
Exploiting Coherence in Time-Varying Voxel Data

Viktor Kämpe1 Sverker Rasmuson1 Markus Billeter12 Erik Sintorn1 Ulf Assarsson1

1Chalmers University of Technology 2VMML, University of Zürich

Figure 1: We introduce an efficient encoding of time-varying binary voxel data, the temporal DAG, which we use as the geometric representation
for free viewpoint video. The geometry of this sequence consists of 70 frames of voxel data at a spatial resolution of 20483. Encoded as a
temporal DAG, the memory consumption is only 1.86 MBytes. The top row of images shows three different time steps from a single novel
viewpoint, and the bottom row shows four additional views of the second time step. The geometry is visualized with ambient occlusion and with
colors reconstructed from four color rgb-camera streams.

Abstract

We encode time-varying voxel data for efficient storage and stream-
ing. We store the equivalent of a separate sparse voxel octree for
each frame, but utilize both spatial and temporal coherence to reduce
the amount of memory needed. We represent the time-varying voxel
data in a single directed acyclic graph with one root per time step. In
this graph, we avoid storing identical regions by keeping one unique
instance and pointing to that from several parents. We further reduce
the memory consumption of the graph by minimizing the number of
bits per pointer and encoding the result into a dense bitstream.

Keywords: time-varying, voxel grid, directed acyclic graph, free
viewpoint video

Concepts: •Computing methodologies → Computer graphics;
Volumetric models;

1 Introduction

Geometry scanned by, for instance, depth cameras can be repre-
sented in a raw point-sample format but the points are often pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org. c© 2016 Copyright held
by the owner/author(s). Publication rights licensed to ACM.
I3D ’16, February 27-28, 2016, Redmond, WA
ISBN: 978-1-4503-4043-4/16/03
DOI: http://dx.doi.org/10.1145/2856400.2856413

cessed to produce a surface representation. Dense voxel grids, and
two-level grids, have been demonstrated as good geometric repre-
sentations in surface reconstruction methods [Kazhdan et al. 2006;
Izadi et al. 2011; Chen et al. 2013; Nießner et al. 2013]. While
being appropriate for surface-reconstruction methods, they consume
too much memory, especially at high spatial resolutions, to be a
viable option for streaming and storage of reconstructed geometry.
For time-varying geometry, with a reconstructed surface per time
step, the memory consumption becomes even more infeasible. A
commonly used method to reduce the memory consumption of grids
is to exploit coherence in the data.

Sparseness is one type of spatial coherence which can be utilized
to efficiently represent large uniform (or empty) regions [Meagher
1982]. Translational coherence is another type of spatial coherence,
which can be used to encode regions that are identical under spatial
translation [Kämpe et al. 2013].

Temporal coherence can be applied to time-varying data to efficiently
store regions that are very similar in different time steps. Difference
coding, for instance, considers consecutive time steps and can be
combined with sparse spatial encoding [Ma and Shen 2000].

In this paper, we further increase the amount of coherence possible to
exploit by searching within, as well as between, time steps to encode
only the regions of the time-varying voxel grid that are unique under
spatio-temporal translation. This allows us to encode regions as
identical where previous methods cannot, e.g, two regions at both
different spatial position and different (not necessarily adjacent) time
steps. We encode the voxel grids as a single directed acyclic graph
(DAG), where two identical regions are encoded by pointing out
the same, uniquely stored, subgraph. We keep a start node per time
step in the DAG, and traversing the structure from a start node is
identical to traversing an octree from the root node. Surfaces are
stored in this common structure, whether they are static or dynamic.

http://dx.doi.org/10.1145/2856400.2856413


The coherence automatically reduces the memory consumption of
geometry that, for instance, is alternating between being static and
dynamic, or is composed of both static and dynamic parts. The
coherence is not encoded with explicit annotation in the nodes of
the DAG and the traversal of the structure, e.g., during ray tracing,
is just as simple as for a static octree.

We believe that a compact voxel representation of time-varying
surface data has numerous applications. We mainly target a geometry
representation for free viewpoint video (FVV), but the proposed
method is independent of the origin of the voxel data and the purpose
of playback. We believe that our structure is a suitable alternative for
FVV due to: 1) simple traversal, regardless of encoded coherence,
2) no restriction on topology, and 3) low memory consumption.
Avoiding coding of surface topology allows, for instance, capture of
scenes with difficult and continuously changing topologies that are
very hard to encode efficiently with triangle meshes. Good memory
performance is of crucial importance since an unrestricted camera
means that the surface can be viewed from an arbitrary direction and
from an arbitrary distance, which makes the demand for resolution
virtually insatiable.

We also introduce a compression step that encodes the DAG to a
non-traversable state for streaming or storage. The compression and
decompression is very fast and reduces the memory consumption
further by a factor of 2-3.

2 Related Work

A comprehensive overview of work related to time-varying geom-
etry is out of the scope of this work. In this section, we mainly
focus on time-varying voxel grids and only briefly compare to other
commonly used geometric representations like triangle meshes and
point clouds.

2.1 Coherence in Voxel Grids

Geometry stored as a dense grid has a predictable, but very high,
memory consumption. An octree allows for spatially homogeneous
regions to be encoded without further subdivision. Efficient encod-
ing of uniform regions has been used extensively, and the special
case when uniform regions are restricted to empty regions, is often
referred to as sparse voxel octrees (SVO). Kämpe et al. [2013] ex-
ploit that surfaces in a voxel grid exhibit many identical regions at
different spatial locations, and encode the grid in a directed acyclic
graph that only needs to store the unique regions.

Time-varying voxel grids can be encoded with a difference encoding
to avoid storing regions that change very little between consecutive
frames. Ma and Shen [2000] combine octree encoding of individual
time steps with difference encoding by identifying spatial regions
that are identical in two or more consecutive time steps. The subtree
of such a spatial region is only stored for the first frame and in each
consecutive time step, until the region alters, the region is encoded
with a single pointer to the subtree.

2.2 Encoding of Sparse Voxel Octrees

The encoding of SVOs is often adapted to specific use cases. To
reduce the memory consumption of SVOs, a single pointer per node
can point to consecutively stored children. By exploiting locality
of references, the majority of the pointers can be encoded with 2
bytes while still maintaining traversability [Laine and Karras 2010].
The SVO can be uniquely represented even without pointers by
storing the sparseness information for each node (the bits indicating
whether a child is empty or not) in a well defined order, e.g., breadth-
first-order [Schnabel and Klein 2006], but before reconstruction of

pointers it is only possible to traverse the SVO in that pre-defined
order.

2.3 Depth Maps

In depth-image–based rendering, the geometry is represented by
depth maps. For time-varying geometry, the stream of depth images
can be encoded with methods similar to conventional video codecs.
Pece et al. [2011] distribute 16-bit depth values in three 8-bit chan-
nels (rgb) to reduce the error when using lossy compression with
available codecs for conventional video. The widespread availability
of conventional video decoders would make it easy to decode such
a depth stream even in hardware, but the codecs are not designed
specifically for depth images. Müller et al. [2013] present an ex-
tension to the high efficiency video coding (HEVC) for multi-view
depth streams to compress blocks of depth values in and between
views combined with exploitation of temporal coherence and evalu-
ate with the MPEG benchmark for auto-stereoscopic displays. The
benchmark consisting of sequences shot from either two or three
depth cameras mounted a short distance apart in a linear array and
facing in the same direction [MPEG 2011].

While streaming of multi-view depth has been demonstrated for
setups of similar views, it has, to our knowledge, not yet been
demonstrated to scale sublinearly with the number of views for a
general setup with many overlapping views from widely different
positions and with different orientations. We believe that a native
3D representation will have advantages in simplicity and storage
when it comes to avoiding redundant encoding of surfaces seen from
multiple views. Native 3D representations also allow for recon-
structed surfaces that, for instance due to depth complexity, cannot
be represented by a small number of depth maps.

2.4 Triangle Meshes

Triangle meshes can be very efficiently rendered due to rasteriza-
tion hardware in GPUs. There are also numerous tools to create,
manipulate and simplify triangles meshes. Artist generated content
is often extended with animation rigs, which simplify the anima-
tion procedure and require very little animation data to be stored,
or transmitted, per frame. Animated meshes that are captured by,
e.g., depth cameras can however be very costly to store and transmit
as all vertex data must be encoded, each frame. Lengyel [1999]
encodes time-varying meshes without rigging information by clus-
tering vertices and matching their trajectories to affine transforms,
which is shown to work well for meshes of constant topology when
the vertex trajectories are from skeletal animation, but not as well
when fitted to captured data. Beeler et al. [2011] assume surfaces
for which a single mesh topology can be defined and used for all
frames, and show how that single mesh can be fitted to the captured
geometry of each frame. With over 1M vertices per frame, streaming
vertex positions at 24 fps still consumes a considerable amount of
bandwidth. Collet et al. [2015] allow mesh topology to change at
keyframes, and quantize the per-vertex data for intermediate frames
to 16bits; This data is then compressed with run-length encoding.
The system isolates the performing actor from the background and
creates reconstructed meshes of only 10k-20k triangles by identi-
fying perceptually important areas (e.g. faces and hands). This
data can be compressed to require 4-8Mbps. In cases where single
characters cannot be isolated, where motifs of higher geometric
complexity are captured, or where a partially dynamic background
must be captured, the amount of triangles required can be much
higher (a frame in an animated feature film, for instance, usually
contains several million polygons) and the bandwidth required will
increase proportionally.



3 The Temporal DAG

In the first part of this section, we describe how we find coherence
in a sequence of sparse voxel octrees and how we encode this in a
single directed acyclic graph with a root per time step. While this
actually allows time-varying resolutions without modifications, we
will assume that the grid resolutions are identical for all time steps.
In the second part, we describe how we reduce the number of bits
required for the pointers in the DAG.

3.1 Coding Coherence

To find coherence, we extend the method presented by Kämpe et
al. [2013] to multiple time steps by keeping a root per time step.
Instead of just searching for spatial coherence within a single time
step, we search for coherence within all time steps. Even though
the input data is different, the method is the same. We search for
coherence in a bottom-up method by arranging the nodes of the
SVOs (of all time steps) in a list per level and processing a level
at a time. I.e., level 0 will contain all the SVO root nodes, in time-
sequential order. Similarly, level n contains all the SVO nodes at
levels n for all time steps. The order is insignificant for correctness,
as long as validity of child pointers (max 8 per node) is ensured.

We search in this new SVO for all subtrees that are identical except
for their spatial or temporal position. Since the spatial position in an
SVO is implicit by the path taken during traversal, and the time step
is implicit by the root we start traversal from, the problem is reduced
to only finding identical nodes in the node lists of each level.

Identical nodes are found by sorting the list of nodes. Each node
consists of a child mask (8 bits) to indicate whether the eight children
are containing geometry or not, and eight pointers (8×32 bits) to
point out the children, and the comparison operator for sorting
simply compares this data. After sorting, all identical nodes are
adjacent in the list, and extracting the set of unique nodes becomes
trivial. The nodes of the parental level are then updated to point to
the corresponding unique nodes. In a tree, all pointers are unique,
but after the pointer update, nodes in the parental level may become
identical, and so we proceed to extract the set of unique nodes one
level at the time. When the top level is reached, we have encoded all
coherence within each frame as well as between frames.

To avoid the peak memory demand of keeping all unreduced SVOs
in memory, the reduction can be applied on subsets of nodes before
making a final reduction that produces the same final DAG. Kämpe et
al. [2013] apply the reduction on a spatial subregion at a time, before
the final reduction. With time-varying voxel data, it is reasonable
to assume that the construction of SVOs will happen a frame at
a time, and therefore we first apply the reduction per frame and
then we merge the per-frame-DAGs into the final DAG. The final
merging can be performed on all frames at once, which requires the
least work. Another option is to do the final merging progressively,
merging the nodes of a frame directly into the final DAG. The
progressive merging does more work, but has an even smaller peak
memory demand and enables progressive capture and processing of
geometry.

When all coherence is found, and the topology of the DAG is
fixed, we compact the DAG by removing allocated pointers for
non-existing children. We store the nodes consecutively in memory
with a single child mask, padded to a 32bit word, followed by the
32bit pointers for each existing child. Whenever we traverse the
nodes of the DAG in a non-predefined order, e.g., while ray casting,
this is the format we use.

3.2 Compression

When memory consumption is more important than traversal speed,
e.g., during streaming and storage, we compress the DAG into a
dense bitstream where the number of bits per pointer is greatly
reduced. While the DAG is compressed, it can only be traversed in a
pre-defined order, but a decompression step recovers the traversable
format again.

Frame 0 Frame 1

Figure 2: Frame-first ordering of nodes. All nodes of a frame are
stored before the nodes of the next frame.

3.2.1 Variable Pointer Size

In preparation for decreasing the size of pointers, we rearrange the
nodes in chronological order based on the time step in which they
are first referenced; they may be referenced in several time steps
(see Figure 2). One good property of the chronological order is that
the streaming of nodes happens in the same order as they will be
requested during playback. Another good property is that it lets us
determine a subset of the nodes that a particular pointer may point to,
since nodes will not have children in a future frame, thus allowing
us to code the pointer with fewer bits:

bits per pointer = dlog2(#nodes in subset)e

We further reduce the subset of nodes by sorting the nodes within
each time step in breadth first order (see Figure 3). Since nodes are
restricted to point to the level below, it is now easy to determine a
dense range of nodes that the pointers may reference. The needed
number of bits per pointer will vary per frame and level, and we
provide the sizes as integers in a header to the bitstream.

5

6

7

0

1 2

3 4

8

9

Level 0

Level 1

Level 2

1 3 50 2 4 6 87 9

Frame 0 Frame 1

Figure 3: We sort the nodes in frame-first order and within each
frame in breadth-first order. This gives a well-defined order, and we
exploit this to reduce the size of pointers.

3.2.2 Implicit Pointers

When a pointer value is restricted to a subset containing only one
node, that pointer value is implicit. We code two types of pointers
implicitly: pointers that are the first reference to a new node and
pointers that are identical in the previous frame. When we find an
opportunity to encode a pointer implicitly, we replace the original
child mask (8-bit) with an extended child mask (16-bit) that encodes
each child to one of the following:



ALLEY : 20483 grid, 70 frames KINECT : 5123 grid, 480 frames BEAST : 10243 grid, 213 frames FACE : 10243 grid, 347 frames
source: 4 virtual static cameras source: 3 Kinect cameras source: 5 virtual moving cameras source: triangle meshes

2.4M tris (1.2M verts) per frame

Figure 4: Test sets for evaluation. All images are raytraced using our DAG data structure. The shading is a convex combination of colors
sampled in the original camera shots. The sample positions are determined by projecting the primary hit onto each camera plane, and the
color samples are weighted by a cosine factor (for the angle between the primary ray and the camera direction) and a binary visibility factor
(determined by ray tracing).

e0 : Empty
e1 : Occupied and identical to previous frame
e2 : Occupied and reference to new node
e3 : Occupied and explicit pointer

To distinguish between normal 8-bit child masks and 16-bit extended
child masks, we start each node in the bitstream with a bit that
indicates the type of child mask.

Pointer values that are encoded as ”reference to new node” are easy
to convert into explicit pointers by keeping track of the first non-
referenced node in each level. Whenever an implicit pointer to a
new node is encountered during linear traversal of the bitstream, it
refers to the first non-referenced node of the level below, due to the
pre-defined order.

Pointer values that are encoded as ”identical to previous frame”
are well defined in a tree, due to the one-to-one mapping between
regions and nodes, and the implicit pointer value can be substituted
with the pointer to the node of the corresponding spatial region
in the previous frame. In a directed acyclic graph, a node can be
reached by several different traversal paths, and hence it can describe
several regions in a single frame. Traversing to these regions in the
previous frame may result in different nodes and, therefore, a more
rigorous definition is required. One solution is to enumerate all
possible traversal paths from the root (of the current frame) that
end up in a specific node, and specify which of the enumerated
paths to use to recover the implicit pointer value in the previous
frame. The number of possible paths can be vastly different, and
specifying the number of bits for the enumeration plus the actual
enumeration may unfortunately consume more bits than we seek
to save. We choose a simplified version, where we enumerate the
paths according to breadth-first order, and only encode a pointer

implicitly when recovery is possible with the first path to the node.
The recovery is then also simplified by our bit stream being stored
in breadth-first order, which means that our linear traversal of the
bitstream corresponds to breadth-first traversal.

4 Results

We compare the performance of our temporal DAG to storing a
separate DAG per frame, to storing a separate SVO per frame, and to
a difference tree coding [Ma and Shen 2000]. First, we evaluate the
ability to code coherence by the number of resulting nodes. Secondly,
we evaluate the final memory consumption, which is affected by the
encoding of the nodes.

Our test data consist of four sequences of time-varying voxel grids,
representing different use cases (see Figure 4). The ALLEY and
BEAST sets are produced from an open source movie project by the
Blender foundation by combining point clouds from several virtual
cameras into SVOs. We produce the point clouds by rendering depth
maps of resolution 2048×2048 from a few very different viewpoints
(see auxiliary video). For the third sequence, FACE, we voxelize
triangle meshes (one per frame) of a facial performance, captured
and reconstructed by Beeler et al. [2011]. Finally, for the KINECT se-
quence, we have captured a performance using three Kinect (version
2) cameras simultaneously. The obtained depth streams (512x424)
were de-noised (temporally and spatially) using two simple bilateral
filters and the resulting point clouds were cropped to a world-space
bounding box. The average number of points inserted per frame is
126k.

Table 1: Node Count of the first frame, consecutive frames, and in total.

First frame Average in consecutive frame Total

Thousands of Nodes Thousands of Nodes Millions of Nodes
Trees DAGs SVO Diff. Tree DAG Temp. DAG SVO Diff. Tree DAG Temp. DAG

ALLEY 1340 150 1340 17.4 150 3.45 93.7 2.54 10.4 0.388
KINECT 24.1 5.91 24.6 8.68 6.00 2.58 11.8 4.18 2.88 1.24
BEAST 359 60.1 316 294 54.5 33.4 67.4 62.7 11.6 7.15

FACE 674 74.4 670 518 70.9 30.8 232 180 24.6 10.7



ALLEY KINECT BEAST FACE

T
ho

us
an

ds
of

N
od

es

0
5

10
15
20
25

Frame 0

10

20

30

Frame 0
100
200
300
400

Frame
0

200

400

600

800

Frame

kb
yt

es

0
5

10
15
20
25
30

Frame
0

40

80

120

Frame 0

500

1000

1500

Frame 0
500
1000
1500
2000

Frame

SVO Difference Tree Non-temporal DAG Temporal DAG

Figure 5: Distribution of nodes and memory consumption over the frames. In ALLEY, the SVO, the non-temporal DAG, and the inital frame is
omitted due to orders of magnitude difference in values (see Table 1 and 2).

4.1 Coherence

Our temporal DAG utilizes a superset of the coherence of the differ-
ence tree, which in turn utilizes a superset of the coherence of an
SVO. The node count of the temporal DAG will therefore always be
less (or equal) to that of a difference tree, and the node count of a
difference tree will always be less (or equal) to that of an SVO per
frame (see Table 1 for total number of nodes).

Both the difference tree and the temporal DAG can exploit the
temporal coherence of geometry that is mainly static, while the SVOs
and non-temporal DAGs cannot. This shows in the first two data
sets, ALLEY and KINECT. ALLEY contains only static geometry
except for a moving character and a swinging bucket hanging in
a rope. The SVOs and the non-temporal DAGs consume a nearly
constant number of nodes (∼1.3M and 150k) per frame (see Table
1). The difference tree and the temporal DAG both consume a large
number of nodes in the first frame (1.3M and 150k nodes) but they
require significantly less nodes for the consecutive frames (17k and
3.5k nodes on average) due to the abundance of static geometry. The
KINECT sequence shows a man in a chair, reading aloud from a book
and gesturing. The torso, legs and chair are stationary (except for
noise), while the head, arms and hands are dynamic. The temporal
DAG and the difference tree exploit the temporal coherence and need
significantly fewer nodes for consecutive frames than they need for
the first frame. Again, the SVO consumes the same amount of nodes
per frame throughout the sequence.

When the data sets do not contain much static geometry, the amount
of coherence in the difference tree coding is significantly reduced.
The third data set, BEAST, contains two characters moving through
a static landscape, but the voxel grid is moving with the characters,
making the whole world move in the voxel grid. The difference tree
only removes a few percent of the nodes compared to an SVO per
frame. The temporal DAG has almost an order of magnitude fewer
nodes, which shows that there exists a lot of coherence even in the
dynamic geometry.

The fourth data set, FACE, is captured with static cameras but the
reconstructed surface is never static, on a macro scale due to the
dynamic facial performance and on a micro scale due to noise in the
capture and surface reconstruction. The difference tree very often
consumes the same amount of nodes as an SVO, but occasionally
some coherence can be found (see Figure 4). The number of nodes
in the temporal DAG is about 5% compared to the SVO and the
difference tree.

4.2 Memory Consumption

We compare the overall memory consumption of our temporal DAG
to a DAG per frame (that only exploits spatial coherence), SVOs,
and difference coded trees. We encode the non-temporal DAG with
the layout proposed by Kämpe et al. [2013] that requires 4 bytes
per child mask and 4 bytes per pointer. We encode the SVOs with
only implicit pointers to new nodes, which require 1 bit per child
to indicate if it exists or not. The SVO then consumes 8 bits per
node, resulting in a structure similar to that presented by Schnabel
and Klein [2006]. We encode the difference tree with our own
method, since Ma and Shen [2000] do not provide implementation
details on how they encode individual nodes, which is necessary
for a comparison of memory consumption. We use a simplified
version of our DAG encoding for the difference tree, where we omit
all explicit pointers and use the implicit pointers throughout. The
enumeration per child then becomes:

e0 : Empty
e1 : Occupied and identical to previous frame
e2 : Occupied and reference to new node

Enumerating each child individually would require 2 bits, resulting
in 16 bits per node. We instead enumerate the child mask per node
with 38 = 6561 enumerations which only requires 13 bits per node.
For leaf nodes, each child is either set or not set and we encode them
with an 8-bit child mask instead. We also use an 8-bit child mask
for internal nodes of the first frame since there is no previous frame.

For mostly static geometry, in ALLEY and KINECT, both the differ-
ence tree and the temporal DAG show similar memory consumption.
Both are good at finding the static geometry, but the temporal DAG
also finds spatial coherence and temporal coherence of non-adjacent
frames and, for ALLEY, the temporal DAG consumes 1.9 MByte
compared to 2.7 MByte for the difference tree (see Table 2). The
non-temporal DAG and the SVO cannot exploit temporal coherence
and therefore is much more memory intensive with 199 Mbyte and
89 Mbyte of memory consumption.

For fully dynamic environments, like BEAST and FACE, the differ-
ence tree is close to the SVO in memory performance. The node
count of the difference tree is always less (or equal), but the slightly
larger nodes, averaging 8-10 bits instead of 8 bits, makes the mem-
ory consumption vary from slightly lower to slightly higher. The
non-temporal DAG averages 160-190 bits per node which is too high
to be amortized by the available amount of spatial coherence per
frame. The temporal DAG consistently has the best overall memory
performance, even though its nodes requires considerably more bits



Table 2: Total memory consumption and bit rate when streaming
24 frames per second.

ALLEY KINECT BEAST FACE

Mbyte SVO 89.3 11.2 64.3 222
Diff. Tree 2.68 5.18 70.0 203

DAG 199 53.7 239 547
Temp. DAG 1.86 5.15 48.8 99.3

Mbit/s SVO 245 4.50 57.9 123
Diff. Tree 7.35 2.07 63.1 112

DAG 545 21.5 215 302
Temp. DAG 5.10 2.06 44.0 54.9

than the tree nodes with an average of 40-80 bits per node. The abil-
ity to encode coherence comes with a cost per node, but the overall
memory consumption is more than compensated by the reduction of
nodes.

4.3 Encoding and Decoding Performance

The time required for reducing the input data (one SVO per frame)
to a single DAG depends on input geometry, grid resolution, and the
total number of frames. For grid resolutions of 10243, the reduction
takes in the order of 1 second per frame for an unoptimized single-
thread CPU implementation. The time taken for pointer compression
(Section 3.2) is negligible in comparison. Pointer decompression
is performed as a linear sweep over the data read from disk with a
cheap conversion from implicit to explicit pointers (see Table 3).

Table 3: Single threaded decode timings for temporal DAG in
milliseconds on an Intel Core i7 2630QM at 2GHz.

ALLEY KINECT BEAST FACE

Unpacking bitstream 51.4 185 1000 1540
Implicit RTNN 12.6 58 248 416
Implicit RITPF 30.6 205 590 973

Total 99.7 543 1850 2940

RTNN: Reference to new node.
RITPF: Reference identical to previous frame.

5 Conclusion and Future Work

We find a significant amount of coherence in time-varying voxel
grids and encode the coherence with a single directed acyclic graph.
The DAG requires us to store a large number of pointers, but we
reduce the number of bits per pointer and show that many of the
pointer values can be stored implicitly. This makes the memory
performance of the DAG superior to voxel representations that en-
code less coherence, for all data sets we have tested. There are, of
course, pathological cases where the coherence will not be sufficient
to compensate for the higher memory consumption per node.

For longer sequences of time-varying voxel data, a single directed
acyclic graph may require too much working memory, since we
accumulate more and more nodes which monotonically increase
the memory consumption for each frame. Similarly to conventional
video codecs, the entire sequence may be divided into many shorter
clips that can be encoded with separate DAGs. This limits the
amount of nodes to keep in memory, but increases the total number of
nodes in the entire sequence. More elaborate methods of composing
several shorter clips could selectively keep, discard, or copy nodes

from a previous clip to a new clip. Such methods could be a superset
of keyframe based approaches. The formulation of such a strategy
is left for future work.

We have shown our method to be feasible for applications such as
(streamable) free viewpoint video (FVV), where difficult surface
topologies and a combination of static and dynamic content is com-
mon, and where the memory requirements are high. This has been
done both for artificial and recorded data.

Only lossless encoding has been considered in this work. To guaran-
tee a limited bit rate, for arbitrary data, the compression has to be
lossy. Noisy input data will lessen the effectiveness of the compres-
sion, and pre-filtering might be necessary to hit a specific bit rate.
The interpretation of lossy in the context of a temporal DAG can be
rather different compared to an SVO and a difference tree, and this
is also a direction of future work that we consider.

Finally, we note that little effort has gone into optimizing our method
for speed, and it is not yet fast enough for real-time encoding, which
would be a requirement for, e.g., a video conferencing application.
This would also be an interesting area for further exploration.

Acknowledgements

This research was supported by The Swedish Foundation for Strate-
gic Research under grant RIT10-003, and The Swedish Research
Council under grant 2014-4559. Assets from the open movie project
Sintel by the Blender Foundation was used to produce the ALLEY
and BEAST datasets. The meshes for the FACE dataset was provided
by Disney Research.

References

BEELER, T., HAHN, F., BRADLEY, D., BICKEL, B., BEARDSLEY,
P., GOTSMAN, C., SUMNER, R. W., AND GROSS, M. 2011.
High-quality passive facial performance capture using anchor
frames. ACM Trans. Graph. 30, 4 (July), 75:1–75:10.

CHEN, J., BAUTEMBACH, D., AND IZADI, S. 2013. Scalable
real-time volumetric surface reconstruction. ACM Trans. Graph.
32, 4 (July), 113:1–113:16.

CHHUGANI, J., AND KUMAR, S. 2007. Geometry engine optimiza-
tion: cache friendly compressed representation of geometry. In
Proceedings of the 2007 Symposium on Interactive 3D Graphics,
9–16.

COLLET, A., CHUANG, M., SWEENEY, P., GILLETT, D., EVSEEV,
D., CALABRESE, D., HOPPE, H., KIRK, A., AND SULLIVAN,
S. 2015. High-quality streamable free-viewpoint video. ACM
Trans. Graph. 34, 4 (July), 69:1–69:13.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREEMAN,
D., DAVISON, A., AND FITZGIBBON, A. 2011. Kinectfusion:
Real-time 3d reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, ACM, New York, NY,
USA, UIST ’11, 559–568.

KÄMPE, V., SINTORN, E., AND ASSARSSON, U. 2013. High
resolution sparse voxel dags. ACM Trans. Graph. 32, 4 (July),
101:1–101:13.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, SGP ’06, 61–70.



LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel oc-
trees. In Proceedings of ACM SIGGRAPH 2010 Symposium on
Interactive 3D Graphics and Games, ACM Press, 55–63.

LENGYEL, J. E. 1999. Compression of time-dependent geometry. In
Proceedings of the 1999 Symposium on Interactive 3D Graphics,
ACM, New York, NY, USA, I3D ’99, 89–95.

MA, K.-L., AND SHEN, H.-W. 2000. Compression and accelerated
rendering of time-varying volume data. In Proceedings of the
2000 International Computer Symposium-Workshop on Computer
Graphics and Virtual Reality, 82–89.

MEAGHER, D. 1982. Geometric modeling using octree encoding.
Computer graphics and image processing 19, 2, 129–147.

MÜLLER, K., SCHWARZ, H., MARPE, D., BARTNIK, C., BOSSE,
S., BRUST, H., HINZ, T., LAKSHMAN, H., MERKLE, P., RHEE,
H., ET AL. 2013. 3d high efficiency video coding for multi-view
video and depth data. IEEE transactions on image processing.

MPEG, 2011. Call for Proposals on 3D Video Coding Technology ,
March. ISO/IEC JTC1/SC29/WG11.

NIESSNER, M., ZOLLHÖFER, M., IZADI, S., AND STAMMINGER,
M. 2013. Real-time 3d reconstruction at scale using voxel
hashing. ACM Trans. Graph. 32, 6 (Nov.), 169:1–169:11.

PECE, F., KAUTZ, J., AND WEYRICH, T. 2011. Adapting standard
video codecs for depth streaming. In Proceedings of the 17th
Eurographics conference on Virtual Environments & Third Joint
Virtual Reality, Eurographics Association, 59–66.

SCHNABEL, R., AND KLEIN, R. 2006. Octree-based point-cloud
compression. In Symposium on Point-Based Graphics 2006,
Eurographics.


