
Volumetric Shadows using Polygonal Light
Volumes

Supplemental Material

Markus Billeter, Erik Sintorn, and Ulf Assarson

February 22, 2012

Abstract

This document provides supplemental material to simplify implementing
volumetric shadows using our technique described in the paper Volumetric
Shadows using Polygonal Light Volumes [BSA10].

1 Implementation Details
To summarize, our shafts of light algorithm consists of the following steps:

1. Create the shadow map by rendering the scene into a depth buffer (see Figure 1).
2. Render scene from the camera with diffuse lighting, attenuating incoming and

outgoing light due to absorption and scattering in media (see code listing below).
Hard shadows on surfaces can be added in this step using standard shadow
mapping.

3. Construct the mesh from the shadow map, with or without adaptive tesselation. The
simplest is to skip adaptive tessellation, which is fast as long as the shadow map
resolution is not very large (less than 4k × 4k).

4. Render the mesh with depth testing disabled and additive blending enabled. The
fragment shader evaluates the in-scattering, including attenuation, for a non-
shadowed ray from the eye to the fragment’s position. If fragment belongs to a
back-facing mesh polygon, the contribution is negated (see code listing below).

Since there are several options for the implementation of the in-scattering and
attenuation computations, we here include the fragment shaders associated with
step 2 and 4.

// Step 2:
// In function main() of the fragment shader, when rendering the
// scene from the camera:

1

(a) (b) (c) (d)

Figure 1: Creation of the shadow volume mesh from the shadow map. (a) First, the shadow
map is rendered. (b) Then, the mesh is constructed with one vertex per shadow map pixel.
The mesh triangles should face the light source. In (c), the mesh vertices are displaced by
the depth values in the shadow map so that each vertex is the corresponding shadow map
pixel’s world space coordinate. Finally, in (d) the mesh is closed by the four light frustum
planes.

for(int i=0; i<NUM_LIGHTS; i++) {
// Compute fragment color from surface shading, e.g. using
// the standard ambient, diffuse, specular shading model
vec3f color_from_shading = ...
// Compute light attenuation factor
vec3 lightToObj = lightposition[i] - objPos;
float beta = 0.04; // optical thickness
float attenuation = 0.1 *

exp(-beta * length(lightToObj))/ length(lightToObj)ˆ2 *
exp(-beta * length(objPos));

// lightintensity = 1000.0f is a reasonable value
gl_FragData[0].xyz += attenuation * lightintensity[i] *

lightcolor[i] * color_from_shading;

While the light is attenuated on its way to the surface point, the surface point
also receives in-scattering enhancing the light intensity. This latter term is, how-
ever, as computationally expensive to compute per pixel as the full in-scattering
towards the eye for the whole image. Therefore, a plausible approximation is to
assume that the attenuation from the light to the surface point is low per unit step
compared to the attenuation from the point to the eye.

// Step 4: Computing airlight with shadows.
// Render the shadow volume mesh with depth testing disabled
// and additive blending enabled.
// Fragment shader:
uniform sampler2D camera_z;
in vec3 objPos, lightPos, viewPos;
void main()
{

float facing = gl_FrontFacing ? -1.0 : 1.0;

2

deye_ to_ object

d light _ to_ object

attenuation =
e d light _ to_ object

dlight _ to _ object
2 e d eye _ to_ object

p

= optical thickness

a

b

c

z

airlight =
2lightIntensity

4
airlighta + airlightb e a

airlighta =
e (a z)2 +(c)2

(a z)2 + (c)2
0

 a

e zdz

airlightb =
e z 2 +(c)2

z2 + (c)2
0

 b

e zdz

 a = a
 b = b
 c = c

z2 + c 2(a z)2 + c 2

(a) (b)

Figure 2: (a) Illustration of the light attenuation factor used after the lighting computations
for standard surface shading (see fragment shader of step 2). (b) Computation of airlight
contribution (in-scattering and attenuation) along an unoccluded ray, from the view point
to a certain position p (see the airlight()-function of the fragment shader for step 4). Since
airlighta and airlightb only depend on a′, b′ and c′, they are precomputed into a 2D-texture
and looked up in run time by the fragment shader of step 4. The contribution is split into
two parts to simplify storage in the lookup table. The first part (red) is between the eye up
to the point of projection of the light onto the view ray, and the second part is the remaining
distance up to the point p. The airlight for each part is the integration for each z-value of
the attenuated light reaching z, scaled by the square of the distance to the light source and
then attenuated by the distance z to the eye (see formulas for airlighta and airlightb). Since
a and b could be negative – if the projection of the light source is behind the eye or beyond
p – the fragment shader deals with these two special cases as well. The total airlight for
the ray, is the sum of the airlight contribution for a and b, where the latter is also scaled by
the attenuation for distance a′ to the eye. The total is also multiplied by the phase function
1/4π and the optical thickness β and finally multiplied by β× lightIntensity. The lookup
table is downloadable at: http://www.cse.chalmers.se/∼billeter/pub/volumetric/.

vec3 op = objPos; // mesh’s fragment position
vec3 myz; // z-value in depth buffer (scene-fragment)
myz = texelFetch2D(camera_z, ivec2(gl_FragCoord.xy),0).rgb;
op = (myz.z >= op.z) ? myz : op; // keep z closest to eye
float ai = facing * airlight(viewPos-lightPos, op-lightPos);
gl_FragData[0].xyz = ai * light_color;

}

The function airlight() returns the amount of airlight (inscattering includ-
ing attenuation) for an unshadowed ray between the eye and the mesh fragment,
where the latter is clamped to the scene fragment if that is closer to the eye than
the mesh fragment. Figure 2 illustrates the computation of the airlight. Here
follows the fragment shader code:

3

// Step 4: fragment shader continued...
uniform sampler2D LUT; // airlight lookup table
float map_x(float t)
{

return sign(t)*((log(abs(t))+16.1181)/17.9099)/2+0.5;
}
float map_y(float t)
{

return (log(abs(t))+16.1181)/17.9099;
}
vec2 airlight_components(float tao, float tbo, float tlo)
{

// The lookup table (LUT) is downloadable from here:
// http://www.cse.chalmers.se/ billeter/pub/volumetric/airlight-
// lookup-loglog-premult-1024x512.gz
float at = texture2D(LUT, vec2(map_x(tao), map_y(tlo))).r;
float bt = texture2D(LUT, vec2(map_x(-tbo),map_y(tlo))).r;
return vec2(at,bt)

}
float airlight(vec3 viewPos, vec3 objPos)
{

vec3 v=-viewPos;
vec3 d = -viewPos + objPos;

float dao = dot(v, normalize(d));
float dbo = length(d) - dao;
float dlo = sqrt(dot(v,v) - dao*dao);

float beta = 0.04; // optical thickness
float tao = beta * dao;
float tbo = beta * dbo;
float tlo = beta * dlo;

vec2 ab = airlight_components(tao, tbo, tlo);

float ae = 1, be = 1;
if(dao > 0 && dbo < 0)

be = exp(-beta * length(d));
else if(dao > 0 && dbo > 0)

be = exp(-tao);
else if(dao < 0 && dbo > 0)

ae = be = exp(-tao);
else

ae = be = -1000000;

float abc = sign(tao) * ab.x * ae + sign(tbo) * ab.y * be;

4

// lightintensity = 1000.0f is a reasonable value. The
// division by tlo is because we premultiply the lookup
// table by tlo to get a better range of precission.
float ret = beta*beta*lightIntensity / (4*PI) * abc / tlo;
return clamp(ret, 0, 1e7);

}

Figure 3: Here is the result, showing the Sibenik-scene with real-time volumetric shadows
in homogeneous participating media. This scene uses two light sources (∼90 fps, resolu-
tion: 1280x1024, Geforce GTX480).

References
[BSA10] Markus Billeter, Erik Sintorn, and Ulf Assarson. Volumetric shadows

using polygonal light volumes. In Proceedings of High Performance
Graphics 2010, pages 39–45, June 2010.

5

	Implementation Details

