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Abstract

Free-viewpoint video (FVV) is a term for any system that lets users freely
adjust the viewpoint in a video to novel positions, synthesized from source
data in the video stream. Recent advances in the area by Kämpe et al.
suggest encoding the geometric information separately as dynamic 3D voxel
data, together with RGB-video streams from a set of standard RGB cameras
capturing the scene from individual view points. During play back, the 3D
voxel data is rendered and the color information from the RGB cameras are
back-projected onto this geometry, to provide the final result per frame. In
the setting of a voxelized geometry and a number of RGB camera streams,
some graphical artifacts may occur if the images of the cameras are projected
onto the geometry with equal weights. We refer to this as the naive method.
To alleviate these issues, three methods are proposed, all building on cal-
culating weights for use in a weighted averaging when calculating the final
color of a piece of geometry. The most promising of the proposed methods
is implemented and tested against an implementation of the naive method.
The results show that our method reduces the number of graphical artifacts
while keeping the processing time low.
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Chapter 1

Introduction

Free-Viewpoint Video (FVV) is a system for viewing video in which the
viewer can navigate freely inside the 3D-environment of the video and look
at the filmed settings and actors from arbitrary view position and angle [1].
This could involve filming the scene with a number of cameras simultaneously
with traditional color cameras as well as cameras capturing the distance to
the objects in the scene, providing 3D-information from which the scene can
be reconstructed.

One way of coloring the geometry of the reconstructed scene is to project
the colors from the cameras onto it. This means that for every point on the
geometry being colored, that point is projected onto the image plane of each
visible camera in order to find the color that camera has for the projected
point. When all visible cameras have been sampled, the final color of the
given point is set to be the average of all the sampled colors. We refer to this
as the naive method.

Some cameras may have different colors for the same point on the ge-
ometry, for example if their respective images have different effective resolu-
tion for that piece of geometry, or if the material of the geometry is view-
dependent. A view-dependent material is a material that does not look the
same from different angles. If two or more images then are projected onto a
surface, since some of the cameras might not have recorded the same color
for the same spot on the geometry, visual seams may occur on the borders
of camera visibility.

Another type of visual artifact comes from the fact that both the voxelized
geometry and the camera images are approximations of the original scene.
Voxel geometry is likely to protrude outside the boundaries of the original
geometry, causing a discrepancy between the two. When determining the
color of a point on such a voxel protrusion, the projection of that point onto
a camera might in some circumstances give the color of a point behind the
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given point, as seen from the camera. Even if the geometry was perfect and
no protrusions existed, every pixel of the camera image represents a small
frustum rather than a single point. A pixel on the edge of an object will
have color information from both that object and its background, making
a projection of a point at the edge of an object still acquire color from the
background.

The problem to solve is then how to project colors onto the surface in
such a way that these artifacts are not visible.

This thesis considers the problem in the context of a voxelized scene.
The scene consists of 100 frames of voxel geometry and four cameras, each
of which has an associated file specifying position, rotation, field-of-view,
and aspect ratio, as well as a video stream containing 100 frames of video
corresponding to the geometry frames. The voxel geometry is reconstructed
from a virtual depth cameras in Blender [2].

To limit the scope of the task, some aspects of the problem will not be
considered in this thesis. Temporal consistency, i.e. how the result behaves
when applied to consecutive frames and then played back, is an important
characteristic of a possible solution, but too large to also consider in this the-
sis. The speed of the solution is also not wholly considered, as this thesis will
focus on finding a solution; not optimizing it. A precomputation approach
will be rejected only if it is obviously extremely slow.
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Chapter 2

Previous Work

An early architecture for FVV is the Multiple-Perspective Interactive Video
presented by Kelly et al. [3], which lays a foundation for constructing virtual
views based on a number of fixed-position camera streams and simplified
geometry representations. Another early system is the Virtualized Reality,
presented by Rander et al. [1], in which a global mesh geometry is created
from local meshes given by each camera and then textured. A system is
considered specialized if it is not designed with general situations in mind,
but can only be used for certain specific situations.

Examples of specialized systems include that of Horiuchi et al. [4], who
present a system for rendering musicians from different viewpoints on dif-
ferent backgrounds. Koyama et al. [5] present a system for live FVV of a
soccer stadium. Carranza et al. [6] present a model that utilizes a human
body model and thus is unsuitable for subjects other than human beings.
Hauswiesner et al. [7] also make use of a human body model when they
present a system that allow users to try on clothes articles in a virtual en-
vironment. All of these make assumptions regarding the subjects and their
properties.

A common property of many of the specialized systems mentioned earlier
is that they make use of methods that only utilize the images provided by the
viewpoints and information regarding the position and orientation of those;
the geometry of the subject is not a part of the model. These systems are
classified as image-based systems, whereas systems that utilize a computed
geometry of the subject are called model-based systems [8].

General systems have the property that they are designed to work on any
subject, and thus make very few assumptions regarding what kind of scene is
portrayed. Examples of general systems include the unstructured lumigraph
by Buehler et al. [9], which is dependent on a relatively high number of
cameras. The systems presented by both Collet et al. [10] and Salvador et al.
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[11] blends colors from cameras based on surface normals and the intrinsic
interpolation of surface normals in a mesh geometry; the system of Collet
et al. [10] additionally relies on a strictly controlled environment and a high
number of cameras to achieve a good result. Ishikawa et al. [12] proposes
an image-based general system where the user can walk through the scene,
something that is normally not possible using image-based methods. The
system, however is limited to views in a specific plane and also requires a
high amount of specifically positioned cameras. Palomo and Gattass [13]
propose an image-based algorithm that is capable of performing FVV using
the images of conventional cameras and images by depth cameras. However,
the purpose of the system is to be an efficient way of rendering FVV in real-
time without need for precomputation, and it does not take into concern the
visual artifacts that might be present..

Some systems fall somewhere between specialized and general. Wang
et al. [14] consider a framework for synthesis of viewpoints between already
existing viewpoints, as opposed to a system where the viewpoint can be freely
moved; this fact does not make it specialized, but it might not be considered
entirely general either.

FVV systems are possible to use in a wide variety of circumstances, and
on different platforms. Systems have been presented for controlling FVV
systems using a touch screen for possible use on mobile devices [15], and for
streaming and cloud rendering of FVV data [16, 17].

Kämpe et al. [18] present an efficient method for storing time-varying
voxel data in a directed acyclic graph (DAG). The voxel geometry this thesis
uses is stored using this method.

An interesting technique is relighting [19], with which the scene lighting is
undone so that the scene may be lit from an arbitrary source within the FVV
system. One usage of relighting is when FVV content is mixed with other
content, either other FVV content or some virtual environment. Relighting
is then used so that all content can be lit the same way. Relighting could be
used to eliminate the color differences between cameras so that seams will
not occur. On the other hand, this would also erase any previous lighting
information present in the scene. This thesis aims to facilitate the translation
of already lit scenes from real world to FVV, preserving the lighting from
the original scenes.

As for the texturing of the scene, Salvador et al. [11], Collet et al. [10],
and Starck and Hilton [20] all employ weighted camera blending to achieve
their results. The approaches of all of these, however, are not applicable
to this thesis because they make use of normals in a generated 3D mesh to
generate camera weights, something that is not directly applicable in this
thesis as no information regarding the normals of the geometry is available.
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An interesting method for FVV rendering without losing view-dependent
information (such as reflections) is view-dependent texture mapping (VDTM).
VDTM was originally presented as a method for simulating geometric detail
on basic geometric models [21], similar to how normal mapping [22] is used in
modern computer graphics. Volino and Hilton [23] present a layered texture
representation for VDTM with focus on FVV use that retains view-dependent
information, improving realism.

Lempitsky and Ivanov [24] Describe a method for constructing a mosaic-
like texture mapping from different cameras on triangle meshes. The method
uses seam levelling in order to smooth seams between mosaic fragments.
The seam levelling implementation presented makes use of the triangle mesh
structure, making it unsuitable for use with a voxel grid.
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Chapter 3

Method

Given a scene geometry and the color images from a number of cameras, this
thesis considers how to assign colors to any point in space. The multiple
frames of scene geometry consists of voxels specified by a single Directed
Acyclic Graph (DAG) containing all geometry frames, as described by Kämpe
et al. [25], and a number of static cameras, each with an associated position,
orientation, field-of-view angle, and an image stream that correspond to the
frames of the geometry.

One way of solving the problem of determining the color of a given point
p is to project p onto the camera plane of each scene camera Ci. The colors
Colip of the pixels at the projected positions in the scene camera images
i = [1..N ] are then averaged to calculate the final color Colp:

Colp =

∑N
i=1Colip
N

(3.1)

This method, however, disregards the geometry of the scene and may pro-
duce erroneous color values for points that are occluded by some geometry, as
the color from the occluder will be used in the final value. We can determine
whether a point is seen by a given camera or not by comparing the distance
to the point from the scene camera and the value of the projected position on
the depth map (an image from a scene camera’s point of view representing
distances to the geometry) of the scene camera [11], if such a depth map is
available. If the value obtained from the depth map and the distance between
the point and the scene camera are sufficiently close, the point is considered
visible from that scene camera and the scene camera should be sampled for
the final color; if the values differ, the point is occluded and that camera
should not be sampled for the final color. Another way to test if a point is
seen by a specific scene camera is to shoot a ray from the point towards the
scene camera; if the ray hits geometry between the point and the camera,
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the point is occluded. The final color is then obtained by what we call the
naive projection method:

Colp =

∑
i∈Cv Colip
|Cv|

(3.2)

where Cv is the set of scene cameras visible from the point.
For a given point, the color given by projection on scene camera images

may differ between cameras even if the point represents the same object for
the scene cameras. There are various conceivable reasons for this. Firstly,
the material of the object may be view-dependent, that is, it looks different
from different directions. Any material that does not reflect light uniformly
is view-dependent, as more light will be reflected in certain directions than
others. Secondly, there might be a mismatch between the scene camera
images and the scene geometry, as the voxelized geometry does not exactly
correspond to the original scene geometry. Such a mismatch could cause an
erroneous color sampling along silhouettes of objects; a point on the very
edge of an object, as seen from a specific scene camera, could give the color
value from the object behind it instead. The sampling mismatch is illustrated
in Figure 3.1a. Another kind of mismatch can be seen is shown in Figure
3.1b, where the color value is obtained from the correct surface at the wrong
position, thereby displacing the projection on that surface in the direction
toward the camera.

(a) (b)

Figure 3.1: Sampling mismatches occur. The dashed circle and line represents
original geometry, and the squares represent voxels in the scene geometry. In
both cases, coloring the point p1 will give the color of p2 from the camera, as
the position of p1 corresponds to p2 in the original geometry

These are the causes of the visual artifacts that may be present when
the naive projection method is used. The problem then becomes how to,
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correctly and without visual artifacts, determine the color of a given point of
the geometry surface.

3.1 Choosing colors for view-dependent ma-

terials

As mentioned earlier, due to the nature of some materials, a point may give
different colors from different scene cameras. The problem of choosing which
of these colors to use, or how to combine them, for the final color is not trivial.
When choosing colors for a view-dependent material, no solution is complete.
Consider a mirror surface; every single view of the mirror will see a unique
reflection in the mirror, thus we would need an infinite number of cameras to
perfectly replicate the possible views of the mirror surface. Thus, everything
described from this point on is to be considered as approximations, that may
give plausible results for slightly view-dependent materials.

Simply choosing the color from the scene camera that might be considered
to have the best view of a given position may give unsatisfactory results: If
two neighboring points have different best scene cameras with different colors,
the result will not look good. Similarly, blending colors from all visible scene
cameras with equal weight may also give unsatisfactory results, as some scene
cameras might have a very angled or otherwise compromised view of the given
point, making them unsuitable for sampling.

There are a number of possible solutions to this problem. Instead of
choosing the best scene camera to sample for a color, it is possible to choose
a number of suitable scene cameras, and blend the color values acquired
from them to produce the final color [11]. Apart from just choosing the
cameras that see the given point, the normal of the surface on which the
given point is located can be used to select which of these cameras can be
used. The surface normal can also be used to determine the blending weights
of these chosen cameras. The blending weight of each selected scene camera
could be defined in such a way that the scene cameras for which the view
vectors are the closest to being parallel to the surface normal of the given
point are given more weight in the blending [11]. If blending the colors is
not considered a viable option, levelling functions may be used. Levelling
functions are commonly used in image stitching, and can be used to combine
images without overlapping areas [26].
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3.2 Eliminating occlusion seams and other ar-

tifacts

When a surface is partly visible by a camera, A, either because the surface is
partly occluded or because it is partly outside the view of A, there may be a
visible seam between the points where A is used and the points where it is not
if the surface in question is view-dependent or if the cameras have different
effective resolution for that surface. Figure 3.2 illustrates the circumstances
under which seams may appear.

Figure 3.2: point p1 is in full view of scene cameras A and B, while its
neighbor, p2 is only in view by scene camera B. This could cause a seam
between p1 and p2.

The problem is how to, for any point in the scene, assign weights to scene
cameras in order to present a plausible result without visible seams or other
artifacts, such as sampling mismatches.

While there is not much previous work that deals explicitly with this
kind of seams, some of the methods for handling view-dependent materials
as described in section 3.1 could conceivably be used to handle this problem.
A levelling function, for instance, could, combined with good selection of
scene cameras to sample, provide a possible solution. That solution, however,
makes use of a triangle mesh structure which we do not have access to.

Our solution to this problem is to assign weights to scene cameras based
on how well they see a piece of geometry. To achieve this, the view of each
scene camera is divided into areas of visibility. An area of visibility is a
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geometrically continuous area which is visible to a certain scene camera.
These areas of visibility are used to establish weight maps, a mapping of
weights per scene camera onto either the geometry or the scene camera image,
specifying the weight of each color in the scene camera image. The weights
should be assigned in such a fashion that each area of visibility has a set
weight, except near the edges, where the weights are lower the closer to
the edge they are. This ensures that the center of the area of visibility is
associated with full weight of that scene camera, while the scene camera’s
influence fades out near the edges, making for a seamless blending into other
cameras’ areas of visibility. Figure 3.3 illustrates two areas of visibility from
two different cameras. This solution alleviates the problems with occlusion
seams by making sure that if an area of visibility overlaps another one, the
weights of both areas are lower closer to the edges than in the center, fading
out their influence. This solution also alleviates the problem of sampling
mismatches along edges of objects because the silhouette edge of an object
is per definition also the edge of the area of visibility on that object; thus
the colors that are likely to be erroneously sampled have a very low weight
compared to those sampled from scene cameras for which the given geometry
point is not along the object’s edge.

Figure 3.3: A surface with areas visible to scene cameras A and B, respec-
tively. In p1, B has a low weight while A has a high weight. In p2, A and B
have the same weight. In p3, B outweighs A.

The presentation of three methods will follow, each taking a slightly dif-
ferent approach to the solution presented.
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3.2.1 Identifying areas of visibility in voxel space

With this method, areas of visibility are built per scene camera by identifying
which voxels are on the edge of such an area, followed by an iterative filling
process that assigns weights to voxels based on how many voxel steps away
the edge is.

A voxel is defined to be on the edge of an area of visibility if any of its
neighbor voxels are not visible from the scene camera, which means that it is
either occluded or outside the scene camera view. After the edge voxels have
been identified, they are given the weight 1 and put in a list. For each voxel in
this list, its unprocessed, non-occluded neighbors are given the weight 2 and
put in a new list. This new list is processed in the same manner as the last,
setting the weight of every unprocessed and non-occluded neighbor to 3, and
putting them in a new list. This continues until a set max weight is reached,
whereupon the rest of the unprocessed and non-occluded voxels are given the
max weight. This ensures that the area of visibility has a uniform weight
value in the center region and fading weights in the edge region. Figure 3.4
illustrates an area of visibility filled with weight values.

Figure 3.4: Weights of a flat voxel grid, with edge voxels marked in gray. All
voxels inside the edges have been marked with their respective distances to the
outside of the area.

However, there are some limitations with this method. Since the weights
are assigned based purely on integer distance across the geometry to the
nearest area edge, the distance of the camera to the geometry is not taken
into consideration. It could be done by modifying the weights with some
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function of the distance between the voxel in question and the camera, for
example the inverse distance, but that might, for a very close camera, change
the weight values so much that the requirement of edges with weights close to
0 is broken. The result is that if the weights are not (relatively) close to 0 in
the edges of some regions, they might not blend seamlessly with overlapping
areas, producing visual artifacts.

Another issue is that this method has a voxel-centric view of the problem,
and that might cause artifacts in the finished result. For example, one voxel
may correspond to more than one pixel in the camera image. This, combined
with the fact that only one color per voxel is stored, risk making some parts
of the scene (specifically, the part closest to the camera in question) under-
sampled. Another problem comes from the fact that we determine occlusion
for some camera by shooting rays from the center of the voxel towards the
camera. While this might intuitively not seem to be a problem, there exist
situations in which the center of a voxel is occluded but not some other part
(see Figure 3.5). Even if we were to shoot rays from all corners of the voxel,
as well as its center, there might exist situations in which the center and all
corners of a voxel are occluded, but not some other part. The result of this
is that some voxels will be falsely flagged as completely occluded, making for
a possibly inadequate solution.

Figure 3.5: The voxel v1 is being identified as occluded by v2 despite not being
so, due to inadequate occlusion testing.
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3.2.2 Dynamically identifying areas of visibility in view-
camera space

This method approaches the problem from the direction of the view camera,
which is the camera from which the scene is viewed by the user of the system.
The method dynamically establishes areas of visibility only for the points
currently being rendered.

The scene camera weights for each pixel of the view are calculated by
shooting rays through pixels in the vicinity of that pixel. The vicinity of a
pixel is defined as an area surrounding it with some margin, defined in number
of pixels, as seen in Figure 3.6. For each of the rays that hit anything, the
hit position is checked for occlusion against all scene cameras that can see
the original pixel. The weights are then calculated by summing the number
of hit positions visible from each camera.

Figure 3.6: Examples of square vicinities of pixels p1 and p2. These vicinities
are 7 and 3 pixels wide, respectively.

This method also ensures that the areas of visibility have a uniformly
weighted center, as the max weight assigned is the area of the vicinity, which
is a set size throughout the entire process. Figure 3.7 illustrates the general
idea of this solution.

An advantage of this method is that since colors are not stored in the
voxels, but rather retrieved on a per pixel basis, a voxel can have any number
of colors, preventing undersampling of the scene cameras.

One big disadvantage of this method is that the weight calculation cannot
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Figure 3.7: The point p1 has full weight from B and little more than half
weight from A. p2, on the other hand, has full weight from A and no weight
from B, since p2 is not visible by B.

be precomputed since it depends on the location and rotation of the view.
This makes this solution fairly computationally heavy in real-time.

Another drawback is that if the pixel is near the edge of an object, some
part of the vicinity of the pixel might correspond to a piece of background
geometry. If it does, the visibility of the camera in the background may be
used in the weight calculation of the pixel, as illustrated in Figure 3.8. This
may cause some areas to have more weight for a certain camera than they
should, and would affect the final result.

This algorithm does not provide a complete solution to the given problem,
as the weight of a point close to the edge of an area of visibility will not be
close to zero, as is desirable. This will reduce the effectiveness of the method.
A slightly modified version of the method can be used to satisfy the edge
weight condition: The weight of each camera visible at the given point is
set to be the closest pixel distance to a point that is not within one of that
camera’s areas of visibility. This will ensure that the points close to an area
of visibility edge is given low weight for that camera.

Given the modified weight assigning algorithm, the method does still not
completely solve the problem. The center of an area of visibility could be at
the edge as seen from the view, giving it low weights where it should have
high. The reverse is also possible, and will cause sampling mismatches to
still be visible in some cases.
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Figure 3.8: The point p should only have a small weight for B, but since the
background of the object is also seen by B, it gets taken into consideration,
giving B a larger weight than it should have.

3.2.3 Identifying areas of visibility in scene camera
space

This method combines a screen space approach with the ability to precom-
pute weights, so that instead of calculating the weights every time they are
needed, they are precomputed and stored on disk. The areas of visibility are
calculated in scene camera space, and the weight of a pixel is represented
by the distance to the nearest local discontinuity in geometry. The smallest
weight this method will assign a pixel is 1, as that is the smallest distance
from one pixel to another.

The precomputation is done by first shooting one ray per image pixel
for each scene camera and store the resulting collision distances in a depth
map. These distances are then used to, for each image pixel of the scene
camera, calculate the distance to the nearest local discontinuity. A local
discontinuity is defined as when the recorded depth of two neighboring pixels
of the scene camera image differ by more than a certain threshold value
(See Figure 3.9). The choice of threshold value is important, as a too low
value could make the solution interpret surfaces that face the camera as
discontinuous with themselves, giving too low weights. The discontinuity
is found by traversing the depth map around the hit pixel in an outward
fashion until a local discontinuity is found. This distance is then stored as
the weight for that pixel in that camera. It is worth noting at this point that
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this algorithm is not optimized for performance in any way, and is thus not
suitable for real-world usage.

Figure 3.9: A local discontinuity is detected when the difference between two
neighboring distances is more than a certain threshold.

When a ray is shot from the view camera into the scene to calculate the
color for the pixel corresponding to the ray, the colors and the stored weights
for the hit position is looked up for each camera. The final color is then
calculated using a weighted average of the colors from the cameras.

An advantage of this method is that weights for a piece of geometry far
away will be lower than weights for an identical piece of geometry that is
closer (see Figure 3.10), making distance an integral part of weight calcu-
lation. This is advantageous because as the camera has a lower effective
resolution on an object that is far away, we want the camera to have lower
weights on that object.

The outward search for a local discontinuity for the calculation of each
weight could become very time-consuming, as the search area is larger than
the square of the search distance. Therefore, a max distance value is intro-
duced, where the search will stop as soon as it has reached a certain distance
from the pixel of origin. If this max value is reached, the weight of the pixel
is set to the max distance. This will result in weight plateaus in the middle
of areas of visibility that are large enough.

The fact that the weights actually are the pixel distance to the closest
discontinuity might give unexpected results if the scene camera images are of
different resolutions. Some sort of normalization is likely necessary in order
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Figure 3.10: Despite being of equal size, objects A and B have different
weights in the center, as A appears much bigger in the scene camera space.

to achieve even results in such cases.
If the geometry resolution is higher than the scene camera image resolu-

tion, there might be cases where discontinuities in the geometry are missed
because the resolution of the depth map is too low to discover them. This
could conceivably be a problem. The resolution of the depth map could
of course be increased to avoid this, but then it would also take longer to
calculate.
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Chapter 4

Results

Given a scene consisting of voxel geometry and a number of camera positions
with associated video streams, we want to determine the color of a given
position on the geometry. The naive method does this by checking which
cameras are in view of the given position, and averaging the color values
from those cameras at that position, as described in Equation 3.2. This
might create a number of different artifacts, and our method is designed to
eliminate these. Our method uses a weighted averaging, and seeks to assign
different weights to the different areas of the camera projections, based on
how good of a view the camera has of the corresponding area in the geometry.

The method was tested by implementing both the naive method and the
algorithm described in section 3.2.3, and then comparing the visual quality
of a number of views rendered using them both. Our implemented method is
an algorithm that assigns weights in camera space of the scene cameras. The
weight of a pixel in the scene camera image is based on the pixel distance to
the nearest local discontinuity in the geometry. Max distance is, in the con-
text of our method, the maximum distance at which the local discontinuities
are looked for, and thus also the maximum weight given to a pixel in a scene
camera image. The implementation of our method uses a max distance value
of 32 throughout most of this chapter (specifically, sections 4.1.1, 4.1.2, 4.1.3,
and 4.1.4). The choice of implemented method was made based on the lim-
ited timeframe of the master thesis only giving adequate room to implement
a single method, combined with the desirable properties possessed by the
chosen method. The implementations were made in C# using the OpenTK
toolkit [27] for rendering and vector math.

A number of views (virtual camera positions and orientations) were se-
lected for comparison by identifying parts that displayed prominent occlu-
sion seams and/or other graphical artifacts when rendered using the naive
method. The graphical artifacts produced by the naive method include oc-
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clusion seams, sampling mismatches, and projection displacement. Occlusion
seams occur on edges along the occlusion shadow of an object (see section
3.2). When cameras have different color values for the same position, the
transition from an area both cameras can see to an area that only one cam-
era can see will be a transition from two different colors averaged to just one
of the colors. Sampling mismatches occur because the voxelized scene ge-
ometry does not always match exactly with the original scene geometry (see
Figure 3.1a). If a voxel extends outside the surface of the original object, a
ray that would pass by the object in the original scene might hit the voxel,
creating a mismatch between the actual and believed hit positions of the ray.
This mismatch may cause the color of the background of the object to be
projected onto the object itself. Projection displacement also occurs when
the voxelized geometry does not closely correspond to the original geometry
(see Figure 3.1b). A ray shot toward an object could hit the voxelized surface
somewhat earlier than it would hit the surface in the original geometry. If
the ray is shot at an angle, this might cause the projection on that surface
to be displaced in the direction toward the camera.

4.1 Test results

Four camera views exhibiting occlusion seams and other graphical artifacts
will be presented, and figures illustrating the difference between the two
rendering methods will be shown. Figure 4.1 shows, for reference, the first
frame of each scene camera’s video stream. These four frames comprise the
entire image input for the algorithm.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 4.1: The views of each camera in the scene.

21



4.1.1 View 1: Wall

The Wall view corresponds to a geometrically simple part of the scene de-
picting a flat wall. It features a number of seams and serves a good example
of the chosen method. Figure 4.4a shows the view rendered using the naive
method.

Each camera contributes equally to the result in Figure 4.4a, and the
contribution of each camera can be seen in Figure 4.2. Cameras 3 and 4 see
the wall at an angle, and so have effectively lower resolution than the other
two, making the colors in their contributions seem smeared out.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.2: Individual camera contributions of the Wall view rendered using
the naive method. Black corresponds to no contribution from that camera in
that view.

The weights of the contributing cameras, for use in our method, are found
in Figure 4.3. For this view, Camera 1 is contributing greatly to the final
result; Camera 2 is also contributing, but not in as large area as Camera 1,
and cameras 3 and 4 are almost not contributing at all.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.3: Individual camera weight maps of the Wall view in our method.
Red corresponds to a weight of 1, yellow corresponds to a weight of 32.

The complete rendering with our method can be seen in figure 4.4b. Fig-
ure 4.4 shows the comparison of the Wall view rendered with the naive
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method and our method, respectively. As is evident, our method produces a
result without visible seams, without adding additional graphical artifacts.

(a) Wall view rendered using the
naive method.

(b) Wall view rendered using our
method.

Figure 4.4: Comparison of the naive rendering and thesis rendering for the
Wall view
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4.1.2 View 2: Woman

The Woman view depicts the woman in the scene. Figure 4.7a shows the
view rendered using the naive method. Using the naive method, this view
does not display a lot of seams, but is fraught with other visual artifacts.
These artifacts are created by sampling mismatches and the fact that none
of the cameras in the scene can see the woman in her entirety, so there are
few overlapping areas of visibility, especially on her left side.

Figure 4.5 breaks down the individual contributions to the result using
the naive method shown in Figure 4.7a. From this figure, we can see that
Camera 3 and Camera 1 are responsible for a lot of the artifacts on the
woman’s left side because of sampling mismatches. We can see that none of
the cameras has an adequate view of the left side of the woman at all, making
all parts of the her facing in that direction suffer from graphical artifacts.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.5: Individual camera contributions of the Woman view rendered us-
ing the naive method. Black corresponds to no contribution from that camera
in that view.

Using our method for weight maps (seen in Figure 4.6) gives good weights
of cameras 1 and 2 for the upper body and front of the legs of the woman.
All cameras have very low weights along her left side, meaning that none of
them will contribute significantly more than any other camera.
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(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.6: Individual camera weight maps of the Woman view in our method.
Red corresponds to a weight of 1, yellow corresponds to a weight of 32.

The complete rendering with our method can be seen in figure 4.7b. Fig-
ure 4.7 shows the comparison of the Woman view rendered with the naive
method and our method, respectively. Our method alleviates some of the
problems seen when using the naive method, but retains some problems as
well. The big artifacts along the woman’s left leg and torso are slightly
smaller, and the woman’s torso is also clearer.

(a) Woman view rendered using the
naive method.

(b) Woman view rendered using our
method.

Figure 4.7: Comparison of the naive rendering and thesis rendering for the
Woman view
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4.1.3 View 3: Roof

The Roof view is focused on a piece of wall and roof just above the woman in
the scene. The Roof view displays, when rendered using the naive method,
two large seams crossing each other. One of the seams arises from occlusion
of another object, whereas the other seam is the consequence of the field of
view of a camera ending. Figure 4.10a shows the view rendered using the
naive method.

As can be seen in Figure 4.8, the contributions to the naive method result
(Figure 4.10a) are done almost exclusively by only two of the four cameras.
Camera 3 has a view of the geometry from the ground, whereas Camera 4
has a closer view, from a higher position. Each camera contributes equally
to the result in Figure 4.10a.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.8: Individual camera contributions of the Roof view rendered using
the naive method. Black corresponds to no contribution from that camera in
that view.

The weights of the contributing cameras, for use in our method, are found
in Figure 4.9. Here, Camera 4 is awarded higher weights than Camera 3,
because of its proximity to the geometry.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.9: Individual camera weight maps of the Roof view in our method.
Red corresponds to a weight of 1, yellow corresponds to a weight of 32.
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The complete rendering with our method can be seen in figure 4.10b.
Figure 4.10 shows the comparison of the Roof view rendered with the naive
method and our method, respectively. As can be seen, Camera 4 has a
large influence on the final result. Our method produces a result that has
eliminated the two prominent seams.

(a) Roof view rendered using the
naive method.

(b) Roof view rendered using our
method.

Figure 4.10: Comparison of the naive rendering and thesis rendering for the
Roof view
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4.1.4 View 4: Bucket

The Bucket view shows a bucket hanging in a piece of rope in front of a
building façade. A naive rendering (see Figure 4.13a) of this view displays a
high amount of sampling mismatches along the edges of the bucket, as well
as some blurriness caused by projection displacement on the façade.

Each camera contributes equally to the result in Figure 4.13a, and the
contribution of each camera can be seen in Figure 4.11. We can see that
cameras 1 and 4 produce significant amounts of sampling mismatches; from
a wall in the case of Camera 1, and from a tile roof in the case of Camera 4.
The source of the projection displacement is mainly Camera 2, which views
the façade at an angle.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.11: Individual camera contributions of the Bucket view rendered us-
ing the naive method. Black corresponds to no contribution from that camera
in that view. We can observe sampling mismatches on the left side of the
bucket in Camera 1, as well as on the right side of the bucket in Camera 4.

The weights of the contributing cameras, for use in our method, are found
in Figure 4.12. The problematic areas of sampling mismatches in cameras 1
and 4 are assigned very low weight values. Likewise, the areas subjected to
projection displacement of the façade are assigned low weights compared to
Camera 4, which has the most straight-on view.

28



(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

Figure 4.12: Individual camera weight maps of the Bucket view in our
method. Red corresponds to a weight of 1, yellow corresponds to a weight
of 32.

The complete rendering with our method can be seen in figure 4.13b.
Figure 4.13 shows the comparison of the Bucket view rendered with the naive
method and our method, respectively. In the rendering using our method,
the sampling mismatches are almost not visible at all, and the blurriness
caused by projection displacement has nearly been eliminated. The texture
on the handle of the bucket is also more distinguishable, as opposed to the
naive rendering; the handle itself still looks bad because the voxels of the
scene geometry are larger than the handle in the original geometry, in effect
undersampling it.

(a) Bucket view rendered using the
naive method.

(b) Bucket view rendered using our
method.

Figure 4.13: Comparison of the naive rendering and thesis rendering for the
Bucket view
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4.1.5 Max distance size comparison

The chosen max distance affects the end result of our method. A smaller max
distance confers a narrower gradient between the edge of an area of visibility
and the part of the area that is considered in full view.

Figure 4.14 shows the Wall view rendered using our method with a max
distance of 1, 2, 4, 8, 12, 16, 24, 32, 128, and ∞, respectively. With a max
distance of 1, all areas of visibility will have a uniform weight of 1, and thus,
our method will become identical to the naive method. The difference from
max distance 1 to 32 is noticeable, but higher values than 32 contribute little
to the end result, and from 64 and upwards, the difference is almost zero.

(a) 1 (b) 2 (c) 4 (d) 8

(e) 12 (f) 16 (g) 24 (h) 32

(i) 64 (j) 128 (k) ∞

Figure 4.14: Comparison of different values of max distance for the Wall
view

Another example of varying max distance is found in Figure 4.15, showing
the Bucket view with the same max distance values as in Figure 4.14. The

30



sampling mismatch artifacts on the bucket itself does not vanish more after
max distance 16, and the only thing changing at higher values than that
is the blurriness caused by projection displacement, which sees no further
improvement above max distance 64.

(a) 1 (b) 2 (c) 4 (d) 8

(e) 12 (f) 16 (g) 24 (h) 32

(i) 64 (j) 128 (k) ∞

Figure 4.15: Comparison of different values of max distance for the Bucket
view

4.2 Performance

Apart from precomputing time, of which the naive method does not require
any, the rendering time is slightly longer with our method. We can assign rel-
ative speed values for the methods by comparing the render times. Table 4.1
details the total rendering times of six different views (four of which comprise
the views presented in Section 4.1) for the naive method and our method,
respectively. Each view was rendered 50 times to provide some statistical
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soundness. The rendering was performed on a Windows 7 desktop computer
with an Intel i7-4770K CPU, 16 GB RAM, and an NVIDIA GeForce GTX
770 GPU. The implementation itself is a CPU-only raycaster with very few
optimizations. As Table 4.1 shows, our method has a relative speed value at
lower resolutions around 0.8, indicating that it runs at 80% of the speed of the
naive method, but the difference becomes smaller as the resolution increases.
The fact that our method is performing very slightly better than the naive
method at higher resolutions can be attributed to runtime uncertainties.

Rendering size 1282 2562 5122 7682

Rendering time (Naive) 00:07:33 00:34:07 02:54:29 06:16:14
Rendering time (Our) 00:09:24 00:39:55 02:48:20 06:09:02
Relative speed (Our) 0.803 0.854 1.037 1.02

Table 4.1: Rendering times and relative speeds for the naive method and
thesis method, respectively.

The preprocessing time varies depending on many variables, such as the
scene, number of cameras, and max distance value. Table 4.2 shows how
the preprocessing time correlates to varying values of max distance. As
can be seen, a low max distance value confers faster preprocessing. This is
because the algorithm can quit early if no discontinuities are found within
the max distance. Since the preprocessing algorithm is not optimized for
speed, the preprocessing times could possibly be improved significantly with
optimizations and GPU acceleration.

Max Distance Running Time (hh:mm:ss)
1 00:02:22
2 00:02:27
4 00:02:48
8 00:04:06
12 00:06:00
16 00:08:52
24 00:14:20
32 00:20:21
64 00:44:25
128 01:18:18
∞ 01:41:07

Table 4.2: Preprocessing times for a single frame using different values of
max distance.
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Chapter 5

Discussion

While all tested views show significant improvement with our implemented
method over the naive method, some show less improvement than others. In
particular, the Woman view does not display the same improvement as the
other ones, because of the fact that the geometry of the woman is relatively
thin, combined with the unfavorable positions of the cameras in the scene.
This shows that we might benefit from cameras dedicated to the actors in
the scene, as people are more prone to catch visual errors in other humans
than in walls and trees.

Renderings made using our implemented method looks much better than
when using the naive method, with only minimal performance loss. One
downside to our method is that the weights need to be saved alongside the
video streams, increasing the disk size of the processed FVV sequence. The
weights could be encoded as single-channel video streams to reduce size,
but the aesthetical consequences of that remains to be tested. If a faster
algorithm is developed, it would also be possible to calculate the weights in
real-time, alleviating the need for saved weights altogether.

Our implemented method might need to be tweaked somewhat when used
with other scenes and setups: Scene size, number of cameras, voxel resolution,
and camera resolution all change the conditions under which the algorithm
operates. One variable that needs to be changed according to the situation is
the discontinuity threshold, which is the lowest value by which the distance
of two neighboring pixels must differ for them to be considered discontinuous.
With changes in scene size and voxel resolution, the discontinuity threshold
will probably have to be tweaked to obtain a good compromise between not
registering separate objects as the same, despite them being very close to
each other, and recognizing an angled wall to be a single object. Another
variable that will need tweaking is the max distance, which determines the
maximum weight a pixel can be assigned to have to the nearest discontinuity.
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The max distance will have to be selected in such a way as to balance visual
quality and preprocessing time. A good lowest value for the max distance
for this scene can be estimated by comparing the different figures in section
4.1.5; 32 seems to be the value at which most of the seams and other artifacts
vanish enough to be indistinguishable. At 64, almost no differences with max
distance ∞ can be seen. Between 32 and 64 seems to be a value for max
distance; maintaining high quality while still keeping the processing times
relatively short, as seen in table 4.2.

Given more time, we would have evaluated some methods for finding
approximate surface normals from the voxel geometry. This would have
made it easier to incorporate some methods from the previous work into this
thesis, such as calculating weights based on how the scene camera’s view
direction compares to surface normals in the scene.
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Chapter 6

Conclusion

The main question in this thesis was how to find color values for the surfaces
of a voxel geometry in such a way that minimizes seams and other graphical
artifacts.

Given the constraints of a scene of pure voxel data, without any informa-
tion of surface normals, and four cameras with video streams, we proposed
three slightly different methods. Each method builds on the common con-
cept of blending color information from different cameras based on specific
weights. The weights are stored in a weight map, which is a broad term for
weights saved in a way that corresponds to the geometry, the current view
being rendered, or the views of the cameras in the scene. The weights are
generated in such a way that influence from a camera fades out near the edge
of the areas of visibility (geometrically continuous areas completely in view
of a certain camera) that camera has on the geometry.

The result is a method that succeeds in minimizing graphical artifacts
within the possibilities of the given scene; it cannot create novel data where
there was none.
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Chapter 7

Future Work

An obvious contender for future improvement is optimization. There is a lot
to be done in this regard, as almost none of it has been done in this thesis.
Speeding up intersection tests, raycasting on the GPU, and using more effi-
cient data structures, to name a few. A more efficient and/or approximative
weight generation algorithm, for example, could help the method described
in section 3.2.3 get rid of its precomputation needs, calculating all weights
in real-time.

One interesting future approach is to evaluate the possibilities of imple-
menting view-dependent surfaces in the context of this thesis. This would
aid the realism of the rendering.

In the current suggested methods, all cameras that can be used for con-
tributing to a point does so, even if it is a minuscule amount. Investigating
the possibility of only having a certain number of cameras provide color infor-
mation to a surface point could prove beneficial, as some areas are assigned
very similar weights for all cameras because of their small size. The weighted
averaging on these areas will then take bad cameras into consideration more
than they would have if the surface area was larger.

Testing the suggested method’s temporal consistency is a necessary step
toward using it in real FVV applications.
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