
Hair Self Shadowing and Transparency Depth Ordering Using Occupancy maps

Erik Sintorn∗

Chalmers University of technology
Ulf Assarsson†

Chalmers University of Technology

Figure 1: The woman renders in 37.3 fps using 20k hair strands (300k line segments). The dog renders in 17.2 fps using 400k hair strands
(2M line segments).

Abstract

This paper presents a method for quickly constructing a high-
quality approximate visibility function for high frequency semi-
transparent geometry such as hair. We can then reconstruct the vis-
ibility for any fragment without the expensive compression needed
by Deep Shadow Maps and with a quality that is much better than
what is attainable at similar framerates using Opacity Maps or Deep
Opacity Maps. The memory footprint of our method is also consid-
erably lower than that of previous methods. We then use a similar
method to achieve back-to-front sorted alpha blending of the frag-
ments with results that are virtually indistinguishable from depth-
peeling and an order of magnitude faster.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shadowing I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Visible line/surface al-
gorithms

Keywords: hair rendering, opacity maps, deep shadow maps

∗e-mail:erik.sintorn ’at’ chalmers.se
†e-mail:uffe ’at’ chalmers.se

1 Introduction

Rendering convincing images of hair and fur remains a very
challenging problem in real-time graphics. The complex light-
scattering properties of hair-fibers (thoroughly examined in
[Marschner et al. 2003]) combined with the sheer number of very
thin hair-strands on a human head make conventional rendering
techniques either extremely time consuming, even by offline ren-
dering standards, or fail completely due to aliasing problems.

When rendering individual hair strands, either as thin cylinders or
as line primitives, the two main challenges are the self-shadowing
effects within the volume of hair and appropriately capturing the
sub-pixel width of each hair strand. The self shadowing problem is
usually dealt with by using a shadow-map representation that, in-
stead of storing a single depth, stores a visibility function for any
depth in each shadow-map pixel [Lokovic and Veach 2000]. Opac-
ity Maps [Kim and Neumann 2001] discretize the visibility func-
tion as a 3D-grid, centered around the hair, with a visibility value
per grid-cell. Our solution is related to Opacity Maps but uses a
representation of the visibility information that can be rendered in

three passes, as opposed to one pass per grid-slice, and requires
only three 2D textures per light instead of a large 3D texture per
light. The latter characteristics improve both speed and memory
footprint, which enhance the usability for games and allows for us-
ing significantly higher resolutions of the opacity map.

Since each hair strand will normally be much thinner than the pixel
width, no current hardware super-sampling scheme is sufficient to
capture the high-frequency geometry. Supersampling by render-
ing to an offscreen buffer and then downsampling this to screen
would of course work if the resolution was high enough, but since
this causes an explosion in the number of fragments generated, and
the fragment shader for hair is typically quite expensive this is not
a viable option for realistically thin hair. Instead, alpha blend-
ing is normally applied to approximate antialiasing. Also, blond
or light-colored hair fibers are semi-transparent which in itself re-
quires alpha blending. Properly using alpha blending to achieve
transparency effects requires that the fragments are drawn in a back-
to-front order, which is not trivially done in hardware accelerated
rendering. The only fail-safe solutions available so far are explicit
sorting, which is prohibitively expensive for real-time rendering of
hundreds of thousands of line-segments, or depth-peeling which re-
quires as many rendering passes as there are fragments occupying
one pixel, i.e. the depth-complexity of the image, which in hair ren-
dering can be several hundreds. In this paper we suggest a novel
technique, which builds on the technique we introduce for self-
shadowing, to approximate the depth-order of each fragment and
then render the hair in a single pass with approximate alpha blend-
ing which is very close to the result obtained with depth-peeling.

Our contributions are:

• A very fast reconstruction of the visibility function with a res-
olution much higher than that of previous realtime methods,

• Significantly less memory consumption than for opacity maps

• Very fast approximate back to front ordering of semi-
transparent hair fragments for alpha blending

Our occupancy shadow map can also be used orthogonally with ex-
isting techniques that considers light scattering effects [Marschner
et al. 2003; Zinke et al. 2004; Zinke et al. 2008].

2 Previous and Related Work

An extensive amount has been written on hair-rendering and semi
transparent self shadowing, and even more on shadow-generation in
general. In this section we will attempt to cover the previous work
most relevant to this paper and refer the reader to [Ward et al. 2007]
for a more complete survey.

2.1 Self-Shadowing

Deep Shadow Maps were introduced in 2000 by Lokovic and
Veach [Lokovic and Veach 2000], as a substitute for shadow maps
when rendering high frequency geometry such as hair or smoke.
For each pixel in the shadow map the visibility is sampled at reg-
ularly or irregularly spaced intervals. This function is then com-
pressed into a piecewise linear function of the depth from the light-
space near-plane. Using sufficiently short sampling intervals, this
method allows for storing a visibility function that maintains the
overall shape of the true visibility function even with fairly strong
compression. The method has been used successfully in many of-
fline rendering projects, but the sampling and compression is not
trivial in realtime on current graphics hardware. In [Mertens et al.
2004] a solution for generating the visibility function in realtime is

suggested. They cluster the fragments inK bins, based on the frag-
ment depth value, whose position is generated in a first rendering
of the hair. In a second pass, the variance of each bin is calculated,
and finally histogram binning of the fragments is performed in a
third pass. While this algorithm did not perform in real time at the
time the paper was written, it should work well on current graphics
cards, and should significantly improve on the results obtained from
using opacity maps with few slices. More recently, [Hadwiger et al.
2006b] suggest a different way to generate the deep shadow maps
on graphics hardware, but their method does not run in real-time
and does not support semi-transparent primitives as is necessary for
hair rendering.

Opacity Shadow Maps [Kim and Neumann 2001] is a similar tech-
nique, but instead of storing a complex visibility function per pixel,
the volume of hair is divided into a number of slices, and the hair
geometry is then rendered once for each slice, each time moving the
far-plane one slice width further back. By rendering the hair with a
constant color and using additive blending, this gives us the opac-
ity at each slice, which can then be interpolated at any depth. The
Opacity Maps technique was implemented for the Nalu demo by
nVidia in 2005 to produce realtime self shadowing of a model with
4096 hair strands [Nguyen and Donelly 2005]. Their implementa-
tion used multiple render targets to render the opacity of 16 slices
in a single renderpass. As shown in [Kim and Neumann 2001],
16 slices is nowhere near enough for realistic self shadowing, and
the technique does not trivially extend to render more slices than
would fit in the maximum allowed number of rendertargets, with-
out reverting to several render passes.

[Sintorn and Assarsson 2008] improves on the performance of gen-
erating the opacity maps . The individual hair-segments are approx-
imately sorted into the slices on the GPU inO(nlog(n)) where n is
the number of slices. The hair can then be rendered into the opacity
maps in a single pass through the hair geometry. This technique
allows for rendering self-shadowed hair with 256 slices of opacity
maps in real-time, but it does put the requirements on the hair ge-
ometry that it is rendered as line primitives, with finely tesselated
hair segments for good performance.

In a paper called Deep Opacity Maps [Yuksel and Keyser 2008], the
authors suggest modifying the algorithm so that the hair geometry
is rendered as opaque primitives in a first pass to establish the depth
of the fragment nearest to the lights near-plane for each pixel. They
then use this as a per-pixel start of the opacity map depth range to
significantly reduce the depth between two slices. While this al-
most completely removes the banding artifacts that are a big prob-
lem with opacity maps, the visibility for each pixel is still regularly
sampled at different depths and linearly interpolated in between, so
the technique fails to correctly capture the sudden steep changes
that are very common in the visibility function unless a very high
number of slices are used (see Figure 5). We borrow this same tech-
nique in our solution, and we also find the furthest fragment depth
for each pixel.

In a related paper [Zinke et al. 2008], a complete light scattering
model is introduced, based on [Marschner et al. 2003] that divides
the multiple scattering function into global multiple scattering and
local multiple scattering. In the global multiple scattering calcula-
tions, the selfshadowing properties of hair are taken into account,
considering not only the visibility of direct illumination (as in our
and previous shadowing models) but also an approximation of the
forward-scattered light through each hair-strand along the shadow
ray. While they achieve impressive results at interactive framerates,
sometimes almost indistinguishable from a pathtracing reference,
they use no more than four slices to sample the light-transmittance
and direct illumination visibility, which, as noted above, would
not be sufficient to capture high-frequency changes in the visibil-

Figure 2: Transparency sorting using depth-peeling (ground truth, 4.01 fps, max depth complexity of 112 layers), our method (51 fps),
weighted-average blending (72 fps), and using no transparency (120 fps). All images use our occupancy maps for self-shadowing.

ity function. In addition, they do not address transparency sorting.
Our presented algorithm could orthogonally be used with their light
scattering solution to enhance the quality of the self-shadowing and
add transparency sorting.

The generation of our occupancy-maps resembles the voxelisation
performed in [Eisemann and Décoret 2006], and they mention em-
ulation of deep shadow maps as an application of their method.

The term occupancy map was used in a previous paper [Staneker
et al. 2003] to describe a map used to improve occlusion queries.

2.2 Alpha blending

Alpha blending is commonly used in hair-rendering for two pur-
poses. First, blond or light-colored hair is semi-transparent. It is
standard practice in realtime rendering to render semi-transparent,
non-refractive materials using alpha blending. If the semi-
transparent fragments are blended in back to front order, a very
convincing transparency effect is achieved. Secondly, hair strands
are, in normal viewing scenarios and screen-resolutions, much thin-
ner than the pixel width. So much thinner in fact, that no current
super-sampling scheme is sufficient to capture the hair without se-
vere aliasing. Human hair strands have a width of 17-100µm. An
approximate, but visually convincing solution to this is to use alpha
blending to render the strands with a very low alpha value. Again,
to properly blend alpha weighted fragments with the standard trans-
parency blending equation, they must be drawn in a back to front
order, which is not trivial to do fast on current graphics hardware.

In [Sintorn and Assarsson 2008] the individual hair segments are
Quicksorted on their depth into a number of bins (typically 256)
on the GPU using the Geometry Shader and Transform Feedback.
While this does not guarantee that fragments are drawn in exact
back to front order, it was shown that this approximate sorting was
sufficient to produce very plausible images.

To assure that all fragments are drawn in a back to front order,
a technique called depth-peeling is commonly used. With this
method, the same geometry is drawn several times with the depth
test set to pass the furthest fragment, and each pass uses the depth
buffer of the previous pass as a depth qualifier. In this way, the frag-
ments are peeled off one layer at a time until an occlusion query
reports that no more fragments are drawn. The problem with using
this technique for hair rendering is that it requires as many passes
as there are fragments occupying the same screenspace pixel, often
resulting in several hundred render passes.

An attempt at improving the speed of the depth-peeling algorithm
was made by [Liu et al. 2006]. They peel several layers at the
same time by rendering to all available MRTs and sorting the frag-
ments in the fragment shader. The theoretical peak performance
of this algorithm would be an 8 times improvement over standard
depth peeling, but due to the possibility of read-modify-write haz-
ards, this is not achieved in practice. In a recent technical report by
nVidia [Bavoil and Meyers 2008], a technique is suggested where
the frontmost and furthest layer can be peeled in each pass, effec-
tively doubling the performance of the depth peeling. While both
of these algorithms increase the speed of depth-peeling, the running
time is still dependent on the depth-complexity, and neither would
work for rendering individual hair strands in real time.

In [Bavoil and Meyers 2008] a single pass approximation of depth
peeling is suggested, where the alpha weighted color of all frag-
ments are summed, together with the alpha sum. The average alpha
is then found as the sum of alphas divided by the depth complex-
ity for each pixel and the final color is the sum of colors divided
by the averaged alpha. When rendering hair, where all fragments
will have similar alpha values and very varying colors, the resulting
image becomes very dull however, compared to the depth-peeled
image (see Figure 2).

3 Algorithm

Previous solutions to rendering opacity maps and to solving the
problem of alpha blending rely either on sorting the input primi-
tives [Sintorn and Assarsson 2008] or rendering the geometry in
several passes [Kim and Neumann 2001], [Everitt 2001]. Both ap-
proaches are very time consuming in hair rendering as the geometry
when rendering individual hair-strands is invariably very heavy.

We try to solve both problems by using a new method for approxi-
mating the depth-order of each fragment. For opacity mapping, this
is the order the fragment would have if all fragments that are pro-
jected into the same light-space pixel are sorted on their depth from
the near plane, and for alpha blending it is the depth-sorted order in
screen space. As the visibility function and the ”alpha contribution”
function (explained below) are very similar, we will begin by talk-
ing only about generating and sampling our visibility function first,
and then proceed to explain how this applies to alpha blending.

The visibility of a fragment at some depth d from the light source
is a function of the opacity at that depth. We will write that the
visibility V = e−Ω where the opacity Ω is the integral of the den-
sity of hair along that ray. The Ω function can easily be sampled at

Slab-map

Occupancy map

In hair-shader, compute

self-shadowing value

Render hair and back-

ground from the eye

Render hair from the light,

crea!ng the slab- and occu-

pancy map

sla
b 2

sla
b 1

sla
b 0

sla
b 3

1
Blend

where

α=transparency of a hair strand

n=#hair fragments in front of light

(looked up per pixel by summing

#fragments in the slab map)

X

(1- α)n

Figure 3: Outline of the full rendering process. Initially, the hair is rendered from the light source, resembling a 3D-rasterization process.
The output image consists of an occupancy map storing hair-strand occupancy information in 128 depth slices per pixel, with one bit per
slice. In addition, a slab-map stores for each slab (chunk of 32 bits) the exact number of rasterized fragments. These two maps can be
combined to reconstruct the shadow value with high precision at any position inside the hair. Secondly, the hair and background is rendered
from the eye into separate textures. For each rasterized hair-fragment, the shader uses the occupancy- and slab-map from step 1 to compute
the shadow value. Finally, the hair- and background image are correctly blended together.

regularly spaced depths using the Opacity Maps, or Deep Opacity
Maps algorithms.

The basic observation we make is that the visibility function will
always be a strictly decreasing function and that only a few frag-
ments are enough to cause very sharp dips in visibility at any depth.
As can be seen on the Figure 5(b), a regularly spaced sampling of
this function will require many sampling points to accurately re-
produce the shape of the function. Using too few samples, as in
Figure 4(b), can lead to overestimating the visibility for the frag-
ments close to the light, making the hair look opaque. In [Yuksel
and Keyser 2008] it is suggested that one should use slices of lin-
early increasing width to increase the precision at low depth values,
but as can be seen in Figure 5(a) this is not a good strategy when the
main dip of the function (the first clump of hair fragments) is not
caused by the first fragments recorded for this shadow-map texel.
This is a big problem for Deep Opacity Maps with few slices, since
it means that in an animated sequence, a stray hair strand may sud-
denly cause unnaturally strong shadows to appear (see Figure 4).

Essentially, we propose replacing the opacity maps (or deep opacity
maps), which have a real-value opacity stored per texel and depth-
slice, with an occupancy-map plus a slab-map.

(a) Our algorithm (b) Deep Opacity Maps (4 slices)

Figure 4: Deep shadows in hair. On the left is the results of our
algorithm and on the right Deep Opacity Maps with four slices.
Notice the incorrect shadow stripes in the right image.

The occupancy map has only a bit per texel and slice, storing
whether the slice is occupied by at least one fragment. This map
can be generated in a single pass for up to N ∗ 128 slices where N

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

depth within range

vis
ib

ilit
y

Deep Opacity Maps Approximation
True visibility
Occupancy only reconstruction
Occupancy + Slab reconstruction

(a) The ray from the light is first intercepted by a stray
hair strand.

(b) A ray from the light that enters at the specular high-
light

Figure 5: Two examples of the visibility function in Figure 4. The
”ground truth” was obtained through depth peeling and represents
the result of opacity mapping with an infinite number of slices.

Figure 6: Stills from an animation with 20000 hair strands, run-
ning at 30 fps.

is the number of simultaneous render targets allowed by the hard-
ware, as explained below. By letting each set bit in this map sig-
nify an opacity increase of F

S
where F is the number of fragments

recorded to fall within this texel and S is the total number of set
bits in the occupancy map, we could reconstruct the visibility func-
tion with the occupancy map alone. However, as the hair fragments
tend to be clustered around certain depth values, the reconstruction
need not necessarily be very good. Consider the diagram in Fig-
ure 5(a) where a stray strand gives rise to a first dip in visibility
(at depth 0.0) and then a large number of fragments are clustered
around a larger depth value (around depth 0.4). Using only the oc-
cupancy map would under-estimate the visibility of the fragments
directly following the first. Note however that while the visibility
function we can reconstruct from only an occupancy map with 128
slices may not give the correct visibility within the depth range, it
does follow the sudden changes of the real visibility function and
as such may still be a better choice than a Deep Opacity Map with
four slices (see Figure 5(b)) since the two techniques would use
the same number of rendering passes and have the same memory
footprint.

To further improve the quality of our reconstructed visibility func-
tion, we introduce what we have called a slab-map. This map stores
for each texel the number of fragments recorded within one slab,
which is what we call a group of slices. To reconstruct the visi-
bility function we can now instead let a set bit in the occupancy
map represent an opacity increase of Fi

Si
where Fi is the number

of fragments recorded in slab i and Si is the number of set bits in
the occupancy map corresponding to slices within slab i (see Figure
8). Note that this will force our visibility function to have correct
values at the start and end of each slab, which limits the deviation
from the ground truth.

In all examples in this paper we have used an occupancy map with
128 slices, which can be stored in a four channel unsigned int tex-
ture and is generated as explained in the next section. These slices
are divided into four slabs of 32 slices each, meaning that the slab-
map is a four channel float texture. With these two maps we can
reconstruct a visibility function that stays very close to the ”true”
visibility funciton, i.e. the visiblity function one would obtain from
using an infinite number of opacity maps or, as we have done for
comparison, by depth peeling the hair from the light’s viewpoint.

3.1 Generating the maps

As noted above, we will use a per texel depth range to maximize
the precision in our occupancy- and slab-maps. We begin by gen-
erating a depth-range map, containing for each texel the nearest
and furthest fragment-depth from the light’s point of view (see Fig-
ure 7). This can be obtained in a single pass by rendering the hair
from the light and writing the depth to the r and a channels, using
a min blending function for the color channels and a max blend-
ing function for the alpha channel. However, we have found that it
was faster to render the hair twice with depth testing enabled and
changing the depth-test function, due to the large amount of frag-
ments that can be discarded in early z-culling.

Given the depth-range map, we can construct the occupancy map.
The occupancy map is a four-channel unsigned int texture that will
be read as a continuous string of 128 bits, where a set bit signifies
that the corresponding slice contains at least one fragment. To cre-
ate this map we again render the hair from the lights viewpoint. In
the fragment shader, we fetch the near and far value of the depth
range at this texel and can then obtain the fragments relative depth
d ε {0, 1} within the depth-range as

d = fragcoord.z−near
far−near

d .near
x,y

slab 1 slab 2 slab 3slab 0

depth 128 slices

o
n

e
 r

o
w

 o
f

te
xe

ls

x

y

d .farx,y

Figure 7: Construction of the depth-range map. The hair is ren-
dered from the light. For each texel of the occupancy map, we
store the nearest and furthest fragment-depth, to achieve a per-texel
depth range to maximize the utilization of the 128 slices.

We now know the fragment falls into slice bd ∗Nslicesc, where
Nslices is the number of slices in the occupancy-map and so we
set the corresponding bit in the output color. Using the bitwise-or
as the blending operation on the framebuffer, this will give us the
occupancy map in a single pass.

0 20 40 60 80 100 120
−20

0

20

40

60

80

100

slab 1 slab 2 slab 3 slab 4

The bits for a texel in the occupancy map

Opacity

Reconstructing opacity function per texel from our occupancy bit map and slab map

The four slabs, for a texel, with their internal occupancy

Figure 8: Reconstructed opacity (visibility is eopacity) function
(blue) per texel from our occupancy bit map (red) and slab map
(black). Each slab holds the number of hair strand fragments ras-
terized to this slab and each set occupancy-bit means that at least
one fragment was rasterized into that slice.

As noted above, we can create a better reconstruction of the visibil-
ity function if we, besides occupancy information for each slice
know something about the actual number of fragments that fall
within each slab of the depth-range. We can construct our slab
map in an additional pass over the hair geometry where the frag-
ment shader simply writes a value of 1.0 to the color channel corre-
sponding to the slab bd ∗Nslabsc the fragment falls within. Nslabs
is the number of slabs, i.e. 4 in our implementation. We use addi-
tive blending during this pass to sum up the number of fragments
that fall within each slab.

Note that the construction of the occupancy- and the slab-map are
independent of each other and that both could be generated in a
single pass on hardware that supports different blendfunctions for
different rendertargets (i.e. recent ATI cards with DirectX 10.1).
We have not yet had the opportunity to test this.

3.2 Finding the depth order of the fragment

We will use the three maps (the occupancy-, slab- and depth-range
map) when rendering the hair to screen to approximate the depth
order of the fragment, either in its depth from the light-source or
from the camera. To do this, we make two approximating assump-
tions about the distribution of fragments. First, we assume that there
will be an equal number of fragments in each of the occupied slices
within one slab. Second, we assume that the fragments within one
slice will be uniformly distributed over that slice.

We can then, in the fragment shader when rendering the hair from
the cameras viewpoint, find the slab and slice the fragment occu-
pies as described in Section 3.1 and estimate the depth-order of the
fragment as the sum of the slab-sizes of the slabs preceding the cur-
rent plus the number of fragments preceding the fragment within its
slab. The latter is where we have to approximate. What we know
for certain is the number of fragments Fi occupying the slab and
which individual slices are occupied. We will count the total num-
ber of bitsBtotal set within the slab and the number of bitsBbefore
set that correspond to slices in front of the current. Fi

Btotal
is then the

average number of fragments contributing to a set bit in the slab and
we can estimate the number of fragments preceding this fragment
within the slab as Fi

Btotal
∗ Bbefore. Counting the number of set

bits to obtain Btotal is easily done in O(log n) [E.], where n is
the number of bits. To obtain Bbefore we simply mask out the bits
corresponding to slices after the current fragments before counting.

Since the fragment will lie at some relative depth into the slice, we
will linearly interpolate between the results of it’s occupied slice
and the previous slice.

3.3 Self shadowing

As in the original opacity map implementation [Kim and Neumann
2001], we will define the opacity of a fragment as the sum of the
number of fragments in preceeding slices times a constant shadow
weightw. Given the estimated order, o, of the fragment this is com-
puted as opacity = o∗w. Note that while the order of the fragment
will be approximated due to the assumptions stated in section 3.2, it
will converge towards the correct value on each of the slab bound-
aries (see Figure 8). It will also converge as the resolution of the
occupancy map increases.

As in any shadow-map based algorithm, ours suffers from aliasing
problems along the silhouettes. This could be handled by sampling
the various maps several times but this would become very expen-
sive. However, we have found that since we are alpha blending
many fragments per pixel, simply jittering the texture coordinate
by half a texel-width before doing any map-lookups takes care of
most aliasing problems (see Figure 9).

3.4 Alpha blending

Correctly alpha blending the hair would require drawing all the
fragments in a back to front order. The only non-approximate
method for doing this is, to our knowledge, to use depth-peeling.
For hair rendering this is impractical however as it requires as many
render-passes as is the depth complexity of the image, which will
be in the hundreds in most cases.

Instead, we suggest an approximation that works since we usually
render all hair-fragments with the same alpha-value, depicting some
transparency and thinness of the hair strand.

The blending function typically used for rendering transparent ob-
jects is: f = αc + (1 − α)b where f is the resulting framebuffer

(a) Without jittering (b) With jittering

Figure 9: Since many fragments are blended per pixel, aliasing
problems can be easily fixed by jittering texture coordinates slightly.

color and c is the color to be blended on the background color b. For
three fragments blended in back to front order, this would expand
to:

f = α2c2 + (1− α2)(α1c1 + (1− α1)(α0c0 + (1− α0)b)),

which can be rewritten as:

f =α2c2 + (1− α2)α1c1+

(1− α2)(1− α1)α0c0+

(1− α2)(1− α1)(1− α0)b

The above equation shows us that we could chose to blend the frag-
ments front to back, using separate blending equations for color
and alpha: fcolor = bα(αc) + bcolor, fα = (1 − α)bα. This is
called front-to-back compositing and is commonly used in Volume
Rendering [Hadwiger et al. 2006a]. In our case, alpha values are ap-
proximated as being the same for all hair fragments which allows
us to rewrite the equation as:

f = (1− α)0αc2 + (1− α)1αc1 + (1− α)2αc0 + (1− α)3b

In fact, it turns out that for n fragments the result is:

f =

n−1X
i=0

(1− α)iαcn−1−i + (1− α)nb

Using our approximation of the depth-order of the fragment, we can
additively blend unsorted fragments by writing their fragment color
as:

colorout = (1− α)o ∗ α ∗ colorin,

where o is the estimated order of the fragment. Note that this will
amount to a sum of hundreds of very small values and that a 32-bit
float rendertarget is necessary to get correct results. We finally add
this buffer to the background image, multiplying the background
color with (1−α)n, where n is the total number of fragments writ-
ten to that pixel, found by summing all four slabs.

This algorithm gives very good results most of the time when com-
pared to depth-peeling, but artifacts can at some times be seen
where very many fragments fall into the same pixel (typically along
silhouettes), due to the limited precision. This can be remedied al-
most for free however by using an alpha component of 1.0 in the
colorin for each hair fragment. We know that the correct sum of
the alpha channel should be:

Λ =
Pn−1

0 (1− α)i ∗ α ∗ 1.0 = α 1−(1−α)n

1−(1−α)
= 1− (1− α)n,

where n is the total number of hair-fragments written to this pixel.
When the final image is composited from the hair and background

images, we can then adjust the final color of the hair as hair.rgb =
hair.rgb ∗ hair.a

Λ
. With this adjustment, the intensity of the hair

color will be correct while the actual color may differ slightly from
the depth-peeled ground truth. In practice the images obtained by
depth peeling and by using our algorithm are almost indistinguish-
able (see Figure 2).

3.5 Opaque objects

The shadow map for all opaque objects is rendered in a first pass.
Then, when rendering the hair, the fragment shader first looks into
the shadow map as usual to see whether an opaque object shadows
the fragment and if so, no hair self-shadowing need be considered.
When rendering the opaque objects, the slab-map is sufficient to
find the number of hair-fragments between the light and the current
fragment, and the visibility can be calculated from that. When us-
ing our algorithm for alpha blending, the background image is first
rendered with a depth buffer. This depth buffer is then used when
generating the depthrange- occupancy- and slab-map to discard hair
fragments that lie behind opaque objects.

4 Results

All measurements were performed an a GeForce GTX 280 us-
ing an image resolution of 800x600 unless otherwise stated. The
occupancy- and slab-map resolution in all examples is 512x512
pixels. We have used the simple hair shader suggested by Kajiya
and Kay [Kajiya and Kay 1989] throughout our work for simplic-
ity. Compared to our own implementation of Deep Opacity Maps
with four slices, our algorithm requires one more render pass (i.e.,
rendering the occupancy map since in terms of computation time,
rendering the slab-map is exactly the same as rendering the Deep
Opacity Map), and a slightly more complex pass for the final hair
rendering. In our experiments, rendering the same model with Deep
Opacity Maps and with our algorithm took 33.5 ms and 41 ms re-
spectively (our alpha blending algorithm was used in both cases).
The quality is very much improved however, especially for anima-
tions (see Figure 4). When run on the same model and at the same
resolution as the title image of [Sintorn and Assarsson 2008], using
the same graphics card (GeForce 8800GTX), our algorithm renders
the image at 16.1 fps which is about twice as fast as the timings
reported in that paper (see Figure 10).

Using a resolution of 512x512 for our depthrange-, occupancy- and
slab-map, the memory requirement is 10MB. This can be com-
pared to using Deep Opacity Maps with 16 or 32 slices (18MB
or 34MB respectively) or standard Opacity Maps with 128 or 256
slices (130MB or 258MB respectively). Note that in both of these
algorithms one could represent the opacity per slice with a byte
instead of a float, resulting in lower memory consumption, but a
coarser approximation of the opacity.

One of the main contributions of this paper is the algorithm sug-
gested for out-of-order alpha blending for transparency. Using this
algorithm we can produce images that are very close to a depth-
peeling reference at a fraction of the time. In Figure 2 our algorithm
renders about 15 times faster than the depth-peeling reference, and
that is for a fairly low depth complexity (in our tests, a depth com-
plexity of 300-400 is not uncommon for normal viewing conditions
of some models).

The timings for each part of our algorithm (including the times for
interpolating the hair and rendering the background for complete-
ness) are given in the table below. These are taken for a frame of
the animation shown in figure 6.

Algorithm step time (ms)
Generate hair
Interpolate control hair keyframes 0.01
Interpolate hairs from control hairs 2.9
Self-shadowing
Find depth range 2.54
Render occupancy map 2.56
Render slab-size map 2.89
Alpha approximation
Find depth range 2.63
Render occupancy map 1.8
Render slab-size map 1.88
Final image
Render BG shadow map 0.5
Render background 1.0
Render hair 12.8
Compose BG and Hair 0.1

Figure 10: Left to right: 20000 hair strands at 27.6 fps, 10000
strands at 37.0 fps, 5000 strands at 60.6 fps. Each hair strand
consists of 30 line segments.

5 Conclusion

This paper has presented a method for self-shadowing in hair that
can replace opacity maps or deep shadow maps. Our method has the
advantage of using more than an order of magnitude lower mem-
ory footprint, with a maintained high quality compared to Opacity
Maps and significantly higher quality compared to Deep Opacity
Maps with few slices. In addition, we show how the same method
can be used to solve the problem of transparency sorting, when ren-
dering the hair-strands from the eye. Used in combination, the two
techniques allow for high quality rendering of dynamic hair, and
the speed makes the technique suitable not only for offline render-
ing but also real-time applications, e.g. games.

References

BAVOIL, L., AND MEYERS, K. 2008. Order independent trans-
parency with dual depth peeling. Tech. rep., nVidia, February.

E., A. S. Bit twiddling hacks.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization
and applications. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Sketches, ACM, New York, NY, USA, 8.

EVERITT, C., 2001. Interactive order-independent
transparency. NVIDIA white paper, cite-
seer.ist.psu.edu/everitt01interactive.html.

HADWIGER, M., KNISS, J. M., REZK-SALAMA, C., WEISKOPF,
D., AND ENGEL, K. 2006. Real-time Volume Graphics. A. K.
Peters, Ltd., Natick, MA, USA.

HADWIGER, M., KRATZ, A., SIGG, C., AND BÜHLER, K.
2006. Gpu-accelerated deep shadow maps for direct volume
rendering. In GH ’06: Proceedings of the 21st ACM SIG-
GRAPH/Eurographics symposium on Graphics hardware, ACM,
New York, NY, USA, 49–52.

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three-
dimensional textures. Proceedings of SIGGRAPH, 271–280.

KIM, T., AND NEUMANN, U. 2001. Opacity shadow maps. In In
Rendering Techniques 2001, Springer, 177–182.

LIU, B., WEI, L.-Y., AND XU, Y.-Q. 2006. Multi-layer depth
peeling via fragment sort. Tech. rep., Microsoft Reasearch.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps.
In SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
385–392.

MARSCHNER, S. R., JENSEN, H. W., CAMMARANO, M., WOR-
LEY, S., AND HANRAHAN, P. 2003. Light scattering from hu-
man hair fibers. ACM Trans. Graph. 22, 3, 780–791.

MERTENS, T., KAUTZ, J., BEKAERT, P., AND REETH, F. V. 2004.
A self-shadow algorithm for dynamic hair using density cluster-
ing. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches, ACM,
New York, NY, USA, 44.

NGUYEN, H., AND DONELLY, W. 2005. Hair animation and ren-
dering in the nalu demo. GPU Gems 2, 361–380.

SINTORN, E., AND ASSARSSON, U. 2008. Real-time approximate
sorting for self shadowing and transparency in hair rendering. In
SI3D ’08: Proceedings of the 2008 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, 157–162.

STANEKER, D., BARTZ, D., AND MEISSNER, M. 2003. Improv-
ing occlusion query efficiency with occupancy maps. In PVG
’03: Proceedings of the 2003 IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, IEEE Computer Soci-
ety, Washington, DC, USA, 15.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. 2007. A survey on hair model-
ing: Styling, simulation, and rendering. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 13, 2 (Mar-Apr),
213–34. To appear.

YUKSEL, C., AND KEYSER, J. 2008. Deep opacity maps. Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2008)
27, 2, 675–680.

ZINKE, A., SOBOTTKA, G., AND WEBER, A. 2004. Photo-
realistic rendering of blond hair. In Vision, Modeling, and Vi-
sualization (VMV04), 191–198.

ZINKE, A., YUKSEL, C., WEBER, A., AND KEYSER, J. 2008.
Dual scattering approximation for fast multiple scattering in hair.
ACM Trans. Graph. 27, 3, 1–10.

