
Real-Time Multiple Scattering using Light Propagation Volumes

Markus Billeter Erik Sintorn
Chalmers University of Technology∗

Ulf Assarsson

(a) Rendering with our new method

(b) Single Scattered Volumetric Shadows

(c) Light Propagation Volumes

Figure 1: Real-time rendering produced by our new method (a) in comparison to single-scattered volumetric shadows (b) and light propaga-
tion volumes (c). Our method captures indirect illumination by light scattered in a participating medium and captures higher-order scattering
effects in the participating medium. The view in (a) is rendered at ∼ 30 FPS at a resolution of 1280 × 720 by our implementation on an
NVIDIA GTX480 GPU using OpenGL and CUDA.

Abstract

This paper introduces a new GPU-based, real-time method for ren-
dering volumetric lighting effects produced by scattering in a partic-
ipating medium. The method includes support for indirect illumi-
nation by scattered light, high-quality single-scattered volumetric
shadows, and approximate multiple scattered volumetric lighting
effects in isotropic and homogeneous media. The method builds
upon an improved propagation scheme for light propagation vol-
umes. This scheme models scattering according to the radiative
light transfer equation during propagation. The initial state of the
light propagation volumes is based on single-scattered light iden-
tified with shadow maps; this allows generation of a high quality
initial distribution of radiance. After propagation, the resulting dis-
tribution is used as a source of diffuse light during rendering and
is also ray marched for volumetric effects from multiple scattering.
Volumetric shadows from single-scattered light are rendered sepa-
rately. We compare the new method to single-scattered volumetric
shadows produced by contemporary techniques, plain light prop-
agation volumes (which this new method extends), and a simple
composition thereof.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

∗e-mail: {billeter,d00sint,uffe}@chalmers.se

Keywords: real time, scattering, light propagation volumes

1 Introduction

Scattering of light in a participating medium produces volumetric
lighting effects that add important visual cues to renderings, im-
prove depth perception and produce more realistic images. Re-
cent real-time methods, such as those presented in Section 2,
have focused on providing volumetric shadows considering single-
scattering only.

While volumetric shadows belong to the more visually impressive
effects produced by scattering, real-time methods generally fail to
include several other important effects, such as indirect surface il-
lumination by the scattered light and higher-order scattering effects
in the participating medium.

For instance, outside of the shafts of light produced by the volumet-
ric shadows algorithms, one has to rely on other methods (such as
the ad-hoc distance fog) to emulate the presence of a participating
medium. Figure 1b demonstrates this: outside of the shafts of light
the medium is completely invisible. Our proposed method, shown
in Figure 1a, handles this case. Note that no explicit ambient light
has been introduced. Surfaces not affected by direct light are il-



luminated indirectly by scattered light (and in some cases by light
reflected from nearby objects).

Sun et al. [2005] treated indirect surface illumination from single-
scattered light; however, their semi-analytic solution does not take
blocking geometry into account. Techniques like photon mapping
can simulate indirect illumination by scattered light (with blocking
geometry taken into account), but are often unsuitable for real-time
rendering of complex dynamic scenes, especially if higher-order
scattering effects are considered.

The method presented in this paper augments contemporary real-
time algorithms with support for indirect illumination by scat-
tered light from both single and multiple scattering with high-
quality single-scattered and approximate multiple-scattered volu-
metric shadows. Higher-order scattering effects are approximated
using a modified variant of the light propagation volume (LPV) al-
gorithm [Kaplanyan and Dachsbacher 2010]. Since LPVs perform
badly for high-frequency effects, such as the sharp volumetric shad-
ows from single-scattering, these are rendered separately.

The current implementation assumes that the participating medium
is isotropic and homogeneous, although this limitation could be re-
laxed in the future. As no data is kept between frames, our method
supports fully dynamic scenes.

2 Related Work

Scattering in participating media is treated by a vast number of
papers. This section is limited to recent contributions and papers
that present concepts important to the work presented in this pa-
per. Cerezo et al. [2005] present an introduction to and summary of
works older than 2005.

Scattering Model and Light Transport. In the model described
by Cerezo et al., light is attenuated by out-scattering and absorption
in accordance with Beer’s law:

I(x) = I0 e
−σt x.

The extinction coefficient, σt, is related to the optical density of a
homogeneous participating medium, and x is the distance at which
the intensity I(x) is computed, given an initial intensity I0. Beer’s
law is derived from the differential equation dI(x) = −σt I(x) dx,
i.e. at each point in space a fraction of the intensity I(x) is absorbed
or scattered away [Chandrasekhar 1960].

From the model above, the air-light integral [Nishita et al. 1987]
can be derived for a point light source. The air-light integral de-
scribes the amount of light that is scattered once on its path from a
light source to the observer. Since solving the air-light integral effi-
ciently is central to many single-scattering methods, many different
methods have been developed, such as the semi-analytic solution
with a lookup texture by Sun et al. [2005] or the closed form solu-
tions by Pegoraro et al. [2009; 2010; 2011].

The differential form of Beer’s Law is also an essential part of the
transport equations describing radiative light transfer:

ω · ∇L (x, ω) = −σtL (x, ω) + σs

∫
p
(
ω, ω′

)
L
(
x, ω′

)
dω′,

(1)

where ω represents a direction; x a position in space; p (ω, ω′) is
the phase function; and σt = σa + σs is the extinction coefficient,
computed from the absorption and scattering coefficients [Arvo
1993; Geist et al. 2004]. Radiance, described by L (x, ω), replaces
the one-dimensional intensity I(x) in Beer’s Law. In addition to

the extinction modeled by Beer’s Law, in-scattering is introduced
in the transport equation.

Volumetric Shadows. Many papers treat rendering volumetric
shadows using the air-light model. A popular approach is to ap-
proximatively solve the air-light integral using various ray march-
ing methods, such as iteration using fragment shaders [Dobashi
et al. 2002; Imagire et al. 2007]. Optimizations include sharing
data between pixels [Toth and Umenhoffer 2009; Engelhardt and
Dachsbacher 2010]. Recent work by Baran et al. [2010] accelerates
the ray marching by constructing an acceleration structure from a
shadow map. Chen et al. [2011] extend this work by adding support
for textured light sources.

Wyman and Ramsey [2008] use shadow volumes to limit the range
where ray marching is required. The ray marching is eliminated by
Billeter et al. [2010] by using fast solutions to the airlight integral
to integrate between planes in the shadow volume. Wyman [2011]
instead voxelizes the space into an epipolar-space grid with binary
visibility for fast lookups.

Most real-time methods handle isotropic and homogeneous media
only. One exception is Zhou et al. [2007], who approximate het-
erogeneous media, such as smoke clouds, with Gaussian base func-
tions. The approach is later extended to include multiple scatter-
ing [Zhou et al. 2008].

Our method renders the high-frequency volumetric shadows dom-
inated by single-scattering separately. Treating single-scattering
separately from higher order terms has previously successfully been
used, e.g. in the context of subsurface light transport [Jensen et al.
2001]. Although any method for rendering single-scattered volu-
metric shadows could be used, our implementation uses the method
by Billeter et al. [2010]. This method relies on plain shadow maps
only, which are reused in other stages of the algorithm.

Light Propagation Volumes. Kaplanyan and Dachs-
bacher [2010] present light propagation volumes (LPVs) as a
method to capture indirect illumination between surfaces. The
method operates on a lattice, where each cell c stores a radiance
Lc (ω). This radiance is propagated to neighboring sites using the
discrete ordinate method [Chandrasekhar 1960], where propagation
occurs into a fixed number of directions. Spherical Harmonics
(SHs) efficiently represent and store the radiance at each lattice
site [Evans 1998].

As our new method relies on and extends the LPV algorithm, we
summarize it here. Radiance from a cell c to its neighbor c′j , which
lies in direction j from c, is transferred by projecting the cell’s radi-
ance Lc on a transfer function Γj . This extracts the radiance ∆Lc′j
that is propagated in the direction from cell c to its neighbor c′j :

∆Lc′j = 〈Lc|Γj〉 Γj .

Evaluation of the dot product, denoted 〈·|·〉, becomes very efficient
when using spherical harmonics coefficients to represent radiances
and transfer functions.

An initial distribution of radiance is generated from reflective
shadow maps (RSMs) [Dachsbacher and Stamminger 2005]. Each
texel is injected into the LPV lattice to give a small contribution of
radiance in the direction of the surface normal at that texel. Ad-
ditionally, Kaplanyan and Dachsbacher [2010] implement fuzzy
blocking by injecting an approximate representation of scene ge-
ometry reconstructed from shadow maps into a blocker lattice. The
blocker lattice contains functions Bcc′j (ω), also represented using



(a) Surface illumination
only

(b) With ray marching (c) Our method

Figure 2: Light propagation volumes (LPVs) used for surface
illumination only (a). Ray marching the LPV gives an in-air
glow close to the illuminated surface (b), but it is unclear why
and where this glow originates. Adding single-scattering compo-
nents gives the viewer a clear hint that the surface is illuminated
from a light source residing inside the object at the center of the
screen (c). Note: all pictures use the modified propagation algo-
rithm, i.e., scattering is taken into account during propagation and
ray-marching.

SH coefficients, which describe the approximate amount of occlu-
sion between two cells. The complete propagation scheme can be
summarized as

bcc′j =
〈
Bcc′j

∣∣∣Γj〉
∆Lc′j = (1− bcc′) 〈Lc|Γj〉 Γj ,

(2)

where bcc′j expresses the amount of blocking between c and c′j .

We modify this scheme to include scattering during propagation in
Section 3. Our modified method provides an approximate solution
to the radiative light transfer equation (Equation (1)), and resembles
the method presented by Geist et al. [2004], who rely on a similar
setup but store separate coefficients for each propagation direction.

Each iteration of the propagation is also accumulated into a separate
lattice, which, after a sufficient number of propagation iterations,
forms the LPV that is used to illuminate the scene.

Kaplanyan and Dachsbacher [2010] introduce limited scattering ef-
fects by ray marching the LPV. The ray marching captures light
reflected by surfaces in mid-air. However, as light sources produce
no radiance in the LPV, it is unclear where the light originates – it
looks as if the surface itself may be emitting light. Figure 2 demon-
strates this.

3 Propagation Method

In this section, we extend the propagation method in light prop-
agation volumes to account for scattering. As we use dedicated
methods to render single-scattered volumetric shadows, we must
ensure that our modifications allow isolation of single-scattering
from higher-order scattering effects.

Radiance transported from one cell to its neighbors is affected by
two phenomena [Chandrasekhar 1960; Arvo 1993]:

1. Extinction, consisting of out-scattering and absorption, re-
duces the radiance arriving at the neighbor.

2. In-scattering increases the radiance.

Extinction between cells c and c′j is controlled by the factor λ =
d σt, calculated from the extinction factor σt and the average dis-
tance d between two neighboring cells. The transferred radiance is
simply reduced by a factor λ. In an isotropic medium, in-scattering
adds radiance proportional to the total out-scattered radiance from

c c'

7c'

c'0 c'1 c'2

c'3 4

c'5 c'6

Γ0
Γ1 Γ2

Γ3 Γ4

Γ5 Γ6
Γ7

S
ou

rc
e 

R
ad

ia
nc

e
Tr

an
sf

er
 f

un
ct

io
ns

Propagated Radiance

Extinction

In-scattering

}

<L
c

|Γ
j>

λ <Lc|Γj>

Λ
+

}

+

-

+

c c'

7c'

c'0 c'1 c'2

c'3 4

c'5 c'6

Figure 3: Illustration of propagation scheme described by Equa-
tion (3). Initially, only cell c contains radiance (top left). Using
the transfer functions Γj (bottom left), radiance is then propagated
from c to its neighbors c′j . The propagation consists of three com-
ponents: transferred radiance (top middle), extinction (center) and
in-scattering (bottom middle). Summing these contributions yield
the radiance distribution (right side). This radiance distribution is
scaled using the blocking factors bcc′j (not shown in figure). With-
out scattering, the cells c′0 through c′4 would never receive any ra-
diance.

the current cell. The in-scattered radiance Λ+
cc′j

can be calculated

as follows:

γj =
〈Γj |1〉∑
l

〈Γl|1〉

Λ+
cc′j

= γj λs 〈Lc|1〉 .

For cell c, the total energy is given by 〈Lc|1〉 ≡
∫

Ω
Lc dω, which,

multiplied with λs = d σs, measures the total out-scattered energy
from the cell (1 denotes the function f (ω) = 1). A fraction, γj ,
of the total out-scattered energy is added to the radiance transferred
to c′j ; this fraction is equal to the ratio of radiance captured by the
transfer function between cells c and c′j .

Combining all these factors yields the following:

∆Lc′j =
(

1− bcc′j
) (

(1− λ) 〈Lc|Γj〉+ Λ+
cc′j

)
Γj . (3)

The blockers bcc′j are computed as described in Equation (2). Fig-
ure 3 illustrates the propagation scheme described by Equation (3);

Although already heavily discretized, the propagation scheme pre-
sented in Equation (3) still resembles the transfer equation pre-
sented in Equation (1). The expression 〈Lc|Γj〉 extracts the radi-
ance for a subset of ω that coincide with direction j. Thus, the ex-
pressions λ 〈Lc|Γj〉 and σt L (x, ω) both describe extinction. Sim-
ilarly, Λ+

cc′j
= γjλs

∫
Ω
Lc dω and σs

∫
p (ω, ω′) L (x, ω′) dω′

both describe in-scattering, although at this point we have chosen
to limit ourselves to an isotropic medium, and therefore p (ω, ω′) is
equal to a constant.

The transfer functions Γj must be chosen carefully (see Section 4),
as to ensure that propagation conserves energy (in the absence of
blockers and with σa = 0).



(a) Reflected light (b) Single scattered light

Figure 4: Initialization of the radiance distribution. Light reflected
by illuminated surfaces is injected as directed radiance, with the
direction determined from the surface normal (a). Kaplanyan and
Dachsbacher [2010] describe this process in detail. Additionally,
single-scattered light is injected (b). Single scattered light is found
in directly illuminated regions of space, which are identified using
shadow maps. Radiance constructed from single-scattered light is
omnidirectional.

3.1 Initial Radiance Distribution

In addition to the modified propagation scheme, we need to create
an appropriate initial radiance distribution with which we seed the
LPV. A simple approach would be to inject light sources and prop-
agate light from these, but this approach has several drawbacks.
First, we need to potentially perform a large number of propaga-
tion steps for light to reach all parts of the scene. Second, with low
resolution lattices, the errors become large.

We instead inject reflected light from reflective shadow maps
(RSMs), as described by Kaplanyan and Dachsbacher [2010] (Fig-
ure 4a). In addition to this, radiance produced by single-scattering
is also injected into the LPV (Figure 4b) using information from
a standard shadow map. Since we do not wish to include single-
scattered light in the LPV, the injected radiance from single-
scattering should only be considered during the first propagation
step. When rendering the RSMs, radiance stored in the RSM is
attenuated according to Beer’s Law in order to account for the par-
ticipating medium.

4 Implementation

In the previous section, we presented the modified propagation
scheme, intentionally omitting implementation-specific details (as
far as possible). This section documents the implementation de-
tails and choices made in our proof-of-concept implementation. We
use OpenGL-shaders for most operations, with the exception of the
propagation, which is implemented using CUDA.

Our choices mostly follow those presented by Kaplanyan and
Dachsbacher [2010]. For instance, we represent and store func-
tions of the type f (ω) using spherical harmonics coefficients for
the first two bands (for a total of four coefficients). Each cell in the
LPV lattice stores three such functions, one for each RGB-color
channel.

In our implementation, we consider the nearest 26 neighbors in a

cubic lattice during propagation. The 26 transfer functions Γj and
the related coefficients γj are pre-computed offline, as they only
depend on the lattice configuration. The transfer functions are rep-
resented using spherical harmonics coefficients. As the functions
overlap slightly, i.e., 〈Γj |Γi〉 6= 0, when approximated using only
two SH bands, we rescale the functions to ensure that the total en-
ergy is conserved during propagation. In tests with no blockers or
absorption, less than 1% energy is lost in each iteration.

We note that other choices are possible, and that the scheme pre-
sented in Section 3 is still valid for many such choices. Unless
otherwise noted, the lattices have a resolution of 323. We do not
store any data between frames (with the exception of the transfer
functions Γi and the related coefficients γi which only depend on
the chosen lattice configuration) — each frame, we generate a new
initial radiance distribution, render new blockers, and perform the
propagation.

4.1 Injection of the Initial Radiance Distribution

To generate the initial radiance distribution, we inject both single-
scattered radiance computed from a plain shadow map and reflected
radiance from computed from the reflective shadow map. When
injecting single-scattered radiance, we take advantage of the fact
that we limit ourselves to isotropic media. In this case, the func-
tion fi (ω) describing the radiance of the sample to be injected is
constant on the sphere, and therefore only the first SH coefficient
is non-zero. We use this to efficiently accumulate and temporarily
store single-scattered radiance in a single RGB(A) floating point
texture.

Single-scattering only occurs in the sub-space directly illuminated
by the light source. We find this space from a standard shadow map.
In our implementation, we generate up to eight samples along each
ray connecting the light source to a shadow map texel. The samples
are randomly distributed along the ray. Samples from the reflective
shadow map are injected at the appropriate places in the lattice. The
radiance is computed by constructing a smooth SH representation
from the normal, multiplied by the color of the RSM texel. This
step requires storage of the full 4 × 3 = 12 coefficients stored in
three RGBA floating point textures.

4.2 Propagation

Each frame, prior to propagation, we pre-calculate the 26 blocking
factors bcc′j for each cell in the lattice. This reduces the number
of computations during propagation, at the cost of memory usage.
Transfer functions Γj and constants such as γj are placed in CUDA
constant memory.

Each propagation step consists of one kernel launch, where each
cell is assigned to a thread. The thread visits each of the 26 neigh-
bors in turn and accumulates its new Li+1

c =
∑
j ∆Licj , according

to Equation (3).

Scalar products 〈a|b〉 in Equation (3) are evaluated as a standard
4-vector dot product of the spherical harmonics coefficients. Simi-
larly, integrals of the form 〈a|1〉 can be efficiently evaluated using
a single multiplication of the first SH coefficient with 2

√
π.

We have to calculate a separate Li+1
c for each color channel. Each

color channel uses three buffers: two hold temporary states between
propagation steps, and the third accumulates radiance from all prop-
agation steps. After propagation, the third buffer holds the final
radiance distribution used during rendering.



4.3 Rendering

We render geometry using a standard lighting model, where the
final radiance distribution from the propagation contributes addi-
tional diffuse light. Each fragment determines in which cell of the
LPV it is located and samples the radiance in that cell using a sur-
face normal.

Ray marching captures the illumination of the participating medium
in a separate post-processing stage. The current implementation
simply casts a ray for each pixel originating at the eye position and
terminating at the depth indicated by the depth buffer (or when leav-
ing the LPV). The ray samples the LPV at a pre-determined density,
and attenuates the sampled radiance based on the distance from the
eye according to Beer’s law. After ray-marching, we render single-
scattered light additively to the resulting image.

5 Results and Evaluation

We tested our implementation on an NVIDIA GTX 480 GPU, ren-
dering at a resolution of 1280 × 720. Unless otherwise noted, the
Crytek Sponza scene is used for measurements. Like Kaplanyan
and Dachsbacher [2010], we use reflective shadow maps of reso-
lution 2562 and eight propagation iterations for a 323 LPV lattice.
The depth buffer component of the reflective shadow map is reused
for injection of single-scattered radiance and as input to the method
by Billeter et al [2010] that is used to render high-frequency single-
scattered light. We render six additional shadow maps, from which
the fuzzy blockers are computed.

Propagation performance is largely independent of the scene and
view, whereas injection performance is fairly dependent on the
view. Table 1 presents performance for both injection and propa-
gation. For comparison, we have also included timings for a 643

grid. Propagation performance is, as expected, heavily affected by
grid resolution. On the other hand, injection performance is rela-
tively constant with respect to this. Injection performs badly when
many samples are injected into the same cells, with a worst case
of around 7.5ms (this occurs when the light is in a small enclosed
volume). Injecting blockers takes the largest slice of time here;
a better, scene-dependent, choice of (fewer) blocker-shadow maps
could reduce this significantly.

Ray marching is currently the most time consuming step, taking
approximately 14 ms at full resolution. The ray marching primarily
tries to capture low frequency effects. It is therefore possible to ray
march at a lower resolution and up-sample the results without major
loss of visual quality. At half resolution, the cost for ray marching
is reduced to around 4 ms.

Forward rendering of the Sponza scene with additional diffuse light
from the LPV adds around 1.7 ms compared to using only the stan-
dard lighting model in our implementation (∼ 3 ms in total). We
render single-scattered light volumes in less than 2 ms.

Figure 5 displays a rendering generated with our method and com-
pares it to results provided by plain LPVs, plain single-scattered
volumetric shadows, and a trivial combination thereof. Our proof-
of-concept implementation renders the view shown in Figure 5a at
32 FPS using full resolution ray marching and at 47 FPS using half
resolution ray marching. The same view, using a 643 grid, renders
at 18 FPS and 25 FPS, respectively.

Figures 7 and 8 display comparisons to ground truth images, ren-
dered offline using LuxRender [LuxRender 2011]. While differ-
ences are quite visible, many of the important scattering phenom-
ena are present in the renderings from our method. LuxRender
uses a non-trivial tone-mapping operation to create the final image.

Table 1: Injection and propagation performance for 323 and 643

grids. Injection consists of three distinct steps: radiance injection
using reflective shadow maps, blocker injection, and finally injec-
tion of single-scattered radiance. For propagation, we measure four
distinct numbers: initialization where input is aggregated from tex-
tures into CUDA buffers; preparation of the bcc′j blocker factors;
the actual eight iterations of propagation; and, finally, transfer of
the results from CUDA buffers to textures. For each measurement
we list the average time and the min/max times observed for differ-
ent view and light configurations. Included in the total propagation
time, but not specifically listed below, is a constant overhead from
cudaGraphicsMapResources (∼ 0.5 ms for both 323 and 643).

Grid = 323 Grid = 643

Total - Injection 5.9 ms 5.2 ms
min: 4.5, max: 7.6 min: 3.7, max: 7.1

reflected
0.87 ms 0.84 ms

min: 0.59, max: 1.1 min: 0.63, max: 1.0

blockers
4.5 ms 3.9 ms

min: 3.4, max: 6.5 min: 2.6, max: 5.2

single-scattered
0.47 ms 0.58 ms

min: 0.39, max: 0.55 min = 0.40, max: 0.81

Total - Propagation 2.5 ms 17.0 ms
min: 2.4, max: 2.6 min: 16.8, max: 17.6

aggregate input
0.02 ms 0.16 ms

min: 0.02, max: 0.02 min: 0.15, max: 0.16

prepare blockers
0.40 ms 2.8 ms

min: 0.40, max: 0.40 min: 2.7, max: 2.8

propagate 8×
1.49 ms 12.3 ms

min: 1.49, max: 1.50 min: 12.2, max: 12.5

copy results
0.18 ms 1.24 ms

min: 0.18, max: 0.19 min: 1.36, max: 1.21

(a) Offline Reference Image (b) Our method

Figure 7: Comparison to offline rendered reference image. The
important scattering phenomena are present in our rendering. Most
obviously missing is some illumination at the ceiling, possibly due
to overblocking from the fuzzy blockers. Rendering of the reference
image took more than 10 hours on a quad core Intel Core2 Q9300.

(a) Offline Reference Image (b) Our method

Figure 8: Comparison of our method to an offline rendering of the
test scene. We have translated materials from the original scene to
the more advanced material model used by LuxRender. This has
introduced some disparities, such has missing bump-maps and veg-
etation. More indirect illumination is visible in the reference image.
We believe this to be connected to how the point source and its im-
mediate surroundings are handled.



(a) Our Method

(b) Plain Shadow Map

(c) Plain LPVs

(d) Single Scattering Only

(e) LPV with Ray Marching (f) Trivial combination of (d) and (e)

Figure 5: Comparisons between various techniques and combinations thereof. A reference image is shown in (b), which is rendered using
shadow mapping and standard lighting only. Adding single-scattered volumetric shadows (d) enables the viewer to locate the light source,
but no additional surfaces in the scene are illuminated. Using plain light propagation volumes (c) adds some indirect lighting around the
already lit space in the scene - however, again most of the scene remains hidden. Ray marching plain LPVs yields bloom-like highlights close
to illuminated surfaces (e). A trivial combination of LPVs with ray marching and single-scattering (f) gives some additional visual cues about
the scene, but again no new surfaces become visible. However, injecting single-scattered light into the LPV adds illumination to previously
hidden surfaces and makes the participating medium fully visible (a). Image (a) is rendered by our implementation at approximately 33 FPS
using full resolution ray marching. Note: brightness of the images has been increased for printing purposes.

(a) Light Bleeding through thin objects (b) Extreme Initial Radiance Distribution (c) Single Propagation Iteration

Figure 6: Demonstration of several problematic cases. Light bleeding is shown in (a), where a strong light source is directed at the far side
of a thin object. The near side, visible by the camera, is affected by light bleeding through the object. When the camera is placed on the other
side of the same object (b), the problem with extreme initial distributions of radiance becomes visible. In (c), a single propagation iteration
is taken.



In contrast, our current implementation simply renders the various
components (single-scattered light, multiple scattered light and ge-
ometry) in separate steps, and performs a trivial additive composi-
tion.

5.1 Limitations

There are of course several limitations to this method. The coarse
voxelization of the scene presents several problems, such as light
bleeding and “blockiness”. The former is mainly visible in scenes
with many thin separating features (e.g., thin walls) that cut through
voxels. Figure 6a demonstrates this effect. Light bleeding is men-
tioned by Kaplanyan and Dachsbacher [2010], who suggest that
their cascaded LPV approach reduces bleeding to some degree. We
have not implemented the cascaded method, but would expect sim-
ilar improvements.

Blockiness is caused by large gradients in the LPV lattice. The main
causes of large gradients are extreme initial radiance distributions
and insufficient propagation. Extreme initial distributions are some-
what tricky to deal with, as they break the assumption that the LPVs
are used to simulate low-frequency effects. Figure 6b demonstrates
the problem by aiming a strong light source at a small surface area
(the surface area is completely contained within a voxel).

Increasing the number of propagation iterations can also reduce
blockiness at the cost of performance, although large fuzzy block-
ing may interfere with the smoothing from extra propagation. In
Figure 6c we perform only one propagation iteration to illustrate
the problem. With the suggested eight propagation iterations we do
not observe this problem in the absence of large fuzzy blocking.

Besides the coarse spatial approximation, we also roughly approx-
imate spherical functions by using only the first two spherical har-
monics bands. Adding more bands allows more accurate function
representation, at the cost of memory consumption and bandwidth
(three bands require 9 coefficients, compared to the four used cur-
rently). Also, in our limited tests with three bands, ringing/aliasing
artifacts in the approximated functions became more of a problem
when compared to using just two bands.

We currently only treat homogeneous and isotropic participating
media. Although we believe that the propagation scheme can be
improved to include support for heterogeneous and anisotropic me-
dia, it is unclear how well the low resolution voxelization used in
this paper would work with this. Also, real-time single-scattering
methods that support heterogeneous and anisotropic media would
be required to render the high-frequency single-scattered volumet-
ric shadows.

6 Conclusion and Future Work

We presented a new method for rendering scattering effects in a par-
ticipating medium. This includes an improved propagation scheme
for light propagation volumes; this new scheme supports a partici-
pating medium. Additionally, we have suggested basing the initial
radiance distribution in the LPV on single-scattered light, which
increases quality and reduces the required number of propagation
steps. Single-scattered light is treated separately during rendering,
enabling independent rendering of high-frequency volumetric shad-
ows with specialized methods. We compare our method to plain
single-scattered volumetric shadows, the light propagation volumes
presented by Kaplanyan and Dachsbacher [2010], and a trivial com-
bination of these techniques.

In our renderings, no explicit ambient light is required. Rather,
light from light sources is scattered by the medium (and performs
a single bounce against directly illuminated geometry), which then

illuminates surfaces indirectly. Similarly, our method naturally in-
cludes fog without resorting to ad-hoc methods.

Since the lattice is relatively coarse, light leaks despite fuzzy block-
ers, as described by Kaplanyan and Dachsbacher [2010]. A better
method for modelling blocking could improve correctness and qual-
ity significantly. For instance, by adaptively increasing grid resolu-
tion, blocking and propagation quality could be improved. Addi-
tionally, one could investigate different packing structures where
cells have fewer and/or more equidistant neighbors, which would
improve performance and quality, respectively.

Acknowledgements

We would like to thank Sally McKee for her help with the language
in this paper and the reviewers for their helpful suggestions.

References

ARVO, J. 1993. Transfer equations in global illumination. In
Global Illumination, SIGGRAPH ‘93 Course Notes.

BARAN, I., CHEN, J., RAGAN-KELLEY, J., DURAND, F., AND
LEHTINEN, J. 2010. A hierarchical volumetric shadow algo-
rithm for single scattering. In ACM SIGGRAPH Asia 2010 pa-
pers, 178:1–178:10.

BILLETER, M., SINTORN, E., AND ASSARSSON, U. 2010. Real
time volumetric shadows using polygonal light volumes. In Pro-
ceedings of the Conference on High Performance Graphics, Eu-
rographics Association, HPG ’10, 39–45.

CEREZO, E., PEREZ-CAZORLA, F., PUEYO, X., SERON, F., AND
SILLION, F. 2005. A survey on participating media rendering
techniques. the Visual Computer 21, 5, 303–328.

CHANDRASEKHAR, S. 1960. Radiative transfer. Dover books on
physics and chemistry. Dover Publications.

CHEN, J., BARAN, I., DURAND, F., AND JAROSZ, W. 2011. Real-
time volumetric shadows using 1d min-max mipmaps. In Sym-
posium on Interactive 3D Graphics and Games, ACM, I3D ’11,
39–46.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proceedings of the 2005 symposium on Inter-
active 3D graphics and games, ACM, I3D ’05, 203–231.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Inter-
active rendering of atmospheric scattering effects using graph-
ics hardware. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, 99–107.

ENGELHARDT, T., AND DACHSBACHER, C. 2010. Epipolar sam-
pling for shadows and crepuscular rays in participating media
with single scattering. In I3D ’10: Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games,
ACM, 119–125.

EVANS, K. F. 1998. The Spherical Harmonics Discrete Ordinate
Method for Three-Dimensional Atmospheric Radiative Transfer.
Journal of Atmospheric Sciences 55 (Feb.), 429–446.

GEIST, R., RASCHE, K., WESTALL, J., AND SCHALKOFF, R. J.
2004. Lattice-boltzmann lighting. In Proceedings of the 15th
Eurographics Workshop on Rendering Techniques, Norköping,
Sweden, June 21-23, 2004, Eurographics Association, 355–362.



IMAGIRE, T., JOHAN, H., TAMURA, N., AND NISHITA, T. 2007.
Anti-aliased and real-time rendering of scenes with light scatter-
ing effects. Vis. Comput. 23, 9, 935–944.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HAN-
RAHAN, P. 2001. A practical model for subsurface light trans-
port. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, ACM, SIGGRAPH
’01, 511–518.

KAPLANYAN, A., AND DACHSBACHER, C. 2010. Cascaded light
propagation volumes for real-time indirect illumination. In Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on Interac-
tive 3D Graphics and Games, I3D ’10, 99–107.

LUXRENDER, 2011. Gpl physically based renderer. http://
www.luxrender.net/en_GB/index.

NISHITA, T., MIYAWAKI, Y., AND NAKAMAE, E. 1987. A shad-
ing model for atmospheric scattering considering luminous in-
tensity distribution of light sources. In Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, SIGGRAPH ’87, 303–310.

PEGORARO, V., AND PARKER, S. G. 2009. An Analytical Solu-
tion to Single Scattering in Homogeneous Participating Media.
Computer Graphics Forum 28, 2 (april), 329–335.

PEGORARO, V., SCHOTT, M., AND PARKER, S. G. 2010. A
closed-form solution to single scattering for general phase func-
tions and light distributions. Computer Graphics Forum (Pro-
ceedings of the 21st Eurographics Symposium on Rendering) 29,
4, 1365–1374.

PEGORARO, V., SCHOTT, M., AND SLUSALLEK, P. 2011. A
mathematical framework for efficient closed-form single scat-
tering. In Proceedings of Graphics Interface 2011, Canadian
Human-Computer Communications Society, GI ’11, 151–158.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S. G., AND NA-
YAR, S. K. 2005. A practical analytic single scattering model
for real time rendering. In ACM SIGGRAPH 2005 Papers, 1040–
1049.

TOTH, B., AND UMENHOFFER, T. 2009. Real-time volumetric
lighting in participating media. EUROGRAPHICS Short Papers.

WYMAN, C., AND RAMSEY, S. 2008. Interactive volumetric shad-
ows in participating media with single-scattering. IEEE Sympo-
sium on Interactive Ray Tracing, 2008. RT .

WYMAN, C. 2011. Voxelized shadow volumes. In Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graph-
ics, ACM, HPG ’11, 33–40.

ZHOU, K., HOU, Q., GONG, M., SNYDER, J., GUO, B., AND YE-
UNG SHUM, H. 2007. Fogshop: Real-time design and rendering
of inhomogeneous, single-scattering media. In Proc. of Pacific
Graphics.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Real-time smoke rendering using compensated ray
marching. In ACM SIGGRAPH 2008 papers, ACM, SIGGRAPH
’08, 36:1–36:12.

http://www.luxrender.net/en_GB/index
http://www.luxrender.net/en_GB/index

