

Particle System Simulation and Rendering on
the Xbox 360 GPU

SEBASTIAN SYLVAN

Master's Thesis

Computer Science and Engineering Programme

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
Division of Computer Engineering
Göteborg, Sweden 2007

- 2 -

All rights reserved. This publication is protected by law in accordance with
“Lagen om Upphovsrätt, 1960:729”. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of the authors.

 Sebastian Sylvan, Göteborg, Sweden 2007.

- 3 -

Abstract

Particle systems are an important technique for rendering a certain class

of “fuzzy” object in 3D graphics in general, and games in particular.

This thesis presents a particle system simulated and rendered entirely on

the GPU found in Microsoft’s Xbox 360® console, including sorting on the

GPU to support correct rendering of non-commutative rendering modes, and

geometry amplification for rendering non-point primitives.

- 4 -

Acknowledgements

I would like to thank my supervisor Ulf Assarsson at Chalmers

University of Technology.

I would also like to thank Rare Ltd. and Microsoft Game Studios for

allowing me to work on my Master’s Thesis in their care. In particular, I

owe a debt of gratitude to Tom Grove and Cliff Ramshaw at Rare for their

mentorship and invaluable technical expertise.

- 5 -

TABLE OF CONTENTS

1 Introduction .. - 7 -

1.1 Background ... - 7 -

1.1.1 What is a particle system ... - 7 -

1.1.1 A Brief Overview of the Xbox 360 Hardware - 7 -

2 Problem Specification .. - 10 -

3 Analysis and Method .. - 11 -

3.1 Simulation ... - 11 -

3.1.1 The Simulation Step .. - 13 -

3.1.2 Simulating Particles Using Memory Export - 18 -

3.1.3 Particle Representation .. - 20 -

3.2 Sorting ... - 22 -

3.2.1 Sorting for Visual Correctness - 23 -

3.2.2 Sorting for Cache Coherency ... - 24 -

3.2.3 Sorting Networks ... - 27 -

3.2.4 Sorting in Particle Systems .. - 36 -

3.2.5 Improving Temporal Coherency - 39 -

3.3 Rendering .. - 40 -

- 6 -

3.3.1 Point Sprites ... - 41 -

3.3.2 Geometry Amplification .. - 41 -

4 Results .. - 43 -

4.1 Overall Performance ... - 43 -

4.2 Rendering .. - 45 -

4.3 Particle Simulation .. - 46 -

4.4 Sorting ... - 47 -

4.4.1 Sorting for Cache Coherency ... - 47 -

5 Discussion .. - 51 -

5.1 Summary ... - 51 -

5.2 Future Work .. - 51 -

6 Bibliography ... - 54 -

- 7 -

1 Introduction
Particle systems have long been an important part of 3D graphics to

visualize various types of effects, such as smoke, fire or dust. Games in

particular have used particles to simulate explosions, blood spatter and other

effects(1).

In this thesis we explore the design space for particle systems on a

modern gaming console. Though some of what we learn may be applicable

in other areas, such as off line rendering for movie computer graphics, we

will focus on achieving result which are practical for real-time usage in

games.

1.1 Background

1.1.1 What is a particle system

A particle system is a simulation of small objects, particles, over time.

These particles typically have a position and velocity, and are affected by

forces such as gravity. Some implementations may include inter-particle

effects and other more sophisticated features, but we shall focus on the more

common case where particles are independent of each other, and simply

simulate a small mass moving under the influence of the Newtonian laws of

physics. These particles are emitted with some initial values, typically in

great numbers, from an emitter, live for a period of time, and then die when

certain conditions are met(1).

Traditionally particle systems have been simulated on the CPU each

frame, and then uploaded to the GPU for rendering. In later years the

graphics hardware has become more flexible, and it is now feasible to do

certain types of general purpose computation on the GPU itself, without

invoking the CPU at all (thereby saving CPU cycles and also avoiding

issues with CPU/GPU synchronization). In this thesis we will explore using

the GPU on the Xbox 360 gaming console to do our particle simulation and

rendering.

1.1.1 A Brief Overview of the Xbox 360 Hardware

The Xbox 360 is powered by three-core PowerPC processor at 3.2 GHz

with 512 MB of unified system/graphics memory and a custom ATI

- 8 -

graphics processor running at 500 MHz(2). The Xbox 360 graphics interface

is a superset of Microsoft DirectX 9.

For the purposes of this thesis we will not use many of the features of the

CPU, and will thus focus on the GPU.

The Xbox 360 GPU is unified architecture. It’s capable of running 32

vertex and 64 pixel shader “threads” at the same time, each of which

operating on a “vector” containing 64 elements (vertices, or pixels) that get

processed at once. Each of these threads can make use of 48 ALU units, 16

vertex fetch units, and 16 texture fetch units. These resources are

dynamically allocated to threads based on load(3).

An interesting consequence of this multithreaded shader architecture is

that fetch latency can be “hidden” if there are enough ALU instructions in

the shader. If a vector is waiting on a texture fetch, then other vectors can

keep using the ALU in the meantime, avoiding a stall where the GPU is just

sitting idle, typically resulting in effectively zero latency texture and vertex

fetches.

Another unique feature of the Xbox 360 GPU is that it has 10 MB of very

fast (256 GB/s) embedded DRAM where render targets are stored. This

memory can not be used as the source of any fetch instructions. There are

many reasons for why this is a good feature of the Xbox 360 GPU (e.g. very

cheap anti aliasing) but since it is not possible to use the EDRAM as the

source for any fetches, a copy-back to main memory is needed (called a

“resolve”, which occurs at a rate of 8 pixels per clock cycle) before it can be

used in a shader. This extra cost is one of the reasons for why we do not use

render-to-texture for our particle simulation (though the benefits of using

another method, memory export, are the primary reason).

The Xbox 360 can fetch 32 bytes of data per fetch instruction, and uses

an 8KB cache for vertex data, and 32KB of (16-way set associative) cache

for texture data(3).

Perhaps the most revolutionary feature of the Xbox 360 GPU is the

shader memory export. Using this it is possible to export data to system

- 9 -

memory from within any shader. This can be done in an arbitrary fashion

(i.e. it’s not restricted to outputting data in a stream, like with DirectX 10
1

(4), but supports full scattered memory writes) and can even be the sole

purpose of a shader (a vertex shader does not need to have output passed on

to the rasterizer – it could do its work entirely through memory export). We

shall make heavy use of memory export, both for simulation (exploiting

primarily the fact that we can use it in arbitrary shaders, and thus can run

our simulation at the same time as the rendering) and for sorting (exploiting

the scattering support to do proper compare-and-swap operations, and avoid

the redundant copying inherent in the “ping-ponging” of render-to-texture

based approaches).

1
 It should be noted, however, that both Nvidia and Ati have their own API for

accessing their DirectX 10 GPU hardware in ways which do allow scattering, in CUDA(14)

and CTM(15) respectively.

- 10 -

2 Problem Specification
The basic idea of implementing a particle system on a GPU is not

new(5)(6), but the existing techniques have mostly been focused at

consumer graphics hardware on the PC platform (some, like (5), even target

vendor-specific extensions).

While there are many similarities, the differences between the PC

platform and Xbox 360 are significant enough that any direct comparison

between existing PC-based techniques and our technique for the Xbox 360,

would be a bit like comparing the proverbial apples and oranges. So while

the existing approaches can be implemented on the Xbox 360 GPU, we

deliberately avoid setting up such straw man comparisons, and instead treat

our technique as a completely separate approach.

In this thesis an attempt to find the "best practices" for implementing a

GPU based particle system on the Xbox 360 is made. In doing so, existing

techniques will be extended and adapted to make use of the many new

hardware features available to maximize performance and flexibility.

Existing approaches will be compared and contrasted qualitatively where

appropriate, but there will not be any direct performance comparisons.

 This thesis is an attempt to solve the following problems:

 Simulation The particles will be simulated over time wholly on the

GPU, without any CPU intervention. The particles' positions will be

updated based on velocity and acceleration. We will also incorporate

effects such as basic collision detection, turbulence and drag.

 Sorting In order to render particle effects with non-commutative

blending we will also require sorting, this will also be performed

entirely on the GPU.

 Rendering We will explore various methods of rendering the

particles on the Xbox 360 GPU.

- 11 -

3 Analysis and Method
This chapter summarises the implementation details and design choices

in implementing the particle system described in this thesis on the Xbox 360

GPU. For all the shader code controlling the simulation of particles

Microsoft’s HLSL, High Level Shading Language (with snippets of inline

microcode for the parts which aren't yet supported in HLSL) is used.

The particle system simulation is written as a vertex shader (with no

output, a so called "multipass shader”) using memory export for writing out

the updated particle data in the same location. There is no need to use

double buffering for this; writes can be made to the same buffer the

simulation shader is reading from. Sorting is also done in an HLSL

multipass vertex shader using memory export. Rendering uses both vertex

and pixel shaders, both written in HLSL.

The following sections describe in detail the various things performed in

these shaders.

3.1 Simulation
There are a few possible options for simulating a particle system. For

example, some particle systems may be entirely stateless, i.e. they depend

only on their initial values and the elapsed time, but most require more

sophisticated integration of their properties. We will focus on stateful

particle systems, since they are required for more advanced effects (such as

turbulence, collision detection etc.). A stateful particle simulation works by

numerically integrating the properties of each particle in small time steps

(typically once per frame).

Since a particle represents an actual physical object, there are in principle

only a finite set of properties that could be useful for simulation of

Newtonian physics. For example:

 Position

 Velocity

 Mass

 Volume (or density)

 Inertia tensor

- 12 -

 Orientation

 Temperature

In practice however, many of these attributes are usually omitted because

their impact is not significantly observable, or because they can be

simulated with another attribute, time. So, for example, while a real “fire

particle” may cool down below a certain temperature and "die" (i.e. become

invisible) based on things such as velocity, air temperature etc., this can be

simulated by just varying its intensity over time, and removing it after a

certain amount of time has passed.

The most common attributes for particles in a particle system

are(1)(5)(6):

 Position

 Velocity

 Time

There are some options on how to represent the time, however. One

could store the time elapsed since the particle was spawned, or the time left

until it is scheduled to "die". Both of these approaches have their merits.

Using the time parameter to represent the time left until death means life

times can be specified to vary randomly, rather than having a fixed life time

for all particles in the system. However, this also means that certain time

varying effects (e.g. having the colour depend on the time since birth, as in

the fire particle example above) are more difficult to get right since one

doesn’t know how long a given particle has been alive. A third option is to

store two values for time, one storing how long the particle has lived, and

the other storing its time of death. As we shall see later in section 3.1.3, the

specific hardware constraints leave us with a “spare field”, which we can

use to store a second time value.

Note that we have not yet specified how these values are stored, just what

kind of properties we would like to be able to find about each of our

particles. In practice we must find a specific way of storing this in a particle

buffer. We explore the options for storing this in section 3.1.3.

- 13 -

3.1.1 The Simulation Step

The basic simulation step performed in the shader simply updates the

physical properties of each particle based on the elapsed time, and takes the

appropriate action for "dead" particles. Here follows a high level overview

of the algorithm performed for each particle:

 Read a particle description (see 3.1.3)

 If the particle is dead:

o Generate a new particle in its place (see 3.1.1.4)

 Else

o Integrate the particle position, taking gravity, drag,

turbulence, and other physical effects into account (see

3.1.1.1, 3.1.1.3 and 3.1.1.3)

 Write the updated particle data to the output buffer

3.1.1.1 Integrating the Particles

At each simulation step we must perform an integration of various time

varying properties for a particle. Our particle system is subject only to

simple Newtonian physics, which can be approximated quite well with

Euler integration.

We thus add up all the forces, convert to an acceleration based on the

mass for a particle (which may either be constant, or varying per particle),

and then integrate this acceleration for the time step in question.

3.1.1.2 Collision detection

It is also possible to perform some basic collision detection while

simulating the particles. The implementation in this thesis used rudimentary

collision detection against a plane as a proof of concept, but there’s no

reason why one couldn’t perform collision detection and response against

other types of colliders, as long as they can be conveniently stored as shader

constants.

3.1.1.3 Turbulence Fields

While some particle systems look perfectly plausible even when

simulated as if they exist in a vacuum, many do not. For more realistic

animation of these systems turbulence fields can be introduced. A

turbulence field can be defined as simply a function on particle position and

- 14 -

a field, yielding a force at each point. This can be used to simulate wind or

the hot gasses swirling in a fire or explosion, for example. It should be noted

that this is not the only possible way to describe turbulence; the turbulence

field could contain velocities rather than forces, where particles passing

through the field would simply adjust themselves to the surrounding

turbulence velocity based on some drag coefficient. We opt to use a force

field rather than a velocity field because this can be used in conjunction with

“drag field”
2
 (which simply introduces a force in a direction opposite, and a

magnitude proportional, to the velocity of the particle in question) to

produce the same effect, while still leaving the option of tweaking the two

field parameters independently.

For some turbulence fields, it might be possible to compute the force at

each point procedurally, but in general this is not feasible. We thus store the

turbulence field as vectors in a 3D volume texture, and sample it for each

particle using the position as the texture coordinate (scaled and offset to find

the correct location within the field). Because 3D volume textures take up

much space, and are essentially sampled at random with little spatial

coherency it is important that the format we choose for this data is as small

as possible so as to minimize cache misses. We found that a 32 bit value for

2
 A field of which simply “contains” air resistance, such that if the particles ventured

outside of this field they would not be subject to drag. One could also view drag as a global

property tied to the particle simulation itself, and not a field at all.

FIGURE 1 These screenshots show off a fire effect. It’s achieved by spawning 128K particles in an roughly

upwards direction, and subjecting the simulation to random turbulence, where the y-component of the turbulence

vectors have been forced to always be positive, and the turbulence texture coordinates are animated with a sum

of sine and cosine waves moving mostly up but with considerable horizontal movement, which produces the

“swirly” effect of flames licking upwards. The turbulence texture used was a 163 32-bit volume texture. The

frame rate is 334Hz (with 1.006 ms for simulation).

- 15 -

each vector gave sufficient resolution, using the DHenN3 format (3) which

stores three components with 11 bits for two of them, and 10 bits for the

third. However, even with this compact format large volume textures leads

to very poor performance due to the highly pathological cache behaviour of

this use case. Some of this can be alleviated by sorting the particle system

based on spatial location as described in section 3.2.2, but in general we are

limited to using fairly small turbulence textures. This is not necessarily a

major problem, since turbulence is often just high frequency noise and can

be tiled aggressively without major visible artefacts. The low resolution of

our turbulence fields is further hidden a great deal by the approximate and

ill-conditioned nature of our numerical integration – very small differences

in initial direction and velocities give vastly different trajectories through

the field. Furthermore, the texture coordinates of the turbulence field can be

animated, either using a per-frame random offset, or using some smooth

time-varying offset to achieve the appearance of motion (e.g. rising hot

gasses in a fire animation), which also helps hide any remaining periodic

artefacts.

- 16 -

Since the Xbox 360 has 32KB of texture cache, we need to keep the

turbulence texture size at around 20³ texels or less with a 32 bit texture

format, to avoid poor cache performance.

Turbulence allows us to simulate a wide range of particle effects with a

more rich behaviour than simply following a simple parabolic arc of motion.

Just using a turbulence texture with random vectors can provide very good

looking results for things such as fire and smoke, but of course the

turbulence texture could be dynamically updated based on in-game

conditions (e.g. dust swirling around beneath a helicopter), or based on

more sophisticated simulations. Figure 1 and Figure 2 display a fire and an

explosion effect respectively, achieved through using turbulence textures.

3.1.1.4 Emission

Many particle system effects need the appearance of a constant flow of

particle (e.g. rain, fire, and steam). This requires that dead particles get

reinitialised and emitted anew, somehow.

One way of solving the emission problem is to do it on the CPU(6).

Using this method on the Xbox 360 is not an unreasonable proposition – due

FIGURE 2 This series of screenshots (left to right, top to bottom) shows an explosion effect

achieved by spawning 128K particles in random directions, with drag and turbulence. The

turbulence texture used was a 163 32-bit velocity field with random vectors. The rendering time was

54 Hz (with 1.006ms for simulation). Note that while the screenshots are small, they covered the

whole screen when rendering, which is the reason for the high render times.

- 17 -

to the unified memory architecture of the Xbox 360 there would be no need

to copy a bunch of data across a slow bus to do this. However, touching the

particle data with the CPU would likely require synchronisation with the

GPU, or double buffering. Furthermore, we process each particle with the

GPU anyway so it would be a shame to have to loop through the particles on

the CPU as well to reinitialise dead particles, duplicating much of the work.

We will therefore use the GPU to emit particles.

Alas, there is no access to a random generator on the GPU, nor is there

any global state that could be used to implement one. One approach to get

around this problem of emitting particles on the GPU is to use a lookup

texture with CPU-generated random values. This texture would only need to

be filled once or perhaps at a set time interval. The shader can then sample

the random texture to determine things such as the new position, velocity

and other random properties. In order for this to be useful, however, this

texture needs to be sampled in different location for each particle. Some

other GPU based particle systems do this by generating a texture coordinate

for the random texture using the position and other properties of the dying

particle(7). This has the notable drawback that if your particle system for

some reason tends to cause particles to die with similar properties (e.g. if the

system supports collision detection and the particles all end up in a

concavity right on top of each other with zero velocity), this texture

coordinate may only vary within a very small part of the random texture.

This could produce "clumps" of particles due to the newly emitted particles

sharing the same attributes.

On the Xbox 360 hardware there are no vertex input registers(3), instead

each shader has full control and responsibility for fetching vertex input

using an input index. This index can be used together with a random texture

to find random values for each particle. To improve the randomness even

more, a CPU-generated random integer offset can be supplied each frame,

which is then added on to the index (this ensures that each particle will most

likely sample in different locations on each emission). Care must be taken

that the size of the random texture is large enough so that there are always

more random values than the average number of particles emitted each

frame (to avoid duplicate emissions).

- 18 -

The random texture itself can use any number of formats. We found that

since for most systems only a comparatively small number of particles get

emitted each frame the texture format has very little performance impact.

Our implementation uses a 64 bit texture format, with four 16 bit fixed point

values in the range [0,1) for each element. Of course, for systems where

particles have very short life spans the emission rate may be comparatively

higher and in that case it might be worthwhile to use e.g. a 32 bit format

instead.

Because all dead particles a given frame will be emitted at the same time,

a subtle banding artefact can sometimes be visible in particle systems with

continuous flow (this may be alleviated after a few frames if the speed of

the particles is randomized). One simple way to avoid this to some extent is

to simply simulate the time “lost” due to the discrete nature of the time step

simulation. So if a particle has, say, 10ms of life left, and the simulation is

integrating a time step of 16ms, the particle will have actually been dead for

6ms by the time it gets killed and reemitted. It’s important to simulate this

time rather than just resetting the particle position (which will cause the

particle to move away a slight distance from its initial position along its

initial velocity direction, reducing the banding artefacts since this distance

varies from particle to particle).

3.1.2 Simulating Particles Using Memory Export

To store the updated particles we use the memory export feature of the

Xbox 360 GPU. This allows us to write to arbitrary locations within a

buffer, with a few restrictions:

 The data buffer that we write to must be a homogenous stream of

simple elements; each element can be almost any GPU format at

least 32 bits in size (1, 2 or 4 floats, 2 or 4 halfs, 32 bit fixed point

values, 32 bit RGBA values, 10:10:11 formats etc.). Unlike vertex

streams the memory export stream cannot contain any structured

elements.

 The memory export writes do not happen right away, so there is no

guarantee that a subsequent read won't access stale data. It's thus

important that we don't write to elements which we intend to later

- 19 -

read from in the same pass (the writes are flushed at the end of the

pass, so reading from them in a subsequent pass is okay).

Despite these two restrictions, using memory export for doing general

purpose computations on the GPU is fairly straightforward. We read a

vertex element from a vertex stream, and then write it out to the exact same

memory location when we’ve updated it, when the pass is finished the

writes get flushed and we immediately have the output ready for

consumption by the next pass. Note that since we export to the input stream

the format restrictions for memory export also applies to the vertex stream

(since they are one and the same).

Compare this with previous approaches where one would use a texture

fetch in the vertex shader to dynamically override the position of a vertex in

order to render it (6). Memory export allows us to achieve the same result as

(5) (which uses ATI-specific OpenGL extensions called “Super Buffers” to

reinterpret the data from a render target as a vertex buffer), in that we can

use the results of the simulation directly as geometry data. As we shall see

in section 3.2, memory export is more flexible since it allows us to easily

perform scattering operations, unlike approaches based on rendering to a

texture (or stream, as in DirectX 10(4)), and then reinterpreting the results
3
.

Another option available to us due to memory export (but not when using

previous methods) is to perform the particle simulation in the same pass as

the rendering. Memory export can be used in arbitrary vertex shaders, so

there is in principle nothing stopping us from doing our particle simulation

in the same pass as the rendering, thereby eliminating an extra pass over the

data. As we shall see in section 4.2 this is indeed substantially faster than

doing simulation in a separate pass. In real-world scenarios one must be

careful in utilizing this approach, however, since we often need to render

particles several times (e.g. to support multiple viewports of the same scene

3
 Scattering could, in theory, be simulated by simply rendering a bunch of 1x1 texel

quads to a texture, and using the vertex shader to offset the output position. This has at least

one notable drawback: The Xbox 360 rasterizer works on 2x2 pixel quads(2), so rendering

a single pixel at a time leaves ¾ of the rasterizer unused.

- 20 -

or when using a technique known as tiling
4
), but we do not want to simulate

the particles more than once per frame. Furthermore some particle systems

perform geometry amplification (see section 3.3.2) in the render pass to

produce quads or other shapes, which is a scenario that does not lend itself

well to simultaneous simulation since each particle will be processed

multiple times
5
 (once for each vertex in the shape, i.e. four for a quad).

3.1.3 Particle Representation

We already listed desirable properties for our particle representation in

section 3.1 but how do we actually store this in memory? Clearly we would

wish to keep the data format as small as possible to improve cache

performance for our simulation, and we would definitely like to keep the

size fewer than 32 bytes since that is the maximum size of a single fetch

instruction (see 1.1.1). Let's review the components of our particle

representation again, and reason about possible data formats.

 Position This needs to contain three values describing the particle's

location in 3D space. We would almost certainly require these

components to be of a floating point nature, since we cannot know

beforehand the maximum extents of the particle simulation (which

would be required in order to store the positions using fixed point

data formats).

 Velocity This needs three components to describe the direction and

magnitude of the velocity for each particle. In principle this could

often be a fixed point format, since factors such as drag impose a

"terminal velocity" in the medium which can be used to derive a

fixed point representation, though we would prefer to keep this in a

floating point format as well, for simplicity.

 Time This needs to contain either the time elapsed since birth or the

time remaining until death, or both. This could be a fixed point

4
 Tiling is a clever technique to efficiently render high resolutions images despite only

having 10 MB of EDRAM, whereby the “command buffer” is stored and “replayed”

multiple times for different “tiles” of the screen (each occupying less than 10MB of

memory), then once all the tiles have been rendered and resolved, stitched back together in

the frame buffer.
5
 The memory export registers count as output registers, and cannot be skipped using

predication(3). So there would be a cost for each vertex in the amplified geometry and not

just the last one where the actual simulation happens.

- 21 -

format set at a given resolution (e.g. one tenth of a second --

remember that this only governs time-varying effects and the time of

death, and not the simulation itself, so resolution need not be high).

The data format for the position, in particular, is a tough choice. A float3

(clocking in at 12 bytes) would be the initial choice since it gives high

enough precision to store our particles in essentially any space we choose.

The other option available if we limit ourselves to floating point formats is a

half3 (three 16-bit floating point formats – 6 bytes). This gives significantly

reduced range and precision, but only costs us half the amount of space. We

tried both solutions and found that if we stored all positions in relation to a

reference point (supplied as a per-frame float3 shader constant) the range

and precision of the 16 bit floating point format was quite adequate for most

cases (the average performance penalty of using 32 bit floats instead was

roughly 35%). For moving particle systems, two reference points can be

used; the reference point for the previous frame which is used to

"decompress" the position data in the particle stream from half3 to float3,

and the new reference point for the current frame which is used for

"compressing" the position data into our particle representation again.

There is a limitation on the memory export support which affects our

options on how to lay out our data; each memory export operation can only

work on a homogenous stream of data. This need not be a major problem

since we also have the ability to perform up to four memory export

operations simultaneously – we could thus store for example the position

data in one stream, the velocity data in another, and the time data in a third,

each having their own optimal data format. Unfortunately there is also a

substantial overhead in using multiple streams of data with the Xbox 360

GPU, since we need to perform a separate fetch for each.

Several different data configurations were tried, including ones with

fixed point formats for the velocity, but in no case was the gain from

reduced memory footprint (and thus improved cache performance) able to

counteract the added cost of using multiple streams in the simulation step.

We decided on using two half4s for the particle representation, giving us a

total size of 16 bytes per particle. That gives us six 16-bit floating point

values for the position and velocity, and two additional values for the time

(time elapsed, and time remaining). The sign bits for the time values can be

- 22 -

used as "flags" to toggle certain behaviour. We will use one of these to

indicate that a particle is to be "skipped", as detailed in section 3.2.5.

If the particle format exceeds 32 bytes (and thus cannot be fetched with a

single fetch instruction), for example if very complex per-particle behaviour

is needed, then it might be worthwhile to split the data up into two separate

streams to reduce the particle size (and thus cache performance). In practice,

however, there is probably no reason to use more than 32 bytes per particle

for games, and the cost of the extra fetches may be far more significant than

the improved cache coherency attained by using smaller particle formats.

3.2 Sorting
While many particle effects can be rendered in any order (e.g. systems

using additive and multiplicative blending), there are some situations where

an ordering needs to be imposed on the system. For these particle systems

sorting is required.

There are several reasons for sorting particle data, we cover two of them

in this thesis, discussed next.

- 23 -

3.2.1 Sorting for Visual Correctness

The most common reason for wanting to sort particles is for visual

correctness. When using a non-commutative blending mode (such as alpha

blending(8)) sorting is needed to ensure the correct order of operations. For

example, if using a particle system to render dust it wouldn't make sense to

use an additive or multiplicative blending mode since the particles

essentially simulate occlusion. For such a system alpha blending can be

used instead. Since this blend operation is not commutative care must be

taken that the blending happens in the correct back to front order.

In practice, however, for large number of particles the visual impact of a

small number of the particles being blended in the wrong order is neglible.

FIGURE 3 These two screenshots demonstrate the impact of sorting particles for a system with a fountain

emitter with 8192 particles and a floor plane. The particles are tinted based on distance to better show off the

artefacts due to incorrect rendering order (green far away, red nearer to the camera). The top screenshots shows a

rendering with non-sorted particles, and the bottom screenshot shows them sorted by depth. Pay particular

attention to the particles on the floor plane, and notice how they look like a flat surface at the bottom (as they

should) but that there is no clue as to the shape of the particles in the top screenshot. The frame was 121Hz and

119Hz respectively (0.016ms for simulation and 0.11 ms for 5 sorting passes per frame).

- 24 -

Thus for visual correctness we require only that the particles are processed

in roughly back to front order
6
.

The ideal sorting algorithm for visual correctness is thus one which we

can spread out over multiple frames, improving the "sortedness" of the

particles incrementally each frame, without having to pay the cost of a full

sort. Using such an algorithm the amount of sorting that gets performed

each frame could be tweaked on a case-by-case basis to achieve good

quality while minimising the time spent sorting.

Figure 3 demonstrates the difference between rendering alpha blended

particles in a non-sorted and sorted order. It is very difficult to demonstrate

the effect of rendering alpha blended particles in the wrong order in a static

screenshot, but it is extremely noticeable in motion as the particle system

looses all sense of shape.

3.2.2 Sorting for Cache Coherency

When sampling a texture in the simulation of a particle it is sometimes

useful to sort the particles such that the spatial coherency of these samples

gets improved. One example is turbulence discussed in section 3.1.1.3.

Because simulation with turbulence samples a 3D texture based on position,

over time the randomness of the particle system will lead to more or less

random sampling of the turbulence texture. This type of sampling behaviour

is disastrous for cache coherency, and can cause crippling overall

performance (see section 4.4.1)

By partitioning the particles into a 3D grid, and then sorting them by the

index of the grid cell in which they lie, we can ensure that particles in the

same grid cell will be processed roughly at the same time. Since the

positions of the particles with a grid cell are close together, their sample

locations in the 3D volume texture will also be close together, and so cache

coherency is improved.

There are various aspects that need to be considered when choosing the

dimensions of this 3D grid structure, as well as the order in which the grid

6
 This is of course highly subjective. The “sortedness” required for “good enough”

results varies between different particle systems, and should be adjustable by an artist on a

per system basis.

- 25 -

cells are indexed. Ideally we would want to "traverse" the grid cells in a

pattern which gives good spatial locality (such as a 3D Hilbert curve (9)).

This requires us to find an "index" for a grid cell given its spatial location,

which requires finding the inverse of a space filling curve. Thus we need to

find a space filling curve with a cheap inverse. We choose to simply

traverse the grid cells along the x, y, and z axes, in that order. The inverse of

this space filling curve is then simply:

𝑖𝑛𝑑𝑒𝑥 = 𝑥 + 𝑦 × 𝑤𝑖𝑑𝑡ℎ + 𝑧 × 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

This means that we process the grid structure in "depth slice" order, and

each such slice is processed in row-column order.

The Xbox 360 GPU is optimized for reading 2D textures
7
, which means

it's preferable to ensure that the samples in a particular cell read from the

same 2D slices of the volume texture (and the number of slices touched by

the particles in a cell, are as few as possible). So the grid should be arranged

so that each slice of it covers as few slices of the volume texture as possible.

For this reason we should choose the “depth” dimension of the grid cells

to be one texel deep for point sampled volume textures. This ensures that

each particle within a single grid cell samples from the same slice in the

volume texture. This keeps the number of slices "active" in the cache at a

minimum since the grid cells are processed slice order (and the grids cells

themselves are only one texel “deep” and thus the particles in them all

sample from the same slice).

For trilinear sampled volume textures the optimal depth is one half texel

for the same reason, since all particles within a grid slice of this depth will

sample the same two volume texture slices. If a grid depth dimension of one

texel were used, samples in a cell could potentially touch three slices (the

slice corresponding directly to the grid slice, and the two neighbouring

slices) due to the trilinear filtering.

It may seem that the optimal grid cell size would thus be one or one half

texel cubed (which would ensure that the particles within a cell sample the

7
 At least that’s the conclusion that can be drawn from experiments; there doesn’t seem

to be any good documentation on how the Xbox 360 cache works exactly.

- 26 -

exact same texels, and no more), but that's not the case. Consider the

traversal of all the grid cells within a single grid slice. The very first grid

cell to be processed will be the one located at (0, 0), then the rest of the row

will be traversed, and only then will (0, 1) be processed. So while the grid

cells (0, 0) and (0, 1) are neighbours and likely to produce good cache

behaviour if processed in direct sequence (since particles which sample

along the edge of the two cells will need largely the same texels for

filtering), they are processed a number of cells apart. For large enough

volume textures this may mean that the texels sampled in grid cell (0, 0)

have long since vacated the cache by the time its neighbour in the following

row is processed.

Traversing the slices along grid cells thus introduce a loss of locality

because the traversal is not optimal with regards to locality. In other words,

if we choose too small grid cells, locality will suffer
8
 but if we choose to

large grid cells the number of texels within each may be so high that the

samples within it do not fit in the cache. So the dimensions of the grid cells

in each slice should be chosen to be to be as large as possible while still

fitting comfortably in the cache, while the depth should be one or one half

texel depending on filtering mode as discussed above.

So for example, if the texture format is 4 bytes per texels (which is the

format used for turbulence in section 3.1.1.3), that means 8192 texels can fit

in the cache (since the Xbox 360 texture cache holds 32KB). If trilinear

filtering is used, texels from two depth slices will need to be kept in the

cache, meaning that the grid cells can only contain 4096 texels per slice

each, or 64x64. So in other words, the texel dimensions for the grid cells

should be (64, 64, 0.5), in this example. Note that this reasoning doesn't take

into account that we also need to sample a texture for the random values

used in particle emission (section 3.1.1.4), so it would be a good idea to

view these dimensions as an upper bound. Also, note that this reasoning

only takes the cache size into account and assumes a fully associative cache,

which is not the case for the Xbox 360 (which has a 16-way set associative

cache), but provides a good starting point.

8
 Not to mention the fact that we only have a limited number of bits (23 mantissa bits

for IEEE 754 floating points numbers) for the grid cell indices, so an excessive number of

grid cells is simply not expressible

- 27 -

3.2.3 Sorting Networks

A GPU can essentially be viewed as a very wide SIMD processor; as

such any algorithm we wish to implement on it will need to be stated in a

highly parallel form. Most common sorting algorithms, such as QuickSort

or MergeSort, are very efficient when executed sequentially but map poorly

to parallel formulations. Since the GPU is highly parallel we can't use

algorithms in which "early" decisions influence "later" decisions (e.g.

QuickSort where we need to process the entire sequence in each step to

determine which elements are to be processed in the next). Thus we are

looking for an algorithm which is data independent. Sorting networks fit the

bill perfectly(10).

Sorting networks are networks of compare and swap (CAS) operations

that, when traversed, results in a sorted sequence. The CAS operation

implements the following procedure:

In other words, CAS compares two elements and swaps their locations to

ensure a certain ordering. Sorting networks were originally used for

hardware circuits. We can think of them as a sequence of “levels”, where

each level, triggered by a clock cycle, performs a number of CAS operations

on the input from the previous level, and which eventually leads to a sorted

sequence as the final result.

The key feature of sorting networks is that their topologies are

independent of the actual data. The same number of CAS operations will be

performed on elements in the same locations, regardless of the contents of

these elements. This means that each level in such a network executes a

CAS(a, b)

{

if (a > b)

return (b, a)

else

return (a, b)

}

- 28 -

number of entirely independent CAS operations. This behaviour maps

nicely to a GPU, we simply treat each level as a separate pass over the

stream data, where the indices passed to the GPU each represents single

CAS operations.

Sorting on the GPU using sorting networks has been suggested before

(11)(6)(5), but due to a lack of scattered writes most of these algorithms

have needed to resort to unintuitive (and expensive) workarounds. For

example, to perform a CAS operation using previous techniques, the

scattering can be converted to gathering by essentially performing the CAS

operation twice, once for each output value. In other words, to compare

elements a and b, one would write out the first element of CAS(a,b) as the

output for a, and then for b perform the CAS operation again, only this time

writing out the second element of the result. The redundancy evident in this

strategy can be avoided by using memory export on the Xbox 360 GPU to

perform a proper CAS. This leads to less memory traffic since each element

is only fetched once rather than twice, and elements which aren't relevant

for a given pass will simply not be processed at all (previous methods

required that unused elements were copied through untouched, using

predication to detect such cases). With memory export the algorithms can be

written so that they only need to perform the exact number of operations

required for each pass, each element in those operations need only be

fetched once, and all other elements can be left untouched.

There are primarily two sorting networks in common use today, Odd-

Even Merge sort, and the Bitonic Merge Sort(10). It has been found that the

Bitonic Merge Sort can be implemented in a more efficient way than the

Odd-Even Merge Sort on GPUs (for example in(11)), but many of these

speedup techniques simply worked around the limitations of earlier

hardware, rather than being an inherent property of the algorithm itself (11).

Disregarding these platform specific implementation tricks, the odd-even

merge sort actually uses fewer comparisons than the bitonic sort(12). The

perhaps largest remaining benefit of the bitonic merge sort is that it’s

possible to merge the two final passes of each merge operation into a single

pass. This leads to log n fewer passes for a complete sort compared to the

odd-even merge sort.

- 29 -

The main benefit of the odd-even merge sort is that it, unlike the bitonic

merge sort, has the attractive property that it always leaves the stream more

sorted than it was after each pass(6)(10)(11). This is a key property since we

wish to sort our particles incrementally, using just a few passes per frame.

Thus, the bitonic merge sort is necessarily ruled out, and the odd-even

merge sort was chosen for the implementation in this thesis.

3.2.3.1 Odd-Even Merge Sort

The odd even merge sort, like any merge sort, is a divide-and-conquer

algorithm which works by recursively splitting a sequence up in two equal-

sized parts, sorting each independently and then merging the results back

together. The key operation that separates various merge sorts is the

merging step. While the original merge sort simply merges two streams

together in a highly sequential and data-dependent fashion after each sub

stream had been sorted, the odd even merge sort uses another merge

algorithm.

 The odd-even merge is itself a divide and conquer algorithm. It takes

a stream, splits it up into two halves and merges them recursively. It can be

a little mind bending to visualize how this “nested recursion” traverses the

data stream, but it is key for understanding the algorithm.

- 30 -

 In other words, for a two element stream merge simply compares

them and return them in order. For any other length stream merge separates

out the odd elements and the even elements into two streams (hence the

name of the algorithm), and merges them independently in a recursive step,

then it interleaves the results, and performs the CAS operation for every

consecutive pair of elements starting with the second and third.

merge (s)

{

n = size(s)

if (n == 2)

{

return CAS(s(0),s(1))

}

else

{

odds = s(1,3,..,n-1)

 evens = s(0,2,..,n-2)

 result = interleave(merge(evens),merge(odds))

for (i = (1,3,..,n-2))

{

(x,y) = CAS(result(i),result(i+1))

result(i)= x

result(i+1)= y

}

}

}

- 31 -

It may not be immediately clear that this algorithm is parallel in nature,

but when drawing this up as a sorting network marking all the CAS

operations, it can be easily seen that each is completely independent of the

others within each "level" of the recursion “tree”. Figure 4 shows this

sorting network, with each merge operation and each level within these

marked. Again, this can be confusing, but it illustrates the workings of the

odd-even merge sort graphically, so it’s important to understand it. Note the

orange dashed outlines which correspond to the recursive subdivision of the

list in the merge sort algorithm (the “divide step”). Also note that the

various stages (each corresponding to a single merge operation, the

“conquer” step) take an increasing number of passes to complete (unlike the

standard merge sort algorithm where the merge step is equally expensive

each time) because they are themselves recursive divide-and-conquer

processes.

Stage 0 Stage 1 Stage 2

FIGURE 4 This diagram displays the sorting network for odd-even merge sort. Each

circle represents a CAS operation. Each column of CAS operations represents a single

stream operation (or “pass”). The “stages”, corresponding to “merge” operations, are

indicated at the bottom. The dashed outlines indicate the subdivision of the stream caused

by the recursive nature of the merge sort algorithm.

- 32 -

Since the odd-even merge sort is a divide and conquer algorithm, and the

“conquer” part of the algorithm is itself a divide and conquer algorithm, we

end up with a time complexity of O(n log
2
 n). For a more formal time

complexity analysis, consult (10), (11) or (12). This is worse than the

theoretically optimal O(n log n), but in return the sorting can be performed

in a highly parallel way entirely on the GPU.

While a recursive definition is elegant and lends itself nicely for proving

that the definition leads to a correctly sorted stream (12), it is not terribly

useful as is for the purposes of incrementally sorting a particle stream. The

algorithm must be restated in a parallel form, such that the fundamental unit

of computation is a "stream operation”. This is fairly straight forward, since

the stream operation in question would simply be the loop inside the merge

function performing the CAS operations. The code must also be transformed

into an imperative “loop” form which allows us to execute one, or a variable

number of stream operations at a time. This is a bit tricky to get right, so the

full C++ code demonstrating how to invoke the two stream operations

SortMerge and SortBaseCase (which will be discussed shortly) one pass at a

time are presented next.

- 33 -

This function can be called over and over and will result in a single

stream operation being performed each time. When the final stream

operation in a sort has been performed, SortStep will return true, if there are

more passes required to sort the sequence, it returns false.

Implementing the stream operation itself in HLSL is fairly

straightforward. Of course the main operation is the CAS, which simply

reads in two elements, compares them, and writes them out again in

possibly swapped locations.

There is one subtle caveat. Since the Xbox 360 does not support integer

instructions directly, one must be careful when doing any computations on

bool SortStep()

{

 static int loopLen = 0, loopStep = 0;

 static bool loopRestart = true, loopIsInInner = false;

 if (loopRestart)

 {

 loopLen = 2;

 loopIsInInner = false;

 loopRestart = false;

 }

 if (!loopIsInInner)

 {

 SortBaseCase(loopLen);

 loopIsInInner = true;

 loopStep = loopLen / 4;

 }

 else

 {

 if (loopLen > 2)

 {

 SortMerge(loopLen, loopStep);

 }

 loopStep /= 2;

 if (loopStep == 0)

 {

 loopIsInInner = false;

 loopLen *= 2;

 if (loopLen > NUM_PARTICLES)

 {

 loopRestart = true;

 }

 }

 }

 return loopRestart;

}

- 34 -

indices, since they will be executed using floating point arithmetic on the

hardware. This leads to an interesting problem, namely that:

3

3
≠ 1

We can see why when we consider that an operation like 3
3 gets

computed as 3 ∗ 1 3 , which, since 1
3 = 0.33333…. , will result in a

floating point number close to, but less than, 1.0 (which, when working with

integers, gets truncated to 0, rather than rounded to 1). To avoid this

problem we need to implement a custom function for integer division and

remainder operations, where we take some extra care to ensure the

correctness of the result. Here’s the HLSL code demonstrating this:

This function first attempts to perform integer division, this may or may

not produce an exact result depending on the values in x and y. Next the

remainder is computed “manually” by simply multiplying the result of the

division (which may be off by at most one due to the floating point

precision issues) by the denominator and subtracting this number from the

int2 DivRem(int x, int y)

{

int d = x / y; // division

int r = x – d * y; // remainder

// handle off-by-one errors

if (r < 0)

{

 d -= 1;

 r += y;

}

else if (r >= y)

{

 d += 1;

 r -= y;

}

return int2(d,r);

}

- 35 -

numerator. If this remainder is negative then the result of the division is too

large and needs to be corrected. If the remainder is larger or equal to the

denominator then the result of the division is too small and the results need

to be corrected in the other direction. If the remainder is positive, but less

than the denominator, the results of the division were correct and no action

is required.

Now we can take a look at the two stream operations, SortMerge and

SortBaseCase, whose C++ implementations simply invoke their HLSL

counterparts on the particle stream, transferring the loopStep and loopLen

variables to shader constants, as well as another variable called

numIxPerList which simply contains the total number of CAS operations

required for each “chunk” (marked by orange dashed outlines in Figure 4)

and can be used to figure out which chunk each CAS operation belongs to

(remember each index passed to the shader corresponds to a CAS

operation):

void SortMerge(int index : INDEX)

{

int chunk = DivRem(index, numIxPerList).x;

int2 swapChunkRem = DivRem(chunk, loopStep);

int currentIx = chunk*loopLen + (swapChunkRem.x*2 + 1)*loopStep

+ swapChunkRem.y;

int otherIx = currentIx + sort_step;

CompareAndSwap(currentIx, otherIx);

}

void SortBaseCase(int index : INDEX)

{

static const int listStep = loopLen / 2;

int2 chunkRem = DivRem(index, listStep);

int currentIx = chunkRem.x *2*listStep + chunkRem.y;

int otherIx = currentIx + listStep;

CompareAndSwap(currentIx, otherIx);

}

- 36 -

As we can see both these functions simply uses the index to identify

which CAS operation it corresponds to (se Figure 4) in the relevant pass,

then the two indices for this CAS are computed and passed to the CAS

function which simply compares the sorting key and writes out the elements

at swapped locations if (and only if) they are in the wrong order
9
.

Looking at Figure 4, we see that the final pass of each "stage" consists of

simply performing a CAS operation among adjacent elements, the second to

last pass performs CAS between elements two indices apart and so on.

Depending on the size of the elements it may thus be possible to fetch all of

the data involved in such a CAS operation with a single fetch. For example,

if the element data is just a single DWORD (and remember from section

1.1.1 we can fetch eight DWORDs at a time), the data for each CAS can be

fetched in a single fetch operation for the three last passes in each merge

stage (since they are 1, 2, and 4 elements apart, meaning that we can read

the data needed if we fetch 2, 3, and 5 elements at a time respectively).

3.2.4 Sorting in Particle Systems

In order to make use of these sorting algorithms we must find some way

of applying them to the particle data. There are essentially two alternatives,

which we discuss next.

3.2.4.1 Sorting Using a Key-Index Stream

One alternative for sorting the particle stream is to simply produce a key-

index pair for each particle(5)(6). The key contains the value on which the

sorting acts (e.g. the distance to the viewer, or the index in a spatial grid

structure), and the index simply points out the position of the particle in the

particle stream. The upside to this approach is that we don't need to fetch

quite as much data during the sort, which should lead to less bandwidth

usage and better cache coherency.

The downside is that we must generate this Key-Index pair in each

simulation pass, and we must also map the results of the sort back to the

9
 In practice, only the writes to the eM# registers get predicated, since the memory

export address register (eA) counts as an output register and therefore cannot be

conditionally written to using predication, but must always be written even if the elements

do not get swapped(3).

- 37 -

particle stream somehow so that the particles can be processed in the sorted

order.

The Xbox 360 GPU does not have true support for 32 bit integers, which

means that the indices must either be limited to 65536 unique values (16

bits) or be represented using a 32 bit float. Since we aim to support far more

particles than can be represented with 16 bits we opt for the 32 bit float

approach. As mentioned in section 3.1.2, memory export works on

homogenous data streams only, so the data type for our key-index streams

must be float2, i.e. two 32 bit floats (one for the sorting key, and one for the

index). This is half the size of the particle representation we chose in section

3.1.3.

To make use of the final sorted key-index stream one must somehow

map this information back to the particle stream. Luckily, since we have full

access to the vertex fetch functionality on the Xbox 360 (see 1.1.1) we can

simply fetch a key-index pair, and then fetch a particle based on the index

part of this pair. This can be done in the simulation pass, where we need to

fetch the particles anyway.

To improve cache-coherency we choose to write out the result of the

updated particle at the sorted index location, rather than the unsorted index

location. This requires us to double-buffer the particle stream (since the

current particle at the sorted index location may not have been processed yet

and thus should not be overwritten), but leads to essentially unchanged

cache coherency characteristics compared to just reading the particles in the

order in which they appear in the particle stream. It should be stated

explicitly that this last step would not be possible without the memory

export functionality of the Xbox 360 GPU, and consequently you would get

more or less random access patterns (and thus poor cache coherency) for the

particle stream in previous implementations which use the key-index stream

approach to sorting, such as(6).

Using a key-index stream to sort the particles introduces overhead in

several places, because it requires:

 One additional fetch per particle in order to find out the location in

the particle stream of the next particle.

- 38 -

 One additional write per particle to store the updated key-index pair

for use in sorting in the next frame.

 Additional memory to store the key-index stream

 Additional memory to double-buffer the particle stream if we want

to reorder it on the fly for improved cache coherency (and we do!).

Experimentation shows that the approximate performance overhead

imposed on the simulation due to fetching via a key-index stream as

opposed to just fetching the particle directly can be as high as a quite hefty

73%. The space overhead is 1.5 times the size of the particle stream, since

an additional particle stream, and a key-index stream (half the size of the

particle stream) are needed.

3.2.4.2 Sorting the Particle Stream Directly

Another option is to simply sort the particle stream directly, without

going via a key-index stream. This method is not as feasible for particle

system which use multiple textures for their particle representation (such as

(5) or(6)), since it would greatly increase the number of fetches required in

the sorting step (each component needs to be fetched and "moved"), while

using our approach with memory export the number of fetches remains

unchanged (we can retrieve an entire particle in with a single fetch

instruction).

Using this approach has the benefit that all the overhead on the

simulation pass can be avoided entirely, but the downside is that the sorting

itself must read and write twice the amount of data, which leads to worse

cache performance, and that we need to compute the sorting metric

(distance, or grid cell index) for every sorting pass rather than just doing it

once per frame. Another downside is that the optimisations mentioned in

section 3.1.2 where we fetch multiple elements at a time to retrieve the input

data for a compare and swap with a single fetch, wouldn't yield as much

benefit since larger element sizes translates to fewer elements per fetch. In

our example we can only do this optimization for the very last pass in each

merging stage (since we can read exactly two particle elements per vertex

fetch). In practice, the cost of sorting the particles directly were minimal

(less than 7%) compared to the performance hit incurred on the simulation

by using a separate key/index stream, especially since the sorting is spread

out over multiple frames (see section 4.4).

- 39 -

3.2.5 Improving Temporal Coherency

As we shall see in section 4.4, sorting is an expensive operation, and

despite our best efforts to speed it up, the cost of doing a full sort each frame

is much too expensive to be feasible. The only reason sorting is still a

reasonable proposition in practice is that our data exhibits temporal

coherency. This means that we can perform only a few passes of our sorting

algorithm each frame and still end up with acceptable results. It follows that

a good way of improving the overall performance of our sorting algorithm is

to take steps to improve temporal coherency in the hopes that this allows us

to do fewer passes per frame.

Of course, one way of improving the temporal coherency is to just slow

down the particles in the system. And indeed if this is possible to do while

still achieving the effect you want (for example by animating the texture

coordinates to simulate speedy motion while allowing the particles to move

slower), it is a good idea to do so, but in general this isn’t always possible.

The worst-behaved particles in most particle systems are the ones which

have just died and been respawned. Their previous location can be very far

away from their new position, and thus their position within the sorted

stream may as a result be very far off indeed. A simple way of improving

cache coherency is to avoid these worst offenders. We can do this by

introducing an artificial delay (perhaps half a second or so) right after a

particle is reborn where it will have all of its new properties, but it won't be

simulated nor rendered for a few frames. Doing this gives the sorting

algorithm time to move the newly created particle around to a better

location in the particle stream before the effects of its poor location make

themselves known (either through poor cache coherency, or through jarring

visual artefacts, or both).

- 40 -

We can implement such a delay by using the sign bit of one of the time

values in our particle representation. We follow the convention that a

negative time value represents a "skipped" particle. This particle won't be

simulated, nor rendered. When a particle "dies" there are two cases to

consider:

 If the particle is a skipped particle, then we generate a new particle

which is not skipped. This can be done by simply resetting the time

value and ensuring that the "skip" flag is not set.

 If the particle is not a skipped particle, we respawn the particle,

reinitialising its parameters using random values, and set its "skip"

flag to true. Figure 4 shows a state machine describing how particles

are emitted, simulated, and skipped.

3.3 Rendering
Once we’ve performed simulation we must also render particles to the

screen. Since we’ve performed all of our simulation on the GPU we need

not do any expensive translations or copies here, but can draw our particle

buffer directly. Either as point sprites (a native primitive on the Xbox 360

GPU), or using it as a basis for geometry amplification in the vertex shader.

Live Particle

• On update:

• Simulate physical properties

• Increase life_lived

• Decrease life_left

• On render:

• Render normally

• Stay in state until life_left < 0

Initialise Skipped particle

• Set life_lived to a constant negative value
corresponding to how long a particle is to be skipped

• Initialise other properties (position, velocity etc.)

• Set life_left to a random, positive, life span

• Move to next state

Skipped Particle

• On update:

• Increase life_lived

• On render:

• Skip

• Stay in state until life_lived > 0

Initialise Live Particle

• Set life_lived to 0

• Move to next state

FIGURE 5 This

state machine shows off

the various states a

particle can be in when

we’re using a “skipped”

flag to improve temporal

coherency. The two

states without a border

are instantaneous; they

do some work and then

immediately move to the

next state. The two states

with borders are the

stable states for a

particle.

- 41 -

3.3.1 Point Sprites

The Xbox 360 supports rendering of point sprites, so an obvious

alternative is to simply render our particles as point sprites.

This is straightforward. We just draw the particle stream as “point”

primitives, and in the vertex shader simply output the size and position for

the particles in the vertex shader, and then sprite is automatically generated

for us. As discussed in section 3.1.2, we have the option of doing the

particle simulation at the same time as rendering; we can do this by just

updating the particles in the vertex shader, writing it out using memory

export, and then outputting the updated data to the pixel shader. Doing this,

however, we must be careful not to simulate the particles multiple times if

we’re using tiling (see section 1.1.1).

In order to avoid “popping” when a particle centre goes outside of the

viewing frustrum (but its resulting particle sprite would still be inside), care

must be taken to adjust the guard band to force drawing of sprites even

when their position is slightly outside of the screen extents.

In order to support “skipping” of particles (see section 3.2.5) the point

primitive can be conditionally “killed” in the vertex shader. At the time of

writing this operation is not supported in HLSL (not even as inline

microcode), so the vertex shader needs to be implemented in microcode
10

.

3.3.2 Geometry Amplification

While point sprites are very simple and efficient to use, sometimes they

they aren’t flexible enough for a certain effect. For example, one may want

to generate a rectangle for each particle stretched out in the direction of

motion, to give an added sense of motion. This isn’t really feasible with

point sprites since there is no control over the shape of the resulting sprite.

10
 I have, however, been told that this feature will be supported in HLSL in the June

XDK and onward.

- 42 -

For these cases performing geometry amplification is required in order to

go from a particle stream, to a stream of geometric shapes (such as quads).

Luckily, the Xbox 360 GPU is extremely flexible when it comes to fetching

vertex shader inputs, and gives us all the tools we need to perform arbitrary

fetches, based on the index. So to generate, for example, a quad for each

particle, you could simply draw a quad list, with an index buffer simply

containing the indices 0,1,2…4n. In the vertex shader dividing the index by

4 yields the position in the particle stream for the particle corresponding to

the vertex. The remainder of this division is the primitive-relative vertex

index. Then it is simply a matter of fetching the correct particle from the

particle stream, extracting the position, and then applying the appropriate

offset to this position (based on primitive-relative vertex index, viewer

direction, particle velocity etc.). Figure 6 shows an example of rendering

quads with a motion blur effect achieved by stretching the particles in the

direction of velocity.

Quad sprites can also be killed, to skip rendering of a particle, by just

killing all of its vertices.

FIGURE 6 These two screenshots show the same particle system using point sprite rendering (top) and quad

rendering with simulated motion blur by stretching the quads in the direction of motion (bottom). The data is the

same for both systems and was captured from a simulation of a rotating cone emitter with two million particles

and collision against a floor plane. Note the stretched and blurred “streaks” in the lower screenshot, compared to

the simple points in the top screenshot. The frame rates for these two screenshots were 60.7 and 37.4 frames per

second respectively, including simulation (taking 7.8 ms).

- 43 -

4 Results
There are already several screenshots of the techniques described in this

thesis distributed throughout the text, demonstrating the visual results. We

now take a closer look at the performance.

4.1 Overall Performance
In Chart 1 the frame times for a typical particle system are presented.

These results were captured by simulating and rendering the particle system

separately, with a varying number of particles.

While the performance of the particle simulation varies in a fairly

straightforward and unsurprising way when changing the number of

particles, and other settings, it is not possible to present exact figures for all

of these possibilities. Therefore, to give a well-rounded idea of the

performance characteristics of the particle simulation and rendering under

various circumstances, all screenshots of particle systems in this thesis also

have frame timings presented in the caption (including simulation time). All

screenshots were taken at the resolution of 1280x720, and where they have

CHART 1 This chart demonstrates the overall frame time for a typical particle system with varying numbers

of particles. The system demonstrated in this chart is a typical cone emitter, with a randomly varying life span

between 0 and 3 seconds, 45° spread, and an exit speed of 2.5 meters per second, with gravity effects (9.83 m/s2).

The particles were simulated and rendered in separate passes. The rendering pass used point sprite rendering with

additive blending.

- 44 -

been cropped they have been so only in one direction. It should be noted

that rendering performance varies greatly with the size of the particles in

screen space and their number, and in many of the screenshots the rendering

takes far longer than the simulation for that particular viewpoint. One

should thus be careful to deduce too much about the rendering times from

these screenshots, and perhaps concentrate primarily on the simulation times

(which do not vary with the viewpoint).

Chart 2 presents the performance characteristics of doing the simulation

and rendering in separate passes, versus doing them both in the same pass.

As we can see, there are substantial gains to be had by simulating in the

CHART 2 This chart demonstrates the performance difference between doing simulation and rendering in

separate passes, versus doing them in the same pass. The particle system is the same as that in CHART 1.

- 45 -

same pass as rendering (a 31% speedup in the case of 2M particles). This

mode of operation is made possible only though the use of memory export.
11

4.2 Rendering
While the performance of rendering varies greatly depending on things

like viewpoint, particle size, etc., making a complete presentation of

rendering performance difficult, we can compare the different forms of

rendering with each other. The particle system implementation in this thesis

uses two rendering modes; point sprites rendering and quads through

geometry amplification. Chart 3 presents the difference in performance for

these two modes. The numbers include only rendering time (including the

geometry amplification for the quads), the quads were matched to the size of

11
 Unfortunately at the time of writing there was an apparent bug in the driver software

which caused intermittent crashes when using memory export in this way. The problem has

been reported, and will hopefully be resolved in a future release. Simulating and rendering

separately had no such problems, though.

CHART 3 This chart demonstrates the performance implications of geometry amplifications. The settings for

this benchmark are the same as those in CHART 1, and the quads produced by the geometry amplification are

constructed to match the quads automatically generated by using point sprite rendering to eliminate other sources

for performance differences.

- 46 -

the point sprites to produce a fair comparison. The performance difference

is thus solely due to processing more geometry, and the logic needed to

compute the quad corner positions in the vertex shader.

The absolute difference between these two rendering modes is constant

for a given number of particles; the relative difference will vary depending

on how expensive the rasterization of the particles is (which depends on

pixel shader cost, the size of particles etc.). And indeed in practice, stretched

quads tend to cover more pixels than point sprites, and will therefore take a

larger performance hit than merely the cost of amplification. Figure 6 shows

an example of this (the difference in rendering times between the two modes

is 10.3 ms, while the cost of geometry amplification for 2 million particles is

only 9.6 ms according to Chart 3).

4.3 Particle Simulation
The performance for simulation is fairly robust performance-wise, as it

does not depend on the view point or any of the rendering properties for the

particles. As such the measurements presented in Chart 1 tell pretty much

the whole story.

Analyzing the simulation in PIX
12

 reveals that the simulation is fetch

bound. This means that most of the time is spent waiting on another particle

to be fetched from the particle stream. This implies that there is room for

extra ALU operations (such as more complicated collision detection)

without changing the overall performance at all. The PIX analysis also

shows that the vertex cache has a 50% hit ratio, which is entirely expected

since the vertex format is half of the maximum fetch size (see section 3.1.3).

12
 Performance Investigator for Xbox. An indispensible tool for debugging and

optimizing shaders on the Xbox 360.

- 47 -

4.4 Sorting
Chart 4 presents the average cost of performing a single sorting pass for

various particle counts. In practice, a small number of these passes per

frame would be sufficient to get a “good enough” ordering for visual

purposes (though case-by-case experimentation is probably warranted).

The cost for a sorting pass is linear with the number of particles, and the

number of passes required is proportional to log
2
n. Even if with only a few

sorting passes per frame, more passes will be required to achieve the same

level of “sortedness” for larger number of particles (since a single pass

represents a smaller fraction of the total number of passes required for a full

sort).

Chart 5 displays the cost of sorting a sequence entirely. Note that this is

not something that can typically be done in practice, as it is far too

expensive (and wasteful to boot), but it gives a good idea of the

performance characteristics.

4.4.1 Sorting for Cache Coherency

As mentioned in section 3.2.2, sorting can be used to improve locality for

particles, reducing the pathological cache behaviour when, for example,

sampling from a turbulence texture. We shall not linger too much on this

subject, as it is not a major focus of this thesis.

CHART 4 This chart shows off the average cost of a single sorting pass.

- 48 -

Chart 6 shows the performance characteristics for a cache bound particle

simulation with a turbulence texture. While the exact performance figures

varies from system to system depending on things such as temporal

coherency etc., the shape of these curves are characteristic.

The benefit of any additional sorting pass decreases as the number of

sorting passes increases. This is due to the fact that a particle system is not

completely random; there is some frame to frame coherency. For example,

consider a system which does a full sort each frame, after the first frame the

system will already be “almost sorted” so it’s clearly wasted effort to

perform a full sort again in the second frame. This implies that the most

“bang for the buck” when it comes to sorting is in the first couple of passes

per frame, after that the improved cache behaviour will come at too great a

relative cost. As Chart 6 shows, there is a cut-off point where the cost of

additional sorting passes is higher than the benefit gained by improved

cache behaviour. This point depends on a variety of factors such as the

number of particles (a single sorting pass improves the “sortedness” for N

particles more than it does for 2N particles), the speed of motion of

particles (slow moving particles exhibit greater temporal coherency and

therefore do not get unsorted as quickly), and the randomness of the

particle’s movements (particles that move through a strong turbulence field

CHART 5 This chart shows off the time it takes to do a full sort for a varying number of particles. It may

look linear at first glance, but in fact it follows the expected shape of O(log2 n).

- 49 -

will tend to get disorganized quicker than particles which move through a

vacuum).

This result implies that the best possible speedup will be obtained if the

first couple of sorting passes is enough to get the cache hit ratio up to an

acceptable level. A poster child example for when sorting helps

performance is when 3-4 sorting passes can be used to bring cache

coherency up from around 60% to 99-100% (and indeed we see this in Chart

6).

Sorting is an expensive operation. In fact, a complete sort of the particles

in all but the most trivial systems is so costly that it completely dwarfs the

cost of even highly pathological cache behaviours. However, if the system

has some temporal coherency, it is possible to achieve better cache

coherency through sorting, while only paying a fraction of the cost for a full

sort. This temporal coherency is the key to using sorting for performance

benefit. The more random the particle system, the less likely the prospect of

speeding it up using sorting is.

CHART 6 This chart demonstrates the performance of a cache bound particle system with 128K particles.

The size of the volume texture sampled using the position was tweaked to produce three different initial cache

hit rates, and then a varying number of sorting passes was added to see how performance improved in each

case.

- 50 -

It should be stated clearly that the “sweet spot” for when sorting actually

helps performance is quite narrow. The system must exhibit very specific

characteristics for sorting to be a net win (high cost and rate of cache

misses, relatively few particles, high temporal coherency etc.).

- 51 -

5 Discussion

5.1 Summary

This thesis presents a system for simulating and rendering particle system

entirely on the Xbox 360 GPU. It makes particular good use of the memory

export facility to improve simulation times by performing it at the same

time as the rendering, and also to perform incremental sorting of the

particles for non-commutative blend modes and to improve cache coherency

in certain circumstances. The performance achieved for the simulation is

high – for most particle systems the limiting factor will be the cost of

rendering the particles, rather than the cost of simulating them; even for

systems with very simple render modes.

5.2 Future Work
One interesting property of our sorting algorithm is that it uses only two

13

of the four Memory Export elements(3). This is a wasted opportunity. One

way to make use of the other two elements is to sort two equal length

sequences at the same time, by simply storing them interleaved in one

vertex buffer, and then having the CAS operations act on both lists at the

simultaneously in lock-step (CAS(a,b) becomes CAS(2a,2b) and

CAS(2a+1,2b+1)). If strict correctness of the sorting algorithm isn’t

important (which can be the case when sorting for cache coherency), then

one could simply treat a single sequence this way and end up with two

independently sorted sequences interleaved, which might be good enough

for certain scenarios. If correctness is required, additional work is required

to copy the two interleaved list into a buffer where they are stored

separately, and then perform a merge operation (e.g. the odd-even merge as

described in 3.2.3.1). This is a promising optimization since it appears that

sorting is limited by memory export bandwidth, so increasing the efficiency

of those writes can potentially lead to big wins.

In this thesis we only briefly discussed collision detection. It’s

conceivable to perform much more advanced collision detection than this.

13
 When sorting the particle elements directly, since the element type is half4 and we

use two elements per particle. When sorting a key index stream we only use one of four,

since the element type in that case is a single float2 per particle.

- 52 -

For example in (7) collision detection against a height field is performed by

sampling a texture of plane equations approximating the surface. This can

possibly be extended to work on arbitrary geometry, so long as the direction

of particles colliding with this geometry is roughly constant (which is true

for a variety of effects, such as rain), by simply rendering a view of the

scene from the particle emitters viewpoint in the direction of the particles

and storing the depth at each pixel. Particles could then be tested for

collision against this depth map. Access to some form of normal for

reflection against the collision geometry will likely be necessary, and can be

gathered when rendering the depth map
14

, or as a separate pass, or indeed

when the collision occurs, by numerically computing the gradient of the

depths. Other possible approaches would be to approximate geometry

around the particle system by a series of simple primitives, such as spheres.

The most important of these collision primitives could then be uploaded to

the GPU in shader constants.

Another area that could do with some more attention is the rendering

itself. We discussed two different ways of rendering sprites in this thesis,

but there certainly are other options available. For example one could render

so called “soft particles” which simply modify the alpha of a particle based

on the distance to the scene geometry which gets rid of hard edges caused

by intersections(13). Another possible strategy is called Soft Volume

Particles where each particle is viewed as a 3D volume where the density is

stored in a volume texture. The colour for each pixel in the particle is then

computed by simply ray tracing through this volume, adding up occlusion

and lighting along the ray(13). A potential combination of these two

approaches would be to pre-integrate the occlusion and lighting normal at

each point in the 3D density texture, assuming that the eye rays always pass

through the same (x, y)-coordinate or each depth slice. Then these particles

could be rendered as normal camera-facing sprites, but the depth of the

geometry behind the sprite would be used to fetch the occlusion from the

volume texture containing the pre-integrated densities. That way one would

achieve “noisy” looking occlusion of a particle volume while only taking a

single sample per particle pixel. This amounts to storing an arbitrary

14
 Though this would disable the “double speed” rendering available for depth-only

passes on the Xbox 360(3).

- 53 -

monotonically increasing “occlusion function” for each pixel in a standard

camera-facing 2D sprite, thereby achieving a bit more natural looking “soft”

intersections against the background geometry. The downside being that the

particles turn to face the camera like normal sprites – unlike fully

volumetric “soft particles”.

Furthermore, it would be interesting to compare this particle system

against a highly optimized CPU based simulation using the Xbox 360 VMX

instruction set(2). One could speculate that it should be possible to identify

specific (and very likely highly unrealistic) particle system characteristics

where a CPU-based version outperforms a GPU based one (e.g. due to poor

cache coherency for the GPU version). This would probably be a quite

substantial undertaking, with little practical use, however.

- 54 -

6 Bibliography
1. Reeves, William T. Particle systems - a technique for modelling a

class of fuzzy objects. s.l. : ACM Computer Graphics, 1983.

2. Isensee, Pete. Xbox 360 Hardware Overview. Xbox 360 Central.

[Online] 2004. Registered developers only. https://xds.xbox.com/xbox360.

3. Dougherty, Michael. Xbox 360 GPU Overview. Xbox 360 Central.

[Online] 2004. Registered developers only. https://xds.xbox.com/xbox360.

4. Microsoft. Programming Guide (Direct3D 10) 2007.

5. Kipfer, Peter, Segal, Mark and Westermann, Rüdiger. UberFlow:

A GPU-Based Particle Engine. Grenoble : Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. pp. 115-

122. 2004.

6. Latta, Lutz. Building a Million Particle System. Game Developers

Conference 2004.

7. Microsoft. GPUParticle Sample, Xbox 360 XDK. 2006. [Online]

Registered developers only. https://xds.xbox.com/xbox360.

8. Porter, Thomas and Duff, Tom. Compositing Digital Images. : ACM

Press, 1984.

9. M, Trott. The Mathematica GuideBook for Programming.: Springer-

Verlag, pp. 93-97. 2004.

10. Batcher, K E. Sorting networks and their applications. Proceedings

of the AFIPS Spring Joint Computer Conference 32. pp. 307-314. 1968.

- 55 -

11. Westermann, Rüdiger and Kipfer, Peter. Improved GPU Sorting.

[book auth.] Matt Pharr and Fernando Randima. GPU Gems 2. 2002.

12. Lang, H W. Odd-even mergesort. 2007. [Online] http://www.inf.fh-

flensburg.de/lang/algorithmen/sortieren/networks/oemen.htm.

13. Microsoft. SoftParticle Sample, DirectX SDK. 2006. DirectX

Developer Center. [Online] https://xds.xbox.com/xbox360/xdk.aspx.

14. NVidia. CUDA Programming Guide Version 0.8.2. 2007.

15. ATI. ATI CTM Guide, Technical Reference manual. 2007.

	Introduction
	Background
	What is a particle system
	A Brief Overview of the Xbox 360 Hardware

	Problem Specification
	Analysis and Method
	Simulation
	The Simulation Step
	Integrating the Particles
	Collision detection
	Turbulence Fields
	Emission

	Simulating Particles Using Memory Export
	Particle Representation

	Sorting
	Sorting for Visual Correctness
	Sorting for Cache Coherency
	Sorting Networks
	Odd-Even Merge Sort

	Sorting in Particle Systems
	Sorting Using a Key-Index Stream
	Sorting the Particle Stream Directly

	Improving Temporal Coherency

	Rendering
	Point Sprites
	Geometry Amplification

	Results
	Overall Performance
	Rendering
	Particle Simulation
	Sorting
	Sorting for Cache Coherency

	Discussion
	Summary
	Future Work

	Bibliography

