetric 

video capture. 

Previous Work 
3D reconstruction has been an active research area for decades. It is a huge field encompassing 
computer vision but is also the last decades increasingly incorporated by computer-graphics 
researchers. Hence, we will make a very quick overview and then focus on the most related 
previous work.  

There are several methods to sample an environment for 3D reconstruction. Sonar and ultrasound 
use acoustic waves and radar uses radio waves. CT scans (X-rays) and Magnetic Resonance 
imaging are both popular in medicine. However, we humans are typically not only interested in 
the shape of objects and at a proper level of detail, but also the objects’ visual appearance, since 
the human visual system is based on a visible light spectrum. Hence, 3D-capture devices in our 
context are typically based on light sensors and arranged into cameras.  

Plenoptic cameras often use special lens filters to capture a light field, from which novel 
views for small camera movements can be reconstructed [1]. Holographic capture requires highly 
specialized setups and small scenes and has computer-generated holography as a subfield [2]. 
However, these methods do not focus on geometric reconstruction but rather the visual result 
from novel very nearby viewpoints. 

LIDAR sends a light beam in a set of directions, measuring the time- of-flight of the beam 
and typically takes minutes to scan a scene. IR cameras often rely on an infrared pattern being 
projected onto the scene. The shape can be computed from the pattern’s distortion on the image 
plane. Time-of-flight cameras instead use pulsed IR light or phase-shift [3]. Either way, an 
important drawback is that the IR pattern is easily saturated by the background light. This means 
that it can only be used for relatively short distances (~4m), does not capture volumetric media 
(gas, smoke, fire), has problems with thin details and transparency, and it typically does not work 
for outdoor environments due to the background sun light being too strong.  

For time-of-flight cameras, an additional problem is erroneous results due to interference 
from several possible IR-light paths, often manifesting as large noise nearby corners and edges 
of the scene. Additionally, the result is often sensitive to the temperature of the camera [3] and 
could deviate as much as 10 cm on the Kinect v2 after 30 minutes [4] [5]. These cameras are also 
often more expensive and with lower image resolution compared to mass-produced RGB 
cameras. Nevertheless, Microsoft has built a real-time holoportation system on ToF cameras and 
up to 12 GPUs  [6]. Since LIDAR and depth cameras mainly capture the geometry, the colors are 
often extracted from a coupled RGB image. View-dependent material effects are typically ignored 
(e.g., reflections and refractions), although AI-based solutions are rising for single-shot situations 
[7] [8].  

For RBG-camera-based 3D reconstruction, depth can be computed via depth-from focus 
[9], depth from motion [10], stereo image pairs [11], or training neural networks to interpret depth 
from even a single RGB image [10] [12]. Passive stereo methods use two RGB images to compute 
depth maps via triangulation. Popular methods that achieve relatively good quality include 
PatchMatch [11], which has also been extended to real time [6] [13] [5]. For our project, however, 
we consider all these results as a lower level of reconstruction quality. In addition, stereo matching 
fails in the absence of distinct image details, e.g., left and right image both seeing a homogeneous 
white wall to mention an extreme example. Even moderate view-dependent color shifts can cause 
problems. 

High-quality results can be achieved by combining RGB, active stereo in IR and silhouette 
information with Poisson surface reconstruction [14] to compute high-quality meshes for each 



frame and track mesh deformations to handle topology changes [15]. Collet et al. [15] achieve 
compelling results but, like these types of methods, require and a large studio with green screens 
(for background removal) and large area-light sources for homogeneous background light. I.e., 
distinct light sources such as sun light or spotlights cause problems in the stereo-matching step. 
Their method is also computationally expensive; processing one frame on a machine with a dual 
12-core processor and an AMD Radeon R9 200 GPU takes them 28.2 min. Again, view-
dependent material appearance is not reconstructed. 

Recently, important advances has been made in 3D capture for volumetric video by using a large 
set of RBG cameras processed by neural networks [16] [17] [18] [19] [20] [21] [22]. Many of these 
methods are referred to as Neural Radiance Fields (NeRF). One major advantage is the generality 
of the scenes that can be reconstructed, including volumetric materials (gas, smoke, fire), thin 
details like hair or laces, general light conditions, and materials even with complicated view-
dependent effects such as the refractions and reflections in glass, water and otherwise glossy 
and/or transparent surfaces. A major drawback is their computational processing time (up to a 
day or days per frame using parallelization on 100-1000 cloud-CPU computers) and that they do 
not lend themselves for trivial parallelization to real-time performance.  

Reconstructing the scene geometry from RGB images is an ill-posed problem [23]. 
Several solutions may exist. It is therefore natural that training an AI to learn by examples to 
penalize improbable solutions has shown to be a fruitful approach. The underlying idea is to 
optimize a volumetric representation in such a way that it matches the input images from their 
respective viewpoints.  

Mildenhall et al. [17] use a 5D volumetric function described by a DNN, i.e., a 3D volume 
with 2D directional radiance in each 3D point. They use differential ray marching to compute the 
derivatives for the back propagation during the training. Their method is optimized by hierarchical 
sampling using two separate DNNs, each ray marched at separate granularity. Convergence in 
up to 300K iterations (1-2 days on a single high-end GPU). The number of required iterations 
prohibits any simple parallelization to real-time performance, since the trained weights would have 
to be communicated many thousands of times between the parallel nodes.  

Broxton et al.  [18] build a more practical system for outdoor capture on the similar principle 
but optimized for real-time rendering and capture for a rather small change in viewpoints. Each 
frame takes 28.5 CPU hours or 17 hours wall-clock time using some limited available parallelism.  

Lombardi et al. [16] also use the same principle with a 5D volumetric function and 
differentiable rendering. However, their method uses the full video sequences to train the network 
in such a way that each frame improves the result of basically all other frames.  This disables the 
method for real-time purposes since the solution inherently uses all frames to construct each 
frame. However, it could be interesting with a system using previous frames to improve future 
frames, e.g., using the principles of recurrent neural networks. 

Our idea is based on the work by Lombardi et al. [16], Mildenhall et al. [17], and Broxton et al. 
[18]. We replace … with a …, which makes … Yada yada… 
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