
Technical Report no. 2006-10

Image-Space Dynamic Transparency for
Improved Object Discovery in 3D

Environments

Ulf Assarsson Niklas Elmqvist Philippas Tsigas

Department of Computer Science & Engineering
Chalmers University of Technology and Göteborg University

412 96 G̈oteborg, Sweden

Göteborg, 2006



Abstract

We present an image-space algorithm for dynamic transparency with the purpose of sup-
porting object discovery and access in information-rich 3D visualization environments.
The algorithm is based on multiple rendering passes and detects instances of object occlu-
sion in the image-space using the fragment shader capabilities of modern programmable
graphics hardware, creatingalpha mapsof opacity gradients around the occluded objects.
In essence, the effect is somewhat similar to “X-ray vision” of a superhero. We have imple-
mented a prototype version of our algorithm with real-time rendering performance using a
number of optimizations and speedups on current graphics hardware. To evaluate its use,
we have also implemented three different example applications portraying different scenar-
ios, including abstract visualization, virtual walkthrough, and gaming. Preliminary results
from an empirical user study comparing our technique to standard viewpoint controls indi-
cate that our technique is superior in regards to object discovery efficiency. These results
hold over both completion times as well as correctness of a visual search task.

Keywords: dynamic transparency, occlusion reduction, alpha map, image-space tech-
niques, fragment shaders



1 Introduction

The ability to utilize the full 3D space as a canvas for information-rich visualization appli-
cations is a mixed blessing–while 3D space on the one hand supports an order of magnitude
of more layout opportunities for visual elements than 2D space, visualization designers are
on the other hand faced with a number of new challenges arising from the nature of 3D
space which do not occur in 2D. More specifically, designers must consider thevisibility of
objects when users wish to discover relevant objects, as well as theirlegibility when the user
wants to access information encoded in a particular object. For instance, whereas objects
that do not intersect can never occlude each other in 2D space, this can very well happen in
3D space depending on the viewpoint and the spatial relation between the objects. In the
real world, this phenomenon is especially evident for a guest entering a crowded cocktail
party–the throng of people occludes the individual guests, forcing the newcomer to poten-
tially walk around the whole room to discover his acquintances and as well as to attract
their attention. Even if special care is taken in visualization techniques and presentations
to avoid these situations, this is very difficult to achieve properly, and is unavoidable in the
general case.

Figure 1: Simple 3D scene showing dynamic transparency alpha maps uncovering an F-15
fighter hidden inside a building.

In this paper we describe an algorithm for image-based dynamic transparency designed
to help reduce the impact of inter-object occlusion in 3D visualizations, primarily by im-
proving the visibility of important objects to promote discovery, but also by improving
legibility to facilitate information access of individual objects. The algorithm makes use of
fragment shaders for the new generation of programmable graphics hardware to perform
occlusion detection in the image space and automatically createalpha mapsof opacity gra-
dients to allow the user to see through intervening surfaces and uncover important objects,
somewhat akin to the “X-ray vision” of a superhero. Alpha maps are constructed using
multiple rendering passes in texture buffers by interpolating alpha buffer values to achieve
the desired result. The alpha maps are then blended with the framebuffer, acting as a cumu-
lative alpha map. Objects can be flagged as beingtargetsor not; targets are automatically
uncovered through intervening surfaces, whereas unimportant objects (distractors) are not.
Furthermore, surfaces can also be madeimpenetrableso that they cannot be seen through.
Finally, we distinguish betweenactiveandpassivedynamic transparency, the former pro-
viding a user-controlled “flashlight” of attention for active search, whereas the latter simply
detects all instances of occluded important objects and makes them visible.

We have implemented a version of the dynamic transparency algorithm in a C++ ap-
plication using multiple rendering passes on off-screen texture buffers. We also present
a number of speedups and optimizations to achieve a good implementation of the tech-
nique. Our test results indicate real-time rendering performance on the current generation
of programmable graphics hardware on commodity PCs.

In order to evaluate the usefulness of our technique, we have implemented three dif-
ferent application examples depicting common scenarios within our problem domain: an
abstract 3D environment of simple geometric primitives similar to information visualiza-

1



tion applications, a 3D virtual walkthrough application for a complex building environ-
ment, and a game-like scenario demonstrating the use of dynamic transparency in a 3D
strategy game. Performance measurements on these different applications show interac-
tive framerates on standard computer hardware. We are currently performing a formal user
study comparing the time and correctness performance of human subjects using our tech-
nique as opposed to using standard viewpoint control. Preliminary results from this study
indicates that dynamic transparency technique allows for significantly improved object dis-
covery efficiency compared to standard methods, both in terms of completion times as well
as correctness. In general, dynamic transparency technique seems to be superior for un-
derstanding information-rich 3D visualizations, although realism, visual quality and some
rendering performance must be sacrificed for this.

The contributions of this paper are the following: (i) a consistent model for dynamic
transparency that captures a natural way of achieving high object discovery efficiency;
(ii) an efficient image-space algorithm for dynamic transparency using the new generation
of programmable graphics hardware; and (iii) implementations of three typical scenarios
where dynamic transparency can be useful.

This paper is organized as follows: We first discuss the related work in the field, in-
cluding general occlusion reduction techniques, as well as papers related to employing
transparency for object discovery in particular. We then present our theoretical model for
dynamic transparency and the occlusion problem in Section 3. In Section 4, we give our
algorithm that realizes the requirements put down in the previous section, and in Section 7
we present our results on implementing the algorithm and the performance results. We
discuss these results in section 8. We end the paper with conclusions and a few words on
future work.

2 Related Work

2.1 Navigation and Orientation

No paper on improving the perception of 3D environments is complete without references
to the substantial body of work available on 3D navigation and orientation. However, 3D
navigation addresses a higher-level issue which is caused by a number of different factors
related to 3D environments, occlusion being just one. Nevertheless, relevant work here
includes [6, 13, 22] and many more. Bowmanet al. define the concept ofinformation-rich
virtual environments(IRVEs) [3], a combination of information visualizations within the
framework of virtual environments, yet many of the challenges [25] presented in their work
are directly applicable to any kind of 3D visualization application. The theoretical model
for our technique is partly inspired by this work.

2.2 Non-Photorealistic Rendering

The approach presented in this paper can be applied to both rendering of abstract 3D infor-
mation visualizations as well as general 3D models, but is an inherently non-photorealistic
rendering (NPR) technique. The emphasis lies on conveying important structural or se-
mantic information about a 3D scene or visualization, not necessarily a high-quality visual
appearance.

NPR has in recent years become a popular research area in computer graphics; exam-
ples include painterly rendering [18], hatching [26], and edge and silouette extraction [19].
Although typically not employed directly for visualization, the approach has found a use
in computer-generated technical illustrations. Goochet al. [14, 15] describe the use of
NPR-based silouette extraction and tone shading techniques for automatic and interactive
technical illustrations. Nienhaus and Döllner [24] presents the blueprints method, which

2



employs edge extraction and depth layering to outline and enhance both visible and oc-
cluded features of 3D models. Freudenberget al. [12] introduce another tone-based NPR
primitive that may be useful in this context. Our method can similarly be employed for
technical illustration, especially with the layer control mechanism discussed in Section 3.5,
but this is not the primary purpose of our work.

2.3 Transparency

The algorithm presented in this work makes heavy use of semi-transparent surfaces to re-
duce the impact of occlusion in an information-rich 3D environment as well as to com-
pletely avoid the loss of 3D depth cues. The general linear model for transparency in
computer graphics was introduced by Kay and Greenberg [21]. In order to achieve cor-
rect results, transparent surfaces must be rendered in depth order. Everitt [11] discusses the
depth peelingimage-space algorithm for achieving this on modern graphics hardware based
on the virtual pixel map concepts introduced by Mammen [23] and the dual depth buffers
by Diefenbach [7]. The blueprints [24] technique mentioned earlier uses depth peeling to
outline perceptually important geometrical features of complex models using transparency
and edge detection. Diepstratenet al. introduce view-dependent transparency [8] where
NPR transparency techniques are employed for interactive technical illustrations. While
closely related to our work in regards to the general method, Diepstraten employs a fixed
two-pass depth peeling step to uncover the two foremost layers of transparent surfaces,
whereas our method is based on iterative back-to-front rendering and blending using alpha
maps, and is thus not limited to a specific depth. Furthermore, where the purpose of our
work is to employ dynamic transparency for improved object discovery, view-dependent
transparency is primarily aimed at computer-generated technical illustrations.

The use of alpha blending for exposing hidden content in windowing systems is well-
known (e.g. [17]) but may result in loss of depth cues and legibility. Gutwinet al. [16] ex-
plore a dynamically adapting transparency mechanism based on the distance to the mouse
cursor to avoid this. Multiblending [1] is a more advanced blending approach where many
different image processing techniques are applied separately to different classes of graph-
ical components. Ishak and Feiner [20] takes this a step further by introducing a content-
aware transparency mechanism that dynamically adapts opacity depending on the impor-
tance of various parts of a window. Just like in our work, they employ smooth gradients
to emphasize the continuity of the transparent objects. In addition, their system supports
a magic lens-like [2] focus filter, similar to the active transparency searchlight in our work
(although our version is a three-dimensional magic lens [27]).

Semi-transparency is also commonly used in 3D games and virtual environments to
allow users to see through occluding surfaces; Chittaro and Scagnetto [5] investigate the
merits of this practice and conclude that see-through surfaces seem to be more efficient
than normal 3D navigation, although not as efficient as bird-eye views.

2.4 Cut-Away and Break-Away Views

One popular technique for traditional paper-based technical illustrations is calledcut-away
views, where parts of the depicted object is cut away to reveal interior objects that would
otherwise be hidden from view. Diepstratenet al. present their work on computer-based
cut-away illustrations [9], where a small set of rules are presented to generate an effec-
tive model for interactive technical visualization. Cut-away views are not view-dependent,
however, and thus bear only superficial resemblance to our work.

In the same paper, however, the authors also presentbreak-awayviews, where interior
objects are made visible through the surface of containing objects through image-space
holes. While similar to our work in method, Diepstraten’s technique is simplified by se-
mantic knowledge of inside and exterior objects, and the fact that the break-away view is

3



realized by a single hole. To this end, their approach is to compute the convex hull of inte-
rior objects and using it as a clipping volume when rendering. Our approach, on the other
hand, derives spatial information through sorting and rendering the scene back-to-front,
smoothly blending the gradient outline of targets to the scene buffer in an iterative fashion.

2.5 Importance-Driven Rendering

A generalization of cut-away views, importance-driven rendering assigns importance val-
ues to individual objects in a 3D scene and renders a final image that is a composite of not
only the geometrical properties of the objects, but also their relative importance. This can
be used to achieve various effects for expressing spatial and semantic information about
the scene; Violaet al. employ it for importance-driven volume rendering [28] (IDVR) to
actively reduce inter-object occlusion in the same way that we do in this work. While
the IDVR technique described in the aforementioned paper uses a more general impor-
tance scale than the target vs. distractor dichotomy in our model, Viola’s implementation
(besides being aimed at volume rendering applications) does not provide interactive fram-
erates, whereas our implementation makes use of modern graphics hardware to deliver
real-time performance.

3 Model for Dynamic Transparency

In this section we present our model for the occlusion problem in 3D environments and
describe the dynamic transparency approach to reducing it (see [10] for an extended de-
scription of this model).

3.1 Model

We represent the 3D worldU by a Cartesian space(x,y,z) ∈ R3. Objects in the setO are
volumes withinU (i.e. subsets ofU) represented by boundary surfaces (typically triangles).
The user’s viewpointv = (M,P) is represented by the view and projection matricesM and
P.

A line segmentr is blockedby an objecto if it intersects any part ofo. An objecto is
said to beoccludedfrom a viewpointv if there exists no line segmentr betweenv ando
such thatr is not blocked. Analogously, an objecto is said to bevisible from a viewpoint
v if there exists a line segmentr betweenv ando such thatr is not blocked. An objecto is
said to bepartially occludedfrom viewpointv if o is visible, but there exists a line segment
r betweenv ando such thatr is blocked.

An object can either be flagged as atarget, an information-carrying entity, or adistrac-
tor, an object with no intrinsic information value. Importance flags can be dynamically
changed. Occluded distractors pose no threat to any analysis tasks performed in the envi-
ronment, whereas partially or fully occluded targets do, resulting in potentially decreased
performance and correctness.

The surfaces defining an object volume have a transparency (alpha) functionα(x) ∈
[0,1]. A line segmentr passing through a surface at pointp is not blocked if α(p) <
1 and the cumulative transparency valueαr of the line segment is less than 1. Passing
through a surface increases the cumulative transparency of the line segment accordingly
(multiplicatively or additively, depending on the transparency model).

3.2 Visual Tasks

The occlusion problem typically occurs in the following twovisual tasks:

• object discovery– finding all objectso∈O in the environment; and

4



• object access– retrieving graphically encoded information associated with each ob-
ject.

More concretely, occlusion affects both the visibility and legibility of visual objects in
an environment. Fully occluded objects are not visible and cannot be discovered (without
manipulating the view or the environment), and consequently are illegible and cannot be
accessed. Partially occluded objects are visible and can be discovered (although discovery
efficiency is degraded), but their legibility may be low and thus access is difficult.

3.3 Dynamic Transparency

The general idea behind dynamic transparency is simple: we can reduce the impact of
occlusion by dynamically changing the transparency (alpha) value of individual object sur-
faces occluding (either partially or fully) a target object. This results in fewer fully occluded
objects in the environment and thus directly impacts the object discovery visual task.

The fact that the dynamic transparency mechanism operates on the transparency level
of individual points of surfaces and not whole objects or even whole surfaces is vital; if
whole surfaces or objects had been affected, important depth cues would have been lost.
With the current approach, unoccluding parts of a surface will retain full opacity, providing
important context to the transparent parts of the object. To give additional context, even
occluding surface parts are not made fully transparent, but are set to a threshold alpha value
αT in order to still shine through slightly in the final image. There is a tradeoff here: the use
of semi-transparent occluders will make object access difficult since intervening surfaces
will distort targets behind them. However, it is a necessity in order to maintain the user’s
context of the environment.

We define our model for dynamic transparency through a number of discrete rules gov-
erning the appearance of objects in the world:

(R1) All targets in the worldU should be visible from any given viewpointv.

The first rule is the most basic description of dynamic transparency, and stipulates that
no targets should be fully occluded from any viewpoint in the world. Note that a target may
still be hidden from the user if it falls outside the current view.

(R2) An occluded object is made visible by changing the transparency level of pointsp∈
P of each occluding surfaces from opaque (αs(p) = 1) to transparent (αs(p) = αT ).

The second rule describes the actual mechanics of how to make targets visible through
occluding objects. The selection of the setP is not fixed; depending on the application,
this could either be a convex hull, circle, or ellipse that encloses the occluded object, or the
occluded object’s actual outline.

(R3) Surfaces can be madeimpenetrableand will never be made transparent.

The third rule provides a useful exception to the initial rule; in some cases, we may want
to limit the extent of the dynamic transparency mechanism through the use of impenetrable
surfaces (and objects).

(R4) Objects are allowed to self-occlude themselves.

The fourth and final rule provides another refinement of the previous rules; dynamic
transparency is performed on object-level, even if transparency management is performed
on individual surface points. This means that even if a part of a target is occluded by other
parts of itself, none of its surfaces will be made transparent to show this.

5



3.4 Operation Modes

In addition to the basic operation outlined above, dynamic transparency can be used in
either an active or a passive mode.Passivemode is the standard dynamic transparency
performed on the whole view visible to the user; all occluded objects are revealed auto-
matically without the user having to do anything. This may cause quite a severe impact
on the visual quality of the scene, however, and make it difficult for the user to gain an
understanding of the layout of the scene.

In activemode, on the other hand, the user controls a searchlight (a 2D circle, typ-
ically) on the image plane of the scene specifying on which parts of the world dynamic
transparency should be active. This is a less obtrusive mode of operation than passive
mode and has less impact on the visual quality of the scene, but on the other hand requires
direct manipulation by the user.

3.5 Layer Control

The standard dynamic transparency mechanism, as described above, will peel away all in-
tervening surface layers to reveal occluded targets in a scene. However, in some cases,
we may want to control the maximum number of layers to be peeled away by the mecha-
nism. By introducing this capability to the specification of dynamic transparency, we allow
for special classes of visualizations, such as the one-layer depth technical illustrations dis-
cussed in Diepstratenet al.[8, 9].

4 Image-Space Dynamic Transparency

An important observation that follows from our model of occlusion from the previous sec-
tion is that occlusion can be detected in the image space by simply shooting a ray through
the scene for every pixel that is rendered and checking the order it intersects objects in
the scene. In modern graphics hardware, this essentially amounts to detecting whenever
we are overwriting pixels in the color buffer or discarding pixels due to depth testing. In
other words, programmable fragment shaders are perfectly suited for realizing dynamic
transparency.

However, correct blending of transparency is order-dependent, and thus our algorithm,
as well as most algorithms for transparent objects, needs the objects to be rendered in
back-to-front order. This is a classical problem, since current graphics hardware cannot
do the sorting for us, although suggestions for solutions exist [4]. Usually, depth sorting is
performed on triangle-level. In our algorithm, for non-intersecting objects, it is sufficient to
sort on object-level for normal objects that are opaque by default. For intersecting objects,
sorting must be performed on a per-triangle-level. Intersecting objects are however rare and
usually non-physical. As explained below, objects fully contained within other objects, like
objects in a suitcase or nested Russian dolls, can be correctly treated by specifying a fixed
sort order between a group of objects.

We divide the scene into groups. By default, a group contains one object. All groups
are sorted with respect to their center point, which is precomputed once. The sorting metric
is the signed distance to the group from the eye along the look vector. This is better than
sorting by only the distance from the eye, because the former corresponds to how the z-
buffer works. We use bubble sort, since frame coherency brings the resorting down to an
average cost corresponding toO(n).

If some objects are known never to have target objects behind them, like possibly floors,
ceilings and outmost walls, those objects can safely be rendered to the frame buffer first.

In certain cases, like Russian dolls, the sort order between the dolls should be from the
innermost to the outermost. A fixed rendering order between the dolls is then user-defined
by putting them into the same group with a predefined rendering order, for instance by the

6



order of appearance in the group. E.g., the innermost doll should be rendered first, and
the outermost doll last. This results in a correct transparency, since only the frontmost
triangles of the dolls are visible (unlike for classic transparency). If objects are non-solid,
like a suitcase or a building, and the inside of the non-solid object should be visible around
a target object (see Figure 1), then the triangles of the non-solid object should preferably
be individually sorted back-to-front. For the building in Figure 1 this means that the four
walls are put into four separate groups. This behavior gives the user a tool to specify which
objects that should be regarded as solids and not.

Here is an overview of our algorithm:

• The groups are rendered back-to-front.

• All objects are blended into the frame buffer using the value in the alpha-channel of
the frame buffer, which default is 1 (non-transparent), as blending factor.

• Target objects also post-modify the values in the alpha-channel to a value< 1.

The algorithm needs to fulfill these three criteria:

1. Render all parts of objects (target or distractor) in front of a target object as transpar-
ent.

2. Render each object as a solid, i.e., only the front-most surfaces should be visible.
Thus, the objects cannot be rendered as transparent in an ordinary sense. Back-facing
triangles, or further front-facing triangles, should not be visible through transparent
frontmost triangles.

3. Draw a gradual transition from no transparency to a predefined transparency in a
n-pixel outline region around each target object (see Figure 2).

Algorithm 1 shows an outline of the main algorithm.

Algorithm 1 : Main
Input : set of groupsG.
Output : correctly rendered dynamic transparency scene.
BubbleSort(G), taking advantage of frame coherence.1

for all groups g∈G do2

for all objects o∈ g do3

if o is a targetthen4

renderTargetObject()5

else6

renderDistractorObject()7

Initial requirements for rendering both targets and distractors is that (i) the alpha buffer
is initiated to 1 for each pixel at the start of each frame, (ii) rendering is done back-to-front
on object level, and (iii) the alpha buffer contains the desired blending factor (transparency)
at each pixel.

4.1 Rendering Distractor Objects

1. Render object to the z-buffer only (usingGL LESS), to mask out frontmost surfaces.

2. Blend object to color buffer (usingGL EQUAL).

7



The first step selects the frontmost surfaces of the object. The second blends these
surfaces to the frame buffer, with blending using the alpha values stored in the frame buffer.
These alpha values are 1 by default and less in front of, and in ann-pixel region region
around, target objects.

4.2 Rendering Target Objects

1. Render step 1 and 2 as for distractor objects.

2. Render alpha mask, i.e. multiplicatively blend an alpha mask (see Figure 2) to the
alpha channel of the frame buffer.

The final step ensures that the rendered target is visible by creating a mask that essen-
tially protects the target from being fully overdrawn by following objects.

Figure 2: Alpha mask creation for an occluded target being made visible by dynamic trans-
parency.

4.3 Rendering the Alpha Mask

As specified in Section 3.3, the alpha mask can be any type of shape exposing the underly-
ing target, such as an ellipse or circle. We choose the expanded outline of the object with a
transparency gradient as the alpha mask shape.

Multiplying a constant alpha value to the pixels covered by the target object is easily
done by simply rendering the object to the alpha-channel only and using a color with the
alpha-value set appropriately. Creating then-pixel wide surrounding transition is a little bit
more tricky.

We choose to alternately render to two external full-screen buffers to create a border
around the target object with a smooth transition to full opacity. The resolution can be
allowed to be quite low. We use a size of 128×128. See Algorithm 2 for pseudo code for
the alpha mask algorithm. Refer to Algorithm 3 for the fragment shader pseudo code.

We found that it often looks better to have the transition from full opacity to a low start
alpha valueα0 for the gradient outline, while keeping a higher threshold opacityαT , for
fragments directly in front of the target, maximizing both context and discovery.

8



Algorithm 2 : RenderAlphaMask
Input : target objecto, mask widthn, two buffersB1 andB2.
Output : 128×128 alpha mask blended to the frame buffer.
Enable bufferB1.1

Render the target objecto to the alpha channel only, setting the alpha values toαT ,2

the threshold transparency for objects in front of target objects.
Set bufferB1 as texture.3

Enable rendering to bufferB2.4

for each layer{1. . .n} of maskdo5

Render buffer-sized quad with the fragment shader specified in Algorithm 3.6

Set the rendered buffer as texture and enable rendering to the other buffer. Each7

iteration adds one pixel-wide layer of the transition.
Increase the border alpha valueαB in the shader incrementally starting fromα08

to 1.0.
Disable buffer and activate standard color buffer.9

Multiplicatively blend the screen-size buffer texture to the color buffer (alpha10

values). Note that resolutions may differ, but linear filtering quite efficiently hides
zooming artifacts.
To avoid uggly jagginess at the pixels along the border of the target object due to11

differences in resolution between the color and mask buffers, render the target region
again (Line 2).

Algorithm 3 : FragmentShader
Input : border alphaαB, frame bufferF , screen positionP.
Output : alpha valueαP for pixel at positionP.
bool IsBorderPixel← false;1

for each neighbor N of position Pdo2

IsBorderPixel← F(N).Alpha != 1.0 or IsBorderPixel;3

IsBorderPixel← (F(P).Alpha == 1.0)and IsBorderPixel;4

output IsBorderPixel ? αB : 1.0;5

5 User Study

We hypothesize that users employing dynamic transparency for object discovery in 3D en-
vironments would be more efficient as well as more correct in performing their tasks than
when not having access to the technique. In order to test these hypotheses, we designed
a formal user study comparing the new technique to standard 3D camera navigation tech-
niques. We also developed three separate application examples to use in this evaluation.

We are currently in the process of performing the user study, so only preliminary results
are available at this time. However, analysis of the collected measurements indicates that
both our hypotheses are correct; for all scenarios, subjects are significantly more efficient
(i.e. use less time) and more correct when performing visual search tasks using dynamic
transparency than without.

6 Application Examples

In this section we describe three of the application examples we have developed for evalu-
ating the dynamic transparency technique.

9



Figure 3: ABSTRACT application with dynamic transparency active.

6.1 Abstract 3D World

The first scenario (ABSTRACT) is intended to portray an abstract 3D visualization applica-
tion and consists of a cubic 3D volume of size 100×100×100 filled withn = 200 objects
of randomized position and orientation (see Figure 3 for a screenshot). The objects are
simple unit 3D primitives: spheres, cones, boxes, and torii. Objects are allowed to intersect
but not full enclose each other. 10% to 20% of the objects are flagged as targets and the
remainder as distractors. Distractor objects are randomly assigned green and blue color
component values, while targets were set to a pure red color. The user view is fixed at a
specific distance from the center of the environment cube so that no object can fall outside
of the view frustrum, and can be freely orbited around the focus point to afford view from
all directions. The task amounts to counting the number of targets in each randomized
instance of the environment, with dynamic transparency either active or inactive.

6.2 Virtual Walkthrough

The second scenario (WALKTHROUGH) is a little more complex in nature and designed
to more closely mimic a real 3D walkthrough visualization application. Here, a one-level
floor plan is randomly generated from a simple 16× 16 grid, creating walls, floors and
ceiling as well as ensuring that all rooms were connected with all of its adjacent neighbors
through doorways (see Figure 4 for an example). Again, a number ofn = 100 objects

10



Figure 4: Example floorplan for the WALKTHROUGH application with dynamic trans-
parency inactive and active.

Figure 5: First-person view of the WALKTHROUGH application with dynamic transparency
inactive and active.

are generated and placed in the environment, with one of them being the current target,
the rest being distractors. All objects are made visible through the walls using dynamic
transparency, however. The 3D objects chosen for this scenario were more complex 3D
models, including pets, vehicles, and furniture. The user starts each instance in the center
of the environment and navigates through it looking for the target using FPS1-like controls
involving mouse and keyboard (mouse to pan the camera around, arrow keys to move). The
view is constrained to floor level at all times. After finding the target, the user moves on to
mark its estimated location on a 2D floorplan of the environment (seen from above). See
Figure 5 for a screenshot.

6.3 3D Game

The concept of dynamic transparency has applicability beyond the theme of improving
object discovery for visualization that this paper focuses on; we believe that it could also
prove useful in computer games, where we often may want to temporarily suspend graphi-
cal realism by removing intervening objects in order to improve gameplay. Figure 6 shows
an example from the third example application (GAME), a would-be 3D strategy game we
have developed, rendered in real-time using our algorithm; the player-controlled tank hid-
ing under the cover of the forest is made visible through the foliages in order to help the user
see the friendly units. Also see Figure 1 for another example of a game-like scenario with
an F-15 fighter aircraft hidden inside a hangar being exposed to the player using dynamic
transparency.

1First-person shooter.

11



Figure 6: Applying the image-based dynamic transparency algorithm to units in a 3D real-
time strategy game.

Application Resolution Dynamic Transparency Framerate
ABSTRACT 800×600 no 87

yes 33
1280×1024 no 87

yes 33
WALKTHROUGH 800×600 no 40

yes 11
1280×1024 no 40

yes 11
GAME 800×600 no 300

yes 140
1280×1024 no 188

yes 90

Table 1: Performance for three example applications with and without dynamic trans-
parency active.

7 Results

Table 1 shows the performance of the three example applications with and without dynamic
transparency active. The test was performed on an Intel Pentium 4 desktop computer with 1
GB of memory running Microsoft Windows XP and equipped with an NVidia Geforce 7800
GTX graphics adapter. As can be seen from the measurements, only the GAME application
is fillrate-limited (the bottleneck seems to be buffer switching). For the WALKTHROUGH

application, we are performing dynamic transparency on 50 complex objects, so 11 FPS is
acceptable, if not quite interactive.

8 Discussion

It is important to remember that occlusion is an important depth cue that humans use to de-
termine the spatial relation of objects in our environment; in esssence, the fact that nearby
objects occlude more distant ones help us understand our surroundings. Introducing dy-
namic transparency may then adversely affect this mechanism, and can actually result in
“reverse occlusion”, i.e. the phenomenon that distant objects all of a sudden occlude nearby
objects instead. In our approach, we partly avoid this problem by ensuring that intervening
objects made transparent always retain at least some percentage of opacity in order to shine
through on uncovered objects. This means that the user receives a visual indication of the
existence of the transparent surfaces. Furthermore, in our implementation, we also support
toggling dynamic transparency on and off; while turned off, the user is free to perceive the

12



3D environment in the normal way. Active “flashlight”-mode dynamic transparency can
also help avoid this problem.

Another factor that is important for context is the shape of the alpha mask uncovering
targets. In our image-space algorithm, we make use of an opacity gradient shaped as the
outline of the object. Other alternatives would be to use a circle, ellipse, or a 2D convex
hull of the object, potentially revealing more of the surrounding context of the target but
removing more of the distractors. Our approach strikes a balance between these factors,
but the appropriate method depends on the specific application.

One particular issue with the use of dynamic transparency in particular and transparency
in general, is that it often causes a high degree of visual clutter in a scene that would
otherwise be far less complex. Many users are simply unused to transparent surfaces and
entities, and are easily confused by the side-effects of layering and transparency. While
this may be a matter of training and habit, it is important to recognize this fact and provide
means for the user to turn off the transparency if needed. Alternatively, active transparency,
as mentioned above, may be another, less invasive, option.

9 Conclusions

We have presented a new model for dynamic transparency designed with the purpose of
minimizing occlusion of important target objects in 3D visualization applications. This is
achieved by dynamically adjusting the transparency of 3D surfaces occluding targets, re-
sulting in “superhero-like” vision yet preserving the important context of the surrounding
surfaces and objects. We have further devised an image-space algorithm and implementa-
tion realizing this model, utilizing modern programmable graphics hardware to create the
desired effect. The algorithm uses the standard framebuffer as a cumulative alpha buffer,
rendering the scene back-to-front and blending in alpha maps of target objects to allow for
see-through surfaces. In order to verify the technique’s usefulness for real visualization ap-
plications, we have developed three different example applications portraying typical uses
of the technique. We are currently using these applications for formal user studies involv-
ing human subjects. Preliminary results show that dynamic transparency not only results
in more efficient object discovery, but also that users are more correct with the technique
than without.

10 Future Work

We envision improving our model for dynamic transparency with a more general interest-
based importance scale, allowing users and applications to dynamically specify the relative
importance of individual parts of 3D objects to a very high degree (possibly along the lines
of the IDVR [28] importance model). We will continue working on more techniques for
reducing the impact of occlusion in 3D environments, including the automatic generation
of view-dependent animated exploding diagrams as well as the generation of occlusion-free
grand tours of a 3D environment. In addition, we are interested in pursuing similar avenues
for providing superhuman vision capabilities in information visualization applications.

Acknowledgments

The authors would like to thank Per A. Jonasson for valuable insights into superhero X-
ray vision. Many thanks to John Stasko and the Information Interfaces Research Group at
Georgia Tech for their comments and feedback on the intermediate stages of this work.

13



References

[1] Patrick Baudisch and Carl Gutwin. Multiblending: displaying overlapping windows
simultaneously without the drawbacks of alpha blending. InProceedings of the ACM
CHI 2004 Conference on Human Factors in Computing Systems, pages 367–374,
2004.

[2] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony DeRose. Tool-
glass and Magic Lenses: The see-through interface. InComputer Graphics (SIG-
GRAPH ’93 Proceedings), pages 73–80, 1993.

[3] Doug A. Bowman, Chris North, Jian Chen, Nicholas F. Polys, Pardha S. Pyla, and
Umur Yilmaz. Information-rich virtual environments: theory, tools, and research
agenda. InProceedings of the ACM Symposium on Virtual Reality Software and Tech-
nology, pages 81–90, 2003.

[4] Loren Carpenter. The A-buffer, an antialiased hidden surface method.Computer
Graphics, 18(3):103–108, July 1984.

[5] Luca Chittaro and Ivan Scagnetto. Is semitransparency useful for navigating virtual
environments? InProceedings of the ACM Symposium on Virtual Reality Software
and Technology, pages 159–166, 2001.

[6] Rudolph P. Darken and John L. Sibert. Wayfinding strategies and behaviors in large
virtual worlds. InProceedings of the ACM CHI 96 Conference on Human Factors in
Computing Systems, pages 142–149, 1996.

[7] Paul J. Diefenbach.Pipeline Rendering: Interaction and Realism through Hardware-
Based Multi-Pass Rendering. Ph.D. thesis, 1996.

[8] J. Diepstraten, D. Weiskopf, and T. Ertl. Transparency in interactive technical illus-
trations.Computer Graphics Forum, 21(3):317–325, 2002.

[9] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive cutaway rendering. InProceed-
ings of EUROGRAPHICS 2003, pages 523–532, 2003.

[10] Niklas Elmqvist and Philippas Tsigas. View projection animation for occlusion re-
duction. InProceedings of the ACM Conference on Advanced Visual Interfaces, 2006.
to appear.

[11] Cass Everitt. Interactive order-independent transparency. NVIDIA Corporation,
2001. Seehttp://developer.nvidia.com.

[12] Bert Freudenberg, Maic Masuch, and Thomas Strothotte. Real-time halftoning: A
primitive for non-photorealistic shading. InProceedings of the 13th Eurographics
Workshop on Rendering, pages 227–232. Eurographics Association, 2002.

[13] Shinji Fukatsu, Yoshifumi Kitamura, Toshihiro Masaki, and Fumio Kishino. Intu-
itive control of “bird’s eye” overview images for navigation in an enormous virtual
environment. InProceedings of the ACM Symposium on Virtual Reality Software and
Technology, pages 67–76, 1998.

[14] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-photorealistic
lighting model for automatic technical illustration. InProceedings of the ACM Con-
ference on Computer Graphics (SIGGRAPH ’98), pages 447–452, 1998.

[15] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and Richard F. Riesen-
feld. Interactive technical illustration. InProceedings of the ACM Symposium on
Interactive 3D, pages 31–38, 1999.

14



[16] Carl Gutwin, Jeff Dyck, and Chris Fedak. The effects of dynamic transparency on
targeting performance. InProceedings of Graphics Interface 2003, pages 105–112,
2003.

[17] Beverly L. Harrison, Gordon Kurtenbach, and Kim J. Vicente. An experimental eval-
uation of transparent user interface tools and information content. InProceedings of
the ACM Symposium on User Interface Software and Technology, pages 81–90, 1995.

[18] Aaron Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In
Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH ’98), pages
453–460, 1998.

[19] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg, and Thomas
Strothotte. A developer’s guide to silhouette algorithms for polygonal models.IEEE
Computer Graphics and Applications, 23(4):28–37, 2003.

[20] Edward W. Ishak and Steven K. Feiner. Interacting with hidden content using content-
aware free-space transparency. InProceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 189–192, 2004.

[21] Douglas S. Kay and Donald P. Greenberg. Transparency for computer synthesized
images. InComputer Graphics (SIGGRAPH ’79 Proceedings), pages 158–164, 1979.

[22] Jock D. Mackinlay, Stuart K. Card, and George Robertson. Rapid controlled move-
ment through a virtual 3D workspace. InComputer Graphics (SIGGRAPH ’90 Pro-
ceedings), pages 171–176, 1990.

[23] Abraham Mammen. Transparency and antialiasing algorithms implemented with the
virtual pixel maps technique.IEEE Computer Graphics and Applications, 9(4):43–
55, July 1989.

[24] Marc Nienhaus and Jürgen D̈ollner. Blueprints: Illustrating architecture and techni-
cal parts using hardware-accelerated non-photorealistic rendering. InProceedings of
Graphics Interface, pages 49–56, 2004.

[25] Nicholas F. Polys and Doug A. Bowman. Design and display of enhancing infor-
mation in desktop information-rich virtual environments: challenges and techniques.
Virtual Reality, 8(1):41–54, 2004.

[26] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-time hatch-
ing. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH
2001), pages 581–581, 2001.

[27] John Viega, Matthew J. Conway, George Williams, and Randy Pausch. 3D magic
lenses. InProceedings of the ACM Symposium on User Interface Software and Tech-
nology, pages 51–58, 1996.

[28] Ivan Viola, Armin Kanitsar, and Eduard Gröller. Importance-driven volume render-
ing. In Proceedings of IEEE Visualization 2004, pages 139–145, 2004.

15


