

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, 2012

Extending OGRE with Light Propagation Volumes

Master of Science Thesis in Computer Science

JOHAN ELVEK

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Extending OGRE with Light Propagation Volumes

Johan Elvek

© Johan Elvek, 2012

Examiner: Ulf Assarsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Image rendered with OGRE and the extension described in this thesis (see section 5.1 for

details).

Department of Computer Science and Engineering

Göteborg, Sweden 2012

Abstract

OGRE is a popular open source rendering engine that offers an ex-
tensive set of core features. For more advanced rendering techniques,
however, the engine must be extended in various ways.

The term Global Illumination (GI) is often used to describe both
the effects of inter-reflecting light, and the algorithms that achieve
them. Normally associated with off-line techniques, such as path trac-
ing, recent years have seen an increase in the number of algorithms
that achieve effective approximations of GI, suitable for real-time ren-
dering.

Such algorithms are by necessity complex, and to incorporate them
into OGRE is a non-trivial task. This thesis examines a number of
interesting GI algorithms, and then describes the process of extending
OGRE with one of them: Light Propagation Volumes.

Sammanfattning

OGRE är en populär och open source renderingsmotor som har
en ansenlig mängd av grundläggande funktioner. För mer avancerade
renderingstekniker, däremot, måste motorn utökas på olika sätt.

Termen Global Illumination (GI) används ofta för att beskriva, bå-
de effekterna av interreflekterande ljus och de algoritmer som uppnår
dessa. GI associeras normalt med off-line-tekniker, såsom path tra-
cing. Under de senaste åren har dock ett utökat antal algoritmer som
uppnår effektiva approximationer av GI och är användbara inom re-
altidsrendering beskrivits.

Sådana algoritmer är av nödvändighet komplexa och att inkorpo-
rera dem med OGRE är en icke-triviell uppgift. Den här uppsatsen
undersöker ett antal intressanta GI-algoritmer och beskriver sedan
processen med att utöka OGRE med en av dem: Light Propagation
Volumes.

CONTENTS CONTENTS

Contents
1 Introduction 2

1.1 Off-Line vs. Real-Time Rendering 2
1.2 The Rendering Equation . 3
1.3 Problem Statement . 4

1.3.1 Goal of the Thesis . 4

2 Related Work 6
2.1 Shadows . 6
2.2 Pre-Computed Lighting . 6
2.3 Ambient Occlusion . 7
2.4 Dynamic Pre-Computation and Off-Line Inspired

Methods . 10
2.5 Instant Radiosity and Reflective Shadow Maps 10
2.6 Volume-Based Methods . 13

3 Light Propagation Volumes 15
3.1 Reflective Shadow Maps . 16
3.2 Spherical Harmonics . 16
3.3 Algorithm . 17

3.3.1 Propagation and Lighting 18
3.4 Fuzzy Occlusion . 19
3.5 Cascaded LPVs . 20

4 Implementation 21
4.1 Deferred Shading . 21

4.1.1 Lights . 22
4.2 Shadow Mapping . 24

4.2.1 Cascaded Shadow Maps 24
4.3 Ambient Occlusion . 25
4.4 Light Propagation Volumes 27

4.4.1 Injection . 28
4.4.2 Propagation . 29
4.4.3 Lighting . 31

5 Results and Discussion 33
5.1 Results . 34
5.2 Discussion . 36

5.2.1 Future Work . 38

6 Conclusion 39

1

1 INTRODUCTION

1 Introduction
When light hits the surface of an object, it interacts with that surface in
a number of possible ways. The nature of this interaction depends on the
characteristic properties of the given surface. While the simplest possible
simulation could model surfaces as either completely reflective, or completely
refractive, the different properties of real life surfaces lead to much more
complex situations.

Take, for instance, the concept of subsurface scattering. When we see the
face of another human being, we may think of this as our eyes receiving light
directly reflected off the skin on the face. This will be true for some of the
light. But, our eyes will also receive light that entered through the skin, and
then bounced around a number of times before exiting again.

The effect of subsurface scattering is that we perceive human skin as soft,
while a harder, smoother, material, such as steel, will have a very differ-
ent visual appearance. Steel will allow very little light to refract, and the
smoothness of the material will lead to fewer variations in the direction of
the reflected light.

So, there is an inherent complexity in modeling light that, in part, de-
pends on the many different properties of various materials, but that is not
the end of it. In both of the examples above, we are implicitly assuming that
light, from some kind of light emitter, interacts with the surface of a single
object, and then travel directly to our eyes. In general, that is not the case,
and the example of subsurface scattering touches upon the missing element:
multiple bounces.

Most of the objects we see are not only lit by some specific light source
(like a lamp, or the sun) but also from the light reflected off, or refracted
through, other objects. In the context of computer graphics, the term global
illumination (GI) has emerged as an umbrella term for describing this so
called environmental lighting, as well as the algorithms that achieve the effect.

1.1 Off-Line vs. Real-Time Rendering
There are a number of so called off-line methods/algorithms (e.g., Metropo-
lis light transport, photon mapping) that can be used to handle arbitrary
light paths by taking the entire geometry of a scene into account during light
calculations. While these techniques produce very accurate results, they are
currently not efficient enough to handle dynamically changing scenes in real-
time.

Modern graphics processing units (GPUs) on the other hand, are built to
efficiently render dynamic scenes in real-time using the “z-buffer algorithm.”

2

1.2 The Rendering Equation 1 INTRODUCTION

This algorithm handles the problem of determining visible surfaces by using
a buffer of depth values, relative to the eye1. For each object to be drawn,
the depth of the surface for each pixel is compared to the current value in
the z-buffer. Surface fragments are completely discarded if determined to be
behind what has previously been drawn at that pixel. Otherwise a new pixel
is drawn and the current z-buffer value is overwritten.

As each surface fragment is shaded, only the geometric information of the
currently shaded surface fragment is available. Even when pre-passes to ren-
der buffers containing positions, normals and other properties are performed,
we cannot use that information to find geometry intersecting rays of light.
At any time, only the surfaces directly visible from the eye are available.

The effect of this apparent limitation is that only direct illumination can
be simply handled. For indirect illumination, more advanced utilization of
current graphics hardware is required.

1.2 The Rendering Equation
Kajiya [1986] gives a general rendering equation for the intensity of light
between two points, p and p′ (the outgoing radiance from p′ to p):

Lo(p, p′) = v(p, p′)
[
Le(p, p′) +

∫
S
f(p, p′, p′′)Lo(p′, p′′) dp′′

]
v(p, p′) is a visibility term. If a ray from p′ to p is intersected by some other
point, po, v(p, p′) = 0. Le(p, p′) is the emitted radiance from p′ to p. The
domain of integration is the set of all points p′′ from which there is outgoing
radiance, and f(p, p′, p′′) is a measurement of the intensity of light scattered
via p′ from p′′ to p. This measurement is often calculated using a bidirectional
reflectance distribution function (BRDF).

Since an exact calculation of the above integral is computationally hard,
the task of any rendering algorithm is to provide an approximation of it for
each p′ visible from the eye (each pixel in the final image). As previously
mentioned, off-line methods take the entire scene geometry into account and
are therefore lend themselves well to various approximative methods. Most
importantly, they all have an inherent capability for computing v(p, p′) for
any two given points p and p′.

In the simplest form of GPU-based real-time rendering, and assuming a
single light source L, however, the rendering equation is reduced to

Lo(E, p) = Le(E, p) + f(E, p, L)Lo(p, L)
1Subsequent references to the eye should be taken to mean the point of view of the

main camera.

3

1.3 Problem Statement 1 INTRODUCTION

for each p visible from the eye, E, i.e., whenever we have v(E, p) = 1.
Fortunately, modern graphics hardware support custom shader programs

and the ability to save calculated values in various types of buffers, the latter
of which can subsequently be used as input by other shader programs in later
passes. Through creative application of this programmability, the design
of algorithms capable of providing better approximations of the rendering
equation in real-time is enabled.

1.3 Problem Statement
Global illumination algorithms for real-time applications is a relatively new,
but active field of research. In its most general application, the term GI de-
notes a number of various visual phenomena. But, transparency (or translu-
cency) and shadows cast by directly illuminated objects — while arguably
constituting GI phenomena — are notably such important parts of graphics
programming, that methods for handling these have long been considered
their own subjects.

The visual appearance of scenes rendered with direct illumination only,
is that of a number of light-receiving surfaces that reflect some light toward
the eye while completely absorbing the rest. To alleviate this situation, the
traditional strategy is to add a constant ambient term to the diffuse and
specular ones, even if they are zero. The result is that non-illuminated sur-
faces are uniformly brightened, regardless of the scene geometry and position
of light sources.

Generally speaking, we can identify two categories of indirect illumi-
nation: low-frequency illumination (diffuse inter-reflections), and high-freq-
uency illumination (caustics, glossy reflections). Due to the need for more
information, high-frequency phenomena are also more difficult to approxi-
mate.

Most of the methods in section 2 focus on, or are exclusively limited to,
diffuse indirect illumination. Furthermore, Tabellion and Lamorlette [2004]
have shown that single-bounce diffuse inter-reflections are often enough to
provide convincing global illumination, even for something as visually de-
manding as an animated feature film.

1.3.1 Goal of the Thesis

This thesis work is done in association with EON Reality, Inc., which offer
3D visualization and Virtual Reality solutions for businesses and educational
institutions. The next major version of their rendering engine will be based
on heavily extending the core features of OGRE [Torus Knot Software Ltd,

4

1.3 Problem Statement 1 INTRODUCTION

2011], an open source rendering engine that supports multiple graphics APIs,
notably OpenGL and Direct3D.

The goal of the thesis is to identify a state-of-the-art method that offers
a good balance between efficiency and accuracy, and subsequently extend
OGRE with this algorithm. Since a large number of models and scenes for
the current EON engine already exist, an important consideration is to find
a technique that requires little, to no, pre-processing.

5

2 RELATED WORK

2 Related Work
In the following subsections, extensive summaries will be given for some of
the more interesting techniques in the relatively short history of algorithms
for approximating indirect illumination in real-time rendering.

2.1 Shadows
As noted previously, the shadows resulting from direct illumination is gen-
erally not considered to be part of the problem of global illumination. But,
since a number of GI algorithms are built on a particular shadow method,
this section will briefly cover the basics.

For real-time rendering, there are two common techniques for adding
shadows to a scene. Crow [1977] suggests using silhouette edges of scene ge-
ometry to construct shadow polygons, subsequently used to determine what
parts of the geometry that are shadowed. The other common method, how-
ever, is the one of particular interest for later parts of this thesis, and that
is shadow mapping [Williams, 1978].

Shadow mapping is done by first rendering the scene from the point of
view of the light, writing depth values (normally in clip space) into a shadow
map. When rendering the scene from the point of view of the eye, the
shadow map coordinates of each surface fragment, as well as its depth in
the appropriate space, are calculated. The actual depth stored in the map is
then compared with the fragment’s value to decide whether the fragment is
in shadow or not.

Although shadow mapping is not physically accurate, variants of this
technique are capable of achieving feasible results in many situations. It also
effectively utilizes some of the most important capabilities of the GPU.

2.2 Pre-Computed Lighting
While ultimately not appropriate for this thesis, many interesting GI ap-
proaches involve various pre-processing steps. The result of the pre-process-
ing is used during execution of the real-time application to simulate, for
instance, diffuse inter-reflections.

Among the simplest methods are environment maps, which are queried
during shading for light coming from a specific direction, and light maps,
which are textures describing surface irradiance [Akenine-Möller et al., 2008].
These methods are simple in terms of usage during real-time application,
but the pre-processing involved may be arbitrarily complex and produce ex-
tremely accurate lighting. Important constraints are that all occlusion must

6

2.3 Ambient Occlusion 2 RELATED WORK

be precomputed, and that the reflections do not affect dynamic objects.
A very influential paper is The Irradiance Volume by Greger et al. [1998].

This method takes advantage of the fact that irradiance as a function of both
direction and position is largely continuous2.

Approximative irradiance values are stored in a grid, adaptively subdi-
vided to make a finer grid wherever geometry is present. The values at the
closest grid vertices for a given surface fragment are interpolated during the
lighting calculations. Irradiance volumes have an advantage over light maps,
in that dynamic objects are affected by the indirect illumination from static
geometry. Naturally, the reverse is not true.

In another seminal paper on Precomputed Radiance Transfer (PRT),
Sloan et al. [2002] use spherical harmonics (SH) to store transfer functions
in a number of samples over an object’s surface. Assuming a low-frequency
lighting environment, the transfer functions map from (any) incoming radi-
ance to the correct, outgoing, radiance. This mapping can take both self-
occlusion and local inter-reflections into account. The basic concept can be
extended to some possibility for inter-reflections between objects as well, but
works best for a single, designated “sender” object and one receiver object.

As the mathematical details of spherical harmonics are beyond the scope
of this thesis, the interested reader is referred to [Ramamoorthi and Han-
rahan, 2001] or [Sloan, 2008] (the former of which also presents an efficient
scheme for creating irradiance environment maps). An introduction to the
subject is also available in [Akenine-Möller et al., 2008]. The basic concepts
will be expanded upon in section 3.2.

2.3 Ambient Occlusion
Using a constant ambient term for background lighting results in an absence
of details for surfaces not directly illuminated. In real life, though, things
like corners in a room, cloth folds, and carved details on a piece of furniture
are often perfectly distinct, even if only inter-reflected light is reaching those
surfaces. The reason for this is that for a given point on a surface, the
incoming background light may be partially occluded by other parts of the
surrounding geometry.

In computer graphics, the effect of this occlusion is known as ambient
occlusion (AO). One possible strategy is to calculate the self-occlusion for
each object in a modeling program, and bake the resulting values into a
texture. This procedure would result in a very accurate and detailed AO,

2Spatial discontinuities exist on the boundaries between non-shadowed areas and
penumbras, as well as between the penumbras and umbras.

7

2.3 Ambient Occlusion 2 RELATED WORK

but the contact shadows between distinct, but closely situated, objects would
be lost.

An early method for fully dynamic AO was presented by Bunnell [2005].
During occlusion computation, each object is seen as a set of surface elements.
A surface element is stored per vertex, represented by position, normal, and
area, as an oriented disk. The area of each element is defined as the sum
of all At/3, where each At is the area of a triangle t, sharing the vertex in
question.

First, surface elements receive shadows from other elements by calcula-
tion of an accessibility value. This value may be used for final occlusion, but
leads to exaggerated AO, as surface elements that are heavily occluded will
affect surrounding elements too much. Instead, a second pass can be per-
formed, where pairwise form factors between elements are calculated, and
then modulated by the accessibility value of the first pass.

The method can also be extended to determine the bent normals (“average
incoming light vector,” [Landis, 2002]), which enable directional occlusion,
and simple near-field color bleeding if the color of each surface element is
available. Bunnell’s method results in very accurate AO, but needs to be
furnished with a hierarchical level-of-detail (LOD) scheme to be feasible even
for moderately complex scenes. Obtaining the area of each surface element
also demands some light pre-processing.

A much simpler, but also faster, technique was presented in [Mittring,
2007], and more extensively in [Kajalin, 2009]. Dubbed Screen-Space Ambient
Occlusion (SSAO), the method differs significantly from the previous method
in that it does not use any other geometrical information than that present
in the final image (or screen) space.

For each pixel, its depth value is obtained from the z-buffer and compared
to the depth values of a small number (usually 8 or 16) of sampled points.
If a sampled point is closer to the eye than the current pixel, it is regarded
as an occluder. A simple depth range check is used to avoid nearby objects
shadowing objects on the horizon.

The small number of samples introduce banding in the final result, so
each (pre-computed) offset vector is rotated using a random 4x4 pattern
of rotation vectors. The rotation trades banding for noise, and the same,
distinctly recognizable, noise pattern is repeated every 4x4 pixels.

The advantage of using such a small random pattern, however, is that the
resulting noise can be blurred away by using an equally small blur kernel.
Rather than using a simple box-filter, a cross-bilateral and edge-aware blur
that blends only pixels of similar screen space depth is used.

As SSAO is a screen-space technique, it suffers from problems such as
previously occluded surfaces becoming brighter as their occluders move out-

8

2.3 Ambient Occlusion 2 RELATED WORK

side the camera view, and vice versa. Furthermore, the simple scheme for
calculating occlusion, and its way of dealing with the resulting self-occlusion,
leads to concavities becoming dark, edges becoming bright, and unoccluded
surfaces becoming gray. The resulting AO is not physically accurate, but can
nonetheless be seen as a particular artistic appearance.

A similar, but somewhat more sophisticated, screen-space technique called
Screen-Space Directional Occlusion (SSDO) is given by Grosch and Ritschel
[2010]. Instead of using only depth, both position and normal are read from
a pre-computed screen buffer. This method also lets the user set a value for
maximum radius of influence, allowing for more detailed occlusion by nearby
surfaces, or more diffuse occlusion by relatively far away objects.

All offset vectors describe points in the hemisphere above the surface,
and the points sampled through the 2D projection of those are distinguished
by whether the offset vector described a point below, or above, the surface
sample. Only the samples where the offsets were below the sampled surface
are counted as occluders, and thus both self-occlusion and brightened edges
are avoided, leading to a more realistic approximation of AO.

Given some representation of directional background lighting (e.g., an
environment map), SSDO can also handle directional occlusion. In a deferred
shading system (see section 4.1) the color buffer can be used to let occluders
bleed color onto the occluded surface. This is a very rough approximation (as
the color bleeding surfaces may actually be totally occluded) for near-field
indirect illumination.

In [McGuire, 2010] a geometry shader is used to construct ambient occlu-
sion volumes (AOV) on the fly for each rendered primitive/triangle. As each
such volume B is rasterized, values from pre-computed geometry buffers at
the rasterized pixel are read, which gives the position and normal of a visible
surface point x. Using the available information on B and x, an accessibility
value is decreased according to the value of a falloff function g.

An occlusion volume can be thought of as a pie slice with the base on the
same plane as the triangle, extending in all other directions by a maximum
distance of influence δ. This enables occluding geometry that is not visible
on the screen to affect the visible objects, as the occlusion volume may still
be rasterized. A possible optimization is to construct the volumes for static
scenery once (which would also allow quads rather than triangles), and simply
render these during AO computation.

The accessibility value for each pixel is initialized to 1 and decreased by
the value of g each time rasterization of an occlusion volume affects that pixel.
The accessibility value is saturated at 0, which means total occlusion. Thin
objects (< δ) in close proximity (< δ) may artificially accelerate the decrease
and lead to over-occlusion. The final occlusion values can be remapped, either

9

2.4 Dynamic Pre-Computation and Off-Line Inspired
Methods 2 RELATED WORK

according to a pre-computed curve, or according to an arbitrary parabolic
curve, but fully (and possibly falsely) saturated values will remain so.

While not as fast as the various image-space methods, AOVs produce
results nearly on par with ray traced AO in many cases. As is often done
for image-space AO, the occlusion volumes can also be rendered at a lower
resolution and then upsampled at the cost of some quality.

2.4 Dynamic Pre-Computation and Off-Line Inspired
Methods

While true off-line methods have begun to take advantage of the computing
power of graphics hardware (for instance, van Antwerpen [2011] efficiently
deals with stochastic termination when performing random walks for Monte
Carlo-based rendering on GPUs), there have also been successful attempts
of applying the concepts of either off-line, or pre-computed, techniques to
real-time rendering.

In [Nijasure et al., 2005], the entire scene is divided into a three dimen-
sional grid and then rendered into small cube maps at each grid point. The
cube maps represent the radiance field at the corresponding grid points.

Taking each pixel of a cube map into account, spherical harmonics co-
efficients are subsequently calculated and stored in a volume texture. The
indirect illumination for each surface fragment is computed by evaluating
a tri-linear interpolation of the SH coefficients, and the result can also be
used in rendering the cube maps anew in order to take multiple bounces into
account.

Inspired by photon mapping, McGuire and Luebke [2009] renders bounce
maps, which represent the first bounce of light, from the point of view of each
light source. These are used as input for a CPU-bound photon trace, while
the hardware concurrently uses deferred shading to render direct lighting.

Final gathering is then performed in screen space, by converting the result
of the photon trace into photon volumes, which are splatted onto all visible
surfaces. The bounce maps and photon volumes are GPU-friendly alterna-
tives to the otherwise expensive initial bounce and final gathering steps of
the photon mapping algorithm.

2.5 Instant Radiosity and Reflective Shadow Maps
Originally suggested by Keller [1997], the Instant Radiosity algorithm treats
a subset of all light-reflecting surface points as virtual point lights (VPLs)
([Laine et al., 2007], [Ritschel et al., 2008]). In the original algorithm, the

10

2.5 Instant Radiosity and Reflective Shadow Maps 2 RELATED WORK

scene is rendered, using shadow volumes, multiple times from random points
on the surface of an area light. Through a CPU-bound quasi-random walk of
the scene based on Monte Carlo integration (or simple fixed length paths),
a number of VPLs are identified. The scene is again fully rendered, with
shadows, from the viewpoint of those, and the final frame is acquired via a
composite of all rendered images.

Laine et al. [2007] limit themselves to single-bounce indirect lighting, and
use 180◦ spot lights, or point lights, rather than area lights. VPLs are created
via a sampling scheme based on so called Delaunay triangulation, resulting
in a Voronoi diagram where a point in each cell marks the origin for a ray
towards the VPL. For each VPL, a parabolic shadow map is rendered3.

All VPLs4 are created at the beginning of the application run, and again
whenever old ones are invalidated. Invalidation occurs when the location of
a VPL ends up outside the lit region (spot lights only) or a VPL becomes
occluded. By only treating static geometry as occluders for the indirect occlu-
sion, invalidation can only occur as a result of a moving light source. In other
words, dynamic objects may receive indirect lighting but do not contribute
to it.

Each VPL acquires the color of the surface point at which it originates,
sampled from a heavily blurred texture to avoid small texture details having
too great an effect on the indirect illumination. The power of a VPL is
proportionate to the size of its Voronoi cell, and the sum of all powers equals
that of the original light source.

To effectively deal with shading for such a large number of lights, an
interleaved sampling scheme is employed. In a deferred shading step, the
whole frame buffer is divided into a large number of small tiles and a subset
of all virtual point lights are assigned to each cell. This results in a noise
pattern that is removed in a filtering step when assembling the final image.

Ritschel et al. [2008] note that the nature of indirect illumination allows
for the visibility term to be roughly approximated, and introduce Imperfect
Shadow Maps (ISM). The method requires pre-processing the geometry by
creating a simple point representation of each object. Many (e.g., 1024) VPLs
are created, simply by sampling the shadow map of the original light source,
and small parabolic shadow maps are then created for each by splatting the
point representations into the depth buffer.

The above scheme allows for a large number of ISMs to be quickly ren-
dered, but leaves holes in the shadow maps. This is alleviated by performing

3Parabolic shadow maps capture the entire hemisphere from the viewpoint of the cam-
era.

4256 is a suggested number.

11

2.5 Instant Radiosity and Reflective Shadow Maps 2 RELATED WORK

a pull-push operation, where the shadow maps are first downsampled and
the finer levels then filled in by interpolating the values in the downsampled
maps.

Shading of the final scene is performed by interleaved sampling, as for the
previous method. ISMs also support glossy reflections and area lights. Im-
provements on the original algorithm was presented in [Ritschel et al., 2011],
which introduces a view-adaptive sampling scheme for creating the VPLs
and varying the density of the point representations according to distance.
Both strategies make sure that each VPL is better utilized, leading to higher
quality results.

The observation that pixels in a shadow map are exactly those surface
fragments that cause indirect illumination is taken advantage of in [Dachs-
bacher and Stamminger, 2005]. Instead of creating VPLs from the shadow
maps, positions, normals and flux are stored along with depth in a Reflective
Shadow Map (RSM).

During shading, each visible point p is projected into the shadow map,
and indirect illumination is gathered from nearby pixels. The normal of
p is compared to each sample to make sure that indirect illumination only
arrives from the hemisphere above p. Note, however, that this gathering step
completely ignores the visibility term.

To get consistent, non-flickering, illumination, a large number of samples
have to be taken and the flux stored in the RSM must be calculated using
blurred textures. The number of necessary samples is still large enough that
a pre-pass on a low resolution image is performed, and the result of that later
interpolated. The interpolation scheme works such that the information of
the low resolution pass may be deemed insufficient for a particular point. In
that case, a full gathering step is performed.

An alternative to the gathering approach was given in [Dachsbacher and
Stamminger, 2006]. By using an importance sampling scheme, a set of pixel
lights is drawn from the RSM, and each element is then splatted onto the
screen buffer using volumes shaped according to the nature of the pixel light.
Splatting works similar to AOVs, in that the rasterized volume describes the
area of influence (for the indirect illumination, in this case).

For mainly diffuse surfaces, the splatted volume will have an egg-shape,
but the technique also adds some support for high-frequency phenomenon
such as caustics (by narrowing the shape of the volume where appropriate).
An available AO buffer can also be used to reduce the number of needed
splats.

To increase the speed of the splatting process, Nichols and Wyman [2009]
proposed to subdivide the camera view image based on discontinuities in
depth and normal values. Regions where those values change slowly may be

12

2.6 Volume-Based Methods 2 RELATED WORK

splatted using low resolution images which are later upsampled. For either
splatting method, the visibility term is disregarded.

2.6 Volume-Based Methods
Under the heading Light Propagation Volumes in CryEngine 3 in [Tatarchuk
et al., 2009], Anton Kaplanyan suggested an alternative use for RSMs by
projecting the stored surface normals into SH coefficients, which are then
injected into Light Propagation Volumes (LPVs). Further development of the
idea was later presented by Kaplanyan and Dachsbacher [2010], and again in
[Kaplanyan et al., 2011].

LPVs are represented as volume textures where each volume element,
or voxel5, in turn represents a cubic region of space in the scene. After
the light has been injected, it is iteratively propagated through the volume.
The propagation scheme consists of having the light in each voxel, or cell,
propagate onto the faces of the cells lying in the 6 main axes of the 3D space.

To account for occlusion of the inter-reflected light, a blocking potential
for geometry rendered into an RSM can be calculated and injected into a
second geometry volume (GV). During propagation, the blocking potential
is taken into account when calculating how much light is propagated to the
neighboring cells.

As propagated light can quickly move away from the geometry stored
in the RSM, the geometry visible from the eye may also be injected into
the GV. Doing so, however, also makes the visibility term partially screen-
space dependent. This, in turn, leads to instances of flickering as moving the
camera may result in previously blocking geometry disappearing from the
main view.

The result of each iteration is accumulated, and the final result is used to
shade the scene. Because of the low-order SH used, in combination with the
highly discretized light transport, the technique is inherently only suited for
low-frequency diffuse inter-reflections.

A similar approach was given by Papaioannou [2011], but instead of prop-
agating the light, the injected SH coefficients represent radiance field evalu-
ation points denoted Radiance Hints (RHs). The first bounce is unoccluded,
although a heuristic for visibility computation was suggested as an optional
extension. Multiple depth values, di, along a ray between the reflecting sur-
face fragment and the associated RH are sampled in screen-space. Each
sample is compared to the depth, ds, in a geometry buffer, and if ds > di,
the inter-reflected light is attenuated by a constant factor.

5This is the 3D analogue of a 2D texture element, or texel.

13

2.6 Volume-Based Methods 2 RELATED WORK

Multiple bounces are encoded by performing subsequent passes where
RHs are updated through the sampling of other RHs. Here, a stochastic
method for approximating the visibility term is used, based on distances
between the RHs, and the maximum and minimum distances to injected
RSM samples for each. Shading consists of interpolating the contributions
of nearby RHs.

A very different approach to volume-based GI was presented by Thiede-
mann et al. [2011]. It builds upon the idea of scene voxelization, where a
discrete representation of the scene geometry is created and then stored in a
volume texture. Static geometry may be voxelized once, and a copy of the
result be used to initialize the scene representation each frame.

Apart from presenting a number of variations for global illumination,
the voxelization method described is novel itself. Given a mapping between
objects and coordinates for a texture atlas, the voxelization process compares
favorably with similar techniques in terms of both efficiency and quality. The
world space positions of each object are stored in their respective texture
atlases using depth peeling. This information is then used to mark the regions
in the scene, as represented by the volume texture, that are occupied.

A suggested ray/voxel intersection allows for a number of different meth-
ods of indirect illumination. For a near-field single bounce illumination, a
number of rays is cast from the shaded surface, and upon intersection, the
reflected light is read from an RSM. Storing additional information (normals
and BRDFs) in the volume texture enable a voxel-based path tracer. The
complexity of the intersection test depends on the length of the ray, however.

14

3 LIGHT PROPAGATION VOLUMES

3 Light Propagation Volumes
This section contains a more in-depth description of light propagation vol-
umes. Figure 1 visualizes the propagation scheme of the algorithm. The
images are rendered using the LPV extension of OGRE described in sec-
tion 4.

Figure 1: Cornell box rendered using the implementation described in sec-
tion 4. From left to right, top to bottom, the number of propagation itera-
tions are: 0, 1, 2, 4, 8, 16.

Although a number of the algorithms described in the previous section
offer a more accurate approximation to the rendering equation, in some
cases capable of various high-frequency phenomena, light propagation vol-

15

3.1 Reflective Shadow Maps 3 LIGHT PROPAGATION VOLUMES

umes stood out as the most interesting. This was mainly due to two reasons;
speed, and lack of pre-processing steps.

LPVs are part of game developer Crytek’s CryENGINE 3, which is a
multi-platform rendering engine supporting DirectX, Sony PlayStation 3, and
Xbox 360. Since gaming consoles have strict constraints on performance, any
GI solution supported by such must be both efficient and stable.

3.1 Reflective Shadow Maps
RSMs are created during the standard shadow mapping phase, but uses a
multiple render target (MRT) instead of a standard render target. MRTs
have several buffers, or surfaces, which can be rendered into. In addition
to any regular shadow map data, the RSMs used with LPVs store position,
normal, and reflected flux.

Reflected flux is calculated by multiplying the diffuse color with the
clamped dot product of the normal and direction to the light source. The
various available sources provide conflicting information on whether to weight
this value further, or not.

For the implementation described in section 4, either way is fine. How-
ever, weighting reflected flux by the texel area in world space (c.f. geometry
injection, below) seems to give better results for cases where there are large
depth differences in the RSM.

The original RSM technique, described in section 2.5, uses blurred ver-
sions of diffuse textures, but LPVs are less sensitive to details in the texture
maps. Partly because all RSM texels will contribute to the indirect illu-
mination, and partly because the propagation itself will blur the reflected
light.

To make sure that the injection step is fast, RSMs need to be of low
resolution (possibly downsampled). Injection consists of rendering a point,
or vertex, cloud consisting of as many elements as the RSM has texels. For
each vertex, an RSM surface sample (surfel) is obtained, and injected into
the LPV.

3.2 Spherical Harmonics
Spherical harmonics (SH) have an extensive number of applications in various
fields, e.g., physics (gravitational and electric fields) and computer graphics
(BRDF representations) [Sloan, 2008]. As spherical harmonics are a fairly
complex topic, the following is a practical approach to describing the basics,
as they apply to the context of light propagation volumes.

16

3.3 Algorithm 3 LIGHT PROPAGATION VOLUMES

SH are orthonormal basis functions, which can be used to represent
“scalar functions on the unit sphere” [Akenine-Möller et al., 2008]. Infor-
mally, we can think of what this means in the following way: Given a unit
direction vector, and a SH representation of some function, we can use this
information to obtain the value of that function in the given direction.

A SH representation is a vector of coefficients, most often denoted as
Ylm (or Y m

l) where l ≥ 0 and −l ≤ m ≤ l [Ramamoorthi and Hanrahan,
2001]. The subscript l gives the number of bands of the SH representation,
which in turn describe the degree of polynomials by which the function is
approximated (l = 1 is a linear polynomial, l = 2 a quadratic, and so on).

The smaller the number of bands, the more approximate the representa-
tion is. For relatively small values of l we say that we have low-order SH.
LPVs use l = 2, and are thus low-order (for comparison, PRT use l = 3 for
diffuse lighting, and l = 5 for glossy reflections, which are also low-order SH).

The number of coefficients needed is given by l2, so in the case of LPVs
that means that the SH coefficients (for each color) can be stored in a texture
with 4 components (RGBA). Rather than using the Ylm-notation, we will
write c to denote a SH coefficients vector with 4 components, (c0, c1, c2, c3).

Given a SH coefficients vector, and a direction vector, evaluation is as
simple as a dot product of the coefficients vector and the SH projection of
the direction. In the context of LPVs, if we have the SH coefficients cR,
representing the directional distribution of red light at some point, and a
direction vector, v = (x, y, z), the intensity of red light in direction v is
found by dotting cR with the SH projection of v. The SH projection, cv, of
v is,

c0 = 1
2
√
π

c1 = −
√

3
2
√
π
y

c2 =
√

3
2
√
π
z

c3 = −
√

3
2
√
π
x.

3.3 Algorithm
Given a surfel, its position is used to find the correct cell of the LPV. As
injected surfels will effectively be stored in the center of its cell, each surfel
is offset half a cell size in the direction of its normal, to avoid potential self-
occlusion. For each color component (i.e., red, green blue), SH coefficients

17

3.3 Algorithm 3 LIGHT PROPAGATION VOLUMES

for a clamped cosine lobe centered about the sample normal, multiplied by
the correspondent flux, represents the directional distribution of said color.

The four SH coefficients, (c0, c1, c2, c3), for the clamped cosine lobe are
easily acquired by a function that maps the xyz-components of a surfel’s
normal in the following way:

c0 =
√
π

2

c1 = −
√

π
3y

c2 =
√

π
3 z

c3 = −
√

π
3x

Once injection is complete, an iterative propagation scheme is performed.
Conceptually, each cell propagates light to all 6 neighbors along the positive
and negative main axes. In terms of shader programming, however, each
voxel v gathers the light from its neighbors.

3.3.1 Propagation and Lighting

For each face of v, the amount of incoming flux, Φf , is computed. The
flux is propagated, from the center of the neighbor, in direction wf , towards
the center of the face. The intensity, I(wf), is evaluated by taking the dot
product of the neighbor’s sampled SH coefficients and the SH projection
of wf . We then compute the flux as Φf = ∆w/4π · I(wf), where ∆w is
the subtended solid angle to the face. Figure 2 is a schematic image, in 2
dimensions, of the propagation.

Figure 2: Schematic image of a neighbor cell, on the left, propagating light
onto the bottom face of another cell.

The incoming flux at each face is re-projected into a directional distribu-
tion at the cell center. This is done by assuming a point light in the center

18

3.4 Fuzzy Occlusion 3 LIGHT PROPAGATION VOLUMES

of the v, with flux Φl = Φf/π, directed towards the face. A clamped cosine
lobe about the direction vector is projected into SH coefficients, which are
multiplied with Φl.

The above is done for each color component, for all faces6, and neighbors.
All SH coefficients are added and written to the outputs. The result of
each iteration is used as input for the next iteration, but also added to an
accumulation buffer. When propagation is finished, the accumulation buffer
represents the diffuse indirect illumination.

During shading, the indirect illumination is evaluated by projecting the
shaded surface fragment’s negative normal into SH coefficients, and taking
the dot product of those with the SH coefficients sampled from the accumu-
lation buffer.

In some cases, artifacts such as light bleeding through directly lit ge-
ometry may occur. For a shaded surface point x, this can be alleviated to
some extent by dampening all sampled SH coefficients, c(x). The directional
derivative, ∇nc(x), in the direction of the surface normal, n, can be calcu-
lated in the following fashion:

∇nc(x) = c(x+ n

2)− c(x− n

2)

Whenever c and ∇nc(x) are deviating (their dot product is less than zero),
c(x) should be dampened in some appropriate fashion.

3.4 Fuzzy Occlusion
To make sure that light is less likely to bleed through objects, a scheme
denoted fuzzy occlusion is used to approximate the visibility term. The same
SH coefficients that are scaled by the flux and injected into the LPV, can
instead be scaled by a blocking potential, B(ω), and injected into a geometry
volume (GV). Given, ω, the direction to the light source7, and a surfel, s,
the blocking potential is calculated as,

B(ω) = As〈ns|ω〉
s2

.

As is the area of the surfel, and can be calculated as the size of the texel
in world space. 〈ns|ω〉 is the cosine of the angle between the surfel’s normal
and ω. s2 is the world space size of a cell in the volume.

6Except the face that borders on the neighboring cell.
7Or the camera, rather, but this is the same vector for RSMs.

19

3.5 Cascaded LPVs 3 LIGHT PROPAGATION VOLUMES

Corners of the GV are centers of the LPV, and vice versa. When light
is propagated through the face that borders neighboring cells, the GV coef-
ficients of the four corners of that face are linearly interpolated as cGV . The
direction from the neighbor to the face is projected into SH coefficients, cd,
and incoming flux is then scaled by 1 minus the dot product of cGV and cd.

Since the propagated light will quickly move beyond the view of the light
source, occluding geometry may not be represented in the RSMs. Therefore,
main camera geometry is also injected. To make sure that occluders are not
added twice, separate GVs need to be maintained. The GVs are later “com-
bined” into a single GV by simply taking the maximum of the coefficients.
Adding camera geometry provides a much better approximation of the visi-
bility term, but flickering may occur as geometry appears in, and disappears
from, the main view.

3.5 Cascaded LPVs
A very important extension, primarily for use with directional lights, is the
use of several nested, or cascaded, LPVs. The reasoning behind this extension
is similar to that of cascaded shadow maps (see section 4.2.1). In short,
cascaded LPVs are used for directional lights (since they potentially affect
large portions of the visible scene) to provide detailed indirect illumination
close to the eye, while areas further away use larger volumes for a more
approximate result.

The cascaded LPVs move with the camera, to make sure that the nearby
surfaces always receive the more detailed lighting. As potential flickering
issues, correct blending and creation of geometry volumes all require careful
attention, the task of adding cascaded LPVs may become quite involved. Due
to time constraints, this very useful addition was unfortunately not included
as part of the implementation described in section 4. The interested reader
is referred to any of the sources on LPVs mentioned in section 2.6, especially
the two most recent ones.

20

4 IMPLEMENTATION

4 Implementation
This section describes the process of extending OGRE with light propagation
volumes. Although OGRE offers a lot of built-in functionality in terms of
rendering engine basics, it is geared towards traditional forward rendering
(see below). This had the effect that some extensive work had to be made in
order to build a foundation, upon which to base the LPV implementation.

Otherwise, OGRE is an extensive rendering engine that, among other
things, provide a scene manager, mathematical libraries, and a custom model
and animation format. The material system includes support for script-
ing materials, as well as giving specific shader parameter values and pre-
processing directives.

Various graphics APIs (notably OpenGL and Direct3D 9) are supported
through plug-ins called render systems. In addition to supporting GLSL
and HLSL, NVIDIA’s Cg is also supported (the latter of which was used to
write the shaders for this implementation). An effort was made to keep the
implementation compatible with both OpenGL and Direct3D 9. While this
ultimately failed in the case of LPVs (see section 5.1), everything else has
been tested for both render systems.

4.1 Deferred Shading
The “traditional” z-buffer-based rendering is often referred to as forward
rendering. It may consist of either shading each object with a shader that
accesses many light parameters, or iterating through the lights and shading
each affected object. If there are a large number of lights, forward rendering
can quickly become expensive, as objects are shaded and then overwritten
by subsequent objects. The first approach may also lead to rather large,
complex, shaders.

Deferred shading (see for instance [Shishkovtsov, 2005] and [Koonce,
2007]) represents a different approach. First, geometric information is ren-
dered into a number of buffers collectively called the geometry buffer (or
G-buffer). Typically, a G-buffer consists of positions, normals, albedo (tex-
ture mapped color value), and possibly other material-related information.
After creation, the G-buffer is used as input during light shading, to make
sure that only the visible geometry is shaded for each light.

Also important is that many of the methods described in section 2 either
benefit greatly from, or are entirely dependent on, the information normally
stored in a G-buffer (SSAO, splatting RSMs, LPVs, etc.). OGRE is most
naturally used as a forward renderer, however. There exists a deferred shad-
ing demo, which works rather well, but is incomplete (e.g., directional lights

21

4.1 Deferred Shading 4 IMPLEMENTATION

cast no shadows) and suffers somewhat from an unnecessarily complicated
design.

Instead of modifying the demo, a simpler approach is chosen. Adding
objects bound for the G-buffer to a specific render queue, a relevant material
scheme name to the material scripts as well as the G-buffer render target,
and writing shaders, is enough to get a basic deferred shader working.

By encoding view space position as normalized depth, [Pettineo, 2010],
and the view space normal as its xy-coordinates, [Pranckevičius, 2009], both
vectors can be stored in a single texture buffer with three 16-bit floating
point components. A second buffer is used for the albedo. An example of
G-buffer contents can be seen in figure 3.

Figure 3: Top left corner shows the encoded position and normal. Top right
corner shows the albedo. In the bottom row, from left to right, we have
the (encoded and) normalized view space depth, and the decoded view space
normal

4.1.1 Lights

A full-screen quad can be rendered for each light, as the rasterization of such
an object leads to each pixel in the image being shaded. Range and attenu-
ation can be handled by the shader to make sure that only the appropriate
surface fragments are affected by the light.

22

4.1 Deferred Shading 4 IMPLEMENTATION

A sounder strategy, however, is to send simple volumes, shaped like each
light source’s region of influence, down the pipeline. This will (roughly)
ensure that only the parts of the scene that each light affects is rasterized. For
spot lights we can use cones, for point lights (not used in this implementation)
we use spheres, and the full-screen quad is reserved for the directional lights
only (as those are generally used for simulating sunlight).

Further optimization is done by alternating between culling the back- and
front-faces of the volume, depending on whether the eye is outside or inside
it — the z-buffer comparison is adjusted accordingly. Now volumes may be
occluded by other geometry when the eye is on the outside, and no area
outside the volume is rasterized when the eye is on the inside.

Adding this setup is similar to setting up the deferred shading (render
queue, material scheme), but each light volume must also be associated with
a specific set of light parameters, as well as a specific shadow map. The
former can be handled by registering as a listener for render system light
queries. This allows for a singleton list (containing the appropriate light
object) to be returned as the list of lights affecting the object.

Unfortunately, a problem arises with OGRE’s built-in shadow mapping,
as the order of the shadow maps is decided elsewhere. The custom light list
must still respect this order, up to the number of shadow casting lights, if
using the built-in shadows. The deferred shading demo solves this by iter-
ating over the lights, pause rendering, prepare the shadow map, and resume
rendering, making only a single shadow map available at any time.

Rather than mimic that solution here, two reasons for replacing the built-
in shadow mapping entirely can be identified:

• the built-in system only allows for a single buffer in the shadow map
render target — an RSM needs a multiple render target with many
surfaces to write to

• a custom system seems to facilitate a more fine-grained control of cas-
caded shadow mapping (see below)

As OGRE does offer the possibility to override basic shadow camera setups,
the second reason is perhaps of minor significance. Still, overriding the cam-
era setup means handling several shadow maps for the same light, in addition
to handling the light itself (and the associated light volume) in the manner
above.

The adopted solution, instead, is to simply wrap light, volume, and cam-
era in a single class. This gives considerable control without the need to grasp
the finer details of the built-in shadow system (possibly through examining
the source code).

23

4.2 Shadow Mapping 4 IMPLEMENTATION

4.2 Shadow Mapping
Regular shadow mapping, based on straight-forward depth comparisons, can
suffer from various artifacts, such as shadow acne8 and aliasing/jagged edges
of shadow borders. The former must be dealt with by careful biasing of the
compared values, and the latter by excessive sampling of the shadow map.

Another, easily implemented, shadow map technique is the Variance Sha-
dow Map (VSM) [Lauritzen, 2007]. Rather than storing single depth values
for later comparison, the view space depth, x, and its square are stored as the
first and second moments, E(x) and E(x2), of some local depth distribution.

During shading of a surface fragment with depth t, its shadow map co-
ordinates are found and the moments at that point are sampled. Now, the
mean, µ = E(x), and variance, σ2 = E(x2)−E(x)2, can be used to calculate
the upper bound of P (x ≥ t). If t ≤ µ, the upper bound is 1, and we assume
that the surface fragment is fully lit. Otherwise, Chebyshev’s inequality is
used to find the bound,

pmax(t) = σ2

σ2 + (t− µ)2 .

The value of the upper bound can simply be used, as a visibility term, to
modulate the outgoing radiance.

A major benefit of the distribution representation over depth values for
exact comparison, is that the shadow maps can be linearly filtered (e.g. blur-
ring, anisotropic, or view-dependent, filtering). One caveat, however, is that
of overlapping occluders. In essence, the lighter penumbras of occluders closer
to the light may leak through occluders further away. The situation can be
somewhat mitigated by setting all values of pmax(t) below some threshold τ
to 0, and remap all other values to be in the interval [0..1]. Large values of
τ lead to “thickening” of the shadows. Examples of both filtering and light
leaking can be seen in figure 4.

4.2.1 Cascaded Shadow Maps

As directional lights usually cover large outdoor spaces, using a single shadow
map is often insufficient in terms of both quality and efficiency. Unless the
combination of a particular scene and camera movement constraints allows
for a single, static, shadow camera, cascaded shadow maps (CSMs) are a
useful alternative for outdoor lighting.

8A commonly used term for denoting the tendency of precision problems to give rise
to incorrect self-shadowing. This can present itself as, e.g., black stripes over flat, directly
lit, surfaces.

24

4.3 Ambient Occlusion 4 IMPLEMENTATION

Figure 4: Upper row: Cascaded shadow maps, 256x256 texture, with and
without filtering by a 3x3 Gaussian blur. Lower row: A threshold value of
τ = 0.5, on the left, masks the contours of a distant flagpole leaking through
on the right.

The basic idea is to use moving shadow cameras to render a set of rel-
atively small shadow maps. This can provide detailed shadows close to the
eye, and cheap, low-quality, shadows further away. There exist many vari-
ants, but for this implementation, the work by Zhang et al. [2009] is useful.
Mainly used as a tool for describing important, and general, techniques for
flicker reduction and filtering across splits, the basic system “splits” the view
frustum by covering more and more of it via a set of expanding bounding
boxes.

By processing these bounding boxes, nesting them and ensuring uniform
dimensions, they could be used as the building blocks for cascaded LPVs.
Unfortunately, the cascaded version of LPVs have not been implemented
within the time frame of work on this thesis, but I believe that the working
CSM system should fulfill the prerequisites well.

4.3 Ambient Occlusion
Due to the low-frequency nature of LPVs, surface details of indirectly illu-
minated geometry must be achieved through ambient occlusion. The AO

25

4.3 Ambient Occlusion 4 IMPLEMENTATION

buffers in figure 5 are the result of combining the original SSAO technique
with another screen-space technique covered in a tutorial by Méndez [2010].

Figure 5: Ambient occlusion calculated in screen space.

The sampling artifacts of SSAO are more easily filtered, but the other
method avoids self-occlusion and bright edges by using the following to com-
pute the amount of occlusion per sample:

saturate(dot(normal, dir) - bias) * (1.0f / (1.0 + d * d))

The amount of occlusion by a potential occluder depends on the cosine of
the angle between the occluded surface normal and direction towards the
occluder, and is inversely dependent on the (squared) distance between the
surfaces.

Subtle self-occlusion may still occur, which is why a small bias is sub-
tracted from the dot product. Occluders that lie further away than a user-
defined radius are ignored entirely. As the technique works in screen-space,
it suffers from the usual problems of disappearing geometry, as is evident in
figure 6.

Figure 6: As the ceiling disappears from view, the wall underneath suddenly
appears brighter.

26

4.4 Light Propagation Volumes 4 IMPLEMENTATION

4.4 Light Propagation Volumes
The first step of the LPV algorithm is to create the reflective shadow maps.
Early on, storing the moments for variance shadow mapping was performed
in the same pass as storing positions, normals and flux.

Various data have different requirements in the way of storage capacity,
however, and the pixel format for each surface of the multiple render target
should preferably be the smallest possible. Regrettably, adding surfaces of
different bit depths to a MRT does not seem possible with OGRE’s release
candidate for version 1.89.

As the main light type for which implementation has focused on has been
the spot light, and that type generally requires a higher resolution shadow
map than what is appropriate for LPV injection, the current solution is
to decouple the standard shadow mapping from RSM creation. While the
redundant pass and render target switching is unfortunate, it allows for less
costly pixel formats, and also very small RSMs (128x128, or even 64x64).

Figure 7: Early version of the LPV implementation.

9This is likely due to some bug, as recent OGRE versions should support this feature.

27

4.4 Light Propagation Volumes 4 IMPLEMENTATION

4.4.1 Injection

For injection of the LPV, a point cloud consisting of RSM width×height
single vertices is rendered. The idea is to use the vertex ID to obtain texture
coordinates for the RSM, fetch the RSM values in the vertex shader and
pass them on to the geometry shader. Geometry shaders can output which
depth layer of a volume texture the fragment shader should write to, which is
necessary here, as the depth is unknown until the position has been fetched
from the RSM.

Even though geometry shaders setting the correct layer can be compiled
without complaint by the NVIDIA Cg compiler — and then used in an OGRE
application — only a single layer will be written to. OGRE does not create
volume textures as a single render target. Instead, each depth layer becomes
a render target, and switching between them must be done as per usual on
the CPU side.

As that will not work for injection, a 2D texture atlas is created, with
depth layers side by side. This works well enough, and the same strategy
is adapted for geometry injection. Extra care must be taken with boundary
values when injecting geometry from the main camera:

cell = (worldPos - minCrnr) / (maxCrnr - minCrnr) * LPVsize;
cell -= 0.5f; // LPV centers are GV corners

if (outsideLPV(cell))
clipSpacePosition = float4(-1000, 0, 0, 1);

else {
cell = floor(cell); // NB extremely important!
index2D.x = cell.x + cell.z * LPVsize;
index2D.y = cell.y;
...

}

In the additional pass to combine the geometry volumes of the RSM and
main camera, the result of that operation can be written to a proper volume
texture.

Because each spot light has its own LPV and GV, the camera-visible
geometry is injected from a downsampled buffer once, and then shared among
the lights. The LPV size for each light is taken from the bounding box of
the light volume used for deferred shading, slightly expanded to allow for
propagation.

28

4.4 Light Propagation Volumes 4 IMPLEMENTATION

4.4.2 Propagation

The propagation is done in typical ping-pong fashion, where two sets of
buffers alternate between inputs and render target. Preferably, the accumu-
lation buffers should be bound as surfaces to each of the MRTs, and additive
blending enabled only for those buffers. As current OGRE versions do not
support this, however, a separate accumulation pass must be performed per
propagation iteration.

Since all propagation is performed in world space, the SH projections
needed for deciding how much flux is propagated towards each face, as well
as those for re-projection, are pre-computed and uploaded to the GPU once
every application run. The correct solid angles, which depend on both the
current neighbor and face, are also sent as an array to avoid as much dynamic
branching in the shader as possible.

Figure 8: Light propagation without amplification, after 2 iterations.

The most expensive part of the propagation is the occlusion calculation.
For a given voxel, the occlusion values for all 8 of its corners are fetched at
the beginning of the shader program. Depending on which neighbor cell the

29

4.4 Light Propagation Volumes 4 IMPLEMENTATION

light propagation is currently gathered from, the 4 appropriate values are
linearly interpolated.

In [Kaplanyan and Dachsbacher, 2010], it is said of the suggested propa-
gation scheme that “[the] process conserves energy [as] is expected from light
propagation in vacuum.” However, when propagating light using the scheme,
as described, the situation depicted in figure 8 arises.

The image consists of four unwrapped volume textures with depth layers
placed horizontally. From top to bottom, it shows the injection stage, first
propagation, second propagation, and accumulation. After the second prop-
agation, only very little light remains to be propagated in the next iteration.

To counteract the intensity drop, the propagation shader amplifies the
flux reflected onto each face by a user-defined parameter. In the middle of
figure 9, we see the seventh and eight propagation step using an amplification
factor of 8.0.

Figure 9: Light propagation with 8× amplification, after 8 iterations.

While the inclusion of an amplification factor has the benefit of acting as a
parameter for artistic control, its necessity may unfortunately be an indicator
of some subtle bug in the current implementation. (Note that figures 8 and 9

30

4.4 Light Propagation Volumes 4 IMPLEMENTATION

are used for visualization purposes only, and are not indicative of how the
accumulated light will actually illuminate the scene.)

4.4.3 Lighting

The accumulated light is tri-linearly interpolated at each surface fragment
visible from the eye. Using 2D accumulation buffers, this interpolation must
be done manually to handle all three directions. In total, 3×3 texture fetches
are required to acquire the interpolated SH coefficients for each color channel.
For dampening of the of the incoming radiance based on the directional
derivative, an additional 2×3×3 texture fetches must be made.

In addition to the many texture samples needed, the manual interpolation
across depth layers was initially not satisfactory. The current approach is to
render the 2D textures into a volume texture, similar to what is done for the
geometry volumes.

For LPV dimensions like 24×24×24, or 32×32×32, the incurred over-
head generally seems to compare favorably to the original method. Since
each depth layer must be rendered separately, the excessive render target
switching involved with larger dimensions makes the approach counterpro-
ductive, however.

The directional derivative is calculated as described in section 3. Taking
the dot product of each SH coefficients vector with its derivative is used
to see if they are deviating. Subsequent dampening is done as necessary
by subtracting the (user-scaled) derivative vector from the sampled one10.
Results can be seen in figure 10.

To convert the sampled data into irradiance, the negative of the surface
fragment’s normal is first projected into SH coefficients. This vector is dot-
ted with the sampled coefficients for each color channel, and the resultant
intensity is assumed to originate half a cell size in world units (sh) away
from the surface. The intensity is scaled by dividing with sh2 and then inter-
preted as incident radiance. Since we are dealing with low-frequency lighting,
the radiance can in turn be interpreted as the surface irradiance [Tatarchuk,
2005].

10This is an ad-hoc method that seems to work fairly well in most cases. Values for
scaling are usually between 1.0 and 3.0, but larger values may result in color artifacts.

31

4.4 Light Propagation Volumes 4 IMPLEMENTATION

Figure 10: Top left: Lighting inside the building leaks through the wall.
Bottom: Dampening removes most of the leakage. Top Right: Even after
dampening, corners are still sensitive to the discretization involved in prop-
agation.

32

5 RESULTS AND DISCUSSION

5 Results and Discussion

Figure 11: Top left: Direct lighting. Top right: Indirect illumination only.
Bottom: Sponza atrium lit by direct and indirect illumination.

Figure 11 is a good example of the advantages of global illumination. The
top left corner is a very sparsely lit view, the largest share of the screen
almost black. Using a brighter, constant, ambient term here would really
highlight the artificial nature of that approach. Adding ambient occlusion
would bring out details in the background, and help the viewer sort out the
spatial relationships of the unlit areas, but no more.

With the indirect illumination added, the image is more dynamic. The
end of the corridor and the arched ceiling are still dark, since most of the
light falls on objects close to the camera, and the floor. Color bleeding from

33

5.1 Results 5 RESULTS AND DISCUSSION

the banners gives each column its own appearance, and adds atmosphere to
the frame.

5.1 Results
The implementation described in section 4 has almost exclusively been devel-
oped on a PC laptop (Intel i7 processor with 4 cores @ 2.20GHz, 8GB RAM)
with an NVIDIA Geforce GT555M (2GB video memory) running the 64-bit
version of Windows 7. Most work has been done using a release candidate
(RC1) of OGRE 1.8.0 (but also the previous major release 1.7.4). All shaders
were written using NVIDIA’s Cg programming language.

Had the current implementation kept exclusively to using 2D atlases for
all volumes, the full implementation would have worked using either one of
OGRE’s OpenGL or Direct3D 9 render systems. The latter, unfortunately,
cannot handle volume texture render targets. Cascaded shadow mapping
requires slightly different shader code for the two APIs, but otherwise, ev-
erything apart from LPVs works for both APIs without modifications.

The OGRE version used, has incomplete support for Direct3D (10 and)
11. Most importantly, MRTs are unsupported, which makes the render sys-
tem currently unusable for this project.

For the complete LPV extension, OpenGL is therefore the only supported
render system. Besides some unsupported features, like the mentioned prob-
lems with volume rendering11 and less-than-optimal pixel formats for MRTs,
using the gDebugger profiler reveals other issues. Rendering 11 frames of the
scene depicted on the front page, 23.4% of the OpenGL calls use deprecated
functions, 37.90% of the calls represent redundant state changes. Hopefully,
future versions of OGRE will address some of these problems. Also, the
currently developed gl3plus project seems like an interesting alternative to
OGRE’s existing OpenGL support.

The image on the front page of this thesis is rendered at a resolution of
1440×900, using a single 32×32×32 LPV and 32 propagation iterations. For
that number of iterations, the scene renders at 58 FPS. In figure 12, we see
that the number of iterations can be lowered without much loss of light, but
with a significant increase in frame rate. For reference, figure 13 is rendered
at 106 FPS with direct lighting only.

For a more far-spread propagation, either the number of iterations can
be increased, or the LPV cell dimension can be decreased (so that each
cell covers more world space). The most suitable combination of the two

11In [Kaplanyan et al., 2011], it is explicitly noted that “[i]t is important to note that the
hardware capability to render into a volume texture tremendously improves performance.”

34

5.1 Results 5 RESULTS AND DISCUSSION

Figure 12: Top: 8 propagations, 73 FPS. Bottom: 16 propagations, 68 FPS.
32×32×32 LPVs are used in both cases, and the images are rendered at a
resolution of 1440×900.

35

5.2 Discussion 5 RESULTS AND DISCUSSION

Figure 13: The scene on the first page, and in figure 12, rendered at 106 FPS
with direct lighting only.

approaches depends on the desired effect and the specific scene.
Due to the low-order SH projections used, the inexact evaluation will re-

sult in some slight back-propagation. In combination with the propagation
amplification needed to combat the intensity drop (section 4.4.2), increas-
ing the number of propagations will exacerbate the back-propagation effect
(brighter areas close to the reflective surfaces). Decreasing LPV dimensions,
on the other hand, introduces more blur in the indirect lighting, and makes
the fuzzy occlusion scheme even more approximate. Figure 14 shows an
example of the Sibenik cathedral being illuminated with three spot lights.

5.2 Discussion
There are a number of parameters associated with LPVs. The amplification
parameter used during propagation has been previously mentioned, and a
similar parameter also exists for occlusion. In addition, the relationship be-
tween LPV dimensions and the world space dimensions of the corresponding
bounding box, affects the range and detail of the indirect illumination. For
achieving the best results, all these parameters should be fine-tuned for each
particular scene.

The occlusion is, of course, based on a very rough approximation of the

36

5.2 Discussion 5 RESULTS AND DISCUSSION

Figure 14: Using three spot lights to light the Sibenik cathedral. Final
images rendered in 49 FPS at a resolution of 1440×900. 16×16×16 LPVs,
16 propagations. (Note that the indirect illumination is calculated in both
images, and its contribution toggled off/on, hence the identical frame rates.)

visibility term. It improves the visual quality by reducing the amount of
light that would otherwise leak through objects, but does not result in de-
tailed shadowing from the indirect illumination. Fortunately, due to the
low-frequency aspect of diffuse indirect illumination, errors are hard to pin-
point, and may well be interpreted as the result of further bounces in some
cases.

Adding main camera geometry heightens the effect of occlusion. But as
with all screen-space effects, it suffers from having geometry moving in and
out of view as the camera moves. In certain cases, this has a visual impact
similar to that of the eyes adjusting to surrounding lighting conditions. In
other cases, though, as objects occluding light that would otherwise prop-
agate relatively far move in and out of view, the result is flickering in the
indirect illumination. Figure 15 shows the effect varying occlusion.

Figure 15: Fuzzy occlusion varies as objects move out of main view.

One of the truly positive feature of LPVs, however, is that any scene —
except for some adjustment of the parameters mentioned above — will be

37

5.2 Discussion 5 RESULTS AND DISCUSSION

directly compatible with the technique. Not only does this mean that any
current content pipeline for 3D models is unaffected, but all legacy models
are supported as well.

5.2.1 Future Work

Cascaded LPVs have the highest priority for future work on the algorithm.
Since directional lighting is such an important, and common, lighting tech-
nique, extending the current LPV implementation to handle it well would be
a very important step in making the GI algorithm as complete as possible.

The following two paragraphs describe additions mentioned in [Kaplanyan
and Dachsbacher, 2010] and [Kaplanyan et al., 2011]:

Depth peeling can be used to create denser geometry volumes, but will
impact the frame rate. The diffuse nature of the indirect illumination allows
LPVs to be rendered every few frames (every fourth in this implementation),
and then possibly substituting the new result in a smooth manner. While the
details for this substitution are largely omitted, one can posit that by using
three accumulation volumes, temporal interpolation between the previous
two should smooth flickering due to varying occlusion.

A very interesting addition to the original algorithm are glossy reflections.
This involves ray marching through the LPV and averaging the contributions.

Various general additions and optimizations would also be useful. Am-
bient Occlusion Volumes is an interesting AO technique. Deferred shading
suffers from being incompatible with hardware capabilities for anti-aliasing,
and transparent/translucent objects must be rendered separately.

The current implementation is designed purely as an extension of OGRE’s
core functionality. Once it is integrated with the larger software system it is
intended for, further evaluation must be done to see where optimization and
possible additions are needed.

38

6 CONCLUSION

6 Conclusion
OGRE provides a unified API with extensive functionality for a number
of diverse, but equally important, tasks: mathematical operations, scene
management, low-level API calls, and asset import and handling. While all
of those have generally simplified a lot of the work involved, there have also
been occasions on which the rendering engine have been less suitable for the
task at hand.

Troubleshooting various unexpected behavior can certainly be frustrating.
But at the same time, it is a natural part of working with any large software
system. More disheartening, then, are the instances where no amount of
error search can help the fact that a wanted feature is simply not offered. In
the case of the volume rendering, especially, it imposes an artificial limit on
the efficiency of the LPV algorithm.

Nonetheless, the current LPV extension works relatively well, and seems
likely to scale nicely with future hardware. In addition to that, OGRE is
continuously developed. As some of the more common strategies for real-time
GI in general, and LPVs in particular, become standard (e.g., shadow map
MRTs, volume rendering), OGRE will likely obtain the necessary features.
The fact that the engine is open source also means that it is possible for me
to contribute to the process of incorporating them.

39

REFERENCES REFERENCES

References
Akenine-Möller, T., E. Haines, and N. Hoffman (2008). Real-Time Rendering
3rd Edition. Natick, MA, USA: A. K. Peters, Ltd.

Bunnell, M. (2005). Dynamic Ambient Occlusion and Indirect Lighting. In
M. Pharr and R. Fernando (Eds.), GPU Gems 2, Chapter 14, pp. 223–233.
Addison-Wesley Professional.

Crow, F. C. (1977, July). Shadow Algorithms for Computer Graphics. SIG-
GRAPH Comput. Graph. 11 (2), 242–248.

Dachsbacher, C. and M. Stamminger (2005). Reflective Shadow Maps. In
Proceedings of the 2005 symposium on Interactive 3D graphics and games,
I3D ’05, New York, NY, USA, pp. 203–231. ACM.

Dachsbacher, C. and M. Stamminger (2006). Splatting Indirect Illumina-
tion. In Proceedings of the 2006 symposium on Interactive 3D graphics
and games, I3D ’06, New York, NY, USA, pp. 93–100. ACM.

Greger, G., P. Shirley, P. M. Hubbard, and D. P. Greenberg (1998, April).
The Irradiance Volume. IEEE Computer Graphics and Applications 18 (2),
32–43.

Grosch, T. and T. Ritschel (2010). Screen-Space Directional Occlusion. In
W. Engel (Ed.), GPU Pro: Advanced Rendering Techniques, Chapter 4.2,
pp. 215–230. A K Peters.

Kajalin, V. (2009). Screen-Space Ambient Occlusion. In W. Engel (Ed.),
ShaderX7: Advanced Rendering Techniques, Chapter 6.1, pp. 413–424.
Charles River Media.

Kajiya, J. T. (1986). The Rendering Equation. In Proceedings of the 13th
annual conference on Computer graphics and interactive techniques, SIG-
GRAPH ’86, New York, NY, USA, pp. 143–150. ACM.

Kaplanyan, A. and C. Dachsbacher (2010). Cascaded Light Propagation
Volumes for Real-Time Indirect Illumination. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, I3D
’10, New York, NY, USA, pp. 99–107. ACM.

Kaplanyan, A., W. Engel, and C. Dachsbacher (2011). Diffuse Global Illumi-
nation with Temporally Coherent Light Propagation Volumes. In W. Engel
(Ed.), GPU Pro 2, Chapter 3.5, pp. 185–203. A K Peters/CRC Press.

40

REFERENCES REFERENCES

Keller, A. (1997). Instant Radiosity. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH ’97,
New York, NY, USA, pp. 49–56. ACM Press/Addison-Wesley Publishing
Co.

Koonce, R. (2007). Deferred Shading in Tabula Rasa. In H. Nguyen (Ed.),
GPU Gems 3, Chapter 19, pp. 429–457. Addison-Wesley Professional.

Laine, S., H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila (2007). In-
cremental Instant Radiosity for Real-Time Indirect Illumination. In Pro-
ceedings of Eurographics Symposium on Rendering, Grenoble, France, pp.
277–286. Eurographics Association.

Landis, H. (2002). Production-Ready Global Illumination. Siggraph Course
Notes 16 (3), 2002.

Lauritzen, A. (2007). Summed-Area Variance Shadow Maps. In H. Nguyen
(Ed.), GPU Gems 3, Chapter 8, pp. 157–182. Addison-Wesley Professional.

McGuire, M. (2010). Ambient Occlusion Volumes. In Proceedings of the Con-
ference on High Performance Graphics, HPG ’10, Aire-la-Ville, Switzer-
land, Switzerland, pp. 47–56. Eurographics Association.

McGuire, M. and D. Luebke (2009). Hardware-Accelerated Global Illumina-
tion by Image Space Photon Mapping. In Proceedings of the Conference
on High Performance Graphics 2009, HPG ’09, New York, NY, USA, pp.
77–89. ACM.

Méndez, J. M. (2010). A Simple and Practical Ap-
proach to SSAO. Website. http://www.gamedev.net/page/
resources/_/technical/graphics-programming-and-theory/
a-simple-and-practical-approach-to-ssao-r2753.
Accessed: 27/05/2012.

Mittring, M. (2007). Finding Next Gen: CryEngine 2. In ACM SIGGRAPH
2007 courses, SIGGRAPH ’07, New York, NY, USA, pp. 97–121. ACM.

Nichols, G. and C. Wyman (2009). Multiresolution Splatting for Indirect
Illumination. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games, I3D ’09, New York, NY, USA, pp. 83–90. ACM.

Nijasure, M., S. Pattanaik, and V. Goel (2005). Real-Time Global Illumina-
tion on GPUs. Journal of Graphics, GPU, & Game Tools 10 (2), 55–71.

41

http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753

REFERENCES REFERENCES

Papaioannou, G. (2011). Real-Time Diffuse Global Illumination Using Radi-
ance Hints. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, HPG ’11, New York, NY, USA, pp. 15–24. ACM.

Pettineo, M. (2010). Position From Depth 3: Back In The
Habit. Website. http://mynameismjp.wordpress.com/2010/09/05/
position-from-depth-3/.
Accessed: 27/05/2012.

Pranckevičius, A. (2009). Compact Normal Storage for small G-Buffers.
Website. http://aras-p.info/texts/CompactNormalStorage.html.
Accessed: 27/05/2012.

Ramamoorthi, R. and P. Hanrahan (2001). An Efficient Representation for
Irradiance Environment Maps. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’01,
New York, NY, USA, pp. 497–500. ACM.

Ritschel, T., E. Eisemann, I. Ha, J. D. K. Kim, and H. Seidel (2011, De-
cember). Making Imperfect Shadow Maps View-Adaptive: High-Quality
Global Illumination in Large Dynamic Scenes. Computer Graphics Fo-
rum 30 (8), 2258–2269.

Ritschel, T., T. Grosch, M. H. Kim, H. Seidel, C. Dachsbacher, and J. Kautz
(2008, December). Imperfect Shadow Maps for Efficient Computation of
Indirect Illumination. ACM Trans. Graph. 27 (5), 129:1–129:8.

Shishkovtsov, O. (2005). Deferred Shading in S.T.A.L.K.E.R. In M. Pharr
and R. Fernando (Eds.), GPU Gems 2, Chapter 9, pp. 143–166. Addison-
Wesley Professional.

Sloan, P. (2008). Stupid Spherical Harmonics (SH) Tricks. Presentation.
Game Developers Conference (GDC ’08), San Francisco, CA.

Sloan, P., J. Kautz, and J. Snyder (2002, July). Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. ACM Trans. Graph. 21 (3), 527–536.

Tabellion, E. and A. Lamorlette (2004). An Approximate Global Illumination
System for Computer Generated Films. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH ’04, New York, NY, USA, pp. 469–476. ACM.

Tatarchuk, N. (2005). Irradiance Volumes for Games. Website.
http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_

42

http://mynameismjp.wordpress.com/2010/09/05/position-from-depth-3/
http://mynameismjp.wordpress.com/2010/09/05/position-from-depth-3/
http://aras-p.info/texts/CompactNormalStorage.html
http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_Volumes.pdf
http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_Volumes.pdf

REFERENCES REFERENCES

Volumes.pdf.
Accessed: 28/05/2012.

Tatarchuk, N., H. Chen, A. Evans, A. Kaplanyan, J. Moore, D. Jeffries,
J. Yang, and W. Engel (2009). Advances in Real-Time Rendering in 3D
Graphics and Games. In ACM SIGGRAPH 2009 Courses, SIGGRAPH
’09, New York, NY, USA. ACM.

Thiedemann, S., N. Henrich, T. Grosch, and S. Müller (2011). Voxel-
Based Global Illumination. In Symposium on Interactive 3D Graphics
and Games, I3D ’11, New York, NY, USA, pp. 103–110. ACM.

Torus Knot Software Ltd (2000–2011). OGRE — Open Source 3D Graphics
Engine. Software. http://www.ogre3d.org/.

van Antwerpen, D. (2011). Improving SIMD Efficiency for Parallel Monte
Carlo Light Transport on the GPU. In Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, HPG ’11, New York,
NY, USA, pp. 41–50. ACM.

Williams, L. (1978, August). Casting Curved Shadows on Curved Surfaces.
SIGGRAPH Comput. Graph. 12 (3), 270–274.

Zhang, F., A. Zaprjagaev, and A. Bentham (2009). Practical Cascaded
Shadow Maps. In W. Engel (Ed.), ShaderX7: Advanced Rendering Tech-
niques, Chapter 4.1, pp. 305–329. Charles River Media.

43

http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_Volumes.pdf
http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_Volumes.pdf
http://developer.amd.com/media/gpu_assets/Tatarchuk_Irradiance_Volumes.pdf
http://www.ogre3d.org/

	Introduction
	Off-Line vs. Real-Time Rendering
	The Rendering Equation
	Problem Statement
	Goal of the Thesis

	Related Work
	Shadows
	Pre-Computed Lighting
	Ambient Occlusion
	Dynamic Pre-Computation and Off-Line InspiredMethods
	Instant Radiosity and Reflective Shadow Maps
	Volume-Based Methods

	Light Propagation Volumes
	Reflective Shadow Maps
	Spherical Harmonics
	Algorithm
	Propagation and Lighting

	Fuzzy Occlusion
	Cascaded LPVs

	Implementation
	Deferred Shading
	Lights

	Shadow Mapping
	Cascaded Shadow Maps

	Ambient Occlusion
	Light Propagation Volumes
	Injection
	Propagation
	Lighting

	Results and Discussion
	Results
	Discussion
	Future Work

	Conclusion

