
THESIS FOR THE DEGREE OFL ICENTIATE OF ENGINEERING

View Frustum Culling and Animated Ray Tracing:
Improvements and Methodological

Considerations

ULF ASSARSSON

Department of Computer Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2001

View Frustum Culling and Animated Ray Tracing:
Improvements and Methodological Considerations
ULF ASSARSSON

Technical Report no. 396L

Department of Computer Engineering
Chalmers University of Technology
SE–412 96 G̈oteborg, Sweden
Phone: +46 (0)31–772 1000

Contact information:
Ulf Assarsson
ABB Robotics Products AB
Drakegatan 6
SE–412 50 G̈oteborg, Sweden

Phone: +46 (0)31–773 8513
Email: uffe@ce.chalmers.se
URI: http://www.ce.chalmers.se/ ˜ uffe

Printed in Sweden
Chalmers Reproservice
Göteborg, Sweden 2001

View Frustum Culling and
Animated Ray Tracing: Improvements and
Methodological Considerations
ULF ASSARSSON
Department of Computer Engineering, Chalmers University of Technology

Thesis for the degree of Licentiate of Engineering, a Swedish degree
between M.Sc. and Ph.D.

Abstract

Today’s algorithms and computers are orders of magnitude too slow for photo-realistic
rendering of complex scenes in real time. Even though the speed of graphics render-
ing hardware grows rapidly, there are strong reasons to believe that we will never get
sufficient rendering power for naive algorithms. Algorithmic performance improving
techniques are therefore essential.

This thesis presents new performance improving techniques, as well as tools and
methodologies to be used in research aimed at performance improving algorithms. Four
new algorithmic improvements for fast culling of objects that are outside the field-of-
view (view frustum culling) are evaluated in combination with existing methods. The
execution times are measured and compared between the implementations. The re-
sults show that the new techniques are successful in lowering the amount of work that
needs to be done. Furthermore, different combinations of improvements are evaluated.
The thesis also investigates how to utilize multiprocessors to speed up view frustum
culling compared to using only one processor. A number of previously documented
load distribution schemes are implemented and the amount of resulting parallelism is
evaluated. The results show that the communication cost (communication/computation
ratio) involved in the load distribution is too high for the schemes to provide signif-
icant speedup. However, with a number of straightforward tricks that are presented,
this is circumvented, and a speedup of four is achieved on eight processors. With the
same load distribution scheme applied on collision detection, the speedup is three times
on seven processors. Finally, the thesis presents a benchmark and a methodology for
comparing algorithms for animated ray tracing. The criteria for comparing ray tracing
algorithms are identified. The potential stresses of existing ray tracing algorithms are
categorized. The result is a benchmark, implementing the stresses into three scenes,
and a methodology for comparing algorithms where image quality may be traded for
speed.

Keywords: View frustum culling, parallel tree traversal, collision detection, animated
raytracing, bench-mark, 3D computer graphics.

i

ii

List of Appended Papers

The thesis is a summary of the following papers. References to the papers will be made
using the Roman numbers associated with the papers.

I . Ulf Assarsson and Tomas M̈oller, “Optimized View Frustum Culling Algorithms
for Bounding Boxes,”Journal of Graphics Tools, 5(1), Pages 9-22, 2000. Cor-
responding tech-report:“Optimized View Frustum Culling Algorithms,”Techni-
cal Report 99-3, Department of Computer Engineering, Chalmers University of
Technology, http://www.ce.chalmers.se/staff/uffe/, March 1999.

II . Ulf Assarsson and Per Stenström,”A Case Study of Load Distribution in Parallel
View Frustum Culling and Collision Detection,”Department of Computer Engi-
neering, Chalmers University of Technology, Sweden, January 2001. Submitted
for publication.

III . Ulf Assarsson, Jonas Lext and Tomas Möller, ”BART: A Benchmark for Ani-
mated Ray Tracing,”IEEE Computer Graphics and Applications, Pages 22-30,
March/April, 2001.

iii

iv

1 Introduction

Computer graphics is the science of how to generate (render) images with computers.
This includes algorithms for creating realistic images of three dimensional scenes by
using geometrical models and shading models. One particular goal is to achieve the
image quality of a photograph or even images that are indistinguishable from the reality.
In real time computer graphics, the images should be updated fast enough to give the
impression of smooth motions, such as that used in TV. The problem is that today’s
algorithms and computers are orders of magnitude too slow to be able to generate photo-
realistic images in real time. Therefore, performance improvement techniques to make
graphics algorithms run faster are important. This thesis considers two applications:
view frustum culling and animated ray tracing.

A three dimensional scene is typically composed of several individual objects (like a
table, a sofa, chairs etc) represented by geometry. Triangles are often used as a primitive
to approximately catch the shape, since they can be rendered fast by graphics hardware.
Upon traditional rendering, the objects are usually drawn to the image one by one,
triangle by triangle, as seen from the desired view-point. Objects outside the field-of-
view do not affect the result of the image (except if they cast shadows into the image
or are reflected by visible objects - but that is usually handled separately), and thus
need not be rendered. View frustum culling (VFC) is the technique for determining
whether or not an object currently is located within the field-of-view and discarding
objects outside.

Ray tracing is an alternative method to rendering objects one by one for generating
images [12, 13]. Virtual rays of light are traced, typically backwards from the viewer’s
eye into the scene, in order to determine the color of each picture element (pixel). Ray-
tracing is typically slower than hardware accelerated triangle rendering, but is able to
create very realistic images with simple and general algorithms, and is therefore very
popular. With the improvements of computer performance and algorithms, it is now
possible to ray trace simple scenes in real time. However, there is an absence of a way
to compare the performance of algorithms for animated ray tracing, i.e., ray tracing of
scenes where objects are moving.

This thesis considers performance improvement techniques for view frustum culling
and a methodology for comparing the performance of algorithms for animated ray trac-
ing. The thesis is a summary of three papers, denoted with Roman numeralsI , II and
III . The contribution ofI is new algorithm improvements and evaluation of combina-
tions of improvements for view frustum culling. The contribution ofII is a case study
of parallel view frustum culling focused on how to utilize multiple processors to get
significant speedup. In particular, we evaluate the usefulness of previously published
load distribution strategies. The contribution ofIII is a methodology for evaluating ray
tracing algorithms for animated scenes. It is also a set of rules on how to measure and
compare rendering performance and image quality.

The thesis commences with explanations of the problems and contributions for each

1

paper. The papers on view frustum culling (I andII) are treated in Section 2. Comparing
performance of algorithms for animated ray tracing (III) is summarized in Section 3.

2 View Frustum Culling

The view frustum is the pyramid-shaped volume in front of the viewer within the field-
of-view, and with the eye at the top. The four planes defining the sides of the pyramid
virtually passes through the window borders. Usually a near plane and far plane is
added [4], cutting the top off the pyramid and limiting the depth. In this case the view
frustum is totally defined by 6 planes (see Figure 1).

Figure 1: The view frustum is the area in grey in front of the eye or the camera. It is
defined by the window extensions, the field-of-view, and the near- and far planes.

View frustum culling is a technique for determining which objects that are outside
the view frustum. Objects outside the view frustum are not visible (possibly with the
exception of reflections) and thus are unnecessary to render.

For each object a bounding volume is computed that is faster to test against the
frustum than the object itself. The bounding volume (BV) should enclose the object
completely, and at the same time be as tight-fitting as possible. Bounding spheres and
bounding boxes are two popular entities. A test is devised such that the intersection
between the BV and the six planes can be determined. The BV is tested geometrically
against the six planes of the frustum. If the BV is inside all six planes, the object is
totally inside the view frustum and should be rendererd. If the BV is outside at least
one of the planes, the object is totally outside the frustum and does not need to be
rendered. Otherwise, the object is sent for rendering since it may be visible.

View frustum culling is often performed hierarchically, to avoid testing each indi-
vidual object against the view frustum. Sometimes the scene’s natural hierarchy is used,
and sometimes a separate BV hierarchy is created. A BV hierarchy may be created in
the following way. Objects close to each other are clustered into groups and for each re-
sulting group, a bounding volume is computed, enclosing all its members BVs. Nearby
groups are then clustered into larger groups, with their BVs computed equally, and so
on until there is only one BV enclosing the whole scene. The hierarchy is represented
as a tree structure. A natural structure could for instance be a root node representing a

2

room with one of the child nodes representing a table in the room, and with its children
representing the four legs and the board.

When rendering the scene, the BV-tree is traversed top-down, and for each node
the bounding volume is tested for intersection with the view frustum. If the bounding
volume is totally inside the frustum, the contents of the subgraph is marked for render-
ing. If it is totally outside, the subgraph is pruned. Otherwise, the traversal continues
recursively.

A framerate of 70-85 frames per second (fps) is sufficient for smooth motions [8,
10]. This gives 12-13 milliseconds of computation time for each frame. If there are
many objects that need to be tested, for instance in a large scene, the VFC may require
a major part of this time. It is important to free CPU time for all other necessary tasks,
such as animation, application logic, artificial intelligence etc. Thus it is important to
improve the VFC algorithm for speed.

2.1 Optimized View Frustum Culling Algorithms

In some disciplines,optimizationis often loosely meant as an improvement, in terms of
execution time, of some algorithms. In this section we use optimization in that sense.

PaperI presents three new optimizations –the plane-coherency test, the octant test,
and the Translation and Rotation coherency test (TR test)– and analyzes their effi-
ciency. All presented techniques here involve adding computations in one step, assum-
ing this can save computations in another step. The circumstances under which the
optimizations are efficient sometimes overlap, and thusI also evaluates how to best
combine the new and existing optimizations in order to maximize performance. In this
paper only the most promising combinations are presented. In a corresponding techni-
cal report [2] more detailed results are reported.

The plane coherency test utilizes temporal coherence. An object that was outside a
plane during the previous frame is likely still outside that plane during the next frame,
and thus by testing against that plane first, testing of the other planes can often be
avoided. The TR test uses previous results and considers the change in viewer position
to determine which objects that must remain inside or outside the frustum.

The octant test exploits the fact that it is sufficient to test the BV against the three
closest planes of a symmetric frustum.

The VFC algorithm used as a base for the added optimizations is derived from
the idea that the problem can be transformed into testing one point against a swept
volume [3]. For bounding boxes this results in an algorithm presented by Green [6].
This algorithm, in itself and together with different combinations of optimizations, is
compared against another popular method where the BV is transformed into frustum
space (perspective coordinate system) and surrounded by a new axis-aligned bounding
box. In this system the frustum is also an axis-aligned bounding box and the resulting
two bounding boxes are compared against each other.

The tests were performed on a personal computer using three industrial models as

3

environments. Since the speedup of the algorithms are highly dependent of the 3D-
environment, position of the viewer, and how the viewer is moved, four different paths
for the viewer for each scene were used.

The results show that the plane coherency test should always be used, and preferably
in combination with either the octant test or the TR test or both. The TR coherency
optimization was especially fruitful when the navigation involves either pure rotation or
pure translation and gave up to a ten-fold speedup. In this case the plane coherency test
plus the TR test combination gave the best performance. For other types of navigation
the plane coherency test plus the octant test combination was preferable.

2.2 Parallel View Frustum Culling and Collision Detection

Hierarchical VFC of complex scenes with large BV-trees requires high computing per-
formance if a high frame rate should be achieved. Using multiprocessor systems is one
way to increase the available computing power. The work load must be balanced be-
tween the processors in order to utilize the system efficiently. Load distribution cannot
be done statically (once for all frames) since the actual work, i.e., the traversed and
tested BVs, varies between different frames as the viewer or objects move.

The difficulty in a load distribution scheme for view frustum culling is that the com-
putation cost at each node is very small (at the size of hundreds of cycles). In our target
multiprocessor systems, the approximate time for the inter-processor communication
cost is 100 clock cycles. This means that the penalty of communication is very high and
that it is important to avoid all unnecessary communication, such as communication for
synchronization of the sending and receiving processors. The cost of distributing work
to another (typically less loaded) processor must be lower than the cost of performing
the work itself, in order to benefit from dynamic load balancing.

A comparative evaluation of several previously documented load distribution strate-
gies is presented inII in order to determine if they are suitable for parallel hierar-
chical VFC algorithms. There are lots of previous research on parallel tree traver-
sals [9, 14, 15], but none has explicitly considered VFC. The kind of work done at each
node strongly affects the characteristics of the parallel tree traversal, like cache-miss
behavior and load-balance. Thus it is important to make an investigation particularly
for view frustum culling.

The same three industrial models used inI were used as test scenes – all highly
unbalanced. Balanced scenes would be easier to traverse in parallel, but such scenes
cannot be expected by a real visual application. The camera was moved along one
specific path – sampled from user navigation – for each model, involving both rotation
and translation between many frames. The VFC algorithm utilizes the plane-coherency
test and the octant test as this was one of the best combinations of optimizations from
I .

The algorithms were implemented on a Sun Enterprise 4000 shared-memory mul-
tiprocessor system. This machine is equipped with 14 UltraSPARC-II CPUs running

4

at 248 MHz. The execution times of the parallel experiments were measured and com-
pared with the execution times of the algorithms when run on only one processor.

The evaluated previously documented load distribution schemes were found inca-
pable of providing meaningful speedup when using multiple processors compared to
using one processor. PaperII presents a modified scheme for which no synchronization
is required when load balancing. On many multiprocessor systems all communication
is performed at the so-called cache-block level, i.e., a whole block of data (typically
32 bytes) is sent in just a little bit more time it would take to send just one byte. The
scheme utilizes this to lower the average distribution cost of a job to further reduce the
communication cost. With the proposed scheme, up to about a four-fold speedup on
eight processors was achieved.

As a final contribution, the success of the suggested load distribution scheme ap-
plied on collision detection is tested. Collision detection is a problem instance similar
to VFC, where the BV-trees of two objects are tested mutually for intersection. A
speedup of three times was achieved for seven processors.

PaperII shows that it is possible to get significant speedups with parallel VFC and
collision detection in real applications, if a suitable load distribution strategy is used.

3 BART: A Benchmark for Animated Ray Tracing

Ray tracing is an alternative to rendering objects one by one for creating images. Typi-
cally it is slower but able to generate images of higher quality. Relatively simple algo-
rithms are capable of rendering phenomena such as shadows and reflections.

For each picture element (pixel) of an image, a virtual ray of light is traced into the
scene in order to find the closest hit object (the visible object at that spot). Acceleration
data structures, built from the scene data, are commonly used to speed up this process.
It could for instance be a BV hierarchy, where only the members of BVs penetrated by
the ray, are searched.

For static scenes, the acceleration structures are usually built in a preprocessing
step. For an animated scene, the data structures have to be rebuilt or updated between
successive frames.

In the last few years real-time ray tracing has become a reality due to faster pro-
cessors and improved algorithms, but still only fairly simple scenes can be rendered.
When striving for ray tracing algorithms with higher performance and to help pushing
research, it is essential to be able to compare the performance of different algorithms.

The goal of paperIII is to identify the important criteria when comparing algo-
rithms for animated ray tracing and implement a benchmark based on the results. The
benchmark must consider features that stresses the algorithms. It also needs to specify
a methodology for comparing the performance of the rendering. Since it is common to
trade image quality for speed by using approximations it is also necessary to be able to
measure and compare the differences in image quality due to approximation errors.

5

A number of benchmarks and test scenes for image rendering exist [1, 5, 7, 11], but
none of them is appropriate for comparing algorithms of animated ray tracing.

The circumstances that tend to stress existing ray tracing algorithms, i.e., lowering
the speed, were identified and categorized into eight groups. All eight types of stresses
were implemented into the benchmark in three test scenes –kitchen, robots, andmu-
seum.

The benchmark can be used in two modes:predeterminedandinteractivemode. In
predetermined mode it is allowed to utilize information about the future, i.e., how the
objects and camera are going to move in the following frames. In interactive mode this
is prohibited to simulate a non-predictable future, for example if a viewer is navigating
in real time and objects are moved unpredictably by for instance artificial intelligence
algorithms.

The following types of potential stresses were identified: 1)Hierarchical animation
using translation, rotation and scaling. An animated object may have a tree structure
(for instance a BV-tree), where nodes within the tree are animated and requires the ac-
celeration structure to be updated between frames. This costs computation time. 2)
Unorganized animation of objects, like waves on a surface or a squeezed ball, also
requires the data structure to be updated. 3)”Teapot in the stadium” problem. The
distribution of objects or details is highly unbalanced, which severely lowers the effi-
ciency of certain acceleration structures. 4)Low frame-to-frame coherency. Some ray
tracing algorithms utilizes similarities between adjacent frames. 5)Large working sets.
Reading data from the main memory is typically slow. If scenes are used that do not
fit into the memory caches of the processor(s), this may induce overhead. 6)Bounding
volume overlap. It is common to test a ray for intersection of the bounding volume of
several objects/entities before testing the ray against each internal element. If a ray pen-
etrates several overlapping BVs, all the members of those BVs have to be tested, which
increases the amount of work that has to be done. 7)Changing object distribution.
The acceleration structure that is most efficient often varies with the object distribution.
When the object distribution changes, the chosen acceleration structure may become
inappropriate. Computing a new acceleration structure costs CPU time. 8)The number
of light sourcesoften affects the rendering time of ray tracing algorithms. The more
light sources, the more work needs to be done to consider shadows correctly.

It is desirable to be able to compare different algorithms implemented by different
researchers on different computers. To do this objectively, paperIII suggests that a
number of parameters and measures should be presented, of which some are: image
resolution, number of frames the animation is divided into, processor speed, available
memory, total rendering time, average frame time, worst frame time, preprocessing
time. Moreover, a graph showing the rendering time as a function of the frame number
should be presented.

Hopefully, the benchmark will be used extensively in future research, and evolve
over time.

The authors of paperIII have equally contributed to the work described here.

6

Acknowledgements

My first thanks go to my supervisor Professor Per Stenström for guiding me and teach-
ing me how to be a good Ph.D student and perform quality research.

Tomas M̈oller deserves a whole page of thanks. He was the one that opened the
door for me into the world of computer graphics research. He made me realize it is
possible to do Ph.D studies in this interesting field. He found the perfect professor –
Per Stenstr̈om – and also gave me an excellent start with his idea of writing a VFC-
paper together. I look forward to many further exiting and mind thrilling projects and
papers together in the future.

I want to thank Jonas Lext for inspiring discussions, exchange of ideas and for being
a great fellow traveller to conferences. A special thanks to Jonas and Henrik Holmdahl
for suggesting interesting courses and forcing me to read them. Thank you Björn An-
dersson for interesting discussions of computer science and graphics algorithms, and
thanks to all the nice people at the institution.

Several co-workers at ABB deserve mentioning. Acknowledgement to Nabbe, Påfvel,
Johannes, Robert, Anders, Daniel, Carina for great gaming of 3D intensive creations,
to Gregers for spreading information, and to the Henriks.

Finally I also want to thank ABB Robotics Product AB for the financial support.

7

References

[1] 3DMark,http://www.madonion.com/entry.shtml

[2] Ulf Assarsson and Tomas M̈oller, “Optimized View Frustum
Culling Algorithms,” Technical Report 99-3, Department of
Computer Engineering, Chalmers University of Technology,
http://www.ce.chalmers.se/staff/uffe/, March 1999.

[3] M. de berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,“Compu-
tational Geometry – Algorithms and Applications,”Springer-Verlag,
Berlin, 1997.

[4] James D. Foley, Andries Van Dam, Steven K. Feiner, John F.
Hughes, ”Computer Graphics Principles and Practice,”Addison-
Wesley, ISBN 0-201-84840-6, pages 229-235.

[5] The Graphics Performance Characterization Group,
http://www.specbench.org/gpc/ .

[6] Daniel Green, Don Hatch, “Fast Polygon-Cube Intersection Testing”,
Graphics Gems V, Heckbert, pp. 375–379, 1995.

[7] Haines, Eric, “A Proposal for Standard Graphics Environments,”IEEE
Computer Graphics and Applications, vol. 7, no. 11, pages 3–5,
November 1987.

[8] James L. Helman, ”Architecture and Performance of Entertainment
Systems, Appendix A,”ACM SIGGRAPH 94 Course Notes – Design-
ing Real-Time Graphics for Entertainment, vol 23, pages 1.19 – 1.32,
July, 1994

[9] V. Nageshwara Rao and Vipin Kumar, ”Parallel Depth-First Search
on Multiprocessors — Part I: Implementation; and Part II—analysis”,
International Journal of Parallel Programming, vol. 16, no. 6, 1987.

[10] Tomas M̈oller and Eric Haines,”Real-Time Rendering,”A.K. Peters
Ltd., ISBN 1-56881-101-2, p 1.

[11] Peter Shirley,http://www.radsite.lbl.gov/mgf/scenes.html.

[12] Peter Shirley, ”Realistic Ray Tracing,” A K Peters Ltd, ISBN:
1568811101, June 2000.

[13] Turner Whitted, ”An Improved Illumination Model for Shaded Dis-
play,” Communications of the ACM, 23 (6), pp. 343-349, June 1980.

8

[14] C. Xu, S. Tschoke, and B. Monien, ”Performance Evaluation of Load
Distribution Strategies in Parallel Branch and bound Computations”,
Proc. of the 7th IEEE Symposium of Parallel and Distributed Process-
ing (SPDP95), Oct. 1995.

[15] Myung K. Yang, Chita R. Das, ”Evaluation of a Parallel Branch-and-
Bound Algorithm on a Class of Multiprocessors”,IEEE Transactions
on Parallel and Distributed Systems, vol. 5, no. 1, January, 1994.

9

Paper I

Optimized View Frustum Culling Algorithms for
Bounding Boxes

Reprinted from

Journal of Graphics Tools, 5(1), Pages 9-22, 2000.

Optimized View Frustum Culling
Algorithms for Bounding Boxes

Ulf Assarsson and Tomas M¨oller

Department of Computer Engineering

Chalmers University of Technology, Sweden

Accepted for publication injournals of graphics tools

March 1999, revised February 2000

Abstract

This paper presents optimizations for faster view frustum culling (VFC) for axis aligned bounding box
(AABB) and oriented bounding box (OBB) hierarchies. We exploit frame-to-frame coherency by caching and
by comparing against previous distances and rotation angles. By using an octant test, we potentially halve the
number of plane tests needed, and we also evaluate masking, which is a well-known technique. The optimizations
can be used for arbitrary bounding volumes, but we only present results for AABBs and OBBs. In particular, we
provide solutions which is2 � 11 times faster than other VFC algorithms for AABBs and OBBs, depending on
the circumstances.

1 Introduction

Bounding volume hierarchies are commonly used to speed up the rendering of a scene by using a view frustum
culling (VFC) algorithm on the hierarchy [Clark76]. Each node in the hierarchy has a bounding volume (BV)
that encloses a part of the scene. The hierarchy is traversed from the root, and if a BV is found to be outside
the frustum during the traversal, then the contents of that BV need not be processed further, and performance is
gained. Reducing the time for view frustum culling will increase performance of a single processor system and
free processor time to other tasks. With view frustum culling taking 6 ms before speedup and 1.2 ms after speedup1

and with 33 frames per second (30 ms/frame, no synchronization to monitor frequency), the view frustum culling
goes from taking20% of total execution time to only4%, thus saving16%.

We present several optimizations for culling axis-aligned bounding boxes (AABBs) and oriented bounding
boxes (OBBs) against a frustum used for perspective viewing. Frame-to-frame coherency is exploited by caching
and by comparing against previous distances and rotation angles. An octant test is introduced, which potentially
halves the number of plane tests needed, and we also evaluate masking [Bishop98]. All these optimizations can
be used for arbitrary bounding volumes which we show in our technical report [Assarsson99], where we also
investigate bounding spheres, with speedups2 from 1:2 up to1:4 times. That report also provides more details on
the results for AABBs.

2 Related Work

When reviewing existing view frustum culling algorithms [Bishop98, DirectModel, Hoff96a, Hoff96b, Hoff97,
Green95, Greene94], we found that there are two common ways to approach the view frustum culling problem.

1These are our figures for path 1, model 3 with the plane-coherency and octant test optimization (see section 4).
2In this paper we define speedup astime1/time2, which means that a speedup of 1.0 is no speedup at all.

1

One approach is to perspective transform the bounding volume of a node to be tested and the view frustum, to the
perspective coordinate system and perform the testing there. This is popular when the bounding volumes are axis
aligned bounding boxes, since this results in testing two AABBs (if the perspective transformed AABB is bounded
by a minimal AABB, see figure 1) against each other, which can be done with only six comparisons after the
transformation has been done. The disadvantage is that we must transform the bounding volume to the perspective
coordinate system. This means that all eight vertices of the AABB must be multiplied with the view- and projection
(perspective) matrix, which includes at least 72 multiplications. The view frustum culler in DirectModel is based
on this method [DirectModel].

The other approach is to test the bounding volume against the six planes defining the view frustum [Hoff96a,
Hoff96b, Hoff97, Green95, Greene94]. This is also the approach that we choose. This has the advantage that
trivial rejection or acceptance tests can be made [Greene94, Green95]. Should these fast tests fail, traditionally the
more expensive intersection tests necessary to find exact intersection between a box and a frustum are computed.
Instead of that, we recursively continue testing the planes of the sub-boxes, in order to get higher performance.

Figure 1: (a) View frustum and an AABB. (b) The same view frustum and AABB perspective transformed. (c)
The perspective transformed AABB is bounded by a minimal AABB in the perspective coordinate system, which
is tested for intersection with the view frustum.

VFCs can be based on BSP-trees to gain speed [Chin95] with the drawback that BSP-trees only represent static
environments.

Slater et al. [Slater97] present a VFC based on a probabilistic caching scheme using ellipsoids, which according
to their results provides comparable speedups to our methods3. It may, however, erroneously cull objects that
should be visible.

3 Frustum-AABB/OBB Intersection

Our algorithms for view frustum culling of hierarchies with AABBs or OBBs are all based on a basic intersection
test. Four different optimizations can be added on top of this, so we have partitioned our main algorithm into five
steps:

� the basic intersection test, sped up to test just two box corners (section 3.1)

� the plane-coherency test, taking advantage of frame-to-frame coherency by using previous test results (sec-
tion 3.2)

� the octant test, allowing half of the plane/bounding-volume tests to be avoided while using symmetric frus-
tums (section 3.3)

� masking, in which bounding-box/plane test results are passed on and reused by children bounding-boxes
(section 3.4)

3The most fair way is probably to compare their reported speedup of about1:7 with the speedups provided by the combinations of our
optimizations compared to our basic intersection test. See section 4 or our technical report for more details [Assarsson99].

2

� TR4 coherency test, which allows reuse of previous frame test results when the view changes in limited ways
(section 3.5)

The optimizations can be utilized in a VFC independently of each other. That is, we can choose and combine the
steps anyway we like. A view frustum (VF) is defined by six planes:

�i : ni � x+ di = 0 (1)

i = 0 : : : 5, whereni is the normal anddi is the offset of plane�i, andx is an arbitrary point on the plane. We say
that a pointx is outside a plane�i if ni � x + di > 0. If the point is inside all planes then the point is inside the
view frustum.

3.1 Basic Intersection Test

An exact intersection test between a box and a frustum may be expensive to compute. Therefore we use the
following strategy: for each frustum plane, test if the box is outside, inside or intersecting the plane. If outside,
terminate and reportoutside . If the box is inside all planes, returninside , else returnintersecting . Note
that this is an approximation; sometimes when we reportintersecting the box may be outside (see figure 2).
For intersecting boxes we continue the hierarchy traversal, so the end result is still correct. If a node is a leaf

BV

2a2b

2c, 2d

Creating the swept volume Example of false

intersection reading

Figure 2: If the box center is within the grayed sections, our approximation reportsintersection even though
the box is completely outside the view frustum (VF). This is explained by the following; an intersection test can
be conducted by testing the box center against the volume obtained by sweeping the box along the planes of the
VF, keeping the box center on the planes. Our approximation is the same as testing the box center against the
resulting inner and outer planes parallel with, and at different offsets from the VF planes. In three dimensions the
corresponding gray sections are located at the corners and the edges. If the center is outside the planes, the box
is outside. If the center is between the planes, we have intersection, and if it is inside, the box is inside. See our
technical report for details and a generalization to any bounding volumes [Assarsson99].

then we can choose to do more accurate tests. However, since we found no observable penalty in the rendering
performance, we skipped those tests.

We first present how to determine if a box intersect a plane. A naive method is to test all eight points against
the plane. However, only two points need to be tested [Haines94, Greene94, Green95], namely those that forms the
diagonal that is most closely aligned with the plane’s normal, and that passes through the box center. These points
are called then- and p-vertices, where the p-vertex has a greater signed distance from the plane than the n-vertex.

First, the n-vertex is inserted in the plane equation. If the n-vertex is outside then the box is outside (both the
plane and the frustum) and the test terminates. Then the p-vertex is tested, and if the p-vertex is inside then the the
box is inside the plane. Otherwise the box intersects the plane. This is illustrated in figure 3. Finding the twon- and
p-verticescan be done in 9 multiplications and 3 comparisons by projecting the normal of the view frustum plane

4TR stands for Translation and Rotation

3

plane

Figure 3: The negative far point (n-vertex) and positive far point (p-vertex) of a bounding box corresponding to
plane� and its normal.

bool intersect = false

for i in [all view frustum planes �i] do
vn negative far point (n-vertex) in world

coordinates of box relative to �i
a vn � ni + di
if a > 0 then return Outside
vp positive far point (p-vertex) in world

coordinates of box relative to �i
b vp � ni + di
if b > 0 then intersect = true

end loop
if intersect then return Intersecting
else return Inside

Figure 4: Pseudo code of general algorithm for culling AABBs or OBBs

on to the box’s axes and test the signs of the x-, y- and z-components of the projection. Since all AABBs are given
in the world coordinate system (aligned to the world x-, y- and z-axes) and we transform all view frustum plane
equations (i.e. plane normals and offsets) to world coordinates at the beginning of each frame, we have the AABBs
and the normal of the planes in the same coordinate system, which makes a projection unnecessary. We can use
the signs of the x-, y- and z-components of the plane normal immediately, leaving us with only three comparisons.
If we create a bitfield of the signs, letting for instance a negative sign be represented by a ’0’ and a positive sign
be represented by a ’1’, we can use this bitfield to get the p-vertex from a Look Up Table (LUT). In this way we
avoid the conditional branches caused by if-statements, which can lead to expensive processor pipeline prediction
misses. This idea is used by Donovan et al. to accelerate clipping [Donovan94]. If we order the LUT properly, we
can invert the bitfield to get the n-vertex.

If we are going to test multiple AABBs against the view frustum (which generally is the case) and since all
AABBs have the same orientation, it is a good idea to precompute the bitfields (indices to the n- and p-vertices)
for each view frustum plane once each frame [Haines94].

A listing of the algorithm for testing a box against a frustum is given in figure 4.

3.2 The Plane-Coherency Test

The goal of this test is to exploit temporal coherence. Assume that a BV of a node was outside one of the view
frustum planes last time it was tested for intersection (previous frame). For small movements of the view frustum
there is a high probability that the node is outside the same plane this time, which means that we should start testing

4

against that plane hoping for fast rejection of the BV. If the BV was outside a plane last frame, then an index to
this plane is cached in the BV structure. For each intersection test, we start testing against that plane and test the
others afterwards if necessary.

We test the planes in the order:left, right, near, far, up, anddown. No experiments in finding an “optimal”
order has been conducted.

3.3 The Octant Test

Assume that we split the view frustum in half along each axes, resulting in eight parts, like the first subdivision of
an octree. We call each part anoctantof the view frustum.

Figure 5: (a) 2D-view of a symmetric view frustum divided in half along each axis.�a and�b are the outer planes
of octantO. �c and�d are the inner planes. (b) View frustum divided in octants. (c) For a symmetrical VF it
is sufficent to test for intersection against the outer planes of the octant in which the center (cS) of the bounding
sphere (of the box) lies.

If we have a symmetrical view frustum, which is the most common case (a CAVE [CrusNeira93] is one excep-
tion), and a bounding sphere, it is sufficient to test for culling against the outer three planes of the octant in which
the center of the bounding sphere lies (see figure 5). This means that if the bounding sphere is inside the three
nearest (outer) planes, it must also be inside all planes of the view frustum. If it is outside any of the planes, we
know it is totally outside the view frustum, and otherwise it is intersecting.

This can be extended to general bounding volumes; see our report [Assarsson99]. To be able to use the octant
test for boxes, the distance from the box center to a box corner must be smaller than the smallest distance from
the view frustum center5 to the frustum planes (see figure 6). This is true, since an arbitrary BV cannot intersect
the planes of another octant without intersecting the planes of the selected octant, if the above holds. The distance
between the center of the view frustum and its nearest plane can be precomputed once for each frame.

The cost of locating the octant was found to be approximately equal to one plane/box test.

3.4 Masking

Assume that a node’s BV is completely inside one of the planes of the view frustum. Then, as pointed out by
Bishop et al. [Bishop98], we know that the BVs of the node’s children also lie completely inside that plane, and
that plane can be eliminated (masked off) from further testing in the subtree of the node.

When traversing the scene graph, a mask (implemented as a bitfield) is sent from the parent to the children.
This mask is used to store a bit for each frustum plane, which indicates whether the parent is inside that plane.
Before each plane test, we check if that plane is masked off or not. In this way, plane tests can be avoided if the
parent of a node is inside one or more planes.

If we can eliminate the low-level polygon clipping against the window border corresponding to a view frustum
plane, for all nodes that are totally inside that plane, then maybe masking could pay off a lot [Bishop98]. Low

5The center of the frustum is the sum of the eight frustum corners divided by eight.

5

Figure 6: Ifd2 <= d1 we can use the octant test for bounding boxes as well.

level clipping of polygons is usually done against each view frustum plane for each polygon sent for rendering. For
nodes that are totally inside the view frustum, all clipping could be disabled and then potentially provide speedups.

3.5 The TR Coherency Test

TR coherency stands for translation and rotation coherency. In this optimization step, we exploit the fact that when
navigating in a three dimensional world, you sometimes only rotate around one axis or translate, or you might even
be standing still. For objects that have not moved since the last frame the following applies:

1. If, for instance, a BV was outside the left plane of the view frustum last frame, and the view frustum only has
rotated to the right since then, we know that the BV still is outside the left plane (assuming that the rotation is
smaller than180�� angle between left and right plane). In general this means that if only view frustum
rotations have been done around either the x-axis, y-axis or the z-axis of the view frustum since last culling
invocation, we can returnoutside for BVs if they were outside the plane last frame and if the distance to
the plane must have increased (see figure 7a).

2. If the view frustum only has done a pure translation since last frame, the distances from all BVs to the same
view frustum plane have increased or decreased by the same fixed amount�d (see figure 7b). This�d is
possible to precompute once for all intersection tests against the corresponding plane. If only a translation
(in any direction) has been done since last view frustum culling invocation, we precompute�di for each
view frustum plane�i by projecting the translation on the normal of the planes. For each BV and view
frustum plane to be tested, we compare the corresponding�di with the distance between the BV and the
plane last frame.

For (1) we precompute the plane that can use this optimization (if any), and for each BV which was outside this
plane last frame, we returnoutside . Let us assume the view frustum axes are arranged according to figure 7c. If
the view frustum, since last frame, has done a pure rotation around the y-axis in the positive direction, we can do
quick rejection against the right plane. If instead the rotation was negative, we can do quick rejection against the

6

Figure 7: (a) Rotations of the view frustum. If the BV of a non-moving object was outside the view frustum at
frame 1, we know that, because of the direction of rotation, it is also outside in frame 2. (b) Translations of the
view frustum. (c) A view frustum and its frustum coordinate axes.

left plane. We have to keep track of the accumulated rotations to be able to invalidate any quick rejections when
the total rotation around the axis exceeds180o � angle between left and right plane. The x-axis and the up-
and down planes are treated similarly. If rotations only occured around the z-axis, objects outside the near- and far
plane will remain outside.

For (2) we have to add members to the BV structure holding the distances from the BV to the different planes
of the view frustum, and we must also add a member indicating whether or not the BV was explicitly tested last
time (otherwise the interesting distances is not calculated, and we must perform our test with another method).

4 Results

Each optimization and combinations of optimizations have been thoroughly tested to determine whether its possi-
bly introduced overhead has paid off in shorter average execution times. The presented figures are speedups of the
VFC-algorithms - not of total rendering time - and are compared against a view frustum culler testing AABBs in
the perspective coordinate system (see section 2).

The implementation was done on a double PentiumII 200 MHz with 128 Mb RAM and were compared with
the VFC in DirectModel on the same machine. All algorithms were tested on three virtual environments:

� Model 1: a car factory shop floor (184,000 polygons, 3800 graph nodes)

� Model 2: a factory cell (167,000 polygons, 188 graph nodes)

� Model 3: a factory shop floor (52,000 polygons, 1274 graph nodes)

We used four paths in our tests. For each path, about a million box/intersection tests were computed.

7

path 1 1 1 2 2 2 3 3 3 4 4 4
model 1 2 3 1 2 3 1 2 3 1 2 3

only Basic
intersection test 2.8 1.9 3.9 2.2 2.0 3.1 3.9 2.5 4.3 3.1 2.2 3.7
Plane-coherency
+ octant test 4.0 2.4 5.1 2.8 2.6 3.9 4.8 3.5 5.6 3.3 3.0 5.1
Plane-coherency
+ TR coherency 3.8 2.0 4.0 2.5 2.2 3.0 5.0 2.8 4.4 8.3 3.1 11.0
Plane-coherency
+ octant test
+ TR coherency 3.7 2.2 4.5 2.6 2.4 3.6 5.1 3.0 4.8 8.0 3.3 9.0

Table 1: Speedup for the most promising combinations of optimizations, except for the ’only Basic intersection
test’-row which is there for comparison issues. The figures are speedup compared to a view frustum culler testing
AABBs in the perspective coordinate system (see section 2). The speedup figure of the best algorithm in each test
case is marked with bold text. Each figure corresponds to a path, model and an algorithm.

� Path 1: sampled from a user navigating through our scenes

� Path 2: constructed with both a translation and a rotation each frame

� Path 3: pure rotations only

� Path 4: pure translations only

Table 1 presents the results of the most promising optimizations. For statistical data about other combinations,
see our report [Assarsson99].

The speedup numbers were obtained using AABBs. For OBBs we did not create any separate OBB-tree.
Instead we treated the AABBs in the AABB-hierarchy as OBBs, i.e added the necessary 9 multiplications and
6 additions in each intersection test and continued comparing against the AABB-algorithm of DirectModel. The
penalty for OBBs showed to be about 10% more computation time for all test cases. Since OBBs provide better
fits, they might give better overall performance.

If we for AABBs precompute the indices to then- andp-vertices once each frame, instead of calculating them
for each box (see section 3.1), an additional speedup of5 � 10% will be achieved. This optimization cannot be
used for OBBs.

The plane-coherency + octant test is best in all test cases except for pure translations, where the plane-
coherency + TR coherency test is superior. For symmetrical frustums (which is most common except for CAVEs
[CrusNeira93]) we recommend the plane-coherency + octant test, and if we expect many pure translations also the
TR coherency test to get the best of both worlds.

For asymmetric frustums, we recommend that the plane-coherency test and the TR coherency test are combined
and used6.

Masking was not found to be competitive with the algorithms above.
Our recommended combinations of optimizations boost the basic intersection test up to3:0 times with an

average of1:4 times.
For individual intersection tests between a BV and the view frustum, the AABB implementation of Direct-

Model was sometimes faster than our implementations. This occurred in average for� 0:2% of all intersection
tests, which means that for� 99:8% of all cases, our algorithms were faster. This figure is based on timing
the intersection tests with the CPU clock, which means that anomalies due to cache misses and page faults are
included.

6For asymmetric frustums the octant test cannot be used.

8

5 Discussion

All our optimizations, including the basic intersection test, can be used on any kind of bounding volume, but we
have only gathered statistics for AABBs, OBBs and bounding spheres. Since the sphere/plane test is so short, there
was little gain in using our optimizations. For details, see our report [Assarsson99].

We have not made use of the fact that in general, the near clip plane and far clip plane are parallel, in any other
cases than for theoctant testand theTR coherency test. We could add this to ourbasic intersection testas well.
We should then treat the near- and far clip planes as a pair of parallel planes instead of two individual, saving at
least 6 multiplications and 2 evaluations of then- and p-vertices. The reason why we did not include this is that we
did not find an easy way to insert this into the algorithm, without slowing down other parts or make the code ugly.

If we find that the bounding volume is neither completely outside any plane, nor completely inside all planes,
we might want to store one of the intersecting planes so that we can start checking against that plane in the next
round, hoping that the bounding volume would have moved outside the plane and the view frustum.

It would also be interesting to modify our algorithm to handlek-DOPs7 [Klosowski97] as bounding volumes.
For DOPs we should probably take advantage of that they consist of pairs of parallel planes. Finding then- and
p-verticesor maximum extension in a specific direction from the center of a DOP is not trivial. Look up tables
could perhaps be used in some cases, or we might have to approach the problem in a totally different way.

Since the difference in cost of using AABBs and OBBs is small, it would be interesting to investigate whether
OBB hierarchies are faster than AABB hierarchies.

6 Acknowledgements

We would like to thank professor Per Stenstr¨om for his extensive guidance in improving the quality of this paper.
Thanks to LarsÖstlund, manager of research and development at Digital Plant Technologies AB, ABB, for the
financial support. We also thank Eric Haines for pointing us at his and Wallace’s paper [Haines94].

References

[Assarsson99] Ulf Assarsson and Tomas M¨oller, “Optimized View Frustum Culling Algorithms”, Techni-
cal Report 99-3, Department of Computer Engineering, Chalmers University of Technology,
http://www.ce.chalmers.se/staff/uffe/March 1999.

[Bishop98] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, Michael Shantz, “Designing a PC Game
Engine”,Computer Graphics in Entertainment, pp. 46–53, January/february 1998.

[Chin95] Norman Chin, “A Walk through BSP Trees”,Graphics Gems V, Heckbert, pp. 121–138, 1995.

[Clark76] James H. Clark, “Hierarchical Geometric Models for Visible Surface Algorithm”,Communica-
tions of the ACM, vol. 19, no. 10, pp. 547–554, October 1976.

[CrusNeira93] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, “Surround-screen Projection-based
Virtual Reality: The Design and Implementation of the CAVE”,Computer Graphics (SIGGRAPH
’93 Proceedings), pp 135-142, volume 27, aug, 1993.

[Donovan94] Walt Donovan, Tim van Hook, “Direct Outcode Calculation for Faster Clip Testing”,Graphics
Gems IV, Heckbert, pp. 125–131, 1994.

[DirectModel] DirectModel 1.0 Specification, Hewlett Packard Company, Corvalis, 1998

7A k-DOP (discrete oriented polytope) is made up ofk pairs of parallel planes, the intersection of which forms a bounding volume. A
bounding box can be thought of as ak-DOP wherek is three and all planes are orthogonal.

9

[Greene94] Ned Greene, “Detecting Intersection of a Rectangular Solid and a Convex Polyhedron”,Graphics
Gems IV, Heckbert, pp. 74–82, 1994.

[Green95] Daniel Green, Don Hatch, “Fast Polygon-Cube Intersection Testing”,Graphics Gems V, Heckbert,
pp. 375–379, 1995.

[Haines94] “Shaft Culling for Efficient Ray-Traced Radiosity”, Eric A. Haines and John R. Wallace,Photore-
alistic Rendering in Computer Graphics (Proceedings of the Second Eurographics Workshop on
Rendering), Springer-Verlag, New York, pp.122–138, 1994, also inSIGGRAPH ’91 Frontiers in
Rendering course notes.

[Hoff96a] K. Hoff, “A Fast Method for Culling of Oriented-Bounding Boxes (OBBs)
Against a Perspective Viewing Frustum in Large ”Walktrough” Models”,
http://www.cs.unc.edu/ hoff/research/index.html, 1996.

[Hoff96b] K. Hoff, “A Faster Overlap Test for a Plane and a Bounding Box”,
http://www.cs.unc.edu/ hoff/research/index.html, 07/08/96, 1996.

[Hoff97] K. Hoff, “Fast AABB/View-Frustum Overlap Test”,http://www.cs.unc.edu/ hoff/research/index.html,
1997.

[Klosowski97] J.T. Klosowski, M. Held, J.S.B. Mitchell,H. Sowizral, K. Zikan “Effi-
cient Collision Detection Using Bounding Volume Hierarchies of k-DOPs” ,
http://www.ams.sunysb.edu/�jklosow/projects/colldet/collision.html, 1997.

[Slater97] Mel Slater, Yiorgos Chrysanthou, Department of Computer Science, University College London,
“View Volume Culling Using a Probabilistic Caching Scheme”ACM VRST ’97 Lausanne Switzer-
land, 1997.

10

Paper II

A Case Study of Load Distribution in Parallel View
Frustum Culling and Collision Detection

Department of Computer Engineering
Chalmers University of Technology
Göteborg, Sweden, January 2001

Submitted for publication.

A Case Study of Load Distribution in Parallel
View Frustum Culling and Collision Detection

Ulf Assarsson1 and Per Stenström2

1 ABB Robotics, Drakegatan 6, SE-412 50 Göteborg, Sweden
uffe@ce.chalmers.se,

2 Department of Computer Engineering Chalmers University of Technology SE-412
96, Göteborg, Sweden
pers@ce.chalmers.se

Abstract. When parallelizing hierarchical view frustum culling and col-
lision detection, the low computation cost per node and the fact that the
traversal path through the tree structure is not known à priori make the
classical load-balance versus communication tradeoff very challenging.
In this paper, a comparative performance evaluation of a number of load
distribution strategies is conducted. We show that several strategies suf-
fer from a too high an orchestration overhead to provide any meaningful
speedup. However, by applying some straightforward tricks to get rid of
most of the locking needed, it is possible to achieve interesting speedups.
For our industrially related test scenes, we get about a four-fold speedup
on eight processors for view frustum culling and three times speedup for
collision detection.

1 Introduction

View frustum culling (VFC) and collision detection are two very common com-
ponents of real time computer graphics applications. VFC aims at reducing
the computational complexity of a succeeding rendering pass by extracting the
graphics objects that are in the view frustum. For hierarchical VFC, a hierarchy
is built up as a tree structure from the bounding volume of each object. Each
node in the tree has a bounding volume enclosing a part of the scene. The tree
is traversed from the root in a depth-first manner, and if a bounding volume
is found to be outside the frustum during the traversal, the contents of that
subtree can be culled from rendering. The typically low computation cost makes
the load distribution in a parallel implementation extremely challenging.

In this paper we evaluate the effectiveness of a set of load distribution strate-
gies on parallel implementations of hierarchical view frustum culling with scenes
from an industrial application. We also examine the capability of the most
promising scheme applied on collision detection. For VFC we use axis aligned
bounding box (AABB) trees [8], while for collision detection we use both AABB-
and oriented bounding box (OBB) trees [4].

The load distribution schemes we select are a global task queue, and a number
of distributed task queue schemes well-known from the literature. We evaluate

2

the speedup of the parallel implementations using these strategies on a 13-node
Sun Enterprise shared-memory multiprocessor and on a dual PentiumIII 500
MHz personal computer.

We find that while some of the schemes were expected to provide a reason-
able speedup, they performed inferior owing to the high communication and
synchronization cost. Our results show that due to the low computation cost
per node compared to the distribution cost, only the more sophisticated lock-
free scheme provides interesting speedup numbers. By considering a number of
optimizations – especially by getting rid of the synchronizations – we managed
to get promising results, even for highly unbalanced industrial scenes. For our
scenes, we achieve a speedup of around four on eight processors for view frustum
culling and about three on seven processors for collision detection with real test
cases from an industrial case study.

2 Experimental Set-Up

The code for testing a bounding volume against the view frustum is the one of a
previously proposed optimized algorithm [1]. This implements many optimiza-
tions such as caching of previous computations, implying little computation cost
per node in many cases. Other optimizations include plane-coherency, octant,
and translation and rotation coherency tests (see [1] for details).

We use three trees that are the hierarchical scene graph representations of
three 3D models - all of real environments and all used in industrial applications.
The three highly unbalanced trees used in the tests are: a car factory shop floor
in 3, 932 graph nodes, a factory shop floor in 1, 137 graph nodes and a factory
cell in 254 graph nodes. We refer to them as the large model, the medium model,
and the small model, respectively.

The camera–or view frustum–used in the view frustum culling computations
is moved along one specific path for each model, each sampled from a user
walk through in the model. The presented traversal times and speedups are the
average times and average speedups of all traversals during the walk through.

The experiments are carried out on a Sun Enterprise 4000 shared-memory
multiprocessor. This machine is equipped with 14 UltraSPARC-II CPUs running
at 248 MHz. Each CPU is attached to a 16-Kbyte L1 data cache and a 1-
Mbyte L2 cache, both using a line size of 32 bytes. The locks used have been
implemented using the SPARC-instruction ldstub which loads a byte followed
by a store that sets all bits in that byte atomically. We only show results for
up to 13 processors. One processor is left for the operating system to avoid the
perturbation it would cause when it is invoked every millisecond.

3 Evaluation of Load-Distribution Schemes

In this section, we consider the effectiveness of load distribution strategies that
seem adequate for the dynamic behavior of our workload. As a reference, we use
the classical global task queue scheme which we consider first.

3

3.1 Global Task Queue

In this approach, each processor removes and add tasks (tree-nodes) using a
global task queue. The virtue is good load balance while the overhead associated
with orchestrating the global task queue is known to be high.

Results from the experiments of parallel VFC are presented in Figure 1.
Figure 1.a-1.c show the average speedup, and Figure 1.e-1.f show the average
execution time for VFC of one frame.

For the global task queue, the maximum number of processors that can pro-
vide speed-up, before the global task queue becomes the bottle-neck, is limited
to the total time for processing a node divided by the time for accessing the
global queue (node cost/ access cost). We see that we get a maximum speedup
of only 1.5, with only three processors on the small model. Moreover, when we
increase the number of processors, the speedup goes down owing to serialization
effects, as expected.

3.2 The Global Counter Scheme

A more scalable strategy is to associate a local task queue with each processor.
Each processor adds tasks to the local queue pointed to by a global counter
that is incremented after each insertion by any processor and protected by a
lock1 according to [11]. In this way the load will be nearly optimally balanced
if all processors can process nodes equally fast. The serialization of accesses to
one single queue is replaced by the serialization of reading and incrementing the
global counter, which is usually faster. However, the lock mechanism around the
counter can potentially become a new bottleneck when we increase the number
of processors. In addition, the locks that synchronize the accesses to the queue
attached to each processor is another potential bottleneck.

As can be seen in Figure 1a, compared to the global task queue algorithm,
the stagnation in speed-up which peaks at about 1.9, comes later – at more
than eight processors instead of three, which is expected since incrementing a
counter is quicker than inserting or removing a task (which in our implementation
basically consists of changing an array index and reading the contents of the array
element, i.e about twice the cost). The stagnation comes from the global lock
which gives a high cost and introduces serialization.

3.3 The Hybrid Scheme

To further reduce the orchestration overhead and contention due to locking and
shared memory access, we considered two optimizations of the global counter
scheme. The resulting scheme is referred to as hybrid.

– The skip-pointer tree optimization: A common optimization in raytrac-
ing is to represent the tree in depth-first order in an array [16], with a skip

1 For some processors it is possible to atomically read and increment a variable with
just one or two assembler instructions instead of using a lock.

4

index for each node that points out the next element to access if the un-
derlying sub-graph should be skipped during the traversal. Then a full tree
traversal can be performed by simply accessing the array sequentially from
start to end. Every subtree will be represented in the array as a consecutive
chunk of elements, so instead of distributing a node (subtree), we send the
start-index and the stop-index of the array. While it provides good cache-
locality in the sequential single processor case, it can also give better locality
in the parallel case.

– Trading off larger tasks for less load balance: This straightforward
optimization uses the observation that at a certain depth, when the under-
lying subtree only contains a few nodes, it will be faster to process the nodes
rather than distributing them, if the computation-cost is smaller than the
distribution-cost [13].

Since the size of each subtree is not known beforehand, the heuristic we have
tried is to distribute tasks at the node-level until a certain level after which
the rest of the subtrees are considered as tasks. The first phase uses the global
counter scheme according to Section 3.2, whereas the second phase serially ex-
ecutes the tree traversal algorithm with no further balancing of the load. Both
phases use the skip pointer optimization and thus will enjoy the increased local-
ity it provides. A counter keeps track of how many nodes that so far have been
processed by the distribution algorithm. If a threshold number is exceeded, all
processors finish the computations and distribution of children for the node it
is currently working on, and enter the serial phase. We found empirically that a
threshold of six times the number of processors gave the best performance for
our models with a difference in load of less than 2% for the large model.

The skip-pointer tree optimization contributed with an overall speedup of
15 − 40% compared to the global counter scheme. Despite the possibility to
also trade between load balance and larger tasks, the total speedup for both
optimizations together peaks at only 2.2 times (for 10 processors).

We also made measurements showing that if the cost of the VFC compu-
tations at each node were virtually zero, we would get a huge slowdown using
more than one processor. The reason is the high distribution cost compared to
the cost of the serial traversal of the skip-pointer tree. Skipping the distribution
phase, resulting in a serial single processor algorithm, would actually have been
optimal for this case.

The schemes used so far suffer from too much overhead, especially concering
lock accesses. This motivated us to seek for a lock-free approach which we study
in the next section.

4 A Lock-free Scheme

The Lock-Free scheme distributes the load without requiring locks or any syn-
chronization. The way we adapted the original scheme to avoid locking is as
follows.

5

Each processor has one local-queue and some in-queues. A processor removes
tasks from its local-queue and its in-queues, and adds new tasks to its local queue
and dedicated in-queues of neighboring processors. The in-queues are created
such that one processor can insert tasks at one end of the queue and another
processor can remove tasks from the other end of the queue, without any need
for synchronization between the two. There is one dedicated in-queue for each
sender/receiver pair. We use a ring buffer with two indices to point out the start
and the end of the buffer.

The insert() method only needs to affect the start-index, and the remove()
method only needs to affect the end-index. It is easy to assure that the insert()
and remove() operations never can access the same memory location simulta-
neously.

The remove() operation needs to check if the queue is empty before allowing
removal of a task, and because the insert() operation always inserts a task
into the array before incrementing the end-index, computing end - start will
always give a safe result. The same safe situation holds for the insert() method,
when checking if the queue has room for more elements before inserting a task.
The array simulates a ring and the indices will wrap around to the first element
after passing the last element of the array, but this is easy to adjust for.

Since we want to avoid locks completely, we only allow a processor to either
insert or remove jobs from an in-queue - not both. The opposite could be inter-
esting to try, since there are ways to implement this such that the locks, with a
high probability, seldom will be used [3].

4.1 Topology

In order to easily change the number of processor connections in the topology,
we first order the processors virtually in a ring, where each processor distributes
tasks to its successor’s in-queue. When increasing the connectivity and wanting
every processor to send tasks to n receivers, with p processors in the ring, we
add connections to every (p

n + 1):th successor. When inserting a connection
between two processors, we assign an in-queue for the receiver and let the sender
send tasks to this queue. Figure 1.h) shows an example of 6 processors, each
distributing to 3 receivers.

Load Balancing For Adaptive Contracting within neighborhood (ACWN),
the least loaded nearest neighbor is always selected as the receiver of a newly
generated job. It is known that local averaging strategies generally outperforms
methods such as the randomized allocation and the ACWN algorithm signifi-
cantly in large scale system [17]. Since our shared memory system is a so called
one-port communication system (i.e at most one neighbor can receive a message
in a communication step) with one central data bus, we use the Local Averag-
ing Dimension Exchange (LADE) policy. Generally it is better than the diffusion
method (LADF) on such a system [18]. In LADF, load balancing is done with all
neighbors, while in LADE load balancing is only done with one of the neighbors,
or one at a time with the new load-balance successively considered.

6

Our approach is to use a sender-induced rather than a receiver-induced load
distribution strategy. An advantage of the receiver-induced approach is that
tasks are only distributed on demand which potentially reduces the overall cost
of distribution. A disadvantage, however, is that processors may sit idle to wait
for tasks to be available which may waste computing cycles. We briefly tried some
receiver-induced approaches for the lock-based schemes, but they were inferior
to the sender-induced, and thus we decided to try the sender-induced policy first
for the lock-free schemes. Cilk-5 [3] is a parallel development system that uses
the other approach (see section 6).

A high degree of connections between processors in the virtual topology en-
ables better load-balancing. Since the communication is the bottle-neck and the
computation cost at each node in the tree is low, we need a simple/fast load-
balancing scheme. Only sending newly generated jobs to each receiver and to the
local queue in a round-robin fashion, was found to be insufficient to maintain
good load-balance. We needed to consider the load difference between proces-
sors, which costs computation and communication. If a processor has more jobs
than the receiver, it sends half the difference of the load. However, empirically
we found that it was enough to even out the load balance this way with only one
of the receivers and send blindly to the rest, to get similar load balance as the
global task queue. We chose to consider the load balance difference only with
the successor in the main ring. If n jobs are transferred in this step, we wait at
least n traversed nodes before trying to load-balance carefully again, since load
balancing is expensive and the successor probably will have work to do at least
the corresponding time. In the final algorithm, after every processed node we
distribute the newly generated jobs to the local-queue and the receiving proces-
sors in a round-robin fashion. If n = 0, where n is a variable set to the number
of tasks sent to the successor last time and decreased after every traversed node,
we also do the extra load-balancing with the successor. Every time we distribute
jobs to the successor we may increment n.

If we have a topology with many connections for each processor, we poten-
tially risk lowering cache-locality when we spread the jobs over many queues.
In the shared memory system, the jobs are physically sent when the receiving
processor reads its in-queues and the corresponding cache-blocks are transferred
from the sending processor to the receiving. In order to minimize the number of
cache-block reads, the receiving processor selects one in-queue for reading until
it is empty, before selecting a new in-queue. We could also avoid using an in-
queue for reading that does not fill up an entire cache-block, if there are others
that do, but we did not implement this.

In general, a high number of connections between processors in the virtual
topology seemed to be preferred (see tables at the side of Figure 1.a-1.c).

4.2 Experimental results

For this scheme, the speedup is substantially better for the large and medium
model, with 4.3 and 3.1 times respectively. For the small model it is only 1.7, but

7

this model provides poor speedup for all the schemes. Load balance is similar to
what that of the other schemes.

It was found that the time for just traversing the trees in parallel, not do-
ing any VFC-computations, was fairly constant independently of the number of
processors used. This means that we can decompose the total execution time as:

timetotal = timetraversal + timeV FC (1)

where timeV FC is the only term that enjoys speedup from the parallelism in
VFC. This speedup, however, is basically optimal with respect to the possible
parallelism provided by the traversed paths.

Depending on which parts of the scene-graph that are visible in a frame,
the maximum of possible parallelism can vary, since there is a limited amount of
parallel paths in the traversed graph. We found that if the whole tree is traversed,
with each child selected for continued traversal disregarding the result of the
VFC computations, the speedup peaks at 5.1, which is slightly higher than the
average speedup. This indicates that the speedup is limited by the appearance
of the scene graph. Since it represents a bounding box hierarchy, we cannot
rearrange the graph without caution.

We also tested the Lock-Free scheme on a 2-processor PentiumIII 500MHz,
with 256 Mb RAM, with a simpler load distribution policy that just keeps every
2:nd child and distributes the other to the other processor. The topology is
a virtual ring of 2 nodes. With this approach we got 1.7, 1.5 and 1.3 times
speedup for the large-, medium- and small model respectively. The load balance
was practically perfect.

5 Collision Detection

Since the lock-free scheme was pretty successful in parallelizing VFC we tested it
on hierarchical collision detection to see how it performs on this similar type of
problem. We kept the same load balancing strategy. Collision detection is known
as non-trivial to parallelize [14].

To find collision between two objects, their bounding box hierarchies are
tested against each other for overlap. If any of the leaves between the two trees
intersect, the objects are considered colliding. The algorithm starts with the root
boxes of both trees. If intersection occurs, the algorithm continues recursively
by testing the smallest of the two boxes (or the one that is not a leaf) against
the children of the larger box respectively. If both boxes are leaves, a collision is
found and the algorithm terminates. In this way a virtual graph is traversed.

A hierarchical AABB-tree of a small industry-robot with 102 nodes and a
tree-depth of 11, was tested for intersection against the large model (a car fac-
tory). The robot was spatially placed such that the algorithm is forced to traverse
deep down in both trees to verify that collision (in this case) not occurs.

Testing two AABBs against each other for overlap is extremely fast and basi-
cally consists of just 6 compares, while testing two arbitrarily oriented bounding
boxes (OBBs) costs about 200 flops in average [4]. OBBs, however, can be more

8

tight fitting and are thus often preferred. We wanted to test both cases. In
the OBB-case, for simplicity, the AABBs were treated as OBBs in the overlap-
computation with the orientation incidentally coinciding with the x,y,x-axes.

We found that for collision detection as well as for VFC, the traversal time
without collision computations was nearly independent of the number of pro-
cessors used. Consequently, since AABBs are very fast to test for overlap, we
only got very limited speedup - 30% with 4 processors. For OBBs, however, the
speedup peaks at 3.2 as can be seen in Figure 1.d).

6 Related Work and Discussion

Several older parallel branch-and-bound techniques [2, 5, 7, 9, 10, 19] and depth-
first search algorithms like backtracking [11–13] seem at a first glance to be
applicable to the applications we have at hand. Our results indicate, however,
that the load distribution strategies in these algorithms do not apply very well
to tree traversals found in VFC and collision detection because of the low com-
putation cost per node compared to the distribution cost.

In this paper we have focused on sender-induced schemes since this seemed
most promising for the lock-based approaches. However, Cilk-5, which has been
available for a short time, uses task-stealing in a way that looks promising. It
requires the use of locks, but there are convincing arguments that they seldom
will cause contention or significantly increased communication. Two of the main
features of Cilk-5 is 1) that it compiles two versions of the code: one serial and
one parallel, and can switch in run-time when load-balancing requests are issued,
and 2) that load-balancing can occur efficiently through queues similar to those
we use in our lock-free schemes.

Other related work that aims at reducing the orchestration overhead in tree
traversals includes using prefetching techniques to tolerate communication la-
tencies in the system. Karlsson et al. [6] studied how annotation of prefetch
instructions can speed up tree traversals to tolerate the latency of cache misses.
They especially considered the class of tree traversals where the traversal path
is not known beforehand and obtained encouraging results. While they studied
only sequential tree traversals it would be interesting to study the potential for
parallel tree traversals.

7 Conclusion

In this paper we have presented a comparative evaluation of load distribu-
tion strategies based on a real application case study including two important
computer graphics algorithms used in virtual reality. The low computation-to-
communication ratio in these algorithms make load distribution particularly
challenging. Based on some minor – but important – adaptations of well-known
load distribution schemes in the literature, we managed to demonstrate rea-
sonable speedups on a symmetric multiprocessor. Since multiprocessors of this
scale are now being used in personal computers, and are seriously considered to

9

Fig. 1. (a-c) Speedup with 1 to 13 processors for the large, medium and small model.
For the lock-free scheme, the figures are for the best topology, with the number of
connections (in-queues) per processor marked at the side. (d) Speedup for collision
detection with an OBB-algorithm with the lock-free scheme. The jaggedness comes
from the difference in topology and number of optimal connections. (e-g) Corresponding
execution time for the algorithms. (h) Virtual topology for 6 processors where each
processor distributes load to 3 other processors. Note that depending on the camera
position, a larger tree can be faster to traverse than a smaller. This is the case for the
small vs. medium model, where the small offers more immerse navigation.

10

migrate to the chip-level, our results are indeed encouraging. They show that
multiprocessors can be exploited for an emerging class of real-time computer
graphics applications.

Acknowledgments

We would like to thank ABB Robotics Products, for the financial support of
Ulf Assarsson’s research. This research has also been supported by the Swedish
Foundation of Strategic Research (SSF) financed ARTES/PAMP program, Sun
Microsystems Inc, and by an equipment grant from the Swedish Council for the
Planning and Coordination of Research (FRN) under contract 96238.

References

1. Ulf Assarsson and Tomas Möller, “Optimized View Frustum Culling Algorithms for
Bounding Boxes”, Journal of Graphics Tools, 5(1), Pages 9-22, 2000.

2. E. W. Felten, ”Best-first Branch-and Bound on a Hypercube”, Proceedings of the
Third Conference on Hypercube Concurrent Computers and Applications, (Vol. 2),
Pages 1500-1504, 1988.

3. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall, ”The Implementation of
the Cilk-5 Multithreaded Language”, ACM SIGPLAN Conference on Programming
Language, 1998.

4. S. Gottschalk, M.C Lin, and D. Manocha, ”OBBTree: A Hierarchical Structure for
Rapid Interference Detection”, Proc. of ACM Siggraph, Pages 171-180, 1996.

5. V. K. Janakiram, D. P. Agrawal, and R. Mehrotra, ”A Randomized Parallel Branch-
and-Bound Algorithm”, in Proc. Int. Conf. Parallel Process., Pages 69-75., Aug.
1988.

6. M. Karlsson, F. Dahlgren, and P. Stenström, “A Prefetching Technique for Irregular
Accesses to Linked Data Structures”, Proc. of 6th Int. Symp. on High Performance
Computer Architecture, Pages 206-217, Jan. 2000.

7. Richard M. Karp, Yanjun Zhang, ”Randomized Parallel Algorithms for Backtrack
Search and Branch-and-Bound Computation”, Journal of the ACM, Volume 40,
Pages 765-789, Issue 3, 1993.

8. Tomas Möller and Eric Haines, ”Real-Time Rendering”, A.K. Peters Ltd, ISBN
1-56881-101-2, 1999.

9. Roy P. Pargas and E. Daniels Wooster, ”Branch-and-Bound Algorithms on a Hyper-
cube”, Proceedings of the Third Conference on Hypercube Concurrent Computers
and Applications, (Vol. 2), Pages 1514 - 1519, 1988.

10. Michael J. Quinn, ”Analysis and Implementation of Branch-and-Bound Algorithms
on a Hypercube Multicomputer”, IEEE Transactions on Computers, vol. C-39,
Pages 384-387, no. 3, March, 1990.

11. V. Nageshwara Rao and Vipin Kumar, ”Parallel Depth-First Search on Multipro-
cessors — Part I: Implementation; and Part II—analysis”, International Journal of
Parallel Programming, vol. 16, no. 6, 1987.

12. V. Nageshwara Rao, Vipin Kumar, ”On the Efficiency of Parallel Backtracking”,
IEEE Transactions on Parallel and Distributed Systems, vol 4, no. 4, Pages 427–437,
April, 1993.

11

13. A. Reinefeld, V. Schnecke, ”Work-Load Balancing in Highly Parallel Depth-First
Search”, Proc. Scalable High Performance Computing Conf. SHPCC’94, IEEE
Comp. Sc. Press, Pages 773-780, 1994.

14. Peter Rundberg, ”An Optimized Collision Detection Algorithm”,
http://www.ce.chalmers.se/staff/biff/exjobb, 1998.

15. A. Saulsbury, F. Pong, and A. Novatzyk, “Missing the Memory Wall: The Case for
Processor/Memory Integration” Proc. of 23rd Int. Symp. on Computer Architecture,
Pages 90-101, June, 1996.

16. Brian Smits, ”Efficiency Issues for Ray Tracing”, A K Peters, Ltd, Journal of
Graphics Tools, vol 3, no 2, Pages 1-14, 1999.

17. C. Xu, S. Tschoke, and B. Monien, ”Performance Evaluation of Load Distribution
Strategies in Parallel Branch and bound Computations”, Proc. of the 7th IEEE
Symposium of Parallel and Distributed Processing (SPDP95), Oct. 1995.

18. C. Xu and R. Lüling and B. Monien and F. Lau, ”An analytical comparison of
nearest neighbor algorithms for load balancing in parallel computers”, Proceedings
of 9th International Parallel Processing Symposium, 1995.

19. Myung K. Yang, Chita R. Das, ”Evaluation of a Parallel Branch-and-Bound Algo-
rithm on a Class of Multiprocessors”, IEEE Transactions on Parallel and Distributed
Systems, vol. 5, no. 1, January, 1994.

Paper III

BART: A Benchmark for Animated Ray Tracing

Reprinted from

IEEE Computer Graphics and Applications, March/April, 2001.

Benchmarks let people accurately and
objectively compare performance. In

computer graphics, we need to measure and compare
performance and quality to find effective, good algo-
rithms. Currently, however, benchmarks only exist in a
few computer graphics areas, but there’s a need for
them in a variety of areas, such as radiosity, global illu-
mination, collision detection, animation, image-based
rendering, and polygon rendering. (See the “Related
Work” sidebar for more information.) Our effort is an
attempt to bridge that gap.

We saw the need for our bench-
mark for animated ray tracing
(BART), because no benchmark
exists in this area and because at least
two groups have been ray tracing
fairly complex and realistic scenes at
interactive speeds1,2—at rates above
one frame per second. Another rea-
son is because acceleration data
structures for animated ray tracing
has not been studied much but prob-
ably will be in the future. BART’s
main contribution is three paramet-
rically animated test scenes that we

designed to stress ray-tracing algorithms and a set of reli-
able performance measurements that let BART users
compare performance of different ray-tracing algorithms.
For approximating algorithms (that is, algorithms that
may produce approximate pixel values), we also define
how to measure the quality of the approximated images.

Potential stresses
To construct a benchmark with a relatively long life-

time, we first identified what stresses existing ray-tracing
algorithms and, thus, decreases performance. The goal
was then to implement each of these potential stresses
into the benchmark. The following scenarios or events
tend to stress different efficiency schemes for ray tracing:

1. hierarchical animation using translation, rotation,
and scaling

2. unorganized animation of objects (combinations
other than translation, rotation, and scaling)

3. the “teapot in the stadium” problem
4. low frame-to-frame coherency
5. large working-set sizes
6. overlap of bounding volumes or their projections
7. changing object distribution
8. the number of light sources

Stress 1: Hierarchical animation
During modeling, the easiest and most natural way

to model each object is in its own frame of reference.
When building a scene from such objects, a hierarchi-
cal scene representation offers a simple and flexible
method to express how objects are positioned and ori-
ented and how they move relative to each other.

When adding animation to a scene, we’ll most likely
have to reconstruct whole or parts of the acceleration
data structures between frames. Depending on the
amount of scene changes, this could seriously stress the
reconstruction phase when using uniform grids, recur-
sive grids, hierarchical grids,3 octrees, binary space par-
titioning trees, and bounding volume hierarchies
(BVHs).4 In our benchmark, we excluded light-source
animation, because it simplified our animations, and
animated objects can achieve the same stress. There-
fore, this is also a serious stress for some acceleration
data structures, such as light buffers.4

Stress 2: Unorganized animation
To cope with transforms, ray tracers often trans-

form the ray with the inverse transform instead of
transforming the object and its efficiency data struc-
tures. Thus, for some acceleration schemes (such as
a static grid or a BVH around an object), we don’t have
to rebuild the efficiency data structures each frame.
This is easily done for translations, rotations, and scal-
ings, but often other kinds of “less organized” ani-
mation prohibit use of this approach. Because all
currently available types of acceleration schemes for
ray tracing must rebuild their efficiency structures for
such animations,3,4 this will be a serious stress on all
ray-tracing algorithms. Note, however, that there
exists an algorithm with O(1) complexity for insert-
ing and deleting objects in an octree that might solve
this problem.5

0272-1716/01/$10.00 © 2001 IEEE

Feature Article

22 March/April 2001

Our suite of test scenes,

BART, is designed to

accurately measure and

objectively compare

performance and quality of

ray traced, animated scenes.

Jonas Lext, Ulf Assarsson, and Tomas Möller
Chalmers University of Technology, Sweden

A Benchmark for
Animated Ray
Tracing

Stress 3: Teapot in the stadium
The “teapot in the stadium” problem6 refers to when

a small, detailed object (teapot) is in a relatively large,
surrounding object (stadium). This tends to stress uni-
form grid-based algorithms and octree-based schemes,
because the uniform grid has finite-sized voxels and the
octree has a finite depth. Therefore, the teapot will be in
one or only a few voxels or octree nodes. For example, if
the viewer is looking at the teapot so that it covers most
of the screen, then only one or a few voxels/octree nodes
will be traversed and each will contain many primitives,
enormously degrading performance.

Stress 4: Low frame-to-frame coherency
Situations where the frame-to-frame coherency is low

tend to stress reprojection algorithms,7 because they use

information from previous frames. If the difference
between two frames is too big, the performance of such
algorithms is worse or the quality of the rendered
images gets worse. Similarly, frameless rendering tech-
niques8 will produce images of poorer quality when the
frame-to-frame coherency is low. In this article, we use
the name approximating algorithms for all algorithms
that can generate images that aren’t entirely correct for
every frame they generate.

Stress 5: Large working-set sizes
An important problem in computer architecture is the

increasing gap between the processor’s computational
speed and the speed with which the memory system can
feed the processor with data. The conventional solution
to this problem calls for using a cache hierarchy between

IEEE Computer Graphics and Applications 23

Related Work
Graphics hardware vendors and implementers have many

different benchmarks. The Standard Performance
Evaluation Corporation (SPEC) has a subgroup called the
Graphics Performance Characterization Group (GPC); see
http://www.specbench.org/gpc, which has a set of
graphics benchmarks. Their SPECglperf measures the
performance of rendering low-level primitives, such as
points, lines, triangles, and so on with OpenGL. In contrast,
GPC’s SPECviewperf for OpenGL measures the rendering
performance of a set of real models. Both SPECglperf and
SPECviewperf target graphics hardware vendors and
implementers, because benchmarks aren’t allowed to alter
the program (for example, implement an occlusion
algorithm) to make the execution more efficient. GPC also
has benchmarks for a few commercial programs, but these
require fully licensed versions of the programs and thus
aren’t available for everyone.

For PCs, several other benchmarks for measuring a
graphics subsystem’s performance exist—3D WinBench,
3DMark, and QuakeIII, to mention a few. We believe that it
would be unsuitable, or even impossible in some cases, to
use the scenes from these benchmarks (which are targeted
toward graphics hardware systems) to evaluate ray-tracing
algorithms’ performance. One reason is that the scenes in
SPEC, for example, are surrounded by license agreements
that limit their use for purposes other than those originally
intended. Plus, you must report measured results strictly in
accordance with the rules SPEC publishes. Because other
performance parameters are interesting for ray tracing, we
can’t use SPEC. Naturally, these benchmarks are also
constructed for the single purpose of testing graphics
hardware-specific features or specific applications (such as
CAD applications or game engines) well suited for graphics
hardware. For example, CAD applications often deal with
single, static objects hanging in free space. However, to
really stress ray-tracing algorithms, we want scenes
representing complete environments.

Another example is the Quake scenes, which are
optimized to make the rendering as fast as possible using
the Quake game engine. The scene description is in a binary
format and contains an acceleration data structure hard
coded into it. The scenes in our benchmark are specifically

designed to stress ray-tracing algorithms and have a simple,
readable format for greater flexibility.

Yuan et al.1 described a framework for a performance
evaluation system for real-time rendering algorithms in
virtual reality. They also targeted this benchmark against
polygon rendering hardware, and there doesn’t seem to be
any scenes available on the Internet.

To our knowledge, there’s only one recognized
benchmark for ray tracing: the standard procedural
database by Haines.2 The SPD targets ray-tracing algorithms
for single, static images. Other drawbacks are that the
images are not necessarily realistic and that almost the
entire geometry of each scene is located in the camera’s
view frustum. Although the SPD is perfectly valid and has
been widely used for more than a decade, progress in
computer architecture and algorithms has advanced
beyond what it was intended for.

The work by Bala et al.3 also shows promise for interactive
ray tracing. A vast number of ray-tracing algorithms and
variants have been developed over the years. We refer to
Glassner’s book4 and some recent papers3,5 for a review of
many ray-tracing algorithms. For more information on
BART, see our Web site (http://www.ce.chalmers.se/BART),
where you can also find our technical report on BART.

References
1. P. Yuan, M. Green, and R. Lau, “A Framework of Performance Eval-

uation of Real-Time Rendering Algorithms in Virtual Reality,” ACM
Symp. Virtual Reality Software and Technology, 1997, pp. 51-58.

2. E. Haines, “A Proposal for Standard Graphics Environments,” IEEE
Computer Graphics and Applications, vol. 7, no. 11, Nov. 1987,
pp. 3-5.

3. K. Bala, J. Dorsey, and S. Teller, “Radiance Interpolants for Accel-
erated Bounded-Error Ray Tracing,” ACM Trans. Graphics, vol. 18,
no. 3, Aug. 1999, pp. 213-256.

4. A. Glassner, An Introduction to Ray Tracing, Academic Press, Lon-
don, 1989.

5. K.S. Klimaszewski and T.W. Sederberg, “Faster Ray Tracing Using
Adaptive Grids,” IEEE Computer Graphics and Applications, vol. 17,
no. 1, Jan./Feb. 1997, pp. 42-51.

the processor and memory and relying on spatial and
temporal coherence in the data access patterns. Current
computer architectures are usually equipped with two
levels of caches (L1 and L2) with typical sizes ranging
between 16 to 64 Kbytes and 128 Kbytes to 2 Mbytes,
respectively.

Due to reflecting objects in the scene, we can use a
large portion of the scene data when rendering a single
frame in an animation. Often, because of frame-to-
frame coherence, we’ll reuse a lot of this scene data in
the following frames. However, if the working-set size
exceeds the L2 cache, not all of the required scene data
will fit in the cache at the same time, so it must be reread
between frames. Thus, the L2 cache miss ratio will be
high, and the calculations will be slowed down. The
scenes in BART should be able to generate such large
working sets and, therefore, stress the memory hierar-
chy of contemporary computer systems.

Stress 6: Bounding volume overlap
A problem might occur when bounding volumes or

local grids overlap (perhaps due to animation). If a
ray penetrates all the overlapping volumes, it isn’t
necessarily the first one reached that contains the
closest object intersection. Therefore, a number of
bounding volumes or grids may have to be traversed
by the ray before encountering the true intersection
point. The bounding volumes or grids don’t neces-
sarily have to overlap to get this effect. If a ray inter-
sects several bounding volumes or grids that contain
a lot of empty space around the object they cover,
again, a number of rays might have to traverse a large
number of bounding volumes or grids before an inter-
section is found. If the number of rays that encounter
these situations is large enough, this could be a poten-
tial stress.

Stress 7: Changing object distribution
Due to animation, the distribution of objects in the

scene might change over time. This might stress ray-
tracing algorithms regarding which efficiency data

structure should be used. For example, one static grid
covering the whole scene might work well if there’s an
even distribution of objects in the scene. However, hier-
archical grids or recursive grids are probably a better
choice for an unbalanced distribution of objects. There-
fore, if object distribution in the scene changes over
time, the most suitable data structure might also
change. A solution might be to recreate or update the
data structure in each frame.

Stress 8: Number of light sources
In ray tracing, the rendering time often increases as

the number of light sources in a scene increases. The
number of light sources can, therefore, be a serious
stress on the rendering engine.

Animated test scenes
Here, we present the three test scenes. (Table 1 gives

brief descriptions of each.) All the test scenes are para-
metrically animated—that is, the BART user can easily
vary the number of frames in an animation. One use of
this feature is to test how well an algorithm can handle
different levels of frame-to-frame coherency by simply
decreasing the number of frames to test lower frame-to-
frame coherency.

Kitchen
The main subject in this scene is a toy car moving

around in a kitchen. The camera—initially overlooking
the scene from one of the upper corners of the room—
descends to meet the car, then follows it on its path
through the room. Figure 1 shows images taken from
this scene.

The toy car is hierarchically animated using transla-
tions, rotations, and scalings (stress 1). The hierarchy
is at most three levels deep, and the scaling occurs at the
end of the animation when the car crashes into a cup-
board and is thus scaled along the current driving direc-
tion. The kitchen scene should be subject to the
teapot-in-the-stadium problem (stress 3)—we modeled
the walls, roof, and floor using only a few large trian-
gles. However, the scene also contains many complex
objects, which vary from small (such as a door knob) to
medium (such as chairs).

Low frame-to-frame coherency (stress 4) is likely
to appear at two different instances during the
kitchen animation. At one instant, the camera is
almost still. The toy car passes quickly in front of the
camera, abruptly increasing the visible number of
primitives during a small number of consecutive
frames. A similar effect occurs when the camera
moves rapidly, close to the table edge. During one
frame, the table edge obscures the whole camera view
and only a few triangles are visible. In the next frame,

the items on the table come into
view. Therefore, the number of
visible primitives differ drastical-
ly between the two frames, and
thus the frame-to-frame coher-
ence is low.

The kitchen scene can use 1 to
10 light sources (stress 8) and is

Feature Article

24 March/April 2001

Table 1. Short summary of test scenes.

Scenes Primitives Texture Memory (Mbytes) Light(s) Stresses

Kitchen 110,561 7.5 1 to 10 1,3,4,5,8
Robots 71,708 9.5 1 1,3,5,6,7
Museum 10,215 to 75,687 3.9 2 2,5

In ray tracing, the rendering time often

increases as the number of light sources in

a scene increases. The number of light

sources can, therefore, be a serious stress

on the rendering engine.

modeled using 110,561 polygons. These require more
than 15 Mbytes of memory to store. (The memory
usage is 3 vertices and 3 normals per triangle patch.
Each normal or vertex occupies 3 doubles [8 bytes per
double]. This gives (3 + 3) * 3 * 8 * 110,559 ≈ 15
Mbytes.) Furthermore, we used eight texture maps,
ranging in size from 96 Kbytes to 3.1 Mbytes and
requiring 7.5 Mbytes of memory.

In all, the kitchen scene might require more than

22 Mbytes of memory to store. Therefore, the com-
plex and highly reflective kitchen furniture should be
able to stress the memory hierarchy system (stress 5)
on most contemporary processors. Finally, when the
toy car moves under the table and around the chairs,
there should be the possibility of bounding volume
overlap (stress 6). However, this depends on the
acceleration data structure and how users apply it to
scene objects.

IEEE Computer Graphics and Applications 25

1 Frames from
the kitchen test
scene
animation.

Robots
The robot scene consists of 10 animated warrior

robots and a static downtown environment with sky-
scrapers, all equaling 71,708 polygons. Each robot con-
sists of 6,249 polygons with 18 moving parts. The city
is 9,218 polygons. One light source exists: the Sun. We
implemented background lighting by using an ambient
contribution. Figure 2 shows snapshots from the robots
test scene.

The robots are spread out in the city at start of the
animation and walk down the streets to finally gather
in the middle of the scene. We implemented stress 7 in
this scene by letting the distribution of robots change
drastically from fairly balanced at the start to highly
unbalanced at the end. This also gives the teapot-in-
the-stadium problem (stress 3). The robots’ hierarchi-
cal animation ensures stress 1. For a few seconds at the
end of the animation, the camera is in a static position,
looking down at all robots with only a few of them mov-
ing. This gives an opportunity for algorithms to exploit
frame-to-frame coherency. We implemented stress 6 by
the robots’ moving parts, because spatial data struc-
tures will overlap in the joints. Furthermore, data struc-
ture overlap might occur between the robots and the
city. Unless the spatial data structures for the parts of
the robots are tight fitting, overlap will also occur
between different robots when they’re clustered at the
end of the animation and when we view several robots
head on as they march down the street.

Each robot of 6,249 polygons will fit in most L2

caches, but all 10 robots together probably will not.
Therefore, in the frames where many or all robots are
visible simultaneously, stress 5 should occur. On the
other hand, since all 10 robots are identical except for
the positions and rotations of their parts, this fact could
be used to save memory. Only the information about the
transforms must be handled separately. In this way,
large scenes can still fit in the caches, which can be
essential for speed.

Museum
While the kitchen and robots test scenes include hier-

archical object and camera animation, this test scene’s
goal is to stress building efficiency data structures, which
typically is done as a preprocess before ray tracing an
image. To create such a stress (stress 2), we included a
simple manner to animate objects so that every type of
efficiency data structure that we know of must be rebuilt
each frame to obtain good performance. For this kind of
animation, a triangle patch—a triangle with normals at
each vertex—is interpolated into another triangle patch.

Therefore, the museum scene consists of a small
room. The main subject in this room is an animated
piece of abstract art, which features several triangle
patches interpolated from one constellation into four
others. For example, in one of these constellations, the
triangle patches are uniformly distributed and randomly
rotated inside a cylinder, and at a later time, they form
a sphere. This test scene uses two light sources. Figure
3 shows snapshots of the scene.

Feature Article

26 March/April 2001

2 Frames from
the robots test
scene
animation.

This scene has 10,143 polygons and 8 cones without
the animated art in the middle. There are five 512 ×512
RGB textures, which together occupy 3.9 Mbytes of
memory. This is a small scene in terms of the number of
primitives. To test scenes with different numbers of
primitives, we provide different complexity levels of the
animated art in the scene. More specifically, six different
versions exist, consisting of 22k animated triangle patch-
es, where k = 3, …, 8. This means that the lowest com-
plexity level has 64 triangle patches and the highest
65,536. All these triangles exist at five different times—
they’re interpolated into five different constellations.
The memory usage for the highest complexity level is
45 Mbytes. So, all in all, the highest complexity level of
this scene occupies at least 50 Mbytes. Because the com-

plex and highly reflective abstract art and pedestal are
fully visible in most of the frames in this animation,
stress 5 might occur.

Performance measurements
The main reason for using a benchmark is so people

can objectively compare different algorithms’ perfor-
mance. To do that, a benchmark’s users must report the
same performance measurements, in the same manner.

Measurement report proposal
Here, we give the parameters and some measure-

ments that we propose, together with actual numbers
and parameters from rendering of the animated muse-
um test scene.

IEEE Computer Graphics and Applications 27

3 Frames from
the museum
test scene
animation.

■ Model: museum
■ Number of animated frames in the scene: 300
■ Number of primitives in the scene: 11,175
■ Complexity level: 5
■ Resolution of the rendered image (dpi): 800 × 600
■ Mode: interactive
■ Average time it takes to render a frame: 176.6

seconds
■ Worst time it takes to render a frame: 294 seconds
■ Deviation: 0.37

■ Continuity (optional): 0.18
■ Total time it takes to render all frames: 52,966.0

seconds
■ Preprocessing time: 0 seconds
■ Machine: 333-MHz Sun UltraSparc 10, 128 Mbytes

of memory
■ Scene memory: 8.5 Mbytes
■ Efficiency memory: 0.5 Mbytes

We rendered the scene using the publicly available
Rayshade ray tracer (http://www-graphics.stanford.
edu/~cek/rayshade), adapted to read our file format,
and used a uniform grid with fixed size, which was rebuilt
each frame. (Please note that these measurements aren’t
a serious attempt to achieve good rendering time.) In an
interactive or near interactive ray tracer, the worse time
parameter would be useful to get an absolute measure of
the worst possible frame rate we can expect. Preprocess-
ing time is done once before the rendering of the entire
animation starts.

In addition to this information, we can supply a graph
that shows the number of rays as a function of the frame
number. We can divide this graph into the following
classes of rays: eye, reflection, refraction, and shadow
rays.

Also, users should give a rendering time diagram as a
function of the frame number. As an option, we can
divide the rendering time into shading time (the ren-
dering time spent shading and lighting a frame), visi-
bility time (the rendering time spent finding the
intersection with the closest object), and rebuild time
(the time it takes to rebuild the efficiency data struc-
tures each frame). Figure 4 gives example diagrams.
Note that the rendering time is the sum of the visibility,
shading, and rebuild times. The main reason to include
those is mostly for the algorithm developers, who can
gain insight about where the bottleneck in their algo-
rithm lies and where best to optimize.

If a BART user compares algorithms, we recommend
giving a speed-up diagram of tnew(k)/told(k). Here, tnew(k)
is the time it took for the new algorithm to render frame
k, and told(k) is the time it took for the old algorithm to
render frame k. For approximating algorithms, which
may introduce errors in the rendered images, a peak
noise to signal ratio (PNSR) diagram is a function of the
frame number, and the average peak noise to signal ratio
(APNSR) should also be reported (see the Approximat-
ing Algorithms section).

Predetermined versus interactive mode
We can use the benchmark in two different modes:

interactive and predetermined. In predetermined mode,
the benchmark’s users can look into the future—that is,
they retrieve information about frames that have not
been rendered. For example, assume that frame k is
about to be rendered. In predetermined mode, we can
investigate the position and the orientation of the cam-
era for, say, frame k + 1, k + 2, and k + 3 (to see if that
information can be exploited for faster rendering).

Because of the difficulties in specifying a truly inter-
active animation (where things usually change based
on the input from the system user) that gives the same

Feature Article

28 March/April 2001

Rendering time

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275
Frame number(a)

(b)

Ti
m

e
(s

ec
on

d
s)

Rendering time

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275
Frame number

Ti
m

e
(s

ec
on

d
s)

4 Rendering times as a function of frame number for the museum test
scene. We rendered the 300 images of this animation using the publicly
available Rayshade ray tracer and measured the time using the Unix time
command. Figure 4a shows only the total rendering time per frame. Figure
4b shows what it might look like if we divided it into shading time (light
gray) and visibility time (dark gray). The dashed horizontal lines mark the
average rendering time.

amount of work each time the benchmark is used, we
included a “fake” interactive mode. In this interactive
mode, users can’t retrieve information about frames that
appear after the frame that is currently being rendered.
No other differences between the modes exist.

Deviation and continuity
It’s quite common to use the standard deviation to

measure how much a set of samples deviates from the
average of the samples. The formula for the standard
deviation is

(1)

where n is the number of frames in the scene, ti is the
time for frame i, and tavg is the average frame time.
Instead of using s, we propose using the following:

(2)

which we call the deviation. The reason to use d instead
of s is that d is dimensionless, and because it is, at least
theoretically, invariant of the average frame time. This
means that d is the same if you run a renderer on
machines with different performance.

We computed the continuity measurement as

(3)

which is the maximum of the absolute value of the dif-
ference in rendering time between two subsequent
frames divided by the average frame time.

Both these measurements are invariant of the aver-
age frame time. (We experimentally verified this by
computing both the deviation and continuity for 167-
MHz and 333-MHz machines. The observed values were
close—the deviation differed by 2 percent and the con-
tinuity by 5 percent.) This implies that a researcher can
compare deviations and continuity by reading another
researcher’s paper. In a perfect world, all measurement
would be such, which would lessen researchers’ burden.
Instead, researchers must implement algorithms to com-
pare performance. Unfortunately, all timings—such as
average frame time, total time, and so on—can’t be
made such without losing their meaning.

We recommend that users report both the deviation
and continuity. The deviation reports a deviation glob-
ally, while the continuity is good because it catches
frame-to-frame anomalies, which for frame rates higher
than one per second, are distracting to the human visu-
al system. Therefore, if we don’t achieve interactive rates,
there’s probably no use in reporting the continuity.

Approximating algorithms
To render images rapidly or to maintain a constant

frame rate, we can use approximating techniques.
Examples include reprojection methods7 and frameless
rendering techniques.8 More algorithms along this line
are likely to be developed to meet the need for speed.

However, errors can be introduced in the rendered
images, so we recommend reporting certain error values
when using BART with such algorithms. To do this, we
assume that BART users render a reference set of images
of the animation without approximating techniques and
with the highest possible quality (high antialiasing, high
ray depth, and so on) or at least state how they rendered
the reference set. Because of differences in shading,
antialiasing, and other items in different renderers, we
strongly believe that users should generate their own
set of reference images. In image analysis and com-
pression, it’s common to measure differences between
two images using the PNSR, which in this case, is a good
way to measure the rendering error caused by the
approximation. To compute that, we first define the
mean square error (MSE) for RGB images as

(4)

where w is the width and h is the height of the rendered
image measured in pixels. a(x, y) is the pixel at (x, y) of
the approximated image, and c(x, y) is the pixel at (x,
y) of the correct (reference) image of the same frame.
We assume a pixel’s RGB components to be in the inter-
val [0,1] and thus that MSE ∈ [0,1]. The individual color
components are accessed as c(x, y)c, where c could be r,
g, or b. Note that the squares in Equation 4 penalize large
differences in the individual pixels, which usually is
more distracting.

Given the MSE, the PNSR is

PNSR = 10 log10(1.02/MSE) = –10 log10 (MSE) (5)

Note that the lower the PNSR, the worse the approxi-
mation. There might be some other measure that
rewards rendered images that are perceptually of bet-
ter quality. For example, if an image shifts one pixel to
the left, then the PNSR will be low, even though the
image is “perceptually pleasing.” Unfortunately, we
know of no such measure that takes every possible
aspect into account. The PNSR’s average, or APNSR, is
the PNSR of the average of the MSE of all images in an
animation:

(6)

where n is the number of images in the animation, and
MSEi is the mean square error for image i.

A 0.0 PNSR means the maximum possible error,
which might occur when all pixels in an image are black
when they should be white. A totally correct image
implies a PNSR value of infinity, which is unreasonable
to draw in a diagram. Assume, therefore, that we ren-
der an image of 1280 × 1024 pixels with 8 bits per color

APNSR MSE= −








∑10

1
10log

n
i

i

MSE =

() − ()





+ () − ()





+ () − ()





























=

−

=

−

∑∑1
3

2

2

2
0

1

0

1

wh

x y x y

x y x y

x y x y

r r

g g

b b

y

h

x

w

a c

a c

a c

, ,

, ,

, ,

max /

k
k kt t tabs avg−()()+1

d

s
t

=
avg

s
n

t ti

i

n

=
−

−()
=

−

∑1
1

2

0

1

avg

IEEE Computer Graphics and Applications 29

component and that exactly one pixel has an error in the
least significant bit in one color component. The PNSR
is then 114 and represents a negligible error. Therefore,
we say that PNSR ∈ [0,120], where we assume that
every value above 120 represents an error-free image.
The value 120 can be adjusted for other resolutions.

When using approximating algorithms, we recom-
mend reporting APNSR and a diagram of PNSRi as a
function of the frame number i, where i ∈ [startframe,
stopframe] to see how good the approximation really is,
which is something the computer graphics community
has previously neglected. Thus, when comparing algo-
rithms fairly, these are important measurements. See
Figure 5 for an example of a PNSR diagram.

Implementation notes
We placed the three BART test scenes in the public

domain. We wanted to keep the file format as simple as
possible and yet reasonably flexible. Therefore, we
enhanced the neutral file format9 in several ways to han-
dle animated scenes. We describe the new format—Ani-
mated File Format (AFF)—on our Web site, http://
www.ce.chalmers.se/BART. We used Kochanek–Bartels
splines to animate the viewer and the objects. (We pre-
fer this approach to storing a separate matrix for each
transform for each frame, because it lets us easily change
the number of frames in an animation.) This included
rotations, translations, and scalings hierarchically orga-
nized. As a result, there’s a notation of objects in AFF,
because an object is usually grouped under a transform
(static or animated). We used Eberly’s implementation
(from http://www.magic-software.com). We chose this
approach, because it’s expensive for interactive pro-

grams to read files between frames and it is simple.
In addition to the test scene files, we provide BART

users with

■ a simple parser of the file format (written in C), which
is easy to add to a renderer (in our experience, it takes
less than half a day);

■ routines for spline interpolation;
■ C-code for reading texture files; and
■ MPEGs of the animations (for comparison purposes).

Future work
It’s difficult for a benchmark to cover every aspect, and

this is just a first step that we hope will be extended in
the future. Possible extensions include parametric patch-
es (such as NURBS, B-spline surfaces, or Bézier trian-
gles) and subdivision surfaces. It would also be nice to
extend BART to include a large architectural building
and a complex outdoor scene—that is, scenes that are a
few magnitudes larger than those in BART. Furthermore,
some of the interactive ray tracers1,2 require powerful
parallel computer systems to achieve interactive ren-
dering speeds. Since parallel computer systems most
likely will be used in the future, we could add special
scenes that stress multiprocessor ray-tracing algorithms.

The goal for BART users is real-time ray tracing with
a constant frame rate, and it will be exciting to see when
this will happen and what kind of algorithms they will
use. Finally, we encourage everyone to participate in
BART’s usage and development, which we hope will
grow and evolve over time. ■

Acknowledgments
We thank Joachim Helenklaken and Jens Larsson for

help with modeling and Eric Haines and Per Stenström
for support during this project.

References
1. M.J. Muuss, “Towards Real-Time Ray-Tracing of Combi-

natorial Solid Geometric Models,” Proc. Ballistic Research
Lab Computer-Aided Design Symp. 95 (BRL-CAD), 1995.

2. S. Parker et al., “Interactive Ray Tracing,” Symp. Interac-
tive 3D Graphics, ACM Press, New York, 1999, pp. 119-126.

3. K.S. Klimaszewski and T.W. Sederberg, “Faster Ray Tracing
Using Adaptive Grids,” IEEE Computer Graphics and Appli-
cations, vol. 17, no. 1, Jan./Feb. 1997, pp. 42-51.

4. A. Glassner, An Introduction to Ray Tracing, Academic
Press, London, 1989.

5. E. Reinhard, B. Smits, and C. Hansen, “Dynamic Acceler-
ation Structures for Interactive Ray Tracing,” Proc. 11th
Eurographics Workshop on Rendering, Springer-Verlag, New
York, 2000, pp. 299-306.

6. E. Haines, “Spline Surface Rendering, and What’s Wrong
with Octrees,” Ray Tracing News, vol. 1, no. 2, Jan. 1988,
http://www.raytracingnews.org.

7. S. Badt, Jr, “Two Algorithms for Taking Advantage of Tem-
poral Coherence in Ray Tracing,” The Visual Computer, vol.
4, no. 3, Sept. 1988, pp. 123-132.

Feature Article

30 March/April 2001

PNSR diagram

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250 275
Frame number

PN
SR

5 A PNSR diagram for a rendering of the museum scene. We rendered the
300 images of this animation using the publicly available Rayshade ray
tracer and calculated a PNSR value for each frame, reusing every fourth
pixel from the previous frame. This made for faster rendering, but worse
image quality. Note that only the first image has a PNSR equal to 120,
which means that this is the only image that was 100 percent correct.

8. G. Bishop et al., “Frameless Rendering: Double Buffering
Considered Harmful,” Computer Graphics Proc. (Siggraph
94), ACM Press, New York, 1994, pp. 175-176.

9. E. Haines, “A Proposal for Standard Graphics Environ-
ments,” IEEE Computer Graphics and Applications, vol. 7,
no. 11, Nov. 1987, pp. 3-5.

Jonas Lext is a PhD student in com-
puter graphics at Chalmers Univer-
sity of Technology, Sweden. He has
an MSc in engineering physics from
Chalmers University of Technology.
His research interests include inter-
active ray tracing, parallelization of

computer graphics algorithms, and hardware–software
interaction.

Ulf Assarsson is a PhD student in
computer graphics at Chalmers Uni-
versity of Technology, Sweden. He
has an MSc in engineering physics
from Chalmers University of Tech-
nology. His research interests include
real-time computer graphics, ray

tracing, and parallel algorithms.

Tomas Möller is an assistant pro-
fessor at Chalmers University of Tech-
nology, Sweden. He has an MSc in
computer science from Lund Institute
of Technology, Sweden, and a PhD
from Chalmers University of Tech-
nology. He is the coauthor of Real-

Time Rendering (AK Peters, 1999) with Eric Haines. His
research interests include realistic and rapid real-time ren-
dering, interactive ray tracing, and algorithms for future
graphics hardware.

Readers may contact Lext at Chalmers University of Tech-
nology, Dept. of Computer Eng., SE-412 96, Göteborg, Swe-
den, email lext@ce.chalmers.se.

IEEE Computer Graphics and Applications 31

E D I T O R I A L
C A L E N D A R

JANUARY/FEBRUARY
Usability Engineering in
Software Development
When usability is cost-justified, it can be integrated
into the development process; it can even become one
of the main drivers of software development.

MARCH/APRIL
Global Software Development
What factors are enabling some multinational and
virtual corporations to operate successfully across
geographic and cultural distances? Software
development is increasingly becoming a multisite,
multicultural, globally distributed undertaking.

MAY/JUNE
Organizational Change
Today’s organizations must cope with reorganization,
process improvement initiatives, mergers and
acquisitions, and ever-changing technology. We will
look at what organizations are doing and can do to
cope.

JULY/AUGUST
Fault Tolerance
We used to think of fault-tolerant systems as ones
built from parallel, redundant components. Today, it’s
much more complicated. Software is fault-tolerant
when it can compute an acceptable result even if it
receives incorrect data during execution or suffers
from incorrect logic.

SEPTEMBER/OCTOBER
Software Organizational
Benchmarking
How do you decide what to benchmark and how
much detail is necessary? How do you identify the
right information sources?

NOVEMBER/DECEMBER
Just Enough…
How little process and technology can your project
get away with? This focus explores the ramifications
of developing software from a minimalist
perspective.

Ubiquitous Computing
This third wave of computing, after the mainframe
and the PC eras, will allow technology to recede into
the background of our lives.

