

Water Racing
A study and implementation of game development techniques for

smaller projects

Bachelor´s Thesis

MATHIAS ANDERSSON JAKOB BRATTÉN

TOBIAS FÄRDIG SEBASTIAN GELOTTE

ROGER LJUNGBERG DANIEL WOGELBERG

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

1

Abstract

This thesis examines which techniques are suitable for developing a game rapidly. The techniques

involved come from the following areas concerning game development: the choice of development

process, graphics, network, game sound, physics, artificial intelligence and user interface.

In order to examine which techniques are appropriate, a study was conducted where the six authors

of this report formed a team. Using an Iterative process model and the framework XNA, they

developed a game in four months. The three-dimensional boat racing game called Water Racing was

the result.

It is shown that there are several tools and methods available, which assist in the task of developing

games of modern standard at a rapid pace. Among these, the Iterative process model is shown to be

suitable for smaller game projects. Also, it is shown that the genre of boat racing might have several

advantages that reduce the amount of time and resources required for development, compared to

other kinds of racing games.

2

Terminology

Texel - Abbreviation for "texture element". A point in a texture.

Billboard - A texture which always faces the camera.

CPU - Central Processing Unit.

GPU - Graphics Processing Unit.

Haptic Feedback – Information given to the user in the form of sense of touch.

3

Table of Contents
1 Introduction ... 6

1.2 Method ... 7

1.3 Restrictions ... 7

2 The Development Process ... 8

2.1 Waterfall Model .. 8

2.3 Spiral Model .. 9

2.4 Agile Development ... 10

2.5 Iterative Development .. 10

2.6 Results... 11

2.7 Discussion ... 11

3. Graphics .. 12

3.1 Particle Systems .. 12

3.1.1 Soft Particles .. 13

3.1.2 Results ... 13

3.2 Water Rendering .. 14

3.2.1 Water Geometry ... 14

3.2.2 The Fresnel Effect .. 14

3.2.3 Reflection and Refraction of Light ... 14

3.2.7 Results ... 16

3.3 Culling ... 16

3.3.1 Culling Techniques .. 16

3.3.2 Results ... 17

3.4 Graphical Content ... 17

3.4.1 Models ... 17

3.4.2 Terrain Generation .. 18

3.4.3 Texturing the Terrain ... 18

4

3.4.4 Results (Content) ... 18

3.5 Discussion ... 19

4. Network .. 19

4.1 Network Architectures ... 20

4.1.1 Peer to Peer ... 20

4.1.2 Client/Server ... 20

4.2 Network Topologies .. 21

4.3 Lidgren Networking .. 22

4.4 XNA Networking ... 22

4.5 Results... 22

4.6 Discussion ... 23

5. Sound .. 23

5.1 Sound Techniques in XNA ... 24

5.2 XACT .. 24

5.3 Sound Effects and Music... 25

5.4 Results... 25

5.5 Discussion ... 25

6 Game Physics ... 26

6.1 Libraries .. 26

6.2 Collision Detection .. 26

6.3 Spatial Partitioning ... 27

6.4 Results... 27

6.5 Discussion ... 28

7 Artificial Intelligence .. 29

7.1 Relevant Forms of AI ... 29

7.1.1 A* Algorithm ... 29

7.1.2 Precomputed Paths ... 30

5

7.1.3 Driving Lines .. 30

7.1.4 AI Behavior .. 31

7.2 Results... 31

7.3 Discussion ... 32

8 User Interface... 33

8.1 Input.. 33

8.2 Graphical feedback ... 33

8.3 Sound feedback .. 34

8.4 Results... 34

8.5 Discussion ... 34

9 Results of implementation ... 35

10 Discussion ... 36

11 Conclusions .. 37

12. References .. 38

6

1 Introduction

Game development is a rapidly growing

industry. In thirty years, the technology has

developed considerably and raised the

expectations of commercial computer games.

The time and resources needed to make a

commercially successful game have therefore

increased over time. However, game

development is a profitable business. The

game industry made a profit of over twenty

billion dollars in the United States in 2009

(Brightman 2010). It is therefore interesting to

know what potential there is, not only for

established companies, but also for minor

projects that are led by programmers who

aspire to advance from hobby level to

professional level. If there is a sufficient

amount of techniques available to assist game

development in smaller projects, a talented

programmer could have the possibility of

making a living by forming a company on his

own, that develops computer games.

The problem today, however, is that many of

the tools and methods made to assist the

development of games are too complex to be

used in a project of a smaller size. The

learning period to master these tools or

techniques might be too long, or specialized

skills may be required. To finish the project in

time, a set of techniques would be required

that allowed a rapid approach. Techniques

being defined in this study as suitable for a

smaller game development project have one

or more of the following properties:

1) The time required for learning is short.

2) The technique uses a high degree of

automation of tasks.

3) The framework shifts the focus to tasks of

higher level.

In order to find out which tools and methods

are appropriate for rapid game development,

a study was conducted. This study was made

by a team of six students at Chalmers

University of Technology who were given the

task of developing a three-dimensional boat

racing game in four months. In this report, we

choose to evaluate a number of techniques

that could be suitable for this task. The goal

was to make a game that held the highest

possible quality that the team possibly could

develop under their conditions. The team

consisted of the authors of this report, who

were Bachelor of Science students studying

Informations Technology and Computer

Science. They had previous experience of

game development from several projects

during college.

The purpose of this report is to, with results of

the study as a basis, answer the question:

Which techniques are appropriate to use

when developing a game in a short time

frame, and at the same time aspiring for a

high quality result? This concerns all the

important areas of game development:

The development process

The planning for the game project and the

choice of process model.

Graphics

The visual techniques of the game.

Network

A game mode where several persons play

simultaneously in the same game.

Sound

Playback of music and sound and the

techniques involved.

7

Physics

The implementation of game physics.

Artificial Intelligence

The simulation of humanoid behaviour in the

game.

User Interface

Parts of the program designed to be user-

friendly.

1.2 Method

A number of methods were used which are

not explained in detail later in this report, and

some of these will be mentioned here. These

were first and foremost the frameworks used

when programming, as well as the

synchronization tools.

The game in this study was built using the C#

framework XNA. The reason for this choice

was based on the fact that it is a framework

specifically created as a platform for which to

develop modern games (XNA 2007).

Therefore, the programmer will not have to

write as much code for the game-specific

details as when only using an ordinary

programming language, such as C++ or C#.

Furthermore, the team had previous

knowledge of XNA and would not have to

spend much time learning a programming

language prior to development. Visual Studio

was the development environment used in

order to get full support for the XNA

framework.

In order to synchronize the code base,

Tortoise SVN was used, which enabled several

programmers to work simultaneously on the

same code. This program enabled the

updating of the project to be done in a flexible

way. With just one click, the latest changes

made to the project by another team member

could be acquired. The word processor

Google Docs was used to synchronize the

writing of this report. In Google Docs, several

persons may edit the same document at once

from different systems. By using both Tortoise

SVN and Google Docs, it was possible for the

team members to work concurrently at the

different project parts, and to work at

different locations.

When developing the game, open source code

was used to a considerable extent. It was used

to implement the water (Hayward 2008) and

particle effects (XNA Creators Club 2010), as

well as for generating terrain based on a

heightmap (Grootjans 2008).

1.3 Restrictions

The limited amount of time being available for

the project led to restrictions of certain areas.

Therefore, in this section these areas are

listed along with motivations of why the team

did not spend as much effort on these,

compared to the rest of the project.

The most obvious restriction made was

associated with game content. High quality

models, interface designs, music and sound

are desirable elements when striving for a

game of high standard. However, the team

consisted of mainly programmers and while

some had specialized knowledge of some of

the content areas, the game-play mechanics

in the game was considered to be of higher

priority. Because of this, only a limited

amount of time was spent at content

creation.

While the purpose of the report is to evaluate

development tools, the XNA framework will

not be extensively evaluated. XNA was the

8

only framework the development group had

familiarity with, and was thus chosen without

consideration of other tools.

Testing was another are being limited.

Structuring the program around methods

such as unit testing, would take a

considerable amount of effort. In the study,

no systematic method for testing was used.

Instead, the program was tested at the end of

each iteration. Utilizing their previous

experience of games, the team members test-

played the game until they had identified a

number of defects, if they found any.

Therefore, the application was considered to

be highly dependable while the fact remained

that it could not be guaranteed of containing

no errors. This approach is partly based on the

well-known fact that testing can only show

the presence of errors and not the absence of

them (Jeffries 2009). So even if a systematic

approach for testing would be used, it would

still not be possible to guarantee a game with

no errors in it.

Artificial intelligence is another area where

much time can be spent on the

implementation of advanced and robust

methods. In order to avoid time consuming

and complex coding, the method selected for

AI behavior is limited in its access to complex

maneuvers that the player characters are able

to perform.

Regarding graphics, the reason for the lack of

sections concerning lighting or shadowing is

that XNA's default settings were used for this.

While being important for the realism,

lightning and shadowing were not prioritized

for the game. The reason for this is further

explained in section 3.6.

Furthermore, the application was developed

for personal computers with modern

hardware. While certain Xbox support is

inherently given due to our development

tools (XNA Gamer Services 2009), no testing

has been done to ensure that the application

can be executed on any other hardware than

the one used in the development. The

hardware consisted of an AMD Athlon 64 X2

Dual Core Processor 5000+ (2.61 GHz), an

nVidia GeForce 8800 GS graphics card and 2.0

GB of RAM.

2 The Development

Process

This chapter will examine a fundamental area

of any major project in information

technology - the development process. This is

basically a template for the project plan.

To describe how to proceed making a game,

one cannot tell exactly how to carry out each

and every step in advance. Therefore, an

abstract representation of the development

process is needed, telling what phases and

results will occur at certain given times. This is

known as a software process model

(Sommerville 2010).

Some of the most common and widely used

process models will be covered in this

report. Section 2.1 will discuss the Waterfall

Model - one of the most universally

recognized process models. In 2.2, the Spiral

Model is discussed. This is most widely used in

the area of game development (Schell 2008).

Agile development is covered in 2.3 and

Iterative development in 2.4.

2.1 Waterfall Model

One of the most well-known software

processes is the Waterfall Model. In the

Waterfall Model, the different stages of

development occur one after another,

9

resembling a finite state machine (Scacchi

2001). In the requirements phase, it it

specified what kind of services the system

should provide. This might include a feasibility

study with potential customers. How the

system should work is then described in the

design phase. This can be described as the

architectural phase of the development

process. When having this skeleton for the

system, the implementation phase begins.

Here, the system is being constructed. Testing

is then carried out to detect errors being

present in the system. When the system is

complete, maintenance is the final step. This

might include the delivery of the system to a

customer, and updating it when necessary.

Figure 1: The Waterfall Model

Klein mentions both several advantages as

well disadvantages with the Waterfall Model.

There are two particular advantages. With the

large amount of planning, it is a low-risk

approach. Also, with the all the

documentation being produced, it is easy to

continue the project even if team members

are replaced. However, there are several

disadvantages as well. The most obvious is the

inflexibility - when one phase is completed, it

is impossible to go back (Klein 2008).

2.3 Spiral Model

The Spiral Model of software development is

interesting in the area of game development,

since this is the area where it is most popular

(Schell 2008). Therefore, this was initially a

model being considered for the project.

Spiral development is based upon an iteration

of four steps (Gooma, Kerschberg 1995):

1. Determining object and constraints

2. Analyzing Risks

3. Developing Product

4. Spiral Planning

Figure 2: The Spiral Process Model

The characteristic properties about the Spiral

Model are the first two steps. Step 1 is about

finding the approach for the next iteration.

This could be done by prototyping the

product. In step 2, a risk assessment is done.

By doing this, one can plan beforehand how

to proceed the project if having issues with

time management or resources. Next follows

the implementation of the product. Finally,

planning is done for the next iterations.

According to Boehm, there are two

disadvantages of the Spiral Model. The first is

the need for risk assessment expertise. The

second is the need for further elaboration on

the process steps when different levels of

experience are present in the team (Boehm

1988). Another problem stems from the fact

that the project may not afford to spend

enough time on risk assessment and

10

prototyping to adhere to the spiral process

model.

2.4 Agile Development

Agile development is one of the more modern

process models. Four aspects make a software

development model agile (VTT Electronics,

2002). The model has to fulfill four criteria. It

has to be:

1. Incremental

2. Have customer involvement

3. Straightforward and easy to learn

4. Adaptive for sudden changes

Besides these criteria, most Agile

development processes build upon several

principles according to Craig Larman.

Simplicity - not making more than necessary -

is important. Also, teamwork is a cornerstone.

The primary factor to consider when

measuring the progress is how well the

product itself works (Larman 2003).

There are several forms of agile development

to choose from. A popular form today is

Extreme programming. This method is largely

based on teamwork (Extreme Programming

2009). Communication is an important aspect

between the team members. The customer

himself is considered a team member, and has

an important role during the development

when it comes to stating requirements and

evaluating the product. As according to

criteria 1, parts of a working system

(increments) are delivered to the customer on

a regular basis.

2.5 Iterative Development

In Iterative Development, the software

development life cycle is divided into several

iterations. The reason for this is that problems

or faulty assumptions can be discovered early

in each iteration, and thus be corrected at an

early stage (Hung 2007). The different stages

are basically the same as in the Waterfall

Model: planning, implementation, testing and

evaluation are usually carried out in each

iteration. There are different types of Iterative

Development depending on what factor is of

concern. Craig Larman mentions these four

types (Larman 2003):

Risk-driven Iterative development

This approach deals with the riskiest or most

difficult task in the beginning of each

iteration, and thus aims for the safest way of

finishing the development.

Client-driven Iterative development

When the client has the possibility of choosing

features in each iteration, this variant is used.

Evolutionary Iterative development

This is chosen when one wants to remain

flexible in changing the different parts of the

project - be it requirements, estimates or

major parts of the implementation.

Adaptive Iterative development

Adaptive Iterative development is used when

feedback from work already done is what

requires an adaptation in response. This could

be for instance when the programmers, after

some programming sessions, discover that a

particular section needs more attention than

initially expected, and thus change the

requirements.

Many similarities can be found between the

agile and iterative development processes.

Both methods emphasize the reworking of the

system in cycles. However, Agile Development

is largely based on team collaboration and

11

customer involvement, which is an important

distinction (AgileCollab 2008).

Figure 3: An example of an Iterative development

iteration cycle

2.6 Results

The Iterative process model was the process

model of choice for the study. The variant of

choice was the Adaptive Iterative Process

Model. This was because the team's work

would lead to the change of requirements.

The development team did not know

beforehand exactly which features they would

have time to implement, which ones that

would be too hard or which areas the team

would be able to lay more focus on than

initially expected. Therefore, in each iteration

they wanted to be able to change the

requirements if necessary.

The iterations were approximately two weeks

long. Each iteration had a certain set of

milestones, being certain features that would

have to be implemented before the deadline

of the iteration. Planning would be the first

step of each iteration. Most planning was

done after the initial planning phase. It could

occur, however, that somebody finished a

milestone earlier than expected and needed

more work, or got stuck and needed support.

It could also be about the addition of features,

and the removal of features depending on

time management and level of difficulty. An

important planning tool that was used was

the Gantt chart. By using a Gantt chart, it

could be planned when to carry out the

different tasks of the project. This is a tool

that is not only useful in the initial planning,

but also throughout the project as a way of

monitoring whether the project is on schedule

or not (MindTools 2010).

In each iteration, each person was given an

individual milestone. Each person was

responsible for one of totally six areas, the

areas being the following:

 User interface

 Graphics

 Artificial intelligence

 Sound

 Network

 Input and controls

In the end of the iteration, testing was done

on the results. After detecting possible errors,

an evaluation was made where it was stated

whether the results matched the

requirements so far. The evaluation was

mostly done at a meeting along with the

supervisor for the project.

2.7 Discussion

Iterative development showed to fit very well

to the project under its circumstances. The

Waterfall Model would be inflexible, and the

Spiral Model appeared to only suit larger

projects. While Agile development was one of

the candidate models, there was no customer

to work against. Also, the focus of team

collaboration was an aspect which did not

match our conditions well. Often the team

members worked individually, since the

school schedules were different. Overtime

was also present at different stages in the

project, something that is not typical of Agile

Development. Therefore, only Iterative

Development remained, and there were a

12

number of aspects that made it optimal for

rapid game development.

Due to the time constraint being present in

the study, the team needed to work in a way

that made the implementation phase active

most of the project duration, without the

need of making all the requirements and

planning beforehand. An important aspect

was that the team worked to produce the

best game it possibly could in the given time

frame, without having a detailed specification

of a final product. Therefore, requirements

specification and implementation had to be

done concurrently.

Another important aspect of why iterative

development was suitable for the study was

that the focus could be mostly on

programming rather than formalities. Also,

adaptability was an important aspect, since

the project showed to be very dynamic with

many changes occurring during development.

With agile development, it was easy to change

the plan during development.

A particular advantage of the Iterative

development model for this study was that

parts of a working system could be delivered

on a regular basis. This meant that there was

a guarantee of having a program to show

during the implementation, something that

appeared to be a rather important aspect.

There were frequently sessions where the

team showed the game for the supervisor,

and there was a half time review in the middle

of the implementation phase where the

project was to be presented for all the other

candidate project groups at Chalmers

University of Technology.

3. Graphics

The graphics of a game is sometimes

considered an indicator of the overall game

quality as well as the most important factor in

order to give a good first impression of a

game, according to lead programmer Jake

Simpson of Raven Software (Simpson, 2010).

Therefore, it was considered a high priority in

the study. With good graphics, the game looks

impressive, so that people remembers it and

wants to play it again. The idea of a water

racing game was largely based on the

assumption that it is relatively easy to make a

game of that kind look appealing. Therefore,

the most important graphical techniques used

in the study will be presented.

Particle systems will be examined in section

3.1. These were used to create most effects in

the game, such as water splashes, fires and

explosions. Section 3.2 will examine different

techniques of rendering realistic water, and

describes the technique that was chosen for

the application. Different types of culling,

meaning ways of saving system resources

when drawing objects, are covered in section

3.3. Section 3.4 will describe the best ways of

acquiring graphical content for the game; how

to generate a landscape as well as game

characters.

3.1 Particle Systems

While most of the graphics in computer

games consists of textured 3D models, there

are some effects that must be achieved in

different ways in order to ensure visual

quality and performance. The purpose of a

particle system is to render more complex

effects such as explosions, smoke, water spray

and fog.

13

A particle system is basically a set of points in

a three-dimensional space. These points

define the positions of particles being

generated. The particles have life cycles; they

are born, they live for a certain time and they

die. Each particle has properties to describe

the way it moves. The particles’ movements

are not always completely predetermined

though, because in many cases they have a

randomizing element which creates the

feeling of a very chaotic and natural effect

(Lander, 1998). What the particles form on

the screen varies with the properties one

desires. They can be everything from just

painted pixels at the particles position in a

given color, to fully rendered 3D-models at

each position being specified. The different

methods of particle rendering all have

different problems. The next section focuses

on problems with particles when they

intersect with the terrain.

3.1.1 Soft Particles

When billboard particles intersect with

geometry in the scene, they will partially

disappear. This makes it very obvious to the

observer that the particles are nothing but

textured planes.

Figure 4: The dashed circle marks an area where

the non-soft particles intersect with the terrain

mesh.

Soft particles are particles where this artifact

is not present. One of the simplest ways of

implementing soft particles is by fading out

the particles' corners when they intersect

with geometry. In this way the particles will

not appear to intersect with the geometry

(Soft Particles, 2009). This, however, means

that all the geometry in the scene being

rendered to the screen also has to be

rendered to a texture which holds depth

information. Next, the particles depth per

pixel is compared to the depth of the scene at

this pixel. If the geometry and the particle

overlap, the currently rendered particle is

being faded.

3.1.2 Results

The particle system in the game is

implemented as an extension of a 3D-particle

system sample found on the XNA Creators

Club (XNA Creators Club Online 2010). This

particle system is designed to minimize the

CPU overhead by calculating the particles'

movement on the GPU. The CPU is only

responsible for adding new particles to a

vertex structure where start time, position

and velocity is stored. The GPU can then, by

reading this vertex buffer, calculate the age of

each particle from the creation time and the

current time, where the two times are set

each frame as vertex shader parameters.

From these values, the shader can calculate

where the particle should be and draw the

specified image at this position.

Billboards were the chosen method for the

rendering of each particle used in the game.

This means that the particles would look the

same regardless of from which direction they

are observed, but since the particles in the

game were always used for very complex

looking effects this did not cause any

problems. The billboard methodology is

14

efficient since it only uses two triangles and a

texture.

The soft particles-method was never used,

since it was a graphics enhancement that was

not in top priority. Using soft particles would

also create a loss in performance, since all the

geometry would have to be rendered twice.

The simple pixel shader that was used in the

game would also have to be more complex in

order to handle the fading of the particles'

corners.

3.2 Water Rendering

In computer games, one of the most

important goals is to immerse the play into

the virtual world. Because of this, for a game

that is set on water, realistic behavior of the

water is important (Stam, 2003). The

following sections describe different

techniques to achieve appealing, realistic

water.

3.2.1 Water Geometry

The geometrical form of the water is usually

represented by triangles, as most else in a

game scene. Having a complex, animated

mesh of water will improve realism and

enable heavy waves. It may be preferable to

have a complex mesh if water has a central

role in the game such as in the submarine

simulator game Silent Hunter 3 (Ubisoft

Romania, 2005). Further, physical waves may

affect the gameplay dynamics of a game, such

as in the GameCube game Wave Race: Blue

Storm (NST, 2001) where waves can be used

to perform high jumps.

In certain situations, rendering a plane to

represent water geometry is considered to be

graphically convincing enough. When

representing a small body of water, or a larger

body unaffected by wind or seen from a great

distance, no physical waves are necessary to

give an impression of realism. The team

observed that many games that are

considered graphically impressive uses a mere

plane as water geometry, and rely on realistic

shaders and effects to improve the visual

quality of the scene. Such games include Half-

Life 2 (Valve Software, 2004) and Bioshock

(Irrational Games, 2007).

3.2.2 The Fresnel Effect

In the real world, the degree of reflectance of

smooth surfaces varies depending on the

refractive index and the viewing angle

(Westin, 2007). A high angle ensures high

reflectance, and a low angle ensures low

reflectance. This phenomenon is called the

Fresnel effect. A method that is often used in

order to render water, is drawing a plane and

calculating the angle between the camera and

the plane's normal (Toman, 2009). Since the

refractive index of air and water remains

constant enough to be approximated, this

angle can be used to determine Fresnel

reflectance.

3.2.3 Reflection and Refraction of Light

Besides the shape of the water, the actual

surface of the liquid also affects the way it is

perceived. It is of concern that the pixels

representing the surface of water are colored

in a way that looks plausible. A naive

approach is to simply apply a texture and

animate it. In the real world however, water

both reflect and refract incoming light. If

realistic visuals are important, the surface

must take the surrounding environment into

consideration.

15

3.2.4 Reflection by Cube Map

A common approach when rendering

reflections is to apply an environment map,

such as a cube map (Lombard, 2004). A

panorama of the environment is placed into

six-square-two dimensional textures arranged

like a cube (nVidia, 1999). A vector from the

eye to a point in the reflective object's

surface, together with this point's normal is

used to create a vector reflecting the original

vector. The texel of the point of interception

of the cube map, and the reflection vector

(whose location of origin is set in the center of

the cube) is then used to color the given area

of the object. The textures used in the cube

map are preferably based on the scene in

which it is used, in order to increase realism.

However, it is of note that reflections based

on the environment map technique appear as

if the objects they are based on are infinitely

far away. While this work well for certain

scenes, local objects of the scene are not

present in the rendered reflections.

3.2.5 Planar Reflection

The technique known as "planar reflection",

or "stencil reflection" is based on very simple

concepts. The basic premise is to initially

render a version of the scene flipped around

the axis of reflection, using the stencil buffer

to ensure reflections is only present in the

pixels occupied by the reflective surface

(OpenGL, 2001). A disadvantage of this

technique is that it only works for planar

surfaces, but can therefore be used for

rendering flat mirror reflections.

3.2.6 Distorting Reflection and

Refraction of Light

A variation of the planar reflection technique

involves rendering a refraction texture, which

is rendered from the same location as the

camera is set but does not contain the water

plane or any geometry above this plane.

Figure 5: The refraction camera’s position and

orientation are identical to the position and

orientation of the player camera.

A reflection texture is also rendered in order

for the algorithm to later be able to render

reflections. The location of the camera is set

with the same world location and the view

camera, but with mirrored Y-coordinate.

Figure 6: The reflection camera’s position and

angle is mirrored in the Y-plane compared to the

position and angle of the refraction camera (figure

5).

Water refracts and reflects light depending on

viewing angle, and the reflection and

refraction textures are thus set according to

the Fresnel term. By using this technique to

render a mirror, it becomes simple to create

an illusion of moving waves by adding a

displacement term to the projection texture

coordinates (Toman, 2009).

16

3.2.7 Results

The water graphics in the game was achieved

by implementing a system distorting a planar

reflection to achieve convincing wave effects

on a plane. As the gameplay took place in a

plane, only techniques based on plane water

geometry was considered for the application.

Initially, an algorithm heavily based on the

code presented in XNA Tutorial using C# and

HLSL Series 4 was implemented. The result

rendered convincing reflection and refraction

of light and simulated waves by displacement

of texture coordinates as described in

previous section. While functional, it was later

decided that the application would benefit

from using the version of the algorithm

presented by Kyle Hayward in 2008. This

algorithm supported the same features, and

was conveniently written as a game object.

This suited well for the game, as it enabled

quick implementation and tweaking for

improved visual quality and robustness.

3.3 Culling

When drawing the objects in the scene,

culling techniques are often implemented to

disable rendering of triangles whose

contribution to the resulting screen would be

minimal or non-existent. There are several

common culling techniques, with varying

degrees of complexity and efficiency. Some

are more viable than others depending on the

application they are to be implemented in.

3.3.1 Culling Techniques

View frustum culling is a rather intuitive

approach to reduce the number of rendered

triangles in a scene. A viewing volume is

generated depending on the camera position,

and any object whose bounding volume is

completely outside this volume is not

rendered. A naive implementation of such a

technique would require a collision check

between all objects on the scene and the

viewing volume. Notable performance gain

could be achieved if the game scene would be

divided into smaller volumes, so the system

could check which volumes could be visible

for the user (Pietari, 2000). If a given volume

would not be visible, no further collision

checks would be required for any object

within it.

In order to hide triangles that are not visible

to the user since they are facing away from

the camera, a technique called back-face

culling (Kumar et al, 1996) can be used. Back-

face culling means, in mathematical terms,

that the system does not render triangles with

normals facing more than 90 degrees away

from the camera. This means that if a person

in the game is facing the camera his back is

not drawn, as it cannot be seen. The

rendering API often does this automatically.

While back-face culling generally increases the

rendering speed considerably by discarding

roughly half of the triangles, many models are

designed in a manner that makes back-face

culling undesirable. (Pietari, 2000).

Occlusion culling enables the system to skip

the rendering of an object's triangles that are

completely occluded by another object

(Zhang, 1998). For an occlusion culling

technique to be considered viable for most

implementations, it must also perform in a

way that increases the frame rate of the

application, and also be general enough to be

used in any type of scene. A functional and

fast implementation of this algorithm would

free up GPU resources considerably.

Unfortunately, effective occlusion culling can

be difficult to implement and has several

17

inherent problems, such as requiring a fairly

fast CPU (Sekulic, 2004).

The process of not rendering objects whose

contribution of the scene is minimum, such as

when their location is far away from the

camera, is aptly named contribution culling.

When the clipping plane is located too close

to the camera the user can recognize objects

appearing from nowhere, which is

undesirable. This can be hidden by drawing

fog on the screen.

The technique known as "level of detail" can

be applied to reduce the number of particles

in a scene dynamically depending on an

object's distance to the viewer. The game

contains several versions of each model that

has different complexities. Models far from

the camera are drawn as the less complex

approximations of the given model.

3.3.2 Results

For most of the development process, no

culling techniques were planned to be

implemented in the application. In the final

weeks, the application experienced low frame

rates due to the amount of objects that had

been gradually added to each level. A view

frustum culling algorithm was implemented,

using bounding spheres to enclose objects.

While both being simple and giving a notable

performance boost, it was decided that no

space partitioning was necessary since the

resulting frame rate was considered

acceptable (only below 60 fps at very rare

circumstances). Back-face culling was used for

obvious reasons. A minimum and maximum

camera draw distance was set. Unfortunately,

since the game is set in fairly open water,

objects crossing the maximum draw distance

as the player approaches are rarely covered

by geometry. This makes the transition

between not rendering and rendering an

object to be very apparent to the player. To

reduce the visibility of this effect, the

maximum drawing distance is set very large,

which could lead to performance issues for

less powerful machines. Since further

optimization was not prioritized, no other

culling techniques were applied.

3.4 Graphical Content

Apart from applying render techniques to

display the graphics, there is also a need for

acquiring graphical content. In the following

sections, it will be discussed what techniques

can be used to fill the game with various

graphical content.

3.4.1 Models

The 3D-models can be acquired in two ways

for a project with no budget. Either they can

be downloaded at a website providing them

royalty free, as for instance The 3D Studio

(The 3D Studio 2010), or they can be

designed. When creating models, there are

many different programs that can be used

such as 3Ds Max (3ds Max, 2010), Blender

(Blender, 2010) and Maya (Maya, 2010). The

only requirement is that the software has to

support at least one of the few file formats

XNA has native support for.

When importing the model into XNA, it will

pass what is called the content pipeline. The

XNA Content Pipeline is a way of processing

and preparing content so it can be used in the

game at run-time. The model is first being

imported to the Content DOM where it is

saved in a well-known format to the XNA

pipeline processor. Then, the model is being

processed and an object is created that can be

used at run-time (Klucher 2006) (see figure 7).

18

Figure 7: The model, being the .fbx file, passes the XNA Content Pipeline

3.4.2 Terrain Generation

One way to generate the terrain in computer

games is by generating a mesh based on a

two-dimensional heightmap. The heightmap is

often a grayscale image where the value of a

texel represents the height of that point in the

generated terrain. A completely white area

would thus be a flat square located at a high

position or a low position, depending on the

implementation's interpretation.

3.4.3 Texturing the Terrain

There are a few different methods to texture

the geometry that is generated from a

heightmap. One way of doing this is to just

create a large texture and stretch it across the

whole terrain (Dexter, 2005). This, however,

will cause the need for extremely large

texture resolutions if the terrain covers a

great area and also should be detailed when

viewed from a close range. Other methods

use different smaller textures for each ground

type and repeat them across the appropriate

areas.

There are two basic ways to determine the

areas where each ground type is. Either the

data is manually created by the user, by

setting the ground type of each vertex

(Dexter, 2005). This gives the user great

flexibility. However, since the user has to

create a map of ground textures manually,

there is some extra work that has to be done

when using this method. Another simpler way

to do it is to use the data that is already in the

heightmap. The ground types are instead

determined by the height of the terrain

(Grootjans, 2008). For example, lower parts

have a grass texture where higher parts use a

mountain texture.

One problem with using different ground

types is that the seams between the different

textures can be very obvious. The most

common way to deal with this is to make the

two textures overlap at the seams and blend

them together.

3.4.4 Results (Content)

The game's 2D and 3D assets were created for

the game, and no pre-made material was

downloaded. All 3D-models where created in

3D Studio Max, since this was a tool that was

available to use for free. It was also a program

the team had previous experience with.

The method for generating terrain used in the

game was the terrain generation based on

heightmaps mentioned in section 3.5.2. The

heightmaps used were initially drawn purely

in Photoshop (Adobe Photoshop 2010). Later

into the development, the scenery rendering

tool Terragen (Planetside 2010) was

discovered that made it considerably easier to

generate heightmaps and gave convincing and

appealing results. Terragen provides a terrain-

generating feature, so that the user can have

the heightmap ready by simply entering a

number of parameters. In the study, this

removed some control from the team, but

instead enabled them to create the terrain

part of levels in just a few minutes. It is also

possible to view the heightmaps as real

19

terrain instead of just in grayscale, and this

makes editing a much easier task.

The texturing of the terrain in the game was

done in the simplest possible way, which is to

determine the different ground types by the

height of the terrain. Four different textures

were used, each having a specified height and

a height interval to cover. The textures were

overlapped with each other and blended

together at the intersection points.

3.5 Discussion

A huge amount of time was saved using pre-

made shaders and particle systems. Although

they did not work as well as initially hoped,

they were still good enough to add a sense of

realism.

When it comes to the creation of content,

finding a tool like Terragen earlier in the

process would have saved a significant

amount of development time. Drawing a

heightmap by hand was very time consuming

and tedious, compared to using Terragen. This

clearly showed that working with the right

graphical tools is very important when

working within a small time frame.

Shadows are often considered a central part

of computer graphics. While considered

initially, the team decided to prioritize particle

effects and water reflections. Besides being

aesthetically pleasing, the rendering of an

object's shadow gives the viewer an improved

sense of its location in a scene. In our

computer game, this information is already

provided by reflections in water. Even without

these reflections one could argue that such

information would not be vital to the gaming

experience, since the gameplay is two-

dimensional to a large extent.

Beyond technically complex methods of

improving the graphical quality of the scene,

several simplifications were employed. Simple

graphical details were shown to give good

results, given the limited time spent on

implementing them. As an example, it was

decided to draw and use a very detailed

skybox that was filled with rainbows, moons

and effects. Motivational signs litter the scene

and spin to ensure a dynamic screen even

when the racer is stationary. Objects floating

in the water are also animated accordingly,

including the player's boat when its speed is

low.

The advice to similar project groups is to make

the graphical aspect of the game as good as

possible, when the schedule allows it. Game

play is what basically makes a game

entertaining, and should be the first priority.

Nice graphics is important for the feeling of

realism and immersion, but cannot substitute

game play and content.

4. Network

A common feature that often is expected in

modern games is the multiplayer mode. This

is something that was desired in the game in

order to enable optimal game experience. An

American study conducted by Ducheneaut

and Moore showed that certain designs of

multiplayer modes enhance social activities

(Ducheneaut, N., Moore, R.J., 2004).

Furthermore, multiplayer is the most popular

way of playing games today. As much as 65%

of teenagers play games with others in the

same room (McEntegart, 2008).

The following sections will cover the different

choices available when making a multiplayer

game in XNA. Section 4.1 deals with network

20

architectures, which describe how the

computers are connected to each other.

Section 4.2 explains the different topologies

one can chose from when designing a

network structure, and 4.3 to 4.4 covers the

two possibilities of implementing a network

mode in XNA respectively: XNA:s built-in

network library or Lidgren's network library,

respectively.

4.1 Network Architectures

The two basic systems of network

architecture are called Peer to Peer- and

Client/Server systems. When choosing

between the two, a certain amount of aspects

have to be taken into consideration, and this

amount depends on what purpose the

network serves. Some of these aspects

include whether or not a dedicated server for

the networking can be provided, how much

bandwidth there is available for disposal, how

security-dependant your application is and

how many client computers that should be

able to interact through the network.

The major difference between Peer to Peer

(P2P) and Client/Server networks is that Peer

to Peer networks have no notion of a central

server. Each computer in the network

interacts with the others directly in a P2P

network, while in a Client/Server network it is

the server that in the end decides what

information that should be communicated

between the computers (Maly, R. J. 2003).

4.1.1 Peer to Peer

As stated in 4.1, a P2P network handles the

communication between clients (or peers)

with a direct connection between the

computers. There is no server type to relay

the information as in the Client/Server

architecture. The amount of data that needs

to be sent when employing a P2P network

architecture will logically increase when

adding peers. However, since every peer

shares his resources with the other peers, this

becomes manageable in smaller

constellations (home- or small business

networks) (Maly, R. J. 2003).

The information which flows in a P2P network

can be hard to secure because of the open

nature of P2P applications (Doucer 2002).

Figure 8: Simple example of a Peer to Peer

architecture. Each Client is connected to all the

other clients with a single connection.

4.1.2 Client/Server

In a Client/Server network, the server plays a

central role in the exchange of information

between the clients. Its task is to collect the

information and the addresses of the clients

to whom it is to be delivered, and thereafter

relay it to them.

A networking model of the Client/Server type

is more likely to get overwhelmed by data as

the network grows (Maly, R. J., 2003). The

need for expansion and costs that come with

it will then increase. For a single server to be

able to cope with the pressure of the entire

network, it must be of limited size, such as a

home network, or a small business network.

An application which uses the Client/Server

21

model needs to be optimized towards sending

smaller packets of data to be able to function

as well as it can.

Figure 9: Simple example of the Client/Server

architecture. All the Clients are connected to each

other through a Hub, which in turn is connected to

the Server. The Server distributes the information

through the Hub to the Clients.

4.2 Network Topologies

There are six basic topologies in networking.

For each topology, there are several

modifications and variants of these. These all

have different applications. These basic

topologies are as follows:

 Bus topology - The computers are

connected one after another.

 Star topology - All computers are

connected to a central server, which

forwards the communication between

them.

 Ring topology - Each computer is

connected to exactly two other

computers.

 Tree topology - The network is formed

in a tree structure, which means that

if each computer is represented as a

node, each node has at most one

parent node and two child nodes.

 Extended Star topology - As the name

implies, this is basically a star

topology being less restricted; every

computer may act as a server itself for

other computers.

 Mesh topology - There are at least

two computers with two or more

paths between them.

Figure 10: The six main network topologies. Gray

squares represent nodes and black lines represent

connections.

These topologies can be seen as virtual shapes

of the network. They all have individual

advantages and disadvantages. The bus

topology has an obvious disadvantage; if the

connection is broken at one point, the whole

network is disrupted. The star topology looks

as simple as the bus topology. However, it is

more redundant. Actually, the star topology is

nothing else than a more redundant version

of the bus topology and is often used for Local

Area Networks (LAN) and resembles the

Client/Server network to a large extent.

However, the central server has to be stable,

since this ties the whole network together.

The tree network has a similar weakness to

the one of the star network, being that the

top computer ties the network together. This

is not used as often as the star network

though, since two or more computers may be

disconnected if any computer disconnects and

22

thus can often be considered more unstable.

The mesh topology is stable and redundant,

because of the many connections between

the nodes. The main drawback, however, is

the number of connections and cables that

are required to create such a connection (Atis

Telecom, 2007).

4.3 Lidgren Networking

The Lidgren networking library is currently

one of the main libraries that can be used

when implementing networking in an XNA

game. It uses a single UDP socket and delivers

an API for sending and receiving messages

over a network. It was developed by an

amateur as a hobby project, and updated and

documented thereafter. Currently, three

commercial games (and several non-

commercial games/projects) use the library in

their network implementations (Lidgren,

2009). Amongst them is a commercial game

called Plain Sight, which is a third person

shooter/adventure game in which one battles

the opponents through the network (Beatnick

Games, 2010). The other commercial games

are Sacraboar (Makivision Games, 2009) and

AI War (Arcen Games, 2010).

The methods of delivering a message with the

Lidgren library can be customized to suit the

application in the best way. You can decide

whether to send a message reliably/unreliably

and/or ordered/unordered. This determines

what level of importance the packets of data

have. Reliability refers to how often the

message actually arrives, and order refers to

whether the order of the messages is

important for the communication.

4.4 XNA Networking

Using the built-in network framework is the

most straightforward approach when

implementing networking for a game in XNA.

The features and techniques used are similar

to the techniques used in the Lidgren library,

with the ordering/reliability deliveries

described in section 4.3. It has support for

Xbox LIVE features and connection between

PC and Xbox-machines. Features like in-game

invites, cross-platform compatibility between

PC, Xbox and Zune are parts of the

framework. There is also the ability to use in-

game avatars and voice communication over

the same protocol as the original network

communication.

When implementing a network game with this

framework there are limitations, especially

when the game is designed to be run between

two computers. A Creators Club membership

is needed in order to be able to connect with

computers outside the local network, and this

is a non-free membership. When a connection

between clients on a local network is to be

made, one can instead use a Local profile and

create the network session on a System link

(Klucher, 2007). This is because the

framework was originally supposed to be used

only for Xbox and Zune, and not for

connections between computers. The main

reason that connecting between several

computers works at all, is that testing had to

be done during development of a game for

one of the other supported consoles.

4.5 Results

When implementing the network functionality

for the game, the Lidgren network library,

described in section 4.5, was first tried out.

After constructing a few simple examples

outside the XNA framework, such as a chat

client and a simple send/receive data test, the

library initially seemed like a good library to

use for game networking. A more extensive

test was made, which incorporated the XNA

23

framework to see how well it would work and

how easy it was to implement. This turned out

to be harder than initially thought, and the

main problem was the lack of both

documentation as well as examples on how to

do similar implementations. As none of the

group members had any previous experience

in network programming and strived for a

simple solution, it was decided to omit the

Lidgren network.

As the first idea of using Lidgren did not work

easily enough, the search for other libraries

began. In the end it was decided to use XNAs

built-in library for networking, mainly because

of the better documentation and the good

examples. Another reason for using this built-

in framework is that it enabled usage of all the

features of Windows LIVE gaming, such as

player profiles and voice communication.

To allow perfect synchronization between

remote players, the physics would have to be

calculated on a server that sent info to the

clients about the game status. However, in

the game a simpler method was chosen. In

each frame, all players send their positions,

rotations and velocities, and then each

machine calculates the physics locally. This

could possibly cause different behavior on

different machines. However, since the

restriction of only using LAN was already

present from the start, the issue of slow

connections would not be a problem as long

as the transmission was wired. The players

also send data when they use power-ups.

When the game ends for one of the players

(the player finishes the race or the player is

disqualified), the player sends information

about this.

In the menus, the players send information

when they change their selections of boats, so

the remote player can see which boat his

opponent has selected. When the remote

player chooses a boat, he tells the host that

he is ready. When all players are ready, both

players advance to the course select menu.

Here, only the player who hosts the game can

control the menu. The remote player can see

the changes the host makes and when the

host is done the game starts.

4.6 Discussion

The Lidgren network showed to be very

complex and requires further documentation

and examples if it is to be used widely in

practice in the future, in this kind of project.

However, XNA's built in library was

considerably easier to use and eventually

resulted in a working multi-player mode. A

peer-to-peer network in a mesh topology

provided a stable solution and was chosen

since the network would go on irrespectively

of any computers disconnecting.

One problem with Windows LIVE networking

was that users would have to pay a fee to be

able to play online. When using System Link

(connection over Local Area Network) this is

not an issue (Klucher, 2007). However, this

makes it more difficult to test the network's

functionality, since a local network has to be

created every time a test is to be run.

5. Sound

To give a complete game experience, sound is

usually implemented in modern games to

simulate real audio perception. A study has

shown that the choice of sounds in a game is

crucial for the game experience. Even one

sound can change the game experience

dramatically according to Norlinger (Norlinder

2007). Therefore, sound was implemented in

the project. The presence of sound in a game

24

is not only important for the game experience

factor. In modern games, since sound is often

implemented with three-dimensional

techniques, it is also a navigation tool. As an

example in the racing genre, motor sounds

can be used to give the player a sense of an

opponent approaching him from behind.

Two approaches for programming the sounds

in XNA will be presented. Both the built-in

library for sounds and Microsoft's audio

system called XACT can be used. Some of the

features of these will covered in section 5.1

and 5.2, respectively.

As well as for implementing the sounds, ways

of acquiring effects and music for the game

will also be covered in section 5.3. Next the

approach of Water Racing is presented in 5.4,

and the chapter is concluded by a discussion

in 5.5.

5.1 Sound Techniques in XNA

By using XNA's built-in audio library, the

programmer manually codes the loading of

the sounds. Several possibilities of altering the

sounds during run-time exist. There are

mainly three variables to consider when doing

this. The volume variable refers to the volume

of the sound. The pan variable is used to give

an impression of sound being sent from

different sources; in other words that the

sound moves between the speakers. The pitch

variable sets the frequency of the sound.

A method called set3D can also be called. By

doing this, XNA automatically handles the

volume, pan and pitch variables, which vary

depending of the position of the listening

object and the emitting objects.

5.2 XACT

One way to load the sounds into the game is

to manually code sound effect instances, e.g.,

specifying the file path, as with XNA's built-in

library. However, an interface that is called

XACT can also be used to handle all the

sounds. This is an external audio system that

is included in the installation of XNA, and its

project files can be imported in XNA projects.

With XACT, Cue instances can be created for

each sound stored in a sound bank. When

having this sound bank, the loading of the

sounds can be done just by drag-and-drop in

the interface. Also, by creating Cue instances

every time a new sound is to be played, one

will not experience the problem of different

sources playing the same sound effect. Thus

XACT provides a very efficient way of

implementing game sounds.

Apart from loading and creating sound files,

XACT can also be used to put effects on

sounds. Reverb is such an effect, simulating

the acoustic response of a room. As in the

XNA sound library, pitch, volume and panning

are variables that are possible to modify in

order to give an impression of three-

dimensional sound.

An effect to take into consideration

particularly in racing games is the so-called

Doppler Effect. The Doppler Effect is when the

frequency of the perceived sound is changed

relative to the actual frequency and the

relative speeds of the source, observer, and

the speed of the waves in the medium

(Russell 2009). This is something that can be

experienced in reality when a car goes by at a

high velocity; the frequency appears to

gradually increase while approaching and

decrease after bypassing.

25

5.3 Sound Effects and Music

The fastest way to obtain quality sounds is to

download them from a homepage where they

are free (assuming that they are being used

for non-commercial purposes). A1 Free Sound

Effects (A1 Free Sound Effects 2010) and

PacDV (PacDV 2010) are examples of two sites

which provide free sound effects. These sites

contain a large amount of sounds of different

categories.

If the sounds are to be used for commercial

purposes, royalty free sounds have to be

acquired, which can be downloaded or

purchased at sites like PartnersInRhyme

(PartnersInRhyme 2010). Another option is to

record sounds, something which allows more

customized sounds to be used. Sound editing

programs may be used to add effects to

sounds or equalize them. Audacity (Audacity

2010) is an example of a program that may be

used for this.

The ways of acquiring music are basically the

same as for sound effects; one can either

download royalty free music, or compose own

songs and record them. The role of music as a

motivating factor generally holds for most

game genres, according to PhD video game

researcher Zach Whalen (Whalen 2004).

Therefore, game music can raise the

entertainment value of the game.

5.4 Results

The initial plan was to use XNA:s built-in

library exclusively. However, this plan was

changed during the project, on one hand

knowing that a certain amount of code would

have to be discarded. On the other hand

though, the use of XACT would save much

time. So eventually XACT was used almost

exclusively for handling sounds.

Not every sound could be automated, though.

The motor sounds in the game were created

by changing the pitch of just one sound, by an

amount depending on the speed of the boat.

Also the volume was adjusted, going from low

to high, and this amount also depended on

the speed.

Since there was not much free music available

that fit into the game context, the choice was

made to compose own songs for the game.

Composing was an easier way of getting music

that fit into the game, since the compositions

can be made with the scenery in mind. Surf

rock music was thought to suit well to a water

racing game. The team listened to some old

records by The Ventures and Dick Dale and

came up with their own interpretations. The

program Guitar Pro (Guitar Pro 2010) was

used to create the drum and bass parts, and

the guitar parts were recorded through a USB

interface with the music production tool

Tracktion (Tracktion 2010). Only the guitar

parts were recorded for real; the other parts

were digital emulations. All in all, the music

creation was a very low-budget approach that

was suitable for the conditions of the project.

5.5 Discussion

XACT was shown to be an efficient way of

handling sounds. It makes sense to automate

the loading of sounds, instead of hard-coding

it. Worth pointing out is that XACT is much

more adapted to be used when developing a

complex game than XNA's built-in library.

With XNA's sound class, sounds cannot be

played more than once simultaneously. This

means that if two objects will try to play the

same sound at once, they have to play

separate sound files. This is out of question in

larger projects due to unnecessary use of

memory space, as files have to be duplicated.

The use of Cues, which XACT handle, solves

26

this problem as instances are created in real

time.

The downloading of sounds showed to be an

effective way of acquiring sound effects. The

sites mentioned in section 5.3 provided a

wide range of sounds that could be used for

many game situations. The recording of game

music should preferably be done with more

professional equipment. While the music was

regarded as good, one could hear that the

recording equipment was not optimal. Thus,

game music could preferably be recorded in a

studio.

Recording was nevertheless an efficient

approach of acquiring game voices, as this

could be done with the laptop's built-in

microphone. While again not being the

optimal recording equipment, the quality of

voice recordings showed to be of less

importance than the quality of music

recordings.

6 Game Physics

The limited amount of resources available in

an interactive video game forces the

programmer to approximate the physical

reality. While technically inaccurate compared

to the laws of nature, the behavior of objects

can still be implemented to appear realistic.

Contrary to what one might think, it is not

necessary to make a perfect simulation of the

reality in order to get an entertaining

simulation. Escaping reality is desirable when

playing a video game, so implementations of

physics that deviates from reality should not

in itself present a problem. However,

consistency is an important aspect of game

physics (Hecker 2000). The player wants to be

able to predict how the physics will affect his

actions, after learning how the game works.

This chapter mainly focuses on the detection

of collisions as this is the central problem to

solve, when implementing game physics. The

chapter begins with an overview of different

external physics libraries that can be used for

game development purposes. In 6.2 the

fundamentals of collision detection is

examined, followed by methods to enhance

collision detection performance by spatial

partitioning in 6.3. The results and a

discussion of the implemented game physics

are found in sections 6.4 and 6.5 respectively.

6.1 Libraries

For simulating physics, there are a large

number of tools that can be used to avoid the

issue of having to write advanced physics

calculations. Tools that have been created to

handle physics in a 3D-environment include

PhysX (PhysX 2010), Havok (Havok 2010),

Bullet (Bullet 2010) and JigLib (JigLib 2007).

Ports have been made for the two

aforementioned tools to make them

compatible to use in C# (BulletX 2007),

(JigLibX 2010). These tools could handle all the

physics calculations that would be needed;

however, the open source tools that were

considered, mainly JigLibX, proved to have a

lack of full documentation.

6.2 Collision Detection

Collision detection - what happens when two

objects touch each other - is a central

problem to solve in most games when it

comes to making the physics work. By making

the decision of developing a racing game on

water - a flat surface - with a heightmap for

terrain, there were many problems with

collision detection in a 3D game that had been

avoided, since collision detection against a

terrain based on a 3D model would require a

more advanced approach.

27

The usual approach to collision detection is

letting each object be represented by

geometrical figures. One possible choice is to

use spheres (Palmer 2005). A sphere is

optimal for fast collision detection - the

computer simply compares the sphere's

location and the target's location and

determines whether the sphere's radius is

larger than the distance or not. Objects,

unfortunately, tend to have more complex

shapes than spheres. When comparing an

object with an arbitrary shape, represented by

a collection of triangles, to another object,

one must perform triangle-to-triangle tests.

This naive way of finding collisions forces

checks for collision between each triangle in

object A to every triangle in object B. This

gives a time complexity of N2, which is

unsuitable for the dynamic, high-polygon

scenes usually found in games.

6.3 Spatial Partitioning

Using spatial partitioning with the help of a

data structure is a good way of improving the

speed of the rendering, and is often used in

game development. The goal of it is to speed

up both the real-time rendering, as well as the

intersection- and collision detection.

When implementing spatial partitioning, the

geometrical objects are organized according

to some data structure, for example a tree

structure. A tree search is considerably less

complex than a search in a list, or just a

random search (Heger 2004). This means

more calculations and searches can be made,

and a higher graphical standard can be

achieved.

There are several options available for

lowering the search complexity, when

choosing a spatial partitioning technique. One

of the most common is the Octree, in which

the space is first divided into eight parts, or

octants. Thereafter, each of these octants is

recursively subdivided into eight smaller

octants. The recursion is repeated until a pre-

defined maximum depth is reached. Each

octant is connected to the parent octant in a

tree structure (see Figure 11).

Binary Space Partitioning Trees (BSP Trees) is

another common type of spatial partitioning.

This technique is mainly found in two

different variants, namely Axis aligned- and

Polygon aligned BSP trees. The trees are

created by partitioning the world with a

plane, and then sorting the geometrical

objects in these spaces recursively (Chin

1995).

These techniques are used to cull large

portions of the space and geometry from the

view. They should mostly be used on static

world objects, since computations of this sort

in run-time can be very expensive (Lengyel,

2004).

Figure 11: An Octree and a BSP tree, respectively.

6.4 Results

Due to the simple 2D-nature of the gameplay,

all physics was written without any use of

external tools.

When collision checking between boats was

carried out in the game, the boats were

28

represented by spheres, due to the simplicity.

The same representation was also used when

checking for collisions between rockets, mines

and boats. A force was applied on the boat

when colliding with rockets or mines, which

threw the boat up in the air. The direction of

the throw was calculated from the position of

the boat in relation to the mine or missile.

Figure 12: Collision between boats with bounding

spheres.

As the water was represented by a plane of a

specific height, and a heightmap for the

terrain provided a height value for each two-

dimensional position within the heightmap,

checks for collision against the terrain were

easy to implement. If the boat is placed at the

same or a lower height than the

corresponding point on the heightmap, there

is a collision against the terrain. A similar

check against the water level indicated if the

boat touched the water.

Figure 13: The original heightmap used in the

game (left), the heightmap without areas below

the water level (center), and a slice of the

heightmap at the water level that shows areas

resulting in a collision as white (right).

A check for collision between a boat and the

terrain, with only one point in space

representing the boat, would show only if a

specific point of the boat hull collided.

Therefore, the game used six points that

outlined the shape of the boat in order to

detect the collisions in a better way.

Figure 14: The six point pattern of point collision

against terrain.

At collisions between the terrain and the

boat, the speed was heavily decreased and

the direction of moment was changed to the

direction of an arrow from the collision point

(one of the six possible) and to the center of

the boat.

6.5 Discussion

In the study, the techniques used to represent

the level made it possible to simplify the

simulations of reality considerably.

One of the particular advantages of making a

water racing game was that the physics would

be easy to handle. There were initial problems

with making collision detection work against a

3D-terrain, and external tools would probably

be beneficial - tools that would not be

29

available for free and that would also require

additional study time. The team settled for a

simple, yet effective, solution by making a

race on water - a flat surface - to avoid the

problem of collision detection against a 3D-

terrain.

7 Artificial Intelligence

To be able to play a game in single player

mode and still compete with other racers,

some form of Artificial Intelligence (AI) is

required in order to provide believable and

competent opponents. This might be the most

advanced area when developing a game if an

optimal, complete and versatile solution is

desired. An example of the complexity in the

AI field is the game of chess. However, while a

chess AI can beat a good human player, this

high level of AI intelligence is limited to only

this specific domain (Thomas 2004).

For a long time, AI behavior failed to simulate

complex behaviors. It was first when the

computer game Half Life (Valve 1998) was

released that Artificial Intelligence in video

games advanced to achieve fairly realistic

results.

Since this is an area of high complexity, a

relatively simple solution used in the study

will be presented in section 7.2. This was

partially inspired by the techniques described

in section 7.1.

7.1 Relevant Forms of AI

There are many fields that could be classified

as AI. As each game may be unique in the

aspect of which AI it requires, it is important

to analyze what kind of algorithm that a

specific game needs (Tozour 2002).

In a typical car race, the drivers attempt to

reach the goal as fast as possible. They strive

for finding the shortest path around the

course based on the best positioning on the

road. Relevant forms of AI would therefore

need to simulate this behavior.

7.1.1 A* Algorithm

The purpose of the A* algorithm is to find the

shortest path between the nodes in a graph.

The algorithm is versatile and can be used for

many different types of games (Matthews

2002). A* was described in the year 1968 by

Hart, Nilsson and Raphael (Hart, Nilsson,

Raphael 1968).

To use the A* in a game, a level needs to be

defined as a graph using nodes connected by

paths. Nodes could be divided into three

categories, nodes already visited, nodes that

may be visited and nodes that have not yet

been found. As the algorithm iterates, nodes

may change state in two ways: from not found

to may be visited, and from may be visited to

already visited (Stout 2000).

A function to estimate a cost value for each

node is needed. This cost should reflect the

length to reach this node and estimate the

remaining length to reach the goal (Stout

2000).

A* keeps track of the current node while

iterating. This is initially set to the start node.

A simplified iteration goes as follows:

1. Each node that is connected directly

with the current node changes state

to indicate that it may be visited,

unless it has been visited before.

2. A new current node is set. This should

be the node with the lowest cost of

those nodes that may be visited.

30

The algorithm iterates using this pattern until

the goal node is set as current node, or when

there is no node left that may be visited

(Stout 2000).

Figure 15: An available node in the illustration is

the same as a node that may be visited.

To improve the performance while an

application is running, a less detailed version

of the level graph can be used to rapidly

calculate an initial path. This path could be

followed while a more precise path based on

the full graph is calculated in the background.

This enables an instant response which may

be required in some games (Higgins 2002,

Path finding Design Architecture).

If A* is to be used for path finding in a real-

time game, the developers should know that

they may need to spend time to optimize the

algorithm to the specific conditions of the

game (Higgins 2002, How to Achieve

Lightning-Fast A*). This may be done by

simplifying the path finding problem itself, or

by excluding cases where A* might be

replaced by less requiring methods (Cain

2002).

The A* algorithm could be used for other

tasks than path finding. An example would be

as a flooding algorithm, and this would be

done by setting an unreachable goal (Higgins

2002, Generic A* Path finding).

7.1.2 Precomputed Paths

While the A* algorithm could be used to

compute the shortest path each time a path is

going to be used, the shortest path could also

be precomputed and stored in a table. This

approach requires that the shortest path is

available for each valid position. It requires a

larger amount of memory, but the benefit lies

in the less amount of load on the CPU being

used when running the game (Sterren 2004).

Figure 16: Finding the next step on the shortest

path within the graph is just a simple table look up.

In a single large graph, the number of

elements in the table would increase

quadratically, based on the number of nodes.

Dividing a larger graph into several smaller

sub graphs that each has their own tables

could reduce this effect (Dickheiser 2004).

7.1.3 Driving Lines

Another concept that is more specific to

racing games is the use of driving lines. Like

precomputed paths, this concept is based on

the fact that the best path is already known.

Unlike precomputed paths, where many paths

are based on the variables current position

and static goal, driving lines define only a few

paths based on the static race track.

The AI for a racing game could use driving

lines as a method to navigate through the

31

game. In a car game, a segment of the road

could be described as a left edge of the road

and a right edge of the road. Between these

limiting edges is the road area that a car may

drive on. A line could be drawn on this area

between the start and the end of the road

segment to define a driving line. This is a line

upon which the AI should aim to drive. For a

whole continuous race track, the driving line

could be represented by a series of nodes

combined with edges (Biasillo 2002,

Representing a Racetrack for the AI).

Figure 17: The drive line should provide the AI with

an ideal path to follow.

It is not necessary to develop special tools or

to create the drive lines by hand. A relatively

simple way of acquiring a drive line is by

recording the path taken by a humanly

controlled vehicle. This path could then be

used as a drive line (Biasillo 2002, Training an

AI to Race).

An alternative way of creating driving lines is

by generating them from the track structure.

This could be useful in games were the drive

line cannot be predicted such as with

randomly generated maps. One such method

is to place the edges, that combined

represents the drive line, along the center line

of the road. Then, these points would be

moved step by step in such a direction that

the angle between any two edges is

minimized while keeping the points on the

road (Manslow 2004).

To make behavior appear as more realistic,

the AI could set an aim at the road further

ahead. This makes it easier to predict

situations (Biasillo 2002, Racing AI Logic).

Another improvement is to have several

alternative drive lines, such as one for

entering the pit lane for a pit stop (Biasillo,

2002, Representing a Racetrack for the AI).

7.1.4 AI Behavior

A driver might need to take other things into

consideration besides the optimal path

through the track. This may for example be

avoiding collisions with other drivers, making

a pit stop or handling specific situations, such

as when the wheels lose grip of the road.

One approach is to use a state machine for

the AI. Several different states when the AI

would act according to a specific situation are

then defined, and the current state should be

updated as situations change (Biasillo 2002,

Racing AI Logic).

The commercial racing game Downforce used

an approach based on layers when dealing

with the different factors. The task of driving

was divided into several sub-tasks. The best

way to drive was calculated according to each

sub-task and the result of these calculations

where prioritized and combined into a final

driving choice (Darby 2004).

7.2 Results

The game developed in the project used

driving lines in order to navigate. This made it

possible to easily implement a recording

feature that recorded a human player racing a

lap. No further logic besides trying to follow

this path was implemented, as this alone

worked well in the game.

Each AI controlled boat had an individual

driving line. Each of these lines was defined as

an ordered list of points within the game.

32

Each point had only two-dimensional

coordinates. Since the water level was a flat

plane, the height was not needed as a

coordinate. By connecting the last point with

the first, this list of points can be seen as a

directed graph where each node is connected

with edges to two other nodes.

The AI was limited to the same input options

as a human player. On one hand being a

limitation, it also made the AI behave more

natural.

In order for the AI to calculate a desired

direction, the most recently passed node was

being saved. Both the distance to this node

and the distance to the next node were

calculated. The distance from the last passed

node was divided by the sum of the two

distances. This result can be considered a

percentage of how far the boat has reached

on the ideal edge between the most recently

passed node and the next node to reach, and

can be used to acquire a point on the edge

between the two nodes. This point indicated

where the AI controlled boat would ideally be.

An offset was then added, since the AI would

aim beyond the ideal point.

Figure 18: The point for the AI to aim for is

calculated as a short distance ahead on the driving

line.

This system needed to check when the next

node had been passed. This was done by

calculating the distance between the most

recently passed node and the next node,

which then was compared to the distance

between the most recently passed node and

the boat. If the boat had reached further

away than the next node, the boat was

considered to have passed it.

Figure 19: The boat is considered to have passed a

new node if the distance between the last node

and the boat is larger than the distance between

the last node and the next node.

7.3 Discussion

The use of driving lines worked well for the

game. While an A* approach based on

reaching the next checkpoint would also be

possible, it may also have required more

development time if optimizations would

have to be made. Precomputed paths would

have needed optimizations as to minimize the

size of the data representation of the game

world.

By recording driving lines from human

players, the creation of new driving lines was

a fast process. While the human player might

not have taken an optimal path, this would

also add a human factor to the paths taken.

As the AI players would use the same path

every time the game was played, a human

player would be able to predict how the AI

33

would drive. Due to the fact that collisions

and explosions put the AI off track, this effect

might be less noticeable.

Further functionality could be added to the AI

such as intelligent use of power ups. However,

this has had a low priority compared to other

areas of the game.

8 User Interface

A complete gaming experience, according to

today's standards, includes ways of actually

starting the game, defining game settings,

choosing to play in a specific mode, quitting

the game and so forth. During the game,

there are menus present showing the actual

state of the game, for example the heads up

display showing the player's current position.

A user interface is the interface between the

user and the machine. Its purpose is to help

the user in his interaction with the system,

and to make the interaction occur on the

user's terms rather than the machine's terms.

The user interface is responsible for all input

from the user, as well as the feedback that is

sent to the user about the performance.

The science of user interaction consists in its

most basic form of user input and system

response. In the following sections, an

additional split has been performed in order

to present the subject more clearly (Dix 2004).

8.1 Input

When designing the input logic for a

computer game, it is important to see it from

the user's perspective. A far too complex

system will result in the user not feeling

comfortable with it, and will in the end affect

the gaming experience. It is therefore

important to construct an input system which

has a learning curve that is as easy as possible,

and a recognition factor that is as high as

possible. A good approach to this is to

implement simple controls that are natural to

the average user, since they will relate to

similar products the user has used before

(Federoff 2002).

One way to achieve a high degree of

immersion is the use of pseudo real input

control components. In a racing game, this

can be done with the use of steering wheels

and pedals, or with a joystick in a flying game.

In order to create a feeling of immersion for

the user, controls with haptic feedback, such

as Force Feedback, can be used (Edwards;

Barfield; Nussbaum 2004).

8.2 Graphical feedback

The graphical part of the feedback to the user

is often the most emphasized and

deterministic part of the UI. This is due to the

fact that it will deliver the majority of the

information to the user in most systems.

In order to enhance the user's ability to

navigate in the game world, information

about the player's location is often good to

have available. A way of achieving this is to

use an in-game mini-map or to have such

information reachable through a menu or a

separate screen.

Having the mini-map constantly rendered on

the screen, ensures that the user receives

information without having to give any input

to the system. A drawback of this method is

that the mini-map, for some users or in some

situations, remains unused most of the time.

According to Gregory Wilson, it can also

interrupt the player's immersion in the game

(Wilson 2006).

34

A mini-map accessed by a menu avoids the

problem of taking up precious screen space,

but can be tedious to access if often needed.

This could result in lower usability due to

lower efficiency.

8.3 Sound feedback

Sound feedback can also be used to greatly

enhance the feeling of immersion (Edwards;

Barfield; Nussbaum 2004). This is achieved by

letting the user receive relevant information

about the game and the user's performance in

it by sound effects and/or a speaker voice.

Studies have shown that sound feedback

about performance increases both the

player's feeling of immersion and the level of

efficiency of the interaction with the game

(Edwards; Barfield; Nussbaum 2004).

8.4 Results

Sound feedback was used extensively in the

game to inform the player about how he

performed. For example, if a player missed a

gate, a sympathetic voice exclaimed the

player's failure.

A mini-map was also implemented in order to

ensure that the player would not get lost or

fail to follow the race course. This feature also

enabled the player to receive information

about the position of the opponents and how

well the user performed in relation to them.

The first version of the mini-map was a fairly

crude construction which basically rendered a

smaller version of the heightmap, with

different colors representing geometry above

and below the sea level respectively. In a later

version of the project, large sections of the

map consisted of water. Thus, the mini-map

being rendered was filled with much

information that was of little use. The results

of the hand drawn map looked more

impressive, and also provided more useful

information. This final version of the mini-map

showed the map's intended race path, as well

as race checkpoints and the opposing boats.

Visual feedback about the user's performance

in the race was present as well. In the mode

where the player raced against the AI, the

player's position relative to his opponents was

shown. In the time trial mode, the time was

visible.

Initially, support of the rebinding of keys was

implemented. The purpose of this was to

allow the user to set his preferred keys before

playing, tailoring the gaming experience for

individual users. Later on, a decision was

made to make the controls simple enough

that rebinding was considered unnecessary.

8.5 Discussion

The decision of minimizing the number of

keys used for controlling the game gave the

game a simple control system. One could

argue that this lowered the challenge of the

game by being too simple. However, in

relation to the low amount of content that

was present in the game, this did not present

any major problems. Furthermore, a new user

could quickly master the controls of the

game with the simplified control scheme and

focus on other aspects of the game, rather

than the control system.

The possibility of implementing pseudo real

game controls was considered, which could

have used Force Feedback. The original plan

was to implement an interface between the

controls and the game core software to

handle the extra logic involved. However, due

to the change of game concept from car

racing to boat racing, normal feedback

systems such as steering wheels, pedals and

gearboxes did not seem appropriate anymore.

35

The extensive use of sound feedback was

considered by the development team to be a

natural way of delivering information, as it

reduced the need of explaining game rules to

the player before the race began. However, it

could have been used even more in order to

minimize the need for visual information on

the screen. In this way it would also

contribute even more to player immersion.

Sound feedback was not prioritized high

enough, though.

9 Results of

implementation

One result of the study was a fully playable

racing game with a single player mode for

playing against a computer opponent, as well

as a multiplayer mode against another human

opponent. This chapter will describe the game

on the whole, to proceed with a discussion

about these results in chapter 10.

When starting the game, the menu shows up.

The user navigates the application's menu

scenes to reach his preferred game mode.

When choosing either "Time Trial Mode",

"Race Against AI" or "Multiplayer" the user

will come to the next scene. This scene

prompts the user to select his vehicle and

map, and it works very similar in the different

game modes. The player or players selects

their boats by using the arrow keys and then

accepts their current alternative to start the

game.

Figure 20: Various stages in the game menu.

36

Figure 21: The final result of Water Racing has a

graphical user interface contains a counter

tracking number of missed gates (1), a mini map

(2) and a power up container (3) as well as a few

additional gadgets.

In the game, the user is prompted to race

through the map by passing gates. The first

boat that crosses the finish line wins the race,

and depending on the type of race two things

may happen. Either a local highscore is

presented with the player's score highlighted,

or a list of the various racers is shown, placing

the winner on top. If a boat fails to pass a

certain number of gates, he will be

disqualified and has no longer any chance of

winning. These gates were implemented to

disable the player from taking shortcuts. The

presence of the opponent is different

depending on what game mode that was

chosen. In "Time Trial", the user has no

opponent. In "Race against AI", the opposing

boat is steered by the computer. In the

"Multiplayer" mode, there is another human

that controls the opposing boat, playing from

another computer.

The race occurs between islands which are

filled with objects such as trees and buildings

to make the game look more interesting.

Floating mines are placed in the water as

obstacles, and thus enables more complex

game play to make it more interesting to play

the game.

Power-ups are spread throughout the level.

By picking one of these up, the player is

granted one of several possible powers, which

then can be used to gain an advantage in the

race. The power at disposal is displayed by a

stylized icon in the user interface. Power-ups

can be of either defensive or offensive nature,

or sometimes both depending on how they

are applied by the user. The set of power-ups

includes various kinds of rockets and mines,

as well as shields and abilities that alter the

way the boat moves. These are jumping

abilities and abilities that heighten the

velocity.

There is no way for a boat to be permanently

destroyed or damaged. An explosion simply

propels it in a new direction. If it crashes upon

land, it is replaced in the position where it was

before the explosion.

10 Discussion
The overall belief of the team was that the

game had good potential of being regarded as

an entertaining racing game, according to

modern standards. However, one of the main

drawbacks of Water Racing was that only one

complete level was implemented. Level design

was something that was more demanding

than initially expected. While being a fully

playable game, the risk would be that the

game becomes monotonous when playing the

same map in every game.

One aspect that the team had in focus when

striving for an entertaining game, was

versatility. The networking- or music parts, for

instance, could have been left out when they

initially presented unexpected challenges, but

the goal of wanting a result that was complete

in all its aspects made the team continue work

on these areas. Therefore, the overall belief of

the team was that when developing a game

1

2 3

37

rapidly, it should not be done with the means

of omitting parts of it. Instead solutions

should be found for each area that allows a

simple solution.

In this project, there are several tools that we

acknowledge for having contributed

considerably to the resulting game. The pre-

made shaders used for the water saved much

time that otherwise would have been spent

on the graphical parts. XNA is a framework

shown to be useful to develop a game of this

kind, as much work is pre-made compared

with just using C#.

Though XNA is a tool with potential, it is not

without disadvantages. First and foremost

XNA LIVE is not adapted for commercial

multiplayer use. If the users have already paid

for a game, it is not likely they will want to pay

for playing online unless it becomes

somewhat of a commercial success.

11 Conclusions

There are interesting techniques available at

the time of writing this report that enables

rapid development of games. Agile

development is a process that makes it

possible to focus on programming to a greater

extent, rather than formalities. There are

royalty free tools available for download to

enable good looking visuals, and royalty free

sounds and music can be acquired from a

number of sites. By making an appropriate

choice of the game concept one can make a

relatively impressive game that avoids many

physical and graphical challenges, in case

these would be predicted to cause problems

in the development phase. In this study the

concept of Water Racing has resulted in a

game with functional graphics, gameplay, a

multiplayer mode, computer controlled

opponents, simple physics, suitable game

audio and working menus.

Something interesting for further studies

could be to show a way of rapidly developing

a multi-level game. This would then not only

be considered a complete game, but also have

entertainment value enough to be compared

with commercial games. Also, comparing

different development tools could be of

interest. The team was more or less bound to

the programming languages they had

knowledge of. However, there are many

languages available that could be used in

game development.

38

12. References

3ds Max (2010) http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567410

(2010-05-13).

A1FreeSoundEffects (2010) http://www.a1freesoundeffects.com/ (2010-05-04).

Adobe Photoshop (2010) http://www.adobe.com/products/photoshop/family/?promoid=DIODG

(2010-04-10).

AgileCollab (2008) Iterative and Incremental is not equal to Agile: Key Aspects of Agile.

http://www.agilecollab.com/iterative-and-incremental-is-not-equal-to-agile-key-aspects-of-agile

(2010-05-05).

Arcen Games (2010) AI War. http://www.arcengames.com/ (2010-05-12).

Atis Telecom Glossary (2007) http://www.atis.org/glossary/definition.aspx?id=3516 (2010-05-04).

Audacity (2010) http://audacity.sourceforge.net/?lang=sv (2010-05-03).

Beatnick Games (2010) Plain Sight. Published by: Steam. http://www.plainsightgame.com/ (2010-05-

12).

Biasillo, G (2002) Racing AI Logic. In AI Game Programming Wisdom, ed. S. Rabin, pp. 444-454.

Hingham: CHARLES RIVER MEDIA.

Biasillo, G (2002) Representing a Racetrack for the AI. In AI Game Programming Wisdom, ed. S.

Rabin, pp. 439-443. Hingham: CHARLES RIVER MEDIA.

Biasillo, G (2002) Training an AI to Race. In AI Game Programming Wisdom, ed. S. Rabin, pp. 455-

459. Hingham: CHARLES RIVER MEDIA.

Blender (2010) http://www.blender.org/ (2010-05-13).

Boehm, B. (1988) A Spiral Model of Software Development and Enhancement, Computer, vol. 21, no.

5, pp. 61-72.

Brightman, J. (2010) NPD: Video Game and PC Game Industry Totals $20.2 Billion in '09.

Bullet (2010) http://bulletphysics.org/wordpress/ (2010-05-05).

BulletX (2007)

http://xnadevru.codeplex.com/wikipage?title=Managed%20Bullet%20Physics%20Library&ProjectNa

me=xnadevru (2010-05-05).

Cain, T (2002) How to Achieve Lightning-Fast A*. In AI Game Programming Wisdom, ed. S. Rabin, pp.

146-152. Hingham: CHARLES RIVER MEDIA.

39

Chin, N. (1995). A Walk Through BSP Trees. In Graphics Gems V, ed. A. Paeth., pp. 121-138. London:

Academic Press.

Darby, A (2004) Racing Vehicle Control Using Insect Intelligence. In AI Game Programming Wisdom

2, ed. S. Rabin, pp. 469-484. Hingham: CHARLES RIVER MEDIA.

Dexter, J. (2005) Texturing Heightmaps.

http://www.gamedev.net/reference/programming/features/texturingheightmaps/page2.asp. (2010-

05-04).

Dickheiser, M (2004) Inexpensive Precomputed Pathfinding Using a Navigation Set Hierarchy. In AI

Game Programming Wisdom 2, ed. S. Rabin, pp. 103-113. Hingham: CHARLES RIVER MEDIA.

Dix, A. et al. (2004) Human-Computer Interaction. Third edition. Harlow: Pearson Education Limited.

Doucer, J. R. (2002) The Sybil attack, First International Workshop on Peer-to-Peer Systems.

http://www.iptps.org/papers-2002/101.pdf (2010-05-04).

Ducheneaut, N.; Moore, R. J. (2004) The social side of gaming: a study of interaction patterns in a

massively multiplayer online game. Proceedings of the ACM Conference on Computer-Supported

Cooperative Work. November 6th-10th 2004, Chicago.

Edwards, G.W., Barfield, W., Nussbaum, M.A. (2004). The use of force feedback and auditory cues

for performance of an assembly task in an immersive virtual environmen. Virtual Reality, vol. 7:2

2004.

Extreme Programming (2009) http://www.extremeprogramming.org/ (2010-03-17).

Federoff, M. (2002) Heuristics and usability guidelines for the creation and evaluation of fun in video

games. Indiana: Indiana University. (Master of Science in the Department of Telecommunications).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.8294&rep=rep1&type=pdf (2010-05-

13).

Gomaa, H., Kerschberg, L. (1995) Domain Modeling of the Spiral Process Model.

http://mason.gmu.edu/~kersch/KBSE_folder/ESPM_folder/ESPM_DM.html (2010-03-16).

Grootjans, R. (2008) XNA tutorial using C# and HLSL series 4 - Overview.

http://www.riemers.net/eng/Tutorials/XNA/Csharp/series4.php (2010-04-03).

Guitar Pro (2010) http://www.guitar-pro.com/en/index.php (2010-04-14).

Hart, P.E, Nilsson, N.J and Raphael, B. (1968) A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp.100-

107. DOI: 10.1109/TSSC.1968.300136

Havok (2010) http://www.havok.com/ (2010-05-05).

Hecker, C. (2000) Physics in computer games. Communications of the ACM. Volume 43, Issue 7 (July

2000), pp: 34 - 39.

40

Higgins, D (2002) Generic A* Pathfinding. In AI Game Programming Wisdom, ed. S. Rabin, pp. 114-

121. Hingham: CHARLES RIVER MEDIA.

Higgins, D (2002) How to Achieve Lightning-Fast A*. In AI Game Programming Wisdom, ed. S. Rabin,

pp. 133-145. Hingham: CHARLES RIVER MEDIA.

Higgins, D (2002) Pathfinding Design Architecture. In AI Game Programming Wisdom, ed. S. Rabin,

pp. 122-132. Hingham: CHARLES RIVER MEDIA.

http://www.industrygamers.com/news/npd-video-game-and-pc-game-industry-totals-202-billion-in-

09/ (2010-04-03).

Hung, T. (2007) Software development process. http://cnx.org/content/m14619/latest/ (2010-03-

19).

Irrational Games (2007). BioShock. Published by: 2K Games.

Jeffries, J. (2009) Absence of Errors. http://xprogramming.com/articles/qa/xp_q_and_a_absence/

(2010-03-18).

JigLib (2007) http://www.rowlhouse.co.uk/jiglib/index.html (2010-05-05).

JigLibX (2010) http://jiglibx.codeplex.com/ (2010-05-05).

Klein, F. (2008) The Waterfall Model of Software Development.

http://www.relativitycorp.com/projectmanagement/article10.html (2010-05-10).

Klucher, M. (2006) XNA Game Studio Team Blog.

http://blogs.msdn.com/xna/archive/2006/08/29/730168.aspx (2010-04-09).

Klucher, M. (2007) XNA Framework Networking and LIVE Requirements.

http://blogs.msdn.com/xna/archive/2007/11/16/xna-framework-networking-and-live-

requirements.aspx (2010-05-04).

Kumar, S.; Manocha, D.; Garrett, B.; Lin, M. (1996) Hierarchical Back-face Culling. In 7th Eurographics

Workshop on Rendering, pp. 231-240.

Lander, J. (1998) The Ocean Spray in Your Face. Game Developer. Game Developer, July 1998.

http://double.co.nz/dust/col0798.pdf (2009-05-03).

Larman, C. (2003) Agile/iterative methods: From business case to successful implementation.

Addison Wesley.

Lengyel, E. (2004) Mathematics for 3D Game Programming and Computer Graphics. Second edition.

Massachusetts: Charles River Media Inc..

Lidgren, M. (2009) Featured Projects. http://code.google.com/p/lidgren-

network/wiki/FeaturedProjects (2010-05-04).

Lidgren, M. (2009) Networking Library. http://code.google.com/p/lidgren-network/ (2010-05-04).

41

Lombard, Y. (2004) Realistic Natural Effect Rendering: Water I.

http://www.gamedev.net/reference/articles/article2138.asp (2010-04-07).

Makivision Games (2009) Sacraboar. Published by: Steam. http://www.sacraboar.com/ (2010-05-

12).

Maly, R. (2003) Comparison of Centralized (Client-Server) and Decentralized (Peer-to-Peer)

Networking. ETH Zurich. ftp://ftp.tik.ee.ethz.ch/pub/students/2002-2003-Wi/SA-2003-16.pdf (2010-

05-04).

Manslow, J (2004) Fast and Efficient Approximation of Racing Lines. In AI Game Programming

Wisdom 2, ed. S. Rabin, pp. 485-488. Hingham: CHARLES RIVER MEDIA.

Matthews, J (2002) Basic A* Pathfinding Made Simple. In AI Game Programming Wisdom, ed. S.

Rabin, pp. 105-113. Hingham: CHARLES RIVER MEDIA.

Maya (2010) http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13577897 (2010-

05-13).

McEntegart, J. (2008) Yet Another Study Finds Videogames a Social Experience.

http://www.tomsguide.com/us/Video-Games-Children-Pew,news-2607.html (2010-05-04).

MindTools (2010) http://www.mindtools.com/pages/article/newPPM_03.htm (2010-03-17)

Norlinder, M. (2007) Lair of Beowulf.

http://www.gamessound.com/texts/3dPosi%20Audio%20in%20game.pdf (2010-05-04).

NST (2001). Wave Race: Blue Storm. Published by: Nintendo.

nVidia (1999) Cube Map OpenGL Tutorial.

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html (2010-04-07).

nVidia (2010) PhysX. http://www.nvidia.com/object/physx_new.html (2010-05-05).

OpenGL (2001) Planar Reflections and Refractions using the Stencil Buffer.

http://www.bluevoid.com/opengl/sig00/advanced00/notes/node165.html (2010-04-07).

PacDV (2010) http://www.pacdv.com/sounds/ (2010-05-04).

PartnersInRhyme (2010) http://www.partnersinrhyme.com/ (2010-05-03).

Physics Engine (2008) Second Life. http://wiki.secondlife.com/wiki/Physics_engine (2010-05-05).

Plamer, G. (2005) Physics for Game Programmers. New York: Springer-Verlag.

Planetside (2010) http://www.planetside.co.uk/ (2010-04-11).

Russell, D. (2009) The Doppler Effect and Sonic Booms.

http://paws.kettering.edu/~drussell/Demos/doppler/doppler.html (2010-05-04).

42

Scacchi, W. (2001) Process Models in Software Engineering. In Encyclopedia of Software Engineering.

2nd Edition, by Marciniak, J.J. New York: John Wiley and Sons, Inc..

Schell, J. (2008) The Game Improves Through Iteration. In The Art of Game Design, pp. 79-95. .

Burlington: Elsevier.

Schreiner, T (2003) Artificial Intelligence in Game Design. http://ai-depot.com/GameAI/Design.html

(2010-03-22).

Sekulic, D. (2004) Efficient Occlusion Culling.

http://http.developer.nvidia.com/GPUGems/gpugems_ch29.html (2010-04-07).

Simpson, J. (2010) How Important Are Graphics to Games?.

http://www.gamespot.com/features/2693475/p-2.html (2010-03-25).

Soft Particles (2009) http://www.gamerendering.com/2009/09/16/soft-particles (2009-05-03).

Sommerville, I. (2010) Software Engineering. 10th edition. Harlow: Addison Wesley.

Stam J. (2003) Real-Time Fluid Dynamics for Games.

http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf (2010-04-07).

Sterren, W (2004) Path Look-Up Tables-Small Is Beautiful. In AI Game Programming Wisdom 2, ed. S.

Rabin, pp. 115-129. Hingham: CHARLES RIVER MEDIA.

Stout, B (2000) The Basics of A* for Path Planning. In Game Programmering Gems, ed. M. DeLoura,

pp. 254-263. Hingham: CHARLES RIVER MEDIA.

The 3D Studio (2010) http://www.the3dstudio.com/ (2010-04-07).

Thomas, D (2004) New Paradigms in Artificial Intelligence. In AI Game Programming Wisdom 2, ed. S.

Rabin, pp. 29-39. Hingham: CHARLES RIVER MEDIA.

Toman, W. (2009) Rendering Water as a Post-process Effect.

ttp://www.gamedev.net/reference/programming/features/ppWaterRender/ (2010-04-07).

Tozour, P (2002) The Evolution of Game AI. In AI Game Programming Wisdom, ed. S. Rabin, pp. 3-15.

Hingham: CHARLES RIVER MEDIA.

Tracktion (2010) http://www.mackie.com/products/tracktion3/ (2010-04-12).

Ubisoft Romania (2005). Silent Hunter III. Published by: Ubisoft.

Valve Software (2004). Half-Life 2. Published by: Sierra Entertainment.

Westin, S. (2007) Fresnel Reflectance. http://www.graphics.cornell.edu/~westin/misc/fresnel.html

(2010-04-07).

Whalen, Z (2004) Play Along - An Approach to Video Game Music.

http://www.gamestudies.org/0401/whalen/ (2010-05-04).

43

Wilson, G. (2006) Off With Their HUDs!: Rethinking the Heads-Up Display in Console Game Design.

Gamasutra.

http://www.gamasutra.com/view/feature/2538/off_with_their_huds_rethinking_.php?page=2

(2010-05-13).

VTT Electronics (2002) Agile software development methods. http://www.pss-europe.com/P478.pdf

(2007-03-20).

XNA (2007) http://www.xna.com/ (2010-03-21).

XNA Creators Club Online (2010) - http://creators.xna.com/en-us/sample/particle3d (2010-03-27).

XNA Game Studio 3.1 - Gamer Services (2009) http://msdn.microsoft.com/en-

us/library/dd254747.aspx (2010-05-04).

Zhang, H. (1998) - Effective Occlusion Culling for the Interactive Display of Arbitrary Models. Chapel

Hill: University of North Carolina (Doctoral Thesis).

