

.sssss

WipeIn - F-ε
- A 3D Action Game

Bachelor's Thesis

Computer Science and Engineering Programme

CHRISTOPHER ANDERSSON JESPER LINDH

MIKAEL MÖLLER MIKAEL OLAISSON

KARL SCHMIDT CARL-JOHAN SÖDERSTEN

ALLAN WANG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2011
Bachelor's Thesis DATX11-09 - Rally Sport Racing Game

1

Abstract

The following thesis describes a case study of 3D game program-

ming. It involves the evaluation of several techniques commonly used

in real-time rendering, as well as some associated �elds such as mod-

elling, collision handling and sound.

We will investigate which of the many options available are the

most e�cient, as well as which areas are preferably put aside, in the

aim of achieving an entertaining and visually appealing 3D computer

game within a short time span.

2

CONTENTS CONTENTS

Contents

1 Introduction 5

1.1 Background . 5
1.2 Purpose . 5
1.3 Problem . 5
1.4 Limitations . 5

1.4.1 Contents . 6
1.4.2 Areas of focus . 6
1.4.3 Open-source code . 6
1.4.4 Computer power . 6

1.5 Method . 6
1.5.1 Choice of programming language and framework . . . 7
1.5.2 API . 7
1.5.3 Development process 8

1.6 Game design . 8

2 Graphics 9

2.1 Pipeline . 9
2.2 The application stage . 10
2.3 The geometry stage . 10
2.4 The rasteriser stage . 12

2.4.1 Hidden surface determination 12
2.5 Shading . 14

2.5.1 The Phong Shading Model 14
2.5.2 Bidirectional Re�ectance Distribution Functions . . . 16
2.5.3 Global illumination . 16
2.5.4 Shadows . 17
2.5.5 Re�ections . 18
2.5.6 Deferred shading . 18

2.6 Method . 20
2.6.1 Shading . 21
2.6.2 Global Illumination . 22

2.7 Future work and discussion 23

3 Particle system 24

3.1 Introduction . 24
3.2 Method . 24
3.3 Results . 25
3.4 Discussion . 26

3

CONTENTS CONTENTS

4 Modelling 27

4.1 Introduction . 27
4.2 Method . 27

4.2.1 Polygonal modelling 27
4.2.2 Splines modelling . 28
4.2.3 Sculpt modelling . 28

4.3 UVW mapping . 29
4.4 Texture mapping . 30

4.4.1 Di�use map . 30
4.4.2 Specular map . 30
4.4.3 Bump map . 31

4.5 Model import . 32
4.6 Results and discussion . 32

5 Physics 35

5.1 Method . 35
5.1.1 Architecture . 36
5.1.2 Algorithms . 37
5.1.3 Collision shapes . 38
5.1.4 Ship motion . 40

5.2 Results and discussion . 41

6 Sound and music 43

6.1 Background . 43
6.2 Method . 43
6.3 Results . 43
6.4 Discussion . 44

7 Conclusion 45

7.1 Results . 45
7.2 Discussion . 45
7.3 Future work . 45

8 Appendix - Game design 52

8.1 Goal . 52
8.2 Controls . 52
8.3 Energy . 52
8.4 Power-ups . 53

8.4.1 General . 53
8.4.2 O�ensive power-ups 54
8.4.3 Defensive power-ups 55
8.4.4 Combos . 55

8.5 Gra�cal User Interface . 56
8.6 Menus . 56

4

1 INTRODUCTION

1 Introduction

1.1 Background

The computer game industry is a relatively new one, but a rapidly grow-
ing one notwithstanding. Although its birth can be traced back as early as
the 1950s [36], with the 1961 game Spacewar! credited as the �rst in�uen-
tial computer game, the modern gaming industry is often considered as the
period following the 1983 North American Game Crash.

Over a decade ago the industry was just $7 billion [40], while in 2007
about $41.9 billion. This number is expected to grow 9.1% annually to $68
billion in 2012, making it fastest-growing component of the media sector
worldwide [14].

Racing games do not �gure among the best selling games though. Be-
tween 2004 and 2009, none of the ten best-selling computer games in Sweden
was a racing game akin to ours [38]. Still, the genre is one of the classical
ones, and the game that has been our major source of inspiration, Wipeout,
is, despite being �rst released in 1995, still a popular game, with new editions
getting developed every other year [61].

1.2 Purpose

The purpose of this project is to design and implement a fully functional 3D
computer game within a limited time frame. Project requirements include
a speci�c emphasis on the graphical parts, i.e., creating a visually appealing
game.

1.3 Problem

When working on such a vast project, the problems encountered are multiple
and diverse. They range from global, conceptual ones to precise, technical
ones. Problems can be risen as early as "What is a computer game?" and
"What makes a game entertaining?". However, as the purpose of this game
lies in the graphics �eld, the main problem will be to evaluate and decide
which rendering techniques will prove to be the most e�cient to reach our
intended goal. Of course, the problem will broaden out to a few other areas
that game programming comprises, such as sounds and music, physics engine
and networking. The subsequent results will hopefully be of great value for
ourselves and other future programmers who intend to create 3D games with
a short time span.

1.4 Limitations

As is hinted in the above purpose, our biggest enemy in this project was
time itself. We had but four months to build a three-dimensional, visually

5

1.5 Method 1 INTRODUCTION

appealing, fully functional and hopefully jolly entertaining computer game,
starting from scratch, while being far from experts in the �eld. It was a
challenge, and to achieve our goal we had to con�ne our ambitions and aim
our focus at certain areas.

1.4.1 Contents

One of the early decisions we took was to design only one track. Should we
continue working on the game in the future, this will evidently be changed.

The environment detailing of the track is also limited, and we had to agree
on choosing just a few of the myriad of suggestions that emerged during the
preliminary track designing.

1.4.2 Areas of focus

Again, it is clearly stated in the purpose of this project that focus had to be
put on graphics, i.e., rendering techniques. Other potential areas of deeper
analysis, such as physics, linear algebra and networking, are therefore only
treated brie�y in this report.

1.4.3 Open-source code

In order to save a lot of precious time, we made use of open-source code as
well as available algorithms at some points, since it was well within the rules
of the project (if not encouraged). Of course, this is accompanied by clearly
stated references in the actual code.

1.4.4 Computer power

Although this might seem obvious, it can be worth mentioning that the
�nished game has since the beginning always been intended to be playable
on a standard personal computer, such as the ones used to create the game.

1.5 Method

Early in the development process, a series of critical choices had to be made,
the very �rst one regarding the type of racing game we wanted to design.
The reason for setting the game in a space environment was purely out of
personal preference. It allowed our imaginations to spin wildly, and ideas
were not as restricted as they would have been if we had chosen a realistic
automobile-based game.

Once the theme had been settled, the nameWipeIn F-ε was agreed upon,
the double video-game pun involving enough geeky humour to satisfy the
most dedicated programmer.

6

1.5 Method 1 INTRODUCTION

Eventually, more crucial issues emerged, among which the following had
to be treated before starting with the game implementation.

1.5.1 Choice of programming language and framework

One of the earliest decisions we had to make was the choice of computer lan-
guage and framework (or IDE, Integrated Development Environment) com-
bination. The interesting candidates were C# / XNA and C++ /Microsoft
Visual Studio.

Both C# and C++ are high-level programming languages well suited for
a project like ours, with lots of available libraries. The reason for choosing
C++ was mainly its portability and generally better performance, together
with the fact that most of us had more experience of it than of C#.

Regarding the choice of framework, we opted for our own implementation,
mainly because it allowed for more �exibility than XNA and required more
actual programming, which we saw as a pleasant challenge.

1.5.2 API

The choice of API (Application Programming Interface) stood between Mi-
crosoft Direct3D and OpenGL. We opted for Direct3D, since it is nowadays
more wide-spread than OpenGL, and we reckoned that being accustomed to
it would be of more value than to its counterpart in future endeavours.

Microsoft Direct3D is a part of Microsoft's DirectX application-program-
ming interface. Direct3D came to light in 1992, based on an API used in
medical imaging and CAD (Computer-Aided Design) software, but was �rst
released as a DirectX component in 1995. Several versions have since then
been developed, with the newest one labelled 11, which was the one we
worked with.

Direct3D is used to render three-dimensional graphics in applications
where performance is important, and uses hardware acceleration techniques
for the 3D rendering pipeline. It also exposes the advanced graphics capa-
bilities of 3D graphics hardware, including Z-bu�ering, anti-aliasing, alpha
blending, mipmapping, atmospheric e�ects and perspective-correct texture
mapping, some of which useful to us in this very project [62].

Additionally, shader model 4.0 was selected as the compile target for our
shader programs, as it reduces the requirement of the application to Direct3D
10 hardware, �rst launched in early 2007.

We will go through the 3D pipeline as well as explain the di�erent steps
in the rendering process in subsequent sections.

7

1.6 Game design 1 INTRODUCTION

1.5.3 Development process

Upon starting the project, the use of a software development methodology,
in particular Agile Development [7], was discussed, but eventually dismissed,
despite the magnitude of the project. We did use a version control software
though, since the nature of the work that awaited us inevitably led to indi-
vidual code editing. For this purpose, Subversion (SVN) was chosen, simply
because it was the one provided to us.

1.6 Game design

The game design is attached as an appendix.

8

2 GRAPHICS

2 Graphics

2.1 Pipeline

When presenting a thesis about 3D programming, a description, albeit brief,
of the graphics rendering pipeline, or simply pipeline, is due. The use of the
metaphorical pipeline derives from the analogy to the physical world, where
a pipeline consists of several stages [30]. In an oil pipeline, for instance,
oil cannot �ow from one stage of the pipeline to another stage unless also
�owing in all other stages. This implies that no matter how fast the fastest
pipeline stage is, the overall speed of the pipeline will always be determined
by the slowest part of the pipeline [1].

The task of a graphics renderer is to generate a two-dimensional image
from a set of data. There are many possible ways of doing this, from tracing
photon paths to algorithms based on fractals, but the most common method
in real-time applications is to use meshes of triangles as the base datatype
and essentially draw the triangles on a canvas. Each vertex, i.e., node, of
the mesh is associated to a set of data�position, surface normal, tangent
& binormal, colour, re�ectivity, etc�for the renderer to use in generating a
correct image.

The basic construction of the pipeline consists of three conceptual stages:
the application stage, the geometry stage and the rasteriser stage. This basic
structure is the nucleus and engine of the rendering pipeline, and each of
these structures is a pipeline in itself, as is illustrated in �gure 2.1.

Figure 1: The rendering pipeline.

Like the aforementioned oil metaphor, it is the slowest part of the pipeline
stages that determines the rendering speed, i.e., the update speed of the im-
ages, often expressed in frames per second (fps). The maximum rendering
speed is thus obtained by tracking down the bottleneck that often emanates
at this slowest part.

The �rst computational technique for rendering solids was ray tracing,
which in essence entails casting a ray from a �ctive eye through a camera
mesh and calculating where it intersects an object present in the scene.[3]

9

2.2 The application stage 2 GRAPHICS

Further ray casts can then be made at the point of intersection, to better
determine its colour, such as casting towards a light source to check for
occlusion or illumination, and casting towards the angle of re�ection. Ray
tracing algorithms are, as a rule, slow to compute and unsuitable for real
time applications. However, they can be made very accurate and encompass
several e�ects that more advanced techniques do not. They are useful when
pre-computing data, such as the precise lighting conditions in a static room,
for use in a real-time setting.

Instead of ray tracing, real-time applications and modern graphics cards
work by manipulating meshes of geometrical primitives, typically triangles,
that are transformed down to 2D space, sorted to determine priority, shaded
to determine their colour, and �nally rasterised into the individual pixels of
a 2D image. An overview of each of these will be presented in turn, as well
as their hardware implementations.

The following sections o�er a brief summary of the theory and research
behind real-time rendering, as well as a description of the rendering pipeline
as implemented on modern graphics hardware. Later, the techniques made
us of will be described in depth.

2.2 The application stage

The application stage relies entirely on the programmer, since it always exe-
cutes on the software, as opposed to the geometry and rasteriser stages that
are also built upon hardware. However, it is possible to implement speed-up
techniques that a�ect the other pipeline stages, for example by decreasing
the number of triangles to be rendered, or through acceleration algorithms
[1].

The application stage calculates and generates a number of important
processes, most notably collision detection, input handling (from keyboard
and mouse) and animation of all sorts, such as texture animation, animations
via transforms and geometry morphing.

The most important task of this stage is to send rendering primitives
(e.g., points, lines, triangles) to the graphics hardware in order to eventually
get the desired output on the screen.

2.3 The geometry stage

The second step of the rendering pipeline is the geometry stage, in which the
3D representation of the scene is projected down to 2D space. In general,
this is done by applying a matrix transform to the vertex positions. A simple
projecting transform can be given as

10

2.3 The geometry stage 2 GRAPHICS

Mp =

1 0
0 1
0 0

 (1)

Mp will transform a 3D vector [x, y, z]′ as Mpx = [x, y]′, by simply drop-
ping the z-coordinate, creating an orthogonal projection.

Simply projecting data will not su�ce in practice though, and the geom-
etry pipeline must support an array of transforms, e.g., rotations, scaling,
translations, shearing, etc. To enable these, homogeneous coordinates are
used, in which the vectors are expanded to 4D to support a greater range of
linear transforms. A point [x y z]′ is represented in homogeneous coordinates
as [x y z 1]′. This enables the use of matrices for translation [35], as

1 0 0 x′

0 1 0 y′

0 0 1 z′

0 0 0 1

x
y
z
1

 =

x+ x′

y + y′

z + z′

1

 (2)

A vector that need remain una�ected by a translational transform can be
represented as [x, y, z, 0]′. This can be practical for items like surface normals
and similar directional data. Several transforms chained together follow the
associativity of matrix multiplication property, i.e., M1(M2x) = (M1M2)x
[35].

It is typical that one does not provide the rendering pipeline with indi-
vidual rotations, scalings, etc, but instead precomputes the aggregate trans-
forms in the application and supply these to the renderer. A few of these
aggregate transforms used in computer graphics are ubiquitous, and there-
fore deserve particular mention.

Mw The model to world matrix, which transforms the vertices of a model
into the main scene coordinate system.

Mv The world to v iew matrix, which transforms from world coordinates
to the camera's view. This generally places the camera at the origin,
looking down the z-axis.

Mp The v iew to projection matrix, which transforms view coordinates down
to 2D space or, more commonly, a clip space cube.

Mvp The v iewport transform, which is a simple translation and scaling to
convert the [0, 1] or [−1, 1] coordinates used in clip space to the [0,
width] and [0, height] dimensions used for the image we render to.

Consumer-oriented hardware implementations of the geometry stage started
with nVidia's GeForce 256 in 1999, which used a �xed-function vertex pipeline.
The user supplied the transforms outlined above and the hardware applied

11

2.4 The rasteriser stage 2 GRAPHICS

them to vertex data. This implementation was relatively swiftly supplanted
by vertex shaders; small, �exible programs that run for each vertex. A ver-
tex shader is able to freely manipulate the data associated with a vertex
and is not limited to the transforms above [41]. However, since these matri-
ces o�er an e�cient and compact description of many common transforms,
and graphics processors are highly e�cient at vector operations, they remain
extremely common [1].

A yet more recent innovation is the addition of geometry shaders, pro-
grams run on the output from the vertex shader, able to generate additional
vertices from this data.

2.4 The rasteriser stage

While rasterisation generally refers to the entire process of taking vector
data and converting it to pixel (raster) data, in the context of the rendering
pipeline the rasterisation stage refers to the speci�c substep of taking the
projected 2D geometry and generating individual pixels.

Historically this was generally done through scanline rendering [12], where,
for each row of the target image, one would maintain a sorted-edge table of
the edges of the polygons in that row, sorted from left to right. This is in
order to generate the span of each polygon for that row, which can be easily
used to determine which polygon applies to each pixel of the row. Scanline
rendering is still e�ective for scenes with a relatively low polygon count, and
hardware implementations are used in devices like the Nintendo DS [63].

2.4.1 Hidden surface determination

When projecting a 3D mesh down to a 2D plane, several primitives end up
being projected onto the same region on the plane of projection. A central
problem of 3D rendering is that for each pixel one needs to determine which
of the primitives mapping to that pixel ought to be the displayed one.

The �rst and simplest solution to this problem is the painter's algorithm
[49], in which primitives are drawn in sorted order, with the most distant
primitive drawn �rst and closest primitive last. Subsequent drawings then
overwrite the previous data, if any. There are, however, several problems
with this approach. First, primitives must be sorted, which is expensive for
any dynamic scene. Second, processing time is wasted on calculations of
pixels that are not visible in the �nal image. Third, artefacts may appear
with primitives that are not unambiguously ordered, i.e., when drawing two
intersecting triangles, one will appear to cover the other.

Coverage bu�ers, or C-bu�ers, were common in real-time graphics in the
mid-90s and can still be used in some situations today [8]. They can be
thought of as a reverse painter's algorithm. The bu�er is a matrix with a
dimension of equal size to the viewport. Primitives are sorted front-to-back,

12

2.4 The rasteriser stage 2 GRAPHICS

and, when drawing, one both draws colour data in the render target and
updates the corresponding region in the C-bu�er, as covered. Pixels marked
as covered are not drawn to in the draw call. This has the advantage of
avoiding expensive colour calculations for hidden surfaces, but the sorting
requirement and issues with ordering remain.

Z-bu�ering [15] is the most common algorithm for solving hidden surface
determination (HSD) today. As with C-bu�ering, a bu�er of equal size to
the render target is created, but where a C-bu�er stored a simple boolean, a
Z-bu�er stores a depth value, typically in a �xed point format (illustrated in
Figure 2). When drawing a pixel, its depth is compared to that stored in the
bu�er. If it is closer, the pixel is drawn; if not, the pixel is discarded. This
has many advantages. We are no longer dependent on a strict ordering of
primitives, although rendering mostly front-to-back improves performance.
Intersecting primitives are handled correctly, although artifacts can appear
for surfaces with very similar depths due to the limited precision of the bu�er.

Figure 2: A Z-bu�er, storing the depth value of a pixel.

The Z-bu�er is ubiquitous in modern real time applications. In both the
DirectX and OpenGL pipelines, geometry is projected not onto a plane but
onto a cube. In DirectX, the cube has the xy-dimensions of [−1, 1] and the
z-dimension of [0, 1]. Any primitive lying outside the cube is clipped by its
edges, and the contents of the cube is what is actually projected onto the
viewport by the viewport transform, using the z-direction as sorting data for
the Z-bu�er.

Several other solutions to the hidden surface problem exist, such as
the Active Edge List used in the original Quake engine, and the Warnock
algorithm[59]. However, they are less relevant today, and sadly describing
all of them lies outside the scope of this thesis.

13

2.5 Shading 2 GRAPHICS

2.5 Shading

Shading is the process of determining the colour of a pixel once it has been
rasterised. The main theoretical framework, in which shading can be un-
derstood, is Kajiya's Rendering Equation [31]. A slightly simpli�ed version
of the equation, where time and spectral dependency are ignored, can be
written as

Lo(x, ω) = Le(x, ω) +

∫
Ω
fr(x, ω

′, ω)Li(x, ω
′)(ω′ · n)dω′ (3)

This states that the outgoing light Lo at a point x and direction ω is
the sum of the emitted light Le and re�ected light. The re�ected light is, in
turn, the incoming light Li, multiplied by the cosine of the angle of incidence
and the value of the bidirectional re�ectance distribution function (BRDF)
fr, summed over all directions ω′ in the hemisphere Ω.

The rendering equation is not, in itself, a full description of light transfer
in reality, as it is applicable exclusively to geometric optics. It does not
account for wave phenomena such as di�raction and polarisation, outgoing
light is assumed to be at the same wavelength, time and place as incoming
light, etc. It is, however, more than su�cient for most situations.

There is currently no known algorithm that accurately solves the ren-
dering equation in real-time, as integrating over a hemisphere is generally
not something one does to any signi�cant degree of accuracy in a few mil-
liseconds. The focus of research is on creating passable approximations to
the solution, using the capabilities of modern graphics hardware to be as
accurate as possible, while maintaining a high frame rate.

The �rst issue to tackle in shading is how many colour samples to use for
each primitive drawn. The simplest option is �at shading, where one colour
is used for each primitive. The next step up from this is Gouraud shading
[26], where colour is calculated for each vertex of the primitive and then
interpolated. These techniques are rarely used today, and modern techniques
are instead based on Phong shading [50], where colour is calculated per pixel
of the primitive, using interpolated values for the surface normal of each
pixel, instead of linearly interpolating the colour itself. This is signi�cantly
more calculation-intensive, but the result is much improved.

2.5.1 The Phong Shading Model

In the original Phong shading model, the radiance of a pixel is calculated as
the sum of three di�erent types of re�ected light: ambient re�ection, di�use
re�ection and specular re�ection. Among these, the di�use and specular
terms need to be calculated for each light source. The �nal pixel colour is
the sum of all terms. The light intensity Ip at a point p in the Phong model
can be calculated as

14

2.5 Shading 2 GRAPHICS

Ip = kaia +
∑

m ∈ lights

(kd(Lm ·N)im,d + ks(Rm · V)αim,s) (4)

Where

ix Ambient, di�use and specular light intensities of the source light.

kx The material's ambient, di�use and specular re�ection constants.

N Surface normal.

L Direction from the surface to the light source.

R Re�ection of −L on the surface, using the Householder transformation
R = 2(L ·N)N − L.

V Viewer direction.

α A measure of the material's shininess. A high shininess means smaller,
more intense specular highlights.

In some situations it can be more e�cient to replace the Phong model's
specular term R·V with a term N ·H, where H is the halfway vector between
the viewer and the light source H = (L + V)/|L + V |. This alteration is
known as the Blinn-Phong model [9], illustrated in Figure 3, and produces
similar results to the Phong model. The advantage of this form is that for a
directional light at in�nite distance, such as the sun in an outdoor scene, H
only needs to be calculated once per light. R, in contrast, must be calculated
separately for each pixel of the scene.

Figure 3: The vectors used in the Phong and Blinn-Phong shading models.

15

2.5 Shading 2 GRAPHICS

2.5.2 Bidirectional Re�ectance Distribution Functions

Recall Kajiya's rendering equation 3, where the outgoing light contribution
from a light source in a direction ω′ was given by

fr(x, ω
′, ω)Li(x, ω

′)(ω′ · n)

The Phong and Blinn-Phong models both provide examples of a BRDF fr
in this framework. They are reasonably simple to calculate, but make a
number of unrealistic assumptions: all lights are assumed to be point lights,
the surface material is assumed to re�ect light isotropically (with no concern
for direction) and ambient lighting is assumed to be equal everywhere. These
are seldom correct, and while the models are reasonable for certain materials,
like paint or plastic, they tend to fail when rendering skin, metal and other
surfaces that do not adhere to their assumptions.

Whatever its failings, as with the standard geometrical transformation
matrices, the model remains a powerful and widely used tool. In initial
hardware implementations of the rendering pipeline, the users were limited
to setting the material and light constants in Blinn-Phong, in the same
way they were limited to setting matrices in the geometry stage. However,
much like the introduction of programmable vertex shaders allowed arbi-
trary transforms in the geometry stage, pixel shaders (also called fragment
shaders) have been introduced to allow for the same in the shading stage. A
pixel shader is a short program that takes, as input, the output of a vertex
shader, linearly interpolated from the output provided by the three vertices
of its triangle, and can run whatever calculations deemed necessary on these,
in order to arrive to a �nal colour value.

Programmable shading allows a much greater range of BRDFs to be im-
plemented in real-time applications. For instance, it is possible to include
a tangent and binormal with the vertex data, along with the usual normal,
in order to calculate re�ectance on anisotropic surfaces, like brushed metal,
more accurately. It is also possible to use texturing techniques to map arbi-
trary constants of a BRDF to points on a surface.

Common general-purpose BRDFs, other than Phong and Blinn-Phong,
include Ward [58] and Cook-Torrence [19]. In addition there are several
specialised models for certain materials, such as Kajiya-Kay [32] for rendering
fur and hair.

2.5.3 Global illumination

One of the more di�cult e�ects to take into account when shading is the
lighting e�ect that di�use light, emitted from one surface, has on the shading
of other surfaces in the scene. In the models previously discussed, this is
typically approximated as a single ambient lighting term that is constant for
the entire scene. Models that attempt to take the scattering of ambient light
into account are referred to as global illumination models.

16

2.5 Shading 2 GRAPHICS

Several global illumination models, implementable in a real-time appli-
cation, exist. One approach is radiosity transfer [25] [4], where the di�use
light in the scene is allowed to �bounce� in multiple passes. The most com-
mon models in games are ambient occlusion models. In these, as a point is
being shaded, one measures how much of the hemisphere of incoming light
is occluded and thence reduces the global ambient light for that point ac-
cordingly. There are several models for ambient occlusion, such as the one
used by Crytek in the game Crysis [48], and the more approximate unsharp
mask method used by Luft et al. [39]

2.5.4 Shadows

An important element of shading is the handling of occluded light sources
and the shadows they cast. There are a few major methods for shadows in
modern rendering.

For a static scene and a static light source, it is possible to pre-calculate
a light map, where the pixels and vertices of the scene are mapped onto their
corresponding level of occlusion. This can be made arbitrarily accurate at
the expense of texture memory, but as was just mentioned, it cannot handle
moving lights or dynamic objects.

There are two major classes of algorithms for producing shadows in real-
time for dynamic scenes. First is the shadow-map algorithm, originally by
Williams [64], in which a surface is considered in shadow if it is further away
from a light source than the closest object in its direction. It works in two
passes. First, the scene is rendered from the perspective of the light and
the z-values are saved to a bu�er. When the scene is rendered normally in
the second pass, the world coordinate of each rendered pixel is transformed
in the same way it was in the �rst pass, and the resulting depth value is
compared to that stored in the bu�er. If the pixel to be shaded has a higher
z-value, then it is occluded.

The main problems with shadow maps are the limited resolution and
the fact that the texels (i.e., the texture pixels) of the shadow map will
not map exactly to pixels in the �nal scene. Areas where there is a lack
of resolution will appear as jagged blocks of pixels instead of the desired
smooth-shadow edge. There are two primary approaches to lessen this. First,
there are techniques that modify the projection used, such as perspective
shadow maps [55] and trapezoidal shadow maps. These often require little
extra work when sampling the shadow map, but generating the shadow map
may be cumbersome, and the altered projection often means that shadow
edges �icker when the observer moves. Complementary to projection-based
techniques are �ltering techniques, like percentage closer �ltering [51] and
variance shadow maps [22]. These use multiple samples in the second pass
in order to compute some form of average, which may impact performance,
but will produce relatively smooth and natural shadows.

17

2.5 Shading 2 GRAPHICS

The other major class of algorithm is shadow volumes [20] (also called
stencil shadows). Here, a surface is considered in shadow if it is contained
within a volume of shadow. The volume is calculated by generating polygons,
stretching from the silhouette edges of any occluder as seen from the light
source, and out to in�nity. The silhouette edges visible to the observer are
then counted for each pixel: a front-facing polygon increments the count,
a back-facing polygon decreases it. Thus, a pixel is in shadow if its count
di�ers from zero. The case where the observer is in shadow must be handled
separately though. An e�cient implementation of this technique using a
stencil bu�er is given by Heidmann [29]. An alternative approach is to count
the silhouette edges away from a pixel and towards in�nity instead.

Shadow-volume�based shadows are sharp for the entire scene, which is
often unrealistic. They may also be quite expensive to rasterise, since in
a complex scene a great number of shadow-volume edges may need to be
generated and drawn.

2.5.5 Re�ections

Re�ections are paramount e�ects that provide the viewer with depth and a
sense of space in a realistically rendered scene. Unfortunately, calculating
accurate re�ections from curved surfaces is a di�cult matter.

For a �at surface, it is possible to generate a matrix transform that
accomplishes the mirroring. Thus, a possible technique is to simply draw the
re�ected objects (and associated light sources) twice, �rst using the re�ection
transform, and then as normal, using the re�ecting surface as a transparent
window to the re�ected world. Unfortunately, a simple matrix transform
generating the re�ected geometry for curved surfaces does not exist.

A common solution to re�ections on curved surfaces is to use some form
of ray tracing, to see what a ray cast in the direction of re�ection will hit. It
is still unfeasible to perform full ray tracing for the entire scene, and there-
fore environment maps are used to speed up the process. An environment
map is a projection of the surrounding geometry, as seen from the re�ect-
ing object, onto some texture. The original environment-map algorithm, by
Blinn and Newell, used a sphere map [11] for its projection, but this and
other parabolic surfaces have largely been superceded by the cube map [27]
in modern applications. Environment-map techniques are approximations,
but it is often very di�cult for the viewer to determine the di�erence between
an accurate re�ection and an approximation for a curved surface.

2.5.6 Deferred shading

In traditional forward rendering, one performs the full shading operation
on the pixels of a primitive as rasterisation is being done. This can be
implemented as either as single pass, in which case the operation is run

18

2.5 Shading 2 GRAPHICS

once for each pixel of the primitive, and information about all light sources
a�ecting the primitive must be included in the draw call, or as multi-pass,
in which case the primitive is drawn once for each light a�ecting it, and the
results are added together.

Both these techniques can be problematic. In a Z-bu�er or painter's-
based algorithm, the primitive being drawn might later be covered by a
di�erent primitive, thus making the previous calculation super�uous. For
single-pass shading, it may be quite di�cult to determine which lights can
be said to a�ect a speci�c draw call, and harder still to implement speci�c
shaders for all possible combinations of material and light. For multi-pass
shading, one might end up either drawing several primitives for a light source
that does not a�ect them, or doing costly calculations to determine which
primitives are to be drawn for each light.

A solution to these issues is deferred shading, �rst introduced by Deering
et al [21] and later expanded by Saito and Takahashi [56]. In a forward
shader, shaded-colour data is drawn directly from primitives, while in a
deferred-shading pipeline, a middle step, called a geometry bu�er (or g-
bu�er), is �rst calculated. The g-bu�er has the same dimensions as the �nal
colour bu�er, and for each pixel it stores the information required to calculate
shading for that pixel, e.g., normal direction, constants of the Blinn-Phong
model, etc (see Figure 4). The exact data stored in the g-bu�er depends on
the type of shading desired.

(a) A geometry bu�er texture storing the dif-
fuse colour of a pixel.

(b) A geometry bu�er texture storing the
surface normal of a pixel.

Figure 4: Two applications of the geometry bu�er.

To create the �nal shaded image, a bounding volume is then drawn for
each light. For each pixel in the bounding volume, an appropriate shader for
that light type is computed, reading the material data from the g-bu�er, cal-
culating the current light's colour contribution and adding this contribution
to the colour value in the �nal image.

Deferred shading has several advantages. Shading calculations for each

19

2.6 Method 2 GRAPHICS

light are done precisely for the pixels a�ected by the light. An arbitrary
number of lights can be used in a scene and typically good performance can
be maintained with several hundred light sources, somewhat depending on
how much of the scene is illuminated by each light.

There are, unfortunately, also a few drawbacks. Deferred shading tech-
niques take a decent chunk of graphics memory to store the g-bu�er and
especially use a lot of memory bandwidth, as the bu�er is continuously read
in the draw call for each light. It is also di�cult to handle transparency in
a deferred shading pipeline; the material data for one pixel is stored in the
bu�er, but when transparency is involved, the colour of a pixel is determined
by more than one material.

2.6 Method

At �rst, a very simple single-pass forward renderer based on the Phong shad-
ing model was developed, in which to build the gameplay systems. Later,
the decision was taken to implement a more extensive multiple-pass renderer
based on deferred shading. The deferred approach allowed for more compli-
cated lighting to create a lively scene, admittedly at the cost of some e�ort,
but resulting in much nicer e�ects.

The renderer itself is implemented as a state machine, where each state
in this abstract renderer represents a set of states in the underlying DirectX
rendering pipeline. The main modes of operation in the renderer, together
with their function, are the following:

ShadowMap

Draw geometry and render to a shadow map texture (illustrated in
Figure 6).

Geometry

Draw geometry and render to the geometry bu�er.

NormalMapGeometry

Draw normal mapped geometry to the geometry bu�er (illustrated in
Figure 4(b)).

SceneLight

Draw regions, render ambient and directional light contribution to the
back bu�er (illustrated in Figure 5(a)).

PointLight, SpotLight

Draw bounding volumes for lights, render light contribution to back
bu�er (illustrated in Figure 5(b)).

Particles

Draw particles to the back bu�er.

20

2.6 Method 2 GRAPHICS

PostProcessing

Apply a shader drawing from the backbu�er, to the backbu�er. This
encompasses e�ects like motion blur and antialiasing.

(a) The scene after the Ambient and Direc-
tional shading pass.

(b) The scene after point lighting contribu-
tions have been added to the previous result.

Figure 5: Lighting passes.

The renderer contains a simple resource manager for its own resources,
which essentially amounts to the geometry bu�er and the various shaders
used for the rendering modes outlined above.

2.6.1 Shading

Using complicated shading models was considered counterproductive, and
the Blinn-Phong model was therefore used for the shading calculations, as
it is simple to implement in a short time frame, has a number of easily
available de�ned-constant sets for various materials and looks reasonably
realistic while yielding excellent performance.

Initially, no bump- or normal maps were utilised. However, this gave
tracks and other less detailed meshes a very unrealistic appearance, and
support for normal mapping in the rendering engine was therefore added
eventually.

During rendering, the properties that need to be used for shading each
pixel in the g-bu�er are stored. To minimise memory space and bandwidth
used, the following 4 textures, in addition to the back bu�er, are maintained:

• A 32 bit R8G8B8A8 2D texture. RGB encodes the pixel's di�use-
re�ection colour in the Blinn-Phong model. A encodes a material index

• A 32 bit R10G10B10A2 2D texture. Here, RGB encodes the world
space normal direction. The 2 bit alpha channel is unused.

21

2.6 Method 2 GRAPHICS

• A 24 bit depth bu�er. Full spatial coordinates are not stored and
instead reconstructed from the texture coordinate and depth bu�er
value.

• Two 1D textures containing the material properties allowed to vary in
the scene: specular colour, shininess, re�ectivity and specular intensity
in the Blinn-Phong model.

During pixel shading, relevant values are loaded from the g-bu�er tex-
tures. The world space position, should it be needed, is created using a
transform from the viewport coordinates and depth. This saves memory
and bandwidth at each shading operation, at the expense of additional vec-
tor operations.

When applying the shading operation for point- and spot lights, only the
relevant pixel shader for pixels that have some likelihood of being a�ected
by the light should be run. To accomplish this, bounding volumes for the
light volume are rendered, when rendering the contribution from a speci�c
light. A pixel is only shaded by a light if the back-facing polygons of the
bounding volume fail the z-test for that pixel and the front-facing polygons
pass it. This is implemented with a stencil bu�er, and is in essence identical
to the method used with shadow volumes.

2.6.2 Global Illumination

Several global illumination techniques were considered for creating a more
realistic image. Unfortunately, due to time constraints, only a few of the
originally planned features were implemented. Shadows and re�ections were
considered the most important, as these components are central in creating
a sense of depth to a rendered image. More advanced techniques, such as
ambient occlusion, were deemed less critical.

For the shadows, a simple shadow-map�based solution (illustrated in
Figure 6) was implemented. The shadow map was chosen because it is
generally simpler to implement than a shadow-volume�based system. To
simplify further, shadows are only drawn for the directional sun lighting in
the scene, not for the point lights or spot lights. This can potentially look
awkward with some lighting con�gurations, but the impact of this can be
minimised by designing the track to ensure the sun is usually the strongest
light present.

A relatively simple static cube map is used for all re�ections. A dynamic
re�ection system was brie�y considered, where a map would be periodically
drawn for each ship and updated with respect to the current environment.
However, the idea was dismissed, once again due to time constraints.

22

2.7 Future work and discussion 2 GRAPHICS

Figure 6: The depth texture used in the shadow map algorithm for directional
lighting.

2.7 Future work and discussion

The list of techniques we wanted to implement, but had to abstain from due
to lack of time, is unfortunately large.

Several features present in the initial plan for the graphics engine were
cut due to time constraints and would be useful avenues for further work
on the project. Notably, screen-space ambient occlusion would enhance the
image quality at reasonably little e�ort. Improving the shadow-map �delity
by using �ltering or cascading shadow maps would also o�er a marked im-
provement, as the current shadows su�er from aliasing issues.

More advanced radiosity techniques were deemed too complicated to be
included in the project given the time limit. We initially intended to feature
ambient-occlusion techniques, as these are generally suited for implemen-
tation in a deferred-shading pipeline, and code was even written in that
purpose in the ambient-lighting shader. But again, it was decided that other
parts of the project were more critical, and occlusion techniques never made
it to the �nal program.

Other planned features that fell victim to our time- and labour con-
straints were an edge-detection�based anti-aliasing shader in the post-processing
stage as well as using dynamic re�ections.

Aliasing issues also crop up in the �nal renderer, and implementing an
anti-aliasing scheme in post-processing would greatly enhance image quality.

23

3 PARTICLE SYSTEM

3 Particle system

3.1 Introduction

A particle system is a set of separate small objects that are set into motion
using some algorithm. Particle systems are used in computer graphics to
simulate phenomena otherwise hard to reproduce with conventional render-
ing techniques [34]. Examples of such phenomena include �re, explosions,
smoke, water �ows, sparks, fog and abstract visual e�ects like glowing trails.
They can also be used for rendering purposes, for examples to simulate the
heterogeneities on the surface of a tree, with more particles being generated
and displayed the closer the camera gets.

3.2 Method

The particle system di�erentiates between two types of particles: emitters
and �ares. The main di�erence between these is that only the �are parti-
cles are actually rendered. The emitter particles, as the name suggests, do
spawn new particles, but these are not displayed; their positions are used
to create light sources in the rendering engine. Flare particles are, however,
continuously rendered until destroyed by the particle system.

A particle is modelled as a single point, which then is rendered as a single
pixel. This might appear to con�ne the �exibility of the particle system, for
instance when it comes to changing size and map texture. There are simple
techniques to resolve this, for example by stretching the particles to lines
or quads (i.e., quadrilaterals made from two polygons). In the latter option
a texture can then be added to the quad, transforming it into a billboard
and �nally turning it to face the camera, as is illustrated in Figure 7. This
technique is known as billboarding and is commonly used to simulate particle
systems and low-detail vegetation [42].

Once the type, position and size of the particles are known, their velocity
and life span remain to be de�ned. Together, these �ve parameters form the
foundation of the particle system.

In order to obtain a sense of authenticity, some sort of randomness in the
creation and movement of the particles is needed. The phenomena intended
to be reproduced in this speci�c game, i.e., �re, explosions, smoke and sparks,
do not follow any visible patterns in real life. Unfortunately, there are no
random number generators inside the shaders, and thus randomness had to
be computed. The solution consisted in generating random numbers with
the CPU, by using the current game time, combined with o�set values, as
variables. These values are then put together to form vectors, which in turn
form textures that are sent to the shader.

A particle system has two distinct stages, the update / simulation stage
and the rendering stage. During the simulation stage, new particles are cre-

24

3.3 Results 3 PARTICLE SYSTEM

Figure 7: If we know the world coordinate of the vector µ, the center position
C (originally the particle's position) and the eye position E (the camera's
position) we can describe the billboard's local frame in world coordinates.

ated according to the emitter particles' properties and the interval between
the updates, and existing particles either have their positions updated or are
removed. The rendering stage then displays the appropriate particles.

3.3 Results

A CPU-based particle system is relatively easy to implement but is limited
due to the communication between the CPU and the GPU. Since all simu-
lations are done on the CPU, all particle data has to be sent to the GPU at
each frame, and on a standard personal computer this limits the amount of
particles to approximately 10000 per frame, since the particle system shares
the GPU bandwidth with several other rendering tasks.

The alternative was to use a GPU-based implementation, where simula-
tion, as well as particle creation and deletion, are instead performed directly
on the graphics card.

In earlier implementations of GPU-based particle systems, stateless sys-
tems using vertex shaders were used, but since they did not store the current
position of particles it was di�cult to have them react with a dynamic en-
vironment. These implementations were therefore only suited for small and
simple e�ects. With the introduction of stream programming in D3D 10,
GPU-based particle systems can be made more advanced thanks to stream
output.

The concept of stream output is to use two bu�ers. One will serve as an
input bu�er for the updated particles, and the other as an output bu�er for
rendering. At each frame the bu�ers will be interchanged, and the stored
particles will be drawn [44]. It is an e�cient way to simulate particle systems,
and two examples of the results can be seen in Figure 8.

25

3.4 Discussion 3 PARTICLE SYSTEM

(a) Explosion. (b) Fire.

Figure 8: E�ects produced with particle systems.

3.4 Discussion

Our particle system is still very primitive. The possibilities are copious,
but again, due to time issues, we did not manage to develop more than
basic explosions and jet �ames. Smoke, magnetic �elds, advanced explosions,
galaxies and sparks are just a few of the examples we discussed in the very
beginning of the project. Moreover, the particle systems we did implement
can be substantially improved and embellished, by for example reducing the
billboards and adding colours.

26

4 MODELLING

4 Modelling

4.1 Introduction

One of the key elements in the creation of a realistic three-dimensional game
is the modelling of the graphical components. Along with the constant ex-
pansion of computer power come possibilities to handle more and more data,
which takes graphical modelling to a whole new level. With an increasing
number of polys (areas) per shape, the wealth of details grows, and as a
result the credibility of the game as well. The computer development also
helps improving the software used for modelling.

An example of this expansion is the �Utah teapot� (Figure 9), �rst mod-
elled in 1975 by Martin Newell, one Bezier control point at a time (further
details in subsequent sections). Since then, the Utah teapot often plays the
role of archetypical model, and it still widely used as a reference in a lot
of modelling softwares and is well-known in the world of computer graphics
[57].

Figure 9: The Utah Teapot.

All modelling was done with 3ds Max (formerly known as 3D Studio
MAX), a modelling, animation and rendering package developed by Au-
todesk Media and Entertainment [6].

4.2 Method

Modern 3D graphics modelling can be divided into three main techniques:
polygonal modelling, splines and sculpt modelling.

4.2.1 Polygonal modelling

In polygonal modelling, surfaces are approximated with the help of vertices
and edges. These form the polygonal meshes, and polygonal meshes consti-
tuted by four vertices connected by four edges form quads, which are the geo-

27

4.2 Method 4 MODELLING

metrical shapes most commonly used in modelling. Polygonal modelling is a
suitable technique when modelling a drawing. Basically, a two-dimensional
map is constructed, extracting the edges one at a time and adjusting the
vertices conforming to the drawing, as is pictured in Figure 10. When re-
peating the procedure along every perspective, a very representative model
of the original drawing is obtained.

Figure 10: Polygonal modelling.

4.2.2 Splines modelling

With the splines technique, surfaces are de�ned by lines and curves. These
are formed by connecting points, and together they constitute the base for
further modelling [60]. Each point's characteristics de�ne these curves' be-
haviour, as well as the amount of control the modeller has over the shapes.
Normal points, akin to vertices in the polygonal-modelling technique, are
referred to as corners. However, to construct smoother connections and to
be able to simulate volumes, one makes use of so-called Bezier points [23],
points with which one can alter with the tangents and thereby enabling mod-
i�cation of the interpolation between the points, as is shown in Figure 11
.

Figure 11: Splines modelling.

4.2.3 Sculpt modelling

The sculpt modelling is still a relatively new technique, where the software
lets the user "sculpt" the model with the help of di�erent tools, analogously
to clay modelling. One works with a surface (a mesh) of polygons, that can
be modi�ed unrestrainedly. This technique enables the detail perfecting to

28

4.3 UVW mapping 4 MODELLING

the point that the results appear photorealistic, as is illustrated in Figure
12, something that would be extremely strenuous with the aforementioned
methods. Sculpt modelling also allows working in layers, starting o� with
a low-resolution model and continuing building upon it. This is a valuable
asset when implementing normal mapping, since one can work on models
with relatively few polygons but with still a high level of details. Normal
mapping is explained more profoundly in Section 4.4.3.

Figure 12: Sculpt modelling (image by ISEETRUTH, courtesy of Wikipedia
http://en.wikipedia.org/wiki/File:Zbrush.PNG).

4.3 UVW mapping

Once the model is �nished, one needs to de�ne how it is to be enveloped
by the accompanying texture. In this aim, UVW mapping is a suitable
technique. It consists in converting a two-dimensional image (a texture) to
a three-dimensional object of a given topology.

Each point in a UVW map corresponds to a point on the surface of
the object, with coordinates u and v, while the third coordinate w is only
used as a height coordinate for complex volumetric textures. The object's
surface is decomposed into smaller parts (like on Figure 13(a)), to avoid
that the texture spreads out improperly, and the points on the texture are
then assigned to XYZ-coordinates on the target surface, according to how
the graphical designer decides to implement the map. Once the texture is
�nished, it is simply wrapped around the object, by applying the correct
colour to the corresponding pixel.

To check that the decomposition is correctly done, one can apply a
checker pattern to the object, since it clearly shows possible inaccuracies.
Figure 13(b) shows an adequately applied texture.

29

4.4 Texture mapping 4 MODELLING

(a) Part UVW mapped. (b) Checker pattern.

Figure 13: UVW mapping technique.

4.4 Texture mapping

Having model information limited to the vertices of a mesh and more detailed
data interpolated between the vertices is severely limiting. A method for
providing additional detail on exactly how the surface properties vary within
a polygon is texture mapping, �rst described by Catmull [15]. Here, each
vertex is mapped to a texture coordinate. To obtain the value of a surface
property at a given point, the texture coordinate is interpolated from the
vertices, and loads the texture data. Texturing is chie�y used to denote the
colour of a point, but any surface or volume information can in principle be
stored using a texture.

4.4.1 Di�use map

Di�use map is the most basic texture. It simply wraps the bitmap image
onto the three-dimensional geometry surface, while displaying its original
pixel colour. Speci�c software can also be used to create pre-rendered texture
e�ects such as shadows, in particular the ones engendered by the ambient
lighting (the ambient-occlusion method described earlier), an approach that
saves a lot of system resources and rendering time, since it spares the renderer
some burdensome calculations. An example of standard di�use mapping can
be seen in Figure 14.

4.4.2 Specular map

A specular map is a bitmap that de�nes the shininess of an object or a part
of an object. The lighter the pixel, the shinier it appears when rendered.

30

4.4 Texture mapping 4 MODELLING

Figure 14: Di�use mapping.

4.4.3 Bump map

One possible use for texturing is to create the appearance of additional geo-
metric detail without adding vertices. The initial method here is known as
bump mapping, where texture values represent height perturbations from an
average, an algorithm �rst described by Blinn [10]. In modern applications,
it is more common to store the surface normal in a texture, known as normal
mapping. A normal map makes use of the RGB channels to represent the nor-
mals, where red, blue and green correspond to the x-, y- and z-coordinates,
respectively, of the surface normal. The obtained bitmap (like the one in
Figure 15) is then used to calculate the adequate shading, depending on the
origin of the light source, the results of which can be seen in Figure 16.

Such mappings are commonly generated from a highly detailed mesh,
in order to make a mesh using fewer polygons, a technique �rst described
by Krishnamurthy and Levoy [33], later expanded by Cohen et al [18] and
Cignoni et al [17].

Figure 15: A normal map.

31

4.5 Model import 4 MODELLING

(a) Without normal mapping. (b) With normal mapping.

Figure 16: The e�ect of normal mapping.

4.5 Model import

Once the objects are modelled and textured, they need to be imported into
the game. It is convenient, if not necessary, to use a model importing software
for that purpose.

A model importer loads the object and its associated �les and returns
an aiScene structure, containing the essential information about the model,
such as textures, meshes, materials and animations. The IDE then inserts
all vertices, indices, UVW-coordinates, etc, into a mesh-list, such as the one
depicted in Figure 17, which is then sent to the renderer.

Figure 17: A mesh list.

4.6 Results and discussion

The model importing software we used, Open Asset Import Library (or sim-
ply Assimp), did, despite its ability to load over 30 di�erent �le types [5]
and its user-friendly design (see Figure 18), have a few drawbacks. It was,
for instance, unable to handle meshes to which more than one material were

32

4.6 Results and discussion 4 MODELLING

assigned, unless dividing them into submeshes (this due to a lack of mem-
ory). The results were that models originally composed of 16 meshes ended
up having more than 300, which in turn led to decreasing performance and
even occasional crashes.

Also, Assimp seemed very sensitive to the number of vertices contained
in meshes, and the time required to import models increased quickly as that
number grew.

Figure 18: A snapshot of Assimp Viewer.

3ds Max turned out to be a suitable modelling software. Its �exible plu-
gin architecture and user-friendly interface, together with the ample avail-
ability of tutorials online, made it an e�ective tool for a Microsoft-oriented
programming environment.

Throughout the project, our modelling technique of choice was polygo-
nal modelling, since it suited our primary objects, i.e., space vessels. We
did also have recourse to the splines technique, in particular when modelling
the track. However, the sculpt technique was not relevant for this speci�c
game, since close-up details were not a priority. In addition, it often requires
additional hardware, such as drawing boards, which we neither had access
to nor ever even contemplated.

We spent a lot of time in the beginning of the project learning the basics
of modelling. None of us had any extensive experience of it, and as a result
a lot of the early modelling was done clumsily and even erroneously. We
noticed, for instance, that models suited for animations may not at all be
suited for computer games, as the settings di�er a lot. UVW mapping, size
of polygon meshes and texture characteristics are all factors that need to be
taken into account when deciding whether or not the model is intended for

33

4.6 Results and discussion 4 MODELLING

a computer game. Which, unfortunately, took us long to realise.

A lot of improvements can be done in the future. We only managed to
implement but a fraction of the plausible modelling techniques. Still, the
results of these are satisfactory, as can be seen in Figures 19 to 21.

Figure 19: Our space ship.

(a) Finish line (b) Hover light

Figure 20: Examples of track features.

34

5 PHYSICS

(a) A snapshot of the game. (b) The track.

Figure 21: More models.

5 Physics

One of the major issues of a computer game simulating real-world scenes
is the approximation of physical reality. In order to do so e�ciently, one
often makes use of a physics engine to simulate physical systems, such as
rigid-body dynamics, soft-body dynamics and �uid dynamics. Considering
the short amount of time we disposed to create the game, we focused only
on rigid-body-dynamics systems. It resulted in e�ects that were realistic
enough for a fast-moving racing game like ours.

Rigid-body dynamics allows movements in three dimensions and can sim-
ulate important physical properties, such as center of mass and moments of
inertia, that are fundamental in the creation of realistic e�ects. However,
rigid-body dynamics does not enable the deformation of objects, which im-
plies that the credibility of our simulated collisions is limited.

5.1 Method

Collision detection is a paramount element in many computer games and in
computer-graphics applications in general. It is a part of the more global col-
lision handling, comprising collision detection, collision determination and
collision response. The three parts' respective aims are quite straightforward.
Collision detection returns a boolean telling whether or not two objects col-
lide, collision determination calculates the actual intersections between ob-
jects and collision response determines what actions are to be taken as a
result of the collision.

It was decided early in the development process that an open-source
physics engine would be used for the collision handling, as writing one from
scratch would have implied an additional couple of weeks of programming
work. After examining a few di�erent ones, Bullet Physics Engine (Figure
22) was opted for, since it was well documented and was used in a variety

35

5.1 Method 5 PHYSICS

Figure 22: The Bullet Physics logo.

of successful movies and games, such as Toy Story 3, Grand Theft Auto IV,
2012 and Hancock, to name a few.

5.1.1 Architecture

Bullet is published under the zlib license, a permissive free software license. It
features 3D collision detection, soft-body dynamics and rigid-body dynamics.

The collision detection provides algorithms and acceleration structures
for closest point queries, as well as ray and convex sweep tests. It is con-
structed following a hierarchical class architecture, as Figure 23 illustrates.

Figure 23: btCollisionWorld.

We only made use of btDiscreteDynamicsWorld, since it provides more
general methods than the basic btSimpleDynamicsWorld.

Within that class is a set of crucial elements, that constitute the core of
the collision detection algorithm:

• The broadphase, a class of algorithms that quickly detects object pairs
that might overlap, i.e., collide

• The collision con�guration, that allows the user to �ne-tune the colli-
sion detection algorithms

36

5.1 Method 5 PHYSICS

• The dispatcher, a customisable mask that instructs Bullet to ignore
speci�c object pairs, deemed unnecessary to �ag and cross-test

• The solver, that performs the last steps in the collision handling, i.e.,
computes the collision determination calculations and causes the ob-
jects to interact properly, taking into account gravity, game logic sup-
plied forces, collisions and hinge constraints.

5.1.2 Algorithms

One of the features that makes Bullet such an e�cient collision-detection
software is the �rst entry in the above list. The broadphase contains al-
gorithms that use the bounding boxes of objects in the world to quickly
compute an approximate list of colliding pairs. The list will include every
pair of objects that are colliding, but may also include pairs of objects whose
bounding boxes intersect but are still not close enough to collide. These ex-
tra pairs will then be eliminated before reaching the solver stage, where the
exact collisions are calculated, which will improve the overall performance
greatly since the associated algorithms are very time-consuming.

Figure 24: Comparison of di�erent broadphase algorithms.

There are several kinds of broadphase algorithms to choose from when
instantiating Bullet [13], all of which substantially improving the O(n2)
quadratic-time complexity implied by cross-testing every object against one
another (n representing the number of objects) [24]. The two most commonly
used are the dynamic AABB tree algorithm (implemented with btDbvtBroad-
phase) and the sweep-and-prune algorithm (or SAP, implemented with the
btAxisSweep range of classes).

The AABB tree [52] broadphase adapts dynamically to the dimensions
of the world and its contents. It is well optimised and constitutes a good

37

5.1 Method 5 PHYSICS

general-purpose broadphase, particularly suitable for handling dynamic worlds
where many objects are in motion, since it has very fast insertion, removal
and update-of-nodes operations.

The sweep-and prune algorithm [37] is also a good general-purpose broad-
phase, with the restraint that it requires a �xed world size, known in advance.
This broadphase has the best performance for typical dynamic worlds, where
most objects have little or no motion.

The benchmark in Figure 24 shows tests run for di�erent broadphase al-
gorithms, where the abscissas represent the timings of the collision-detection
calculations in milliseconds, given a grid of 8192 boxes, and the ordinates are
the percentage of the boxes that are moving. We clearly see that the AAPP
is preferable for a very dynamic environment, whereas if only a few of the
boxes are in motion, SAP is the algorithm of choice. The tests are run by
Bullet Physics.

The SAP algorithm was therefore chosen, since its preferences cohered
with the game, the latter consisting of only a few dynamic objects, set in a
prede�ned world.

Figure 25: Bullet's variety of collision shapes (Picture courtesy of Bullet
Physics. http://www.bulletphysics.com/Bullet/BulletFull/ classbtCollision-
Shape.html).

5.1.3 Collision shapes

Bullet supports a large variety of collision shapes, as can be seen in Figure 25,
and it is important for the sake of game performance, accuracy of collision

38

5.1 Method 5 PHYSICS

and quality of the simulation, to select the most suitable ones.
There are three categories of shapes: btConcaveShape, btConvexShape

and btCompoundShape.
The btConcaveShape is loaded as a polygon mesh and �ts the object, as

is illustrated in Figure 26(a). It is a good alternative for static objects, since
they are likely to involve less collisions and therefore can be enclosed with
more precision without a�ecting the performance.

The btConvexShape is also loaded as a polygon mesh, but as opposed to
btConcaveShape, it encloses the outer volume of the object, as is illustrated in
Figure 26(b). It is therefore a good alternative for dynamic objects, since it
does not require as many calculations as a concave shape. Moreover, Bullet
o�ers a collection of built-in primitive shapes, such as spheres, boxes and
rectangles, to simplify the process further.

The more avanced btCompoundShape allows to store combinations of
convex and concave objects, that, when used properly, results in precise and
fast collision handling. It is illustrated in 26(c).

(a) btConcaveShape. (b) btConvexShape.

(c) btCompoundShape.

Figure 26: Object enclosing with Bullet.

The Bullet manual provides a useful decision map (see Figure 27) that

39

5.1 Method 5 PHYSICS

helps the novice programmer determine which options to go for.

Figure 27: Bullet's decision map for collision shapes.

The ship is thus represented as a btConvexHullShape, since the simpler
option btCompoundShape jeopardised the accuracy, while the more advanced
option btConvexTriangleMesh performed worse.

Regarding the track, btBvhTriangleMeshShape emerged as the obvious
pick, the height map alternative being conceived for environments with un-
even terrain.

Once the collison shapes were de�ned and loaded, what remained to be
done was to attach them to the actual rigid bodies, i.e., the models. They
are the real physical units in the dynamics world, and physical concepts such
as forces, mass, inertia and velocity will have impact on their position and
direction.

Finally, these rigid bodies were added to the world and the instantiating
of the dynamic world was completed.

5.1.4 Ship motion

In order to obtain a high level of credibility, it is essential to simulate the
ship's behaviour properly, i.e., according to real-world space vessels. In com-
puter graphics involving �ying vehicles, the maneuvers are usually arranged
into three rotations around perpendicular axes: yaw, roll and pitch. These
are illustrated in Figure 28.

There are several ways to determine how each rotation shall be com-
puted, and a lot of factors can be put into consideration, such as velocity,
inertia, land relief and vehicle type.

40

5.2 Results and discussion 5 PHYSICS

Figure 28: The yaw, pitch and roll rotations.

The chosen technique consists in keeping the yaw-axis parallel to the
surface normal of the track underneath. The cross product of the yaw axis
and the surface normal is computed at every frame, and when it exceeds
a prede�ned threshold value, the angle of the yaw axis is calculated anew
and adjusted accordingly. As a result, both the roll and pitch axes are kept
steady.

5.2 Results and discussion

The collision detection works �awlessly, but it is unfortunately very basic.
The process of simulating a ship �oating over a track in a realistic way
turned out to be full of unexpected problems, and the method we opted for
in the end was not one we were satis�ed with, rather the one we were least
displeased with.

Our �rst attempt consisted in approximating the ship as a cube, and
have it slide on the track. However, that seemingly logic idea resulted in
wobbly behaviour. The second try was based on a Bullet tutorial, involving
the simulation of a car driving on a road. That approach did work, but the
outcome appeared sti� and unnatural for a space vessel. Besides, modelling
a space ship using a car-collision-handling mold felt very, very cheap, no
matter how far beyond schedule we were.

Eventually we opted for the technique described above, which was, in
fact, but a shortcut of a more advanced idea we had in mind, consisting in
reproducing the �oating e�ect of a lunar lander. We experimented with it,
by generating rays at each corner of the ship, but eventually, as we added
motion to it, the approximation of physical elements, such as forces and
inertia, became too complicated. The trick we had recourse to resulted in a
collision handling that is decent, but sadly not realistic enough for the space
environment the game is set in and the laws of physics derived therefrom.

The lunar-lander idea is de�nitely an interesting scheme to work further

41

5.2 Results and discussion 5 PHYSICS

on in the future.

42

6 SOUND AND MUSIC

6 Sound and music

6.1 Background

Modern computer-graphics techniques are able to render scenes from the real
world in a very realistic way, but without the help of sound e�ects and music,
it is hard, if not impossible, to bring to pass the proper atmosphere. Small
but distinctive sounds are the key to convey the exact feeling one wishes to
compose. To spawn a lifelike virtual world, it is paramount to create the
illusion that the player actually is inside that world. Sound e�ects amplify
what the user feels when playing the game and thus generates this illusion.

Despite that this game is not the type of game where atmosphere and
story are key elements, sound e�ects are important notwithstanding. As-
sociating, for example, sparks, accelerations and collisions to speci�c sound
e�ects will make the virtual world seem more real and will thus enhance the
playing experience remarkably.

6.2 Method

The implementation was done with Microsoft DirectX 11, which, like earlier
versions of DirectX, uses a sound system called DirectSound. However, one
remarkable upgrade with DirectX 11 is that it has an integrated high-level
library called XACT, which stands for Cross-platform Audio Creation Tool.
It can also be used to develop sound systems for XBOX [46].

When implementing the sound engine, a lot of the work consisted in
reading and understanding the API, after which it was crucial to implement
the classes and functions so that they would be easy to merge with the main
program.

XACT supports organising sound and music �les in libraries. This is
done by creating wave-banks. A wave-bank is a way to sort these �les and
to distribute them in a package. This can be done by either saving all
the data on the internal memory (thereby creating a so-called in-memory
wave-bank), or by streaming, which implies reading the data from a bu�er.
The primary disadvantage with the latter is that the playback needs to be
prepared in advance to avoid delays, since the sound does not exist in the
primary memory. The obvious advantage is that one saves a lot of memory.

6.3 Results

We opted for XACT, since it seemed relatively easy. Moreover, the cross-
platform property allows us to use the same implementation, should we want
to implement the game on other platforms than DirectX in the future.

For reasons discussed above, we decided to use the in-memory technique
for sound e�ects and the streaming technique for music �les, the latter being

43

6.4 Discussion 6 SOUND AND MUSIC

in general a lot larger then the former.
One other asset with XACT is that it creates an interface between the

programmer and the sound designer, which basically implies that the pro-
grammer need not know about sound design, and the sound designer need
not know about programming, which could be of great use in a project larger
than this one. This interface enables the sound designer to create variables
that the programmer can make use of and update, such as distances, di-
rections and revolutions per minutes. These variables are then updated in
real-time during the game, creating sound e�ects accordingly. They can be
global variables or instance variables, the main di�erence being that an in-
stance variable is associated to and can only a�ect a speci�c sound object
(called cue), whereas global variables can a�ect all sound objects.

6.4 Discussion

The choice of using XACT as a sound system was well justi�ed. Its func-
tionality and user-friendly design were major assets to us since we were on
a tight schedule. We did however not get to use what could be considered
as XACT's major asset, i.e., the interface between the programmer and the
sound designer.

One of the plausible post-thesis improvements involves memory optimi-
sation. In the current implementation, we are working with WAV �les for
both sound and music, since it seemed a lot easier. However, should the
game expand with more sound e�ects and di�erent themes, a format such as
MP3 would be preferable, since it requires only about a tenth of the memory
of the corresponding WAV �le.

Also, had time not been an issue, we would have liked to add more
advanced e�ects, such as echo in tunnels. We also discussed the use of so-
called 3D sounds, with which one can simulate whence the sound originates,
the speed of the object engendering the sound and the location of it. This
was, for the godzillionth time, left as a future endeavour.

44

7 CONCLUSION

7 Conclusion

7.1 Results

The �nal product is, unfortunately, not as elaborate as was intended. Some
parts are very satisfactory, such as the modelling, while some are less, the list
of which grows longer. The utilised rendering techniques are e�cient, easy
to implement and resulted in visually appealing e�ects, which was indeed
the purpose. However, the renderer can still be improved further by imple-
menting more techniques, and had it not been for the never-ending problems
with program coordination, code merging and model importing, the results
would most likely have been a lot more pleasing.

7.2 Discussion

The outcome of this project is de�nitely not the outcome we foresaw four
months ago.

One of our �rst mistakes was the decision to abstain from using the XNA
framework, and instead to build our own using lower-level code. We were
never able to translate the potential performance gains of optimising our
code into actual quality gains. The time span we were given was simply not
enough. There is no doubt that XNA's set of game asset pipeline manage-
ment tools [43] [47] would have been of great help, and would most likely
have enabled us to produce a more advanced and interesting end product.

When we started working on this project we did not quite conceive the
di�culties involved in such an ample and vast assignment. The sole fact that
our group consisted of seven people from four di�erent programs should have
been enough of a hint that some sort of software development methodology
would be essential. It did, however, not and the consequences of that mistake
would end up causing coordination issues and, alas, group con�icts. With
hindsight, a methodology such as Agile Development [7] would presumably
have resulted in propitious e�ects.

Moreover, the lack of organisation and teamwork had repercussions on
the program itself. Many hours were wasted on synchronising, coordinating
and adapting pieces of individually written code, and many times it had to
be re-edited almost entirely.

7.3 Future work

There are a lot of features we still need to work on. The game design im-
plementation is barely started, and the intended AI feature was never even
brought up during the course of the project. Further, the sound engine only
reached the very �rst step of its development, and a lot of e�ects still need
to be conceived.

45

7.3 Future work 7 CONCLUSION

A multiplayer option, through networking or splitscreen, is yet another
feature that would enhance the gaming experience substantially, as well as
more tracks, ships and power-ups.

46

REFERENCES REFERENCES

References

[1] Akenine-Möller, T., and Haines, E. (2002) Real-time Rendering. Second
Edition. Natick, MA: A K Peters.

[2] Angel, E. (2003) Interactive Computer Graphics: a Top-Down Approach
With OpenGL. Third Edition. Reading, MA: Addison-Wesley.

[3] Appel, A. (1968) Some techniques for shading machine renderings of
solids. Proceedings of the Spring Joint Computer Conference.

[4] Ashdown, I. (1994) Radiosity: A Programmer's Perspective. John Wiley
& Sons, Inc.

[5] Assimp Development Team (2009) Open Asset Import Library Features.
Sourceforge.
http://assimp.sourceforge.net/main_features.html

(5 May 2011).

[6] Autodesk (2011) 3ds Max - 3D Modeling, Animation and Rendering
Software. Autodesk Inc.
http://usa.autodesk.com/3ds-max/ (8 May 2011).

[7] Beck, K. et al. (2001) Manifesto for Agile Development. Agile Alliance.
http://agilemanifesto.org/ (7 Apr. 2011).

[8] Bikker, J. (1999) The Coverage Bu�er. Flipcode.
http://www.flipcode.com/archives/The_Coverage_Buffer_C-

Buffer.shtml. (16 Apr. 2011)

[9] Blinn, J.F. (1977) Models of light re�ection for computer synthesised
pictures. Proc. 4th annual conference on computer graphics and inter-
active techniques.

[10] Blinn, J.F. (1978) Simulation of wrinkled surfaces. Proceedings of SIG-
GRAPH, vol. 12, no. 3.

[11] Blinn, J.F., Newell, M. (1976) Texture and re�ection in computer gen-
erated images. Communications of the ACM, vol. 19 .

[12] Bouknight, W. J. (1970) A procedure for generation of three-dimensional
half-tone computer graphics presentations. Communications of the
ACM.

[13] Bullet Physics Wiki (2010) Broadphase. Bullet Physics.
http://www.bulletphysics.org/mediawiki-1.5.8/index.php?title

=Broadphase (13 May 2011).

47

REFERENCES REFERENCES

[14] Caron, F. (2008) Gaming expected to be a $68 billion business by 2012.
Ars Technica.
http://arstechnica.com/gaming/news/2008/06/gaming-expected-

to-be-a-68-billion-business-by-2012.ars (7 Apr. 2011).

[15] Catmull, E. (1974) A subdivision algorithm for computer display of
curved surfaces. PhD thesis.

[16] Catmull, E. (1975) Computer Display of Curves Surfaces. In Proceedings
of the IEEE Conference on Computer Graphics, Pattern Recognition
and Data Structures. Los Angeles.

[17] Cignoni et al. (1998) A general method for recovering attribute values
on simplifed meshes. IEEE Visualization.

[18] Cohen et al. (1998) Appearance-Preserving Simpli�cation. Proceedings
of SIGGRAPH.

[19] Cook, R., Torrence, K. (1982) A re�ectance model for computer graph-
ics. ACM Transactions on Graphics, vol. 1, no. 1, pp. 7-24.

[20] Crow, F.C. (1977) Shadow algorithms for computer graphics. Computer
Graphics (Proceedings of SIGGRAPH), vol. 11, no. 2.

[21] Deering, M., Winner, S., Schediwy, B., Du�y, C., Hunt, N. (1988) The
triangle processor and normal vector shader: a VLSI system for high
performance graphics. Proceedings of SIGGRAPH, vol. 22, no. 4, pp.
21-30.

[22] Donnelly, W., Lauritzen, A. (2006) Variance shadow maps. Proceedings
of the 2006 symposium on Interactive 3D graphics and games.

[23] Farin, G. (1996) Curves and Surfaces for Computer Aided Geometric
Design - a Practical Guide. Fourth edition. Academic Press Inc.

[24] Goodrich, M.T., Tamassia, R. (2006) Data Structures & Algorithms in
Java. Fourth edition. John Wiley & Sons, Inc.

[25] Goral, C., Torrance, K.E., Greenberg D.P., Battaile, B. (1984) Mod-
elling the interaction of light between di�use surfaces. Proceedings of
SIGGRAPH, vol. 18, no. 3.

[26] Gouraud, H. (1971) Computer display of curved surfaces. IEEE Trans-
actions on Computers, vol. 20, no. 6, pp. 623-629.

[27] Greene, N. (1986) Environment mapping and other applications of world
projections. IEEE Computer Graphics and Applications Archive, vol. 6,
no. 11.

48

REFERENCES REFERENCES

[28] Hansson, H. (2007) Craft Physics Interface. [Electronic] Linköping: In-
stitutionen för Systemteknik.

[29] Heidmann, T. (1991) Real Shadows, Real Time Iris Universe, no. 18,
pp. 23-31. Silicon Graphics Inc.

[30] Hennessy, J., and Patterson, D. (1996) Computer Architecture: A Quan-
titative Approach. Second Edition. Burlington, MA: Morgan Kaufmann
Publishers.

[31] Kajiya, J. (1986) The rendering equation. Proceedings of SIGGRAPH,
vol. 20, no. 4.

[32] Kajiya, J., Kay, T. (1989) Rendering Fur with Three Dimensional Tex-
tures. Proceedings of SIGGRAPH.

[33] Krishnamurthy, K. and Levoy, M. (1996) Fitting Smooth Surfaces to
Dense Polygon Meshes. Proceedings of SIGGRAPH.

[34] Lander, J. (1998) The Ocean Spray in Your Face. Game Developer, vol.
5, no. 7, pp. 13-19.

[35] Lax, P.D. (1997) Linear Algebra. John Wiley & Sons, Inc.

[36] Levy, S. (1984) Hackers: Heroes of the Computer Revolution. New York
City: Anchor Press/Doubleday.

[37] Lin, M.C. (1993) E�cient Collision Detection for Animation and
Robotics. Berkeley: University of California (Ph.D. thesis).

[38] Lindell, M. (2010) The Swedish game
chart 2004-2009. Swedish Games Industry.
http://www.swedishgamesindustry.com/blog/2010/2/16/the-

swedish-game-chart-2004-2009.aspx (7 Apr. 2011).

[39] Luft, T., Colditz, C., and Deussen, O. (2006). Image Enhancement by
Unsharp Masking the Depth Bu�er. ACM Transactions on Graphics,
vol. 25, no. 3, pp. 1206-1213.

[40] Marko�, J. (1994) Sony starts a division to sell game machines. The
New York Times.
http://query.nytimes.com/gst/fullpage.html?res=9E0DE1DA1538

F93AA25756C0A962958260&scp=27&sq=video+game+industry+1995&st=nyt

(7 Apr. 2011).

[41] Maughan, C., and Wloka, M. (2001) Vertex Shader Introduction.
NVIDIA White Paper
http://developer.download.nvidia.com/assets/gamedev/docs/

NVidiaVertexShadersIntro.pdf (2 May 2011).

49

REFERENCES REFERENCES

[42] McReynolds, T., Blythe, D., Grantham, B., and Nelson, S. (1999) Ad-
vanced Graphics Programming Techniques Using OpenGL course notes.
Proceedings of SIGGRAPH.

[43] Microsoft (2004) Next Generation of Games Starts With XNA. Mi-
crosoft News Center.
https://www.microsoft.com/presspass/press/2004/mar04/03-24

xnalaunchpr.mspx (7 Apr. 2011).

[44] Microsoft (2011) Stream-output Stage (Direct3D 10) Msdn library
http://msdn.microsoft.com/en-us/library/bb205121(v=vs.85).aspx

(14 May 2011).

[45] Microsoft (2011) X3DAudio overview Msdn library.
http://msdn.microsoft.com/en-us/library/ee415714(v=VS.85).aspx

(5 Apr. 2011).

[46] Microsoft (2011) XACT overview Msdn library.
http://msdn.microsoft.com/en-us/library/ee416126(v=VS.85).aspx

(10 Apr. 2011).

[47] Microsoft (2009) XNA Game Studio Msdn library.
http://msdn.microsoft.com/library/ee416788(VS.85).aspx

(7 Apr. 2011).

[48] Mittring, M. (2007) Finding Next Gen-CryEngine2. SIGGRAPH 2007
Advanced Real-Time Rendering in 3D Graphics and Games course
notes.

[49] Owen, S. (1998) Painter's algorithm. ACM Siggraph
http://www.siggraph.org/education/materials/HyperGraph/

scanline/visibility/painter.htm (8 May 2011).

[50] Phong, B.T. (1975) Illumination for computer generated pictures. Com-
munications of the ACM 18..

[51] Reeves, W., Salesin, D., and Cook, R. (1987) Rendering antialiased
shadows with depth maps. Proceedings of SIGGRAPH, vol. 21.

[52] Samet, H. (1989) The Design and Analysis of Spatial Data Structures:
Computer Graphics, Image Processing and GIS. Reading, MA: Addison-
Wesley.

[53] Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. (2001) Texture
Mapping Progressive Meshes. Proceedings of SIGGRAPH.

[54] Scanlon, J. (2007) The video game industry outlook: $31.6 billion and
growing. Bloomberg Businessweek.

50

REFERENCES REFERENCES

http://www.businessweek.com/innovate/content/aug2007/id2007

0813_120384.htm?chan=search (7 Apr. 2011).

[55] Stamminger M. Drettakis G. (2002) Perspective Shadow Maps. Proceed-
ings of SIGGRAPH, vol. 21, no. 3.

[56] Takafumi, S., Tokiichiro, T. (1990) Comprehensible rendering of 3-D
shapes. Proceedings of SIGGRAPH, vol. 24, no. 4, pp. 197�206.

[57] Torrence, A. (2006) Martin Newell's Original Teapot. New York, NY.

[58] Ward, G. (1992) Measuring and Modeling Anisotropic Re�ection. Pro-
ceedings of SIGGRAPH.

[59] Warnock, J. (1969) A hidden surface algorithm for computer generated
halftone pictures. University of Utah.

[60] Watt, A., and Watt, M. (1992) Advanced Animation and Rendering
Techniques�Theory and Practice. Addison-Wesley.

[61] Wikipedia (2011) List of Wipeout video games. Wikipedia.
http://en.wikipedia.org/wiki/List_of_Wipeout_media (7 May
2011).

[62] Wikipedia (2011) Microsoft D3D. Wikipedia.
http://en.wikipedia.org/wiki/Microsoft_Direct3D (7 Apr. 2011).

[63] Wikipedia (2011) Scanline Rendering. Wikipedia.
http://en.wikipedia.org/wiki/Scanline_rendering (24 Apr.
2011).

[64] Williams, L. (1978) Casting curved shadows on curved surfaces. Pro-
ceedings of SIGGRAPH, vol. 12, no. 3.

51

8 APPENDIX - GAME DESIGN

8 Appendix - Game design

This appendix contains the original WipeIn - F-ε game design. As has been
mentioned before, time beat us quite roughly and we were able to implement
but a smidgen of the following ideas. In the unlikely event that this game
should indeed have a future, this is what is to be expected.

8.1 Goal

The goal of the game is to circle the track as quickly as possible. The number
of laps to complete is adjustable in the corresponding menu, as is explained
in Section 8.6, and ranges from one to 20, with the default value being three.

8.2 Controls

The space ships are controlled with the keyboard and mouse. Available func-
tions are accelerate, decelerate, turn left, turn right, merge left, merge right,
use o�ensive power-up, use defensive power-up and use combo of power-ups.
The default keys for these operations are w, s, d, a, e, q, left mouse button,
right mouse button and middle mouse button respectively.

When the player holds down the accelerate button, the ship will accel-
erate until it reaches the maximum speed. The acceleration will trigger a
jet-�ame e�ect from the ship's exhaust pipes and a cool thrust sound will be
heard. When the player holds down the decelerate button, the ship will do
so until it reaches 10% of its maximum speed.

The turn left / turn right commands cause the ship to rotate accordingly
along its yaw-axis as well as slightly along its roll-axis, and animated e�ects
on the ship's wings help creating a realistic impression. The commands are
similar to the accelerate/decelerate ones, i.e., the ship keeps turning until
the player releases the key.

The merge left / merge right commands move the ship slightly to the
corresponding direction without rotating, allowing the player to make small
adjustments to the ship's position on the track.

The use o�ensive / defensive power-up commands trigger the power-up.
Should the player be out of them, a clicking sound akin to that of an empty
gun is heard, and a red empty circle is seen on the corresponding power-up's
icon on the system bar (as described in Section 8.5).

8.3 Energy

A ship gathers energy that is necessary to use power-ups. When the energy
level is below 100%, it constantly increases until it reaches the maximum
level. This maximum level can be heightened by a certain power-up. The
ship's energy capacity, as well as energy regenerating speed, depends on the
ship type.

52

8.4 Power-ups 8 APPENDIX - GAME DESIGN

The energy is displayed in the middle of the status bar, illustrated with
a circle with di�erent colours; gold, representing energy, and white, repre-
senting the lack of it.

Each player's interface is equipped with a view�nder, that the player
controls with the mouse. The view�nder is used to aim the �re at other
players, in order to shoot them down.

8.4 Power-ups

8.4.1 General

A power-up is a miscellaneous component commonly used in computer games.
Power-ups bene�t or add extra abilities to the player's character, or in this
case, ship.

(a) O�ensive. (b) Defensive.

Figure 29: Power-ups.

The power-ups are scattered on prede�ned locations all over the map,
�oating slightly over the track. The nature of the power-up, i.e., o�ensive or
defensive, is decided randomly. A player picks up a power-up by steering its
ship on it, and once it is done the spot is deprived of power-up for 30 seconds,
after which a new random one will emerge. Upon picking up a power-up,
a sound will be heard and the player will be able to see a corresponding
symbol on the status bar. However a player's ship can only store one power-
up of each type at a time, and therefore a ship that drives over a power-up
spot while already having a power-up of that sort will have no consequences
whatsoever.

In order to use a power-up, a ship needs to have enough energy to do
so. The energy level is, as previously mentioned, constantly increasing while
playing, and decreases when a power-up is used.

53

8.4 Power-ups 8 APPENDIX - GAME DESIGN

8.4.2 O�ensive power-ups

There are few di�erent o�ensive power-ups available in the game, recognis-
able thanks to the missile-inspired design (see Figure 29(a)).

Missile

The use of a missile necessitates 100% of the energy level, and therefore
a player needs to wait until the energy has reached its maximum before
being able to shoot. Once triggered, the missile will blast o� in a
velocity higher than that o� the ship, and will be accompanied by a
jet �ame and a speci�c sound. In the event that it hits another player,
an explosion will follow and the hit ship will slow down abruptly.

The power-up corresponding to the missile contains three of them,
which implies that the player will not be able to pick up any other
o�ensive power-ups until all three missiles have been �red.

Seeking missiles

A seeking missile is similar to a missile, the di�erence being, as the
name suggests, that it follows the enemy ship until reaching it or crash-
ing into a wall. This implies that it is possible to shake o� a seeking
missile by appropriate manoeuvres. Also, the corresponding power-up
only contains one item, i.e., once the seeking missile has been released,
the player can pick up o�ensive power-ups anew.

A seeking missile follows an enemy ship for no longer than ten seconds,
after which it continues in the last computed direction until colliding
with an object, ship or wall.

Laser

A ship might also collect a laser power-up. A laser requires only 25% of
the maximum energy level, and can be used eight times per power-up.
When activated, the laser generates a straight red ray that reaches the
destination instantly. An enemy ship getting hit by a laser loses 20%
of its energy, as well as half of its speed. The laser is also accompanied
by a characteristic sound.

Magnetic ray

When a player hits an enemy ship with a magnetic ray, both ships are
connected by an invisible string that drags them closer to each other,
in other words slows down the enemy ship and increases the speed
of the attacker. In addition, whilst the ray is engaged, the rear ship
drains the energy of the former. The ray is active until the ships are
separated by a wall or until the emitter is, in turn, hit by a third ship.

54

8.4 Power-ups 8 APPENDIX - GAME DESIGN

8.4.3 Defensive power-ups

The defensive power-ups also have an adequate design, as can be seen in
Figure 29(b).

Shield

When a ship acquires a shield power-up it is activated automatically.
A shield then pops out at the ship's rear and a new energy status bar
emerges on the player's interface, corresponding to the shield's state.
A shield gives full protection against lasers and magnetic rays but only
halves the e�ect of the missiles. When a shield has been hit six times
it is no longer e�ective and it fades out.

Noos

The noos power-up provides the ship with a powerful turbo e�ect,
increasing the speed to twice the original maximum value. When acti-
vated, the noos induces the jet �ame generated from the ship to turn
blue and produces a swooshing sound. The e�ect continues until all
energy is utilised.

Gravitational �eld

A gravitational �eld is a static power-up, that once activated �oats idly
on the spot where it was released for 30 seconds, or until an enemy ship
drives through it. The e�ects of doing so include decreasing speed and
less responsive controls for ten seconds. Releasing a gravitational �eld
requires 75% of the launcher's maximum energy, and it can only be
done once per power-up.

Mines

Mines are also static power-ups that, once released, stay on the same
spot. When a ship �ies over a mine an explosion occurs, resulting in
the ship getting twirled around. Both the releasing of and the �ying
over a mine are followed by characteristic sounds. The mine power-up
holds three mines, and again, once these are utilised the player can
pick up a new defensive power-up.

8.4.4 Combos

A player that possesses both o�ensive and defensive power-ups has the possi-
bility to combine these into a combo. The nature of the combo, i.e., o�ensive
or defensive, depends on the power-ups that constitute it. A combo is much
more e�cient than a normal power-up. The energy level required to activate
a combo is the same as that of the most energy-craving power-up composing
it. When a combo is triggered it utilises all power-ups included.

55

8.5 Gra�cal User Interface 8 APPENDIX - GAME DESIGN

Missile - gravitational �eld

When �ring a missile or seeking missile while possessing the gravita-
tional �eld power-up, the missile hitting a target will have more e�ect
on it, i.e., the deceleration will be more intense and will last �ve seconds
longer.

Magnetic ray - shield

This combo has the same e�ect as the magnetic-ray combo, but in
addition, the screen of the targeted player will turn black for eight
seconds.

Laser - mine

This combo works just like the laser, with the additional feature that
the targeted ship's shield is useless against it.

8.5 Gra�cal User Interface

When playing the game, the screen contains a status bar, located on the lower
right-hand side. This bar provides the user with all necessary information
relevant to the ongoing game, such as speed, energy level, available combos,
laps done and laps remaining.

8.6 Menus

Upon starting the game, the player is greeted with a main menu, where
several choices are available: start new game, options, credits and quit.

The user navigates through these options with the help of the arrow keys,
and selects one by pressing return. An arrow icon next to the selected option
provides information on the selected menu. This navigation is accompanied
by sound e�ects.

Start new game

This option is followed by several other choices, such as track selection,
ship type, number of laps, number of opponents and level of di�culty.

Options

This sub-menu contains additional system options, such as keybind-
ings, resolution, sound settings and graphics settings.

Credits

Upon selecting this option, a scrolling list of the programmers and
game designers is displayed, accompanied with �ashy animations and
pumping music that help create the illusion that the game makers did,
indeed, surpass the very highest criterias of excellence.

56

8.6 Menus 8 APPENDIX - GAME DESIGN

Quit

As the name suggests, this option exists the program, with the manda-
tory prompt dialog box inquiring if the user is, in fact, thoroughly and
unreservedly certain that he or she really wishes to close the applica-
tion.

57

	Introduction
	Background
	Purpose
	Problem
	Limitations
	Contents
	Areas of focus
	Open-source code
	Computer power

	Method
	Choice of programming language and framework
	API
	Development process

	Game design

	Graphics
	Pipeline
	The application stage
	The geometry stage
	The rasteriser stage
	Hidden surface determination

	Shading
	The Phong Shading Model
	Bidirectional Reflectance Distribution Functions
	Global illumination
	Shadows
	Reflections
	Deferred shading

	Method
	Shading
	Global Illumination

	Future work and discussion

	Particle system
	Introduction
	Method
	Results
	Discussion

	Modelling
	Introduction
	Method
	Polygonal modelling
	Splines modelling
	Sculpt modelling

	UVW mapping
	Texture mapping
	Diffuse map
	Specular map
	Bump map

	Model import
	Results and discussion

	Physics
	Method
	Architecture
	Algorithms
	Collision shapes
	Ship motion

	Results and discussion

	Sound and music
	Background
	Method
	Results
	Discussion

	Conclusion
	Results
	Discussion
	Future work

	Appendix - Game design
	Goal
	Controls
	Energy
	Power-ups
	General
	Offensive power-ups
	Defensive power-ups
	Combos

	Grafical User Interface
	Menus

