
Tisado
– A graphics intense smartphone game

Bachelor's Thesis
Computer Science and Engineering Programme

GUSTAV BODARE ROBERT SILVERFLOD
ANN MICHELSEN DAVID TERMANDER
EDVARD SANDBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012
Bachelor's Thesis DATX12-37 - Graphics intense smartphone game

Abstract

This bachelor's thesis describes the design- and implementation pro-

cess of a 3D smartphone game, where the developers are restricted by

both time and hardware limitations. It explores the various aspects of

creating a modern game, including e�ective real-time rendering and the

creation of a 3D world, as well as related �elds, such as collision detection,

optimization techniques and visual e�ects.

The thesis investigates the most commonly used techniques for devel-

oping a fun and visually appealing smartphone game, and presents our

implementations and solutions to the obstacles facing the modern game

developer.

Group 37 1 14th May 2012

Acknowledgements

First of all, we would like to thank Mario Zechner for creating libgdx, the
most awesome framework. Ever. We would also like to thank a few other people
who helped making this project such an enjoyable journey for us. In particular,
we would like to thank Kalle Hämäläinen for his incredible patience and much
needed help with everything that comes with game development. We would also
like to thank Stefan Bachmann for all the time and explanations, as well as the
other frequent users of the #badlogic irc channel.

Group 37 2 14th May 2012

CONTENTS CONTENTS

Contents

Contents 3

1 Introduction 6

1.1 Purpose . 6
1.2 Limititations . 6
1.3 Method . 7

1.3.1 Development Process . 7
1.3.2 Choice of platform . 8
1.3.3 Choice of framework . 8

1.4 Outline of study . 9

2 The Game Tisado 9

2.1 Features and ideas . 10
2.1.1 Jumping . 10
2.1.2 Power Ups . 10
2.1.3 Panic Button . 12
2.1.4 Environment Objects . 13
2.1.5 Sky sphere . 14
2.1.6 Online highscore . 15

3 Computer Graphics 16

3.1 Lighting . 16
3.1.1 Shading Models . 16
3.1.2 Light sources . 17
3.1.3 Shaders . 18
3.1.4 Our lighting model and shaders 18

3.2 Re�ections . 19
3.2.1 Environment Mapping 19
3.2.2 Our re�ection model . 20

3.3 Particle System . 21
3.3.1 Our Particle System . 21

3.4 Post-Processing . 22
3.4.1 The process of post-processing 22
3.4.2 Bloom . 22
3.4.3 Our use of bloom . 23

3.5 Modeling . 25
3.5.1 Modeling process . 25
3.5.2 Our modeling . 26

3.6 Animations . 28
3.6.1 Background . 28
3.6.2 Our Animations . 28

Group 37 3 14th May 2012

CONTENTS CONTENTS

4 Game Logic 29

4.1 Gravity . 29
4.2 Movement . 30
4.3 World Generation . 31
4.4 Collision Detection . 32

4.4.1 The broad phase . 32
4.4.2 The narrow phase . 33
4.4.3 Continuous vs discrete time 33
4.4.4 Our Implementation of Collision Detection 34

5 Optimization 35

5.1 Vertical sync . 35
5.2 Hardware . 37
5.3 Bottlenecks . 38
5.4 Garbage Collecting . 39
5.5 Loops . 40
5.6 Shaders . 40

5.6.1 Fillrate . 41
5.6.2 Depth Test . 41
5.6.3 Frustum Culling . 42
5.6.4 Back-Face Culling . 43
5.6.5 Occlusion Culling . 43

6 Music and Sound 44

6.1 Implementation . 44
6.1.1 Libgdx music class . 44
6.1.2 Libgdx Sound class . 44
6.1.3 Android native audio system 44

6.2 Audio formats . 45
6.2.1 Waveform audio . 45
6.2.2 Ogg Vorbis . 45
6.2.3 MPEG Audio Layer III 45
6.2.4 Advanced Audio Coding 45

6.3 Our Music and Sound . 45
6.3.1 Music . 46
6.3.2 Sound e�ects . 46

7 Results 46

8 Discussion 47

9 Conclusion 47

References 48

Group 37 4 14th May 2012

CONTENTS CONTENTS

A UML Diagrams 52

A.1 Libgdx Startup Classes . 52
A.2 Main Class . 53
A.3 PipeNode Cass . 54

B Code Examples 55

B.1 Rotation Algorithm Aode . 55
B.2 Rotation Speed Code . 55
B.3 Online Highscore PHP Code . 56

Group 37 5 14th May 2012

1 INTRODUCTION

1 Introduction

The smartphone applications industry is a relatively new one, but it is already a
big market. There are companies that focus solely on developing and releasing
smartphone applications, and even individual developers can make a living by
creating such applications. There are two main markets for mobile applications
today; AppStore for products developed for devices running iOS, e.g. iPhone
and iPad, and Google Play for Android products. Android holds 58.8% of the
market shares and iOS holds 32.2%. The rest of the market shares are split
between lesser companies [1].

The development of mobile hardware is rapidly moving forward. This means
that there are often new devices with stronger hardware than those previously
released. Thus, making room for applications with more intense graphics and
logic. Since there are always better looking and more advanced games being
developed, most games have a short lifespan.

The possibility to help develop an interesting market and participate in the
development of a growing community of game developers has been a major
source of inspiration for us.

1.1 Purpose

The purpose of this project is to, within the limit of four months, design and im-
plement a visually appealing, entertaining and graphically intense smartphone
game. To permit the focus of the project to target the graphics, the game logic
has to be relatively simple, whereas the visuals can be successively enhanced.
Additionally, the intention is that our resulting product will be adequate for
commercial release.

Furthermore, the various aspects of creating a modern smartphone game
will be explored, such as modeling, animating and rendering a 3D world, as
well as implementing sound and visual e�ects. Due to our target platform, a
smartphone, there will unavoidably be a heavy focus on optimization techniques
to keep a high graphical standard while avoiding performance issues.

The purpose of the report itself is to present solutions to problems such as:

� How do we make a fun and visually appealing game, for a platform we
have no experience with, in less than four months?

� How can we �t as many graphical e�ects as possible in the limited hard-
ware of a smartphone?

We hope that the answers to these questions can provide a good foundation for
people with interest in both game development in general and, more speci�cally,
developing smartphones games.

1.2 Limititations

The project was limited both by time, it had to be done within four months,
and by personnel, �ve students working �fty percent part-time. To be success-

Group 37 6 14th May 2012

1.3 Method 1 INTRODUCTION

ful in producing a full �edged smartphone game within that time frame, certain
delimitations had to be made. As our game was focused on graphical prowess,
the game logic had to be limited for the sake of project completion. The deci-
sion was made early on that no physics engine was to be created. Instead, an
illusion of a physics engine would be implemented through simpler means. Also,
due to the technical nature of the project, and the high time consumption of
making animations, interesting graphical e�ects were prioritized over numerous
animations.

Since smartphones generally lack GPU processing power in comparison with
desktop computers, limitations to the rendering structure had to be made. As
an example, the amount of objects simultaneously displayed on the screen had
to be revised at several points during the project. Other delimitations, such as
the exclusion of various otherwise desirable visual e�ects, had to be devised for
the same reason.

1.3 Method

Early in the development of the project, we had to decide upon a suitable game
idea. Each project participant came up with at least one idea for a game, and
these ideas were discussed and rated. Out of these choices, one was selected and
re�ned.

This idea was originally a game where the player controlled a man running
on a pipe with increasing speed, avoiding obstacles and collecting coins. During
the project, this changed from a man to a robot to reduce the complexity of the
animations required.

When the game idea had been decided, we needed to choose a platform to
develop for, a framework to use and how to make sure that the development
kept moving forward.

1.3.1 Development Process

We chose to use an iterative developement method for our project, working
with short deadlines, and weekly meetings to set new deadlines. The reason for
using such a method was to better distribute the time needed for di�erent parts
of development. Features that turned out to be di�cult to implement were
brainstormed during these weekly meetings. Since none of us had any prior
experience of working with a project of this magnitude, we tried to distribute
every task to more than one person. We did this so that every group member
always had someone to discuss their problems with.

To avoid problems with merging code, we knew that a version handling sys-
tem would be required. We were provided with a Subversion server by Chalmers,
making our choice of what system to use signi�cantly easier. We used a plug
in for Eclipse called Subclipse, allowing us to manage the repository from our
server directly in Eclipse.

Group 37 7 14th May 2012

1.3 Method 1 INTRODUCTION

1.3.2 Choice of platform

Since there are several mobile platforms available to choose between, when de-
veloping a smartphone game, we needed to research these platforms to come up
with the most suiting choice. This research involved reading hardware bench-
mark tests and investigating the programming languages available to develop the
game with. In addition, we also considered, and highly valued, the preferences
of the group members.

We agreed that the choice to be made stood solely between Android and
iOS, due to the popularity of the devices. To achieve the advanced 3D graphics
we desired, the use of OpenGL ES 2.0 was required. The benchmark tests we
studied, by AndroidPolice[2] and ExtremeTech[3], declared that iPhone 4S is
the strongest device available for OpenGL ES 2.0. However, these benchmarks
also showed that the earlier devices using iOS were weaker than many of the
most popular Android devices.

With this in mind, we discussed the programming languages and platform
preferences of the project participants. Because Android can be developed in
Java, a language all of us were familiar with, the development was likely to
advance faster than it would with a new language such as Objective-C, the
languade used for iPhone developement. Thus, if we chose to develop for An-
droid platforms, more time would be available for actual game development and
tuning.

After discussing the choices, the advantages and disadvantages of each plat-
form, we decided that developing for Android was the most suited choice for
us.

1.3.3 Choice of framework

A game development library can be used to quickly develop a game. Because
of the limited time available for our project, we felt that it was a natural choice
to make use of such a library. We looked at other developers' experience with
frameworks for Android[4], and found a library called libgdx. This library al-
lowed for development, as well as debugging, to be done on a desktop computer;
something that would otherwise not be possible since the emulator that comes
with the Android SDK does not support OpenGL ES 2.0 [5].

Libgdx is built upon several di�erent back ends, allowing us to use the same
Java code for deploying the application on di�erent platforms, such as Windows,
Linux, Mac OS, Android and HTML5(See Appendix A.1). It is also written with
some JNI (Java Native Interface) for performance-critical sections [6]. None of
the participants of the group were familiar with writing JNI and, again due to
the time limit, it is not likely that we would have been able to write a faster
framework ourselves.

Libgdx also comes with a large community. There is a forum, an o�cial
wiki, a well documented API and an active irc channel available for support
and help with any problems that may arise in development. The forum contains
a sub forum, focusing on collecting uno�cial extensions written by the libgdx

Group 37 8 14th May 2012

1.4 Outline of study 2 THE GAME TISADO

community. This forum provides extensions, such as bloom, which turned out
to be useful for our project.

To �nally make our decision, we looked at other games developed with libgdx
to see how well they had succeeded [7]. Considering all these things, libgdx felt
like a suiting choice of framework for us to develop our game with.

1.4 Outline of study

This report is structured into seven chapters; each discussing the di�erent as-
pects of the project. Chapter 2 gives a brief introduction to the game Tisado,
where the features and the ideas behind the game are presented. The following
four chapters explores di�erent aspects of the game. Each of these chapters
gives a short introduction to the subject that is to be discussed. Thereafter,
previous works in that subject is presented. Towards the end of each chapter,
the results are presented. The last chapters are dedicated to results, discussion,
and conclusion.

2 The Game Tisado

We have named our game Tisado, which is an acronym for �Travel in space and
dodge objects�. In the game, the player controls a robot, viewed from behind,
traveling along a pipe (see Figure 1). The speed of the robot will increase
during the game, and the player has to move to avoid obstacles, while collecting
as many power ups and coins as possible. The player controls the robot by
tilting the smartphone. The aim of the game is simple; travel as far as possible
without colliding with any obstacles, and gain the highest possible score.

Figure 1: A beautiful screen shot from Tisado.

Group 37 9 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

2.1 Features and ideas

In this section, we will present the features that were implemented in the game.
We chose only to implement features that would enhance the experience, while
not requiring too complex logic. In our implementation of the game, we built our
classes around a main class. The main class controls all game states, network,
screen updates and native functions (see Appendix A.2).

2.1.1 Jumping

By jumping, the player will have the opportunity to avoid obstacles that may
otherwise be impossible to pass. However, some obstacles are too high to pass
by jumping. This is something that requires the player's attention, to avoid
collisions. Furthermore, the player has the possibility to collect coins and power
ups when jumping. To initiate a jump, the player can simply press anywhere
on the screen.

2.1.2 Power Ups

The game contains many di�erent kinds of pick ups, such as coins, extra life,
immortality and boost. Coins are the ones that will show up most frequently.
By collecting a coin, the score increases. There is a coin bar at the left side of
the screen, and each collected coin will add to the size of the bar. When the bar
is full, the value of all subsequently collected coins will increase by ten percent.
A sound e�ect is played every time the character collects a coin, and the coin
quickly moves from the player's location to the coin bar (see Figure 2).

Figure 2: Coins �ying towards the coin bar.

An immortality power up will grant the robot invincibility for �ve seconds.
During this time, the robot will �icker and the color of the pipe will change into

Group 37 10 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

Figure 3: The immortal power up, pipe is now yellow.

yellow (see Figure 3). When the immortality expires, the pipe will change back
to its normal color.

The life power up gives the character one extra shield (see Figure 4). The
robot can only have as many shields as hearts. Thus, loosing a life will reduce
the maximum amount of shields.

Figure 4: The shields, displayed in the user interface.

The boost power up grants both incredible speed and immortality for three
seconds (see Figure 5), as well as turn the pipe blue.

Group 37 11 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

Figure 5: The boost power up, pipe is now blue and the bloom e�ect is increased.

2.1.3 Panic Button

We implemented what we call a panic button. When pressing the panic button,
the game will enter slow motion (see Figure 6). It can be used when there are
segments of obstacles that are particularly di�cult or when a special power up
is to be collected. The slow motion e�ect will last for three seconds, and has
a long cool down to force the player to use the button wisely. The button is
located at the bottom-left corner and when used, the green color will be drained
quickly. The button will then slowly be �lled as the cool down passes.

Figure 6: Slow motion e�ect with increased bloom.

Group 37 12 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

2.1.4 Environment Objects

To make the world feel more alive, we added environment objects. There are
two di�erent kinds of environment objects in the game; stars(see Figure 7) and
new level circles(see Figure 8).

The stars were added to the game to give a feel of speed. Stars �y towards
the camera, with a speed relative to the speed of the character. Thus, when the
character speed increases, for example by taking a boost power up, the stars
will �y past even faster. This is done to make the increase of speed feel higher
than it actually is. These stars were implemented with the use of particles. See
section 3.3 Particle System, for more information.

The circles were added to show the player when a new level is about to start,
and they have no other impact on the game other than adding to the visual
experience. These circles were made by multiple rotating cubes positioned in
the shape of a circle around the pipe.

Figure 7: Stars, �ying towards the camera.

Group 37 13 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

Figure 8: Rings made up of cubes, visualizing new levels.

2.1.5 Sky sphere

To create the feeling that the game takes place in space, we used a sky sphere
(see Figure 9). The sky sphere will always be centered around the player to
invoke the feeling that the environment is in�nitely far away. The sphere is
created and mapped with a texture in 3Ds Max. When a new level is reached,
the texture will change with the use of bloom. See section 3.4.2 Bloom, for more
information.

Figure 9: A sky sphere made with Maya.

Group 37 14 14th May 2012

2.1 Features and ideas 2 THE GAME TISADO

2.1.6 Online highscore

There is a local highscore, which will be updated after each game if the user
quali�es, as well as an optional online highscore. If the user activates the online
highscore in the settings, the game will connect to the online database server
instead of the local one. We use a simple MySQL database to hold all the
highscores(see Figure 10).

Figure 10: Highscores in Tisado is saved in a MySQL database

The MySQL database is accessed from a PHP script that is running on a web-
server which in turn is controlled by the android device via a HTML protocol (see
Appendix B.3). The highscore is presented on the device by pressing the button
'highscore'. It is also presented live on the webpage 'http://www.tisado.se' (see
Figure 11). On the android device, you can choose between showing the total
highscore from all di�erent kinds of games, or just from a speci�c game.

Figure 11: Screenshot from www.tisado.se - presenting total and speci�c game-
seed highscore

Group 37 15 14th May 2012

3 COMPUTER GRAPHICS

3 Computer Graphics

The following chapter explores the various graphical ascpects of Tisado. It
includes techniques for modeling, animating, and enlightening a 3D scene, as
well as applying re�ections, post-processing, and particle e�ects. Generally,
each section supplies background information, investigates several possible im-
plementation methods, followed by a presentation of our results.

3.1 Lighting

In this section, we will �rst discuss various methods for creating virtual lighting
for a 3D scene. We will then describe our implementation of the shading in our
game.

To simulate real world lighting in games, a technique called shading is often
used. Basically, shading tries to resemble lighting by varying the level of dark-
ness, depending on the angle and distance between the surface and one or more
light sources. Usually, four di�erent types of lighting are combined to create the
�nal shading. These are ambient lighting, di�use lighting, specular lighting, and
emissive lighting [8]. There are several methods to perform shading, most of
which results in di�erent levels of realism, but also requiring di�erent amounts of
processing power. Three common shading techniques are �at shading, Gouraud
shading, and Phong shading [9].

3.1.1 Shading Models

Flat shading simply uses the normal for each triangle of an object to calculate
the same shade for all pixels within that plane. This results in very unrealistic
looking objects, unless the polygon count is huge, though the complexity of cal-
culating the lighting is fairly low [10]. Gouraud shading calculates the shading
by using the normals for each vertex, and then interpolate the color over each
pixel in between vertices. This gives more realistic lighting compared to the �at
shading, although at a slightly higher computational price [11]. The most real-
istic lighting model, that we felt was viable for use in a game, is the previously
mentioned Phong shading. It works similarly to Gouraud shading. However,
instead of interpolating the colors, it interpolates the vertex normals and calcu-
lates the shading for each pixel. This technique is also sometimes referred to as
per-pixel shading [12](see Figure 12).

Group 37 16 14th May 2012

3.1 Lighting 3 COMPUTER GRAPHICS

Figure 12: The shading qualities of �at shading, Gouraud shading, and Phong
shading.

3.1.2 Light sources

There are usually several types of light sources used when rendering a scene.
Three basic, and widely used types of light sources, are directional lighting, spot-
light lighting, and point lighting (see Figure 13). They can all be implemented
with the di�erent shading models described in the previous section. Directional
light illuminates objects from a certain direction rather than a position. In the
real world, there is no light that behaves in this manner. However, it can sim-
ulate lighting that is very far away and could in fact be considered as in�nitely
far away. An example of this is the sun, which illuminates the ground from
seemingly the same direction due to its vast distance from the earth. Point
lights emmits light equally in all directions from an in�nitely small point. Un-
like the directional lighting, point lighting usually fades over the distance from
the source. Spotlights are similar to point light. However, they only emit light
in one direction in a cone like fashion[13].

Figure 13: The various properties of point light, spot light, and directional light.

Group 37 17 14th May 2012

3.1 Lighting 3 COMPUTER GRAPHICS

3.1.3 Shaders

Traditionally, computer graphics have been rendered by sending data through
a �xed hardware pipeline, which then visualizes the data on the screen. The
programmer was limited to a prede�ned amount of visual e�ects and shading
techniques. During recent years, the hardware has started supporting the use
of shader programs, more commonly known as shaders.

A shader is a program de�ned by the programmer and then run by the
graphics hardware. This allows the user to implement graphics and visual e�ects
with great precision and freedom, while also providing a good opportunity for
optimization. The shader consists of two parts � a vertex shader and a fragment
shader [14]. The purpose of the vertex shader is to calculate the position of the
vertices for each object in the scene. The fragment shader is then invoked for all
pixels within the triangle, to calculate the resulting color, usually by computing
the lighting in accordance with one of the models described in section 3.1.1
Shading Modles. This is merely the basics of shader programs, as they can be
used for many di�erent purposes, such as post processing. See section 3.4 Post
Processing, for more information.

3.1.4 Our lighting model and shaders

Since one of the goals for the project was to create high quality graphics, we
decided to use the Phong shading model for all objects in the scene. Smartphone
GPUs generally have lower processing power than desktop computers and thus,
we had to limit the number of light sources and optimize the code to keep the
rendering speed at an acceptable level. We implemented support for up to three
light sources, where one of the lights used directional lighting, simulating a sun,
one spotlight was used as light beams from the player, and one spotlight moved
randomly in the scene to create a dynamic experience rather than actually
representing a real light source. In Figure 14, our three light sources can each
be seen one at a time, together with nothing but ambient lighting. To handle
slightly di�erent shading on di�erent kinds of objects, four shader programs were
created. One of these was a very simple shader, which only drew the objects at
the correct position and applied a texture wihout any light shading. This one
was used for the distant environment that was basically a large sphere, with a
texture, surrounding the character. The other three shaders were all variations
of the Phong shading model, where one shader could only draw monochrome
objects with the correct light shading, one that did the same while also being
able to apply textures to the objects, and one that applied both textures and
re�ections. See section 3.2 Re�ections, for more information.

Group 37 18 14th May 2012

3.2 Re�ections 3 COMPUTER GRAPHICS

Figure 14: Spot light located at the front of the ship, casting light only within
a cone shaped region. Directional light - here providing a homogeneous shading
on the right side of the pipe. Point light located above the pipe, giving a smooth
circular brightness on the upper part.

3.2 Re�ections

The �rst part of this section focuses on general methods of simulating re�ections
in computer graphics. We will then describe how we created the appearence of
re�ective material for our player model.

A shiny surface, such as the hood of a car, looks unrealistic if it has no visible
re�ections of the environment. Rendering realistic re�ections can be done in very
sophisticated ways using ray tracing [15]. However, for real time applications,
ray tracing is in most cases not a viable solution due to the complex calculations
performed. To create the illusion of re�ections, a technique called environment
mapping can be used, with which a static representation of the environment
is used to simulate re�ections. There are several di�erent implementations for
such a technique, including spherical environment mapping, dual paraboloid
mapping, and cube environment mapping.

3.2.1 Environment Mapping

To calculate re�ections with environment mapping, a re�ection ray is computed
per fragment of the re�ecting object. The environment texture(see Figure 15) is
then used to, for each ray, fetch the color of the re�ection. Spherical environment
mapping is performed by representing the environment as a single texture with
a spherical representation of the environment. The drawback of this method is
that parts of the environment located near the edges of the sphere is represented
with lower resolution. Dual paraboloid environment mapping is similar to sphere
mapping but uses two textures representing the environment as paraboloids, one
for the front and one for the back. Of the three methods, cube environment
mapping represents the re�ected scene with the smallest di�erence in quality
for disparate/varying re�ection directions. Six textures are used - one for each

Group 37 19 14th May 2012

3.2 Re�ections 3 COMPUTER GRAPHICS

side of a cube. Due to the necessity of loading six textures each time a scene is
rendered, this technique requires the most processing power [16].

Figure 15: The environment representations for spherical-, dual paraboloid-
, and cube -environment mapping. (images, curtesy of OakCorp,
http://www.oakcorp.net/chaos/hdri.shtml)

3.2.2 Our re�ection model

We chose to restrict usage of re�ective material to only the player character
model, mostly due to practical reasons, such as saving processing power. The
re�ections were implemented with the least demanding model, sphere mapping,
since the limited screen size heavily reduces the visual gain of using a more
complex model. The texture used as an environment map was simply a spherical
representation of the texture used on the sky sphere. Although it might seem to
be a simple solution, the visual di�erence between re�ective and non-re�ective
material can clearly be seen in Figure 16.

Figure 16: The visual di�erence between rendering without re�ections (left),
and with re�ections (right).

Group 37 20 14th May 2012

3.3 Particle System 3 COMPUTER GRAPHICS

3.3 Particle System

Particle e�ects are a way to represent e�ects that are hard to capture with other
techniques. E�ects such as �re, smoke, dust, fog and moving water are a few
examples of what particle systems are designed to simulate. As the name sug-
gests, the particle system imitates these phenomenons by creating a lot of small
particles. These particles may be rendered as billboards, which is a textured
quad that is always facing the camera. They may also be rendered as small
points or pixels.

Every particle is given a set of properties. Lifetime, velocity, color and
opacity are examples of properties a particle may have. In the simulation, the
particles are spawned at a location, and moved at every frame depending on the
velocity of the particle. When it reaches the end of its lifetime, it is removed or
recreated as a new particle. By just using a small set of texture with varying
size and opacity you can create complex and great looking e�ects.

3.3.1 Our Particle System

We use a particle system to create stars(see Figure 17) �ying towards the camera.
We chose to use billboards to do this. This choice was made because it is possible
to understand and develop a billboard particle system in a short amount of time,
and it suits the needs of our e�ect well.

Figure 17: Particles used to create stars.

The particle system is built as one mesh, where each billboard is a quad,
randomly placed in a prede�ned area. This mesh is rendered in view space and

Group 37 21 14th May 2012

3.4 Post-Processing 3 COMPUTER GRAPHICS

rotated with a model matrix to make sure that the stars does not rotate with
the camera, but instead they remain at their position. The movement of each
individual particle is handeled by the GPU with a formula that includes start
position, velocity and time alive. Using the GPU for these calculations is faster
than using the CPU and it allow us to compute the position of each individual
star without having to change the mesh. The depth value of the particles will
loop from zero to the value of the farplane, of the camera's view frustum, plus
an o�set to make sure that it does not feel like the same star pattern repeating
itself. To further make sure that it does not feel like the star pattern is repetitive,
we let each star have individual speed. The lifetime variable is updated via a
uniform, and this value is updated with a formula depending on its previous
value, the di�erence in time from previous update and current update, as well
as the speed of the character.

3.4 Post-Processing

In this section we will discuss post-processing. Focus will be kept on the basics,
and the bloom e�ect which is relevant to our project. Usually, when a game
scene is rendered, all objects are drawn independent of each other. With the use
of post processing, one can create e�ects that takes the whole scene into account.
A variety of visual enhancements can be achieved through post-processing, such
as motion blur, bloom, fog, and depth of �eld [17].

3.4.1 The process of post-processing

To be able to modify the scene before it is drawn to the screen, an image of the
scene is rendered to an o�-screen bu�er, saving the relevant data, such as the
color and depth of each fragment. The image is then used as a texture, applied
to a full screen quad. The fragment shader will be run for each pixel, and since
the scene is now treated as a texture, the neighboring pixels can be accessed.
If we, as an example, wanted to create blur for our scene, we could now access
nearby pixels and blend them together with the current pixel [18].

3.4.2 Bloom

Bloom is a post-processing e�ect that is used to reproduce how bright parts of
an image sometimes seem to bleed into darker parts. Although this phenomenon
is actually an artifact of real-world cameras, the e�ect can feel very natural and
visually pleasing. Bloom can be achieved through the following process [19] .

� A high-pass �lter is applied to a copy of the post-processing image.

� Blur the �ltered image using Gaussian blur [20].

� Blend the �ltered image and the original post-processing image together.

The result will look like the original image. However, the light parts now have
blurry edges as though they were glowing (see Figure 18).

Group 37 22 14th May 2012

3.4 Post-Processing 3 COMPUTER GRAPHICS

Figure 18: The �gure shows the process of bloom, starting with the
original image, followed by a copy of the image, passed through the
high pass �lter. The copy is blurred and blended with the origi-
nal image for the �nal e�ect. (images, curtesy of Leadwerks Software,
http://www.leadwerks.com/�les/Tutorials/CPP/Post-Processing_E�ects.pdf)

3.4.3 Our use of bloom

To implement bloom in our game, we chose to use a library created with the sole
purpose of delivering visually appealing and computationally e�ective bloom
[21]. It was constructed for use in collaboration with the game development
framework libgdx, the framework used to implement our graphics. This library
calculates bloom through the same process as described in section 3.4.2 Bloom.
Our game took advantage of the bloom e�ect for several di�erent purposes.
Mainly, we used it the way it is traditionally used; to induce a stronger feeling
of the bright parts of the screen actually being bright (see Figure 19).

Group 37 23 14th May 2012

3.4 Post-Processing 3 COMPUTER GRAPHICS

Figure 19: The bloom can clearly be seen on the left, as a soft glow around
the edges of the coin, whereas the coin on the right has sharp and well de�ned
edges.

We also found it interesting to increase the intensity, and lower the threshold
for the high pass �lter, of the bloom, when the player uses a boost power up.
There is no logical reason as to why the bloom would intensify in accordance
with the speed, though it turned out to provide a stronger sense of high velocity
(see Figure 20).

Figure 20: The intensity of the bloom is greatly increased while the player is
traveling with boost speed.

In the game, as a new di�culty is reached, the environment texture changes
to increase the sense of advancement. To hide the stale switch of textures,

Group 37 24 14th May 2012

3.5 Modeling 3 COMPUTER GRAPHICS

we also made us of the bloom. When a texture swap is about to occur, the
bloom intensity starts to increase rapidly, while the high pass �lter's threshold
is simultaneously lowered, to the point where the screen is almost completely
covered in bright blur. During this moment, when the game is barely visible
due to the brightness, we change the environment texture, followed by a quick
decline in the bloom intensity until it has reached its normal values. This process
results in a short and bright �ash on the screen, with a new environment after
the end of the e�ect (see Figure 21).

Figure 21: When a new level is reached, the screen goes from normal, to intensely
bloomed, and then back to normal. After the e�ect, the environment texture
has changed.

3.5 Modeling

The modeling process is an essential part when creating 3D games. In this
section we will discuss the creation of models.

3.5.1 Modeling process

The three most common ways to build a model is with polygonal modeling,
curve modeling, and digital sculpturing. Polygon modeling is, as the name
suggests, a technique that uses polygons, also called meshes, to represent a
model. Curve modeling uses mathematical curves, also called NURBS. Digital
sculpting, which is the most recent method of these three, allows the modeler
to modify the model as if it was made of real-life substance [22].

Models created for games are usually made with polygons, and not NURBS.
This is because polygons are computationally less demanding. It is also impor-
tant to use as few polygons as possible when creating models for games. This,
due to that the 3D engines have limited processing power for rendering [23].
This is even more important when developing for smartphones. The two boxes
in Figure 22 will be displayed the same for the viewer, but the one to the left
will be less demanding to render than the one to the right since it consists of a
lower amount of polygons.

Group 37 25 14th May 2012

3.5 Modeling 3 COMPUTER GRAPHICS

Figure 22: Two visually identical boxes with di�erent amount of vertices.

3.5.2 Our modeling

Today, there are many tools for creating 3D models on the market. Three
common tool are Maya, 3Ds max and Blender. We used the programs Maya
and 3Ds Max when creating our models.

When creating models from scratch, we used primitives such as cubes, cylin-
ders, and spheres. These primitvies were attached to each other, to create the
various objects that were needed. The di�culties when modeling were how to
create good looking models with as few vertices as possible. We could not cre-
ate models with the same amount of vertices as the models used for desktop
computer games, due to that the capacity of a smartphone is lower. With this
in mind, we chose to create the obstacles by using simple cubes and cylinders.
To create smooth edges, we made them beveled. This increased the amount of
triangles, but our opinion was that it added a better look to the obstacles and
that it was worth it. To increase the smoothness of the edges, the normals were
modi�ed. Instead of three normals per vertex, we used one averaged normal in
each vertex (see Figure 23). This created a much better look to the game.

Group 37 26 14th May 2012

3.5 Modeling 3 COMPUTER GRAPHICS

Figure 23: Two boxes with three normals per vertex (left) compared to one
normal per vertex (right).

The level of detail was another part that had to be evaluated. The �rst
version of the coin model consisted of around 230 vertices, which is a huge
amount compared to our obstacle models. The second model that was made,
the one that is now used in the game, consist of 90 vertices (see Figure 24).
In the game, the di�erence between these two models is almost impossible to
notice, since everything is moving so fast. By doing this change, we saved some
of the smartphone's processing power.

Group 37 27 14th May 2012

3.6 Animations 3 COMPUTER GRAPHICS

Figure 24: First (right, 230 vertices) and second coin model(left, 90 vertices)
used in Tisado.

3.6 Animations

This section describes animations. First, we will start with a section on the
background of animations. Finally, we will cover our own animations.

3.6.1 Background

The earliest research in computer graphic and animations can be tracked back
to 1963, when Ivan Sutherland invented the Sketchpad, which was the �rst
computer program that could interactively create line drawings on a computer
screen [24]. But it was not until in the early 1970s that computer animations
started to spread over the world . This was due to that the University of Utah
had received funding from the government. As a result of this, they made
some groundbreaking animations between 1972 and 1974. Ed Catmull made an
animated hand and face, Barry Wesser created a walking and talking human,
and Fred Parke created a talking face. Today, this might not look that much
but at that time, this was ground breaking [25].

3.6.2 Our Animations

In our game, we have created animations for the player character. The character
is in the shape of a robot, with tank treads instead of legs. These tank treads
are animated to visualize movement. The animations were done using a script
in 3Ds max, that made the treads move forward along a path (see Figure 25).

Group 37 28 14th May 2012

4 GAME LOGIC

Figure 25: The player model of Tisado, displayed in 3Ds Max.

The animation was exported into a format called MD2. This format supports
animated 3D models, and was originally used by Id Software's Quake II engine.
Libgdx supports four di�erent formats for animated models; these are MD2,
MD5, G3D and G3DT. It is not possible to export from 3Ds Max to G3D and
G3DT. The choice of MD2 over MD5 was made because we were told, by Stefan
Bachmann from The Grey Studios, that MD2 is faster on smartphones. The
MD2 �le format was created in 1997 [26] and, since it is an old �le format, there
is no built in exporter for MD2 in 3Ds max. Instead, a script had to be used
that could export to MD2 from 3ds Max.

4 Game Logic

The logic used in Tisado describes a simulation of a robot traveling on a pipe.
This includes simulating gravity from the centre of the pipe. It also includes
controlling the character by jumping and turning, checking collisions and the
generation of an in�nite random world. This chapter will explain how these
features were implemented.

4.1 Gravity

Gravity is a complicated feature to add to a game, and it becomes even more
complicated in a 3D world with solid objects. To avoid the problems that comes
with general gravity implementation, we chose to solve this in a simpler way.

The character's position and movement is calculated as if it was moving on
a line rather than a pipe. This is done by using an algorithm that takes the
rotation and position of the character, the radius of the pipe and the direction
of the line and calculate the position of the character on the surface of the
pipe. The algorithm tracks the point at the top of a theoretical circle with the
given radius, perpendicular to the z-axis. This point is rotated along the circle
according to the rotation value, and �nally the entire circle is rotated to face
the direction given (see Appendix B.1).

To simulate a jump, an o�set is added to the radius used for calculating
the position in the gravity algorithm. This o�set is calculated as a physics

Group 37 29 14th May 2012

4.2 Movement 4 GAME LOGIC

simulation of a jump made in 2D, where only base gravity and initial up force
is needed to compute the current height and return value.

4.2 Movement

Most modern smartphones are equipped with an accelerometer that measures
the acceleration exerted by the gravity of our planet [27]. There are three axes
that measures the orientation: x, y, and z (see Figure 26).

Figure 26: The accelerometer axis on an Andoid phone. The z-axis points out
of the phone (picture taken from Zechner M. (2011) Beginning Android Games)

The gravity of our earth is 9.82 m/s² [28]. Therefore, if one axis of the
phone is pointing down, it will result in the maximum value of 9.82, and in
the opposite way will result in -9.82. The character is controlled by tilting the
phone to the left or right, and since we have limited our game to be displayed
in landscape mode (see Figure 27), the only concern is the value from the y-axis
when calculating the rotation speed of our character.

Figure 27: The player character is controlled by tilting left and right.

To be able to turn quickly to avoid obstacles in high speed, as well as being
able to turn quite slow in lower speed, there were some need for a combination of
algorithms. We also needed to limit our angle of the y-axis, when the maximum
rotation speed was reached. We used the algorithm, v = ka² where v is the
speed of the characters rotation around the pipe, a is the acceleration of the

Group 37 30 14th May 2012

4.3 World Generation 4 GAME LOGIC

y-axis, and k is a constant ampli�er. After that, the algorithm transform to a
more moderate linear algorithm, until maximum angle of the y-axis has been
reached, see Figure 28 and code implementation in (see Appendix B.2).

Figure 28: Simpli�ed algorithm for the acceleration around the pipe.

4.3 World Generation

In order to meet the concept of Tisado, we needed to develop a system to
generate a random map. The user is allowed to either set a speci�c seed to be
used, or to let the application randomly generate the seed. With this seed, we
generate �ve segments of pipe which are put together into a long pipe. Each
of these segments are generated separately, and �lled with obstacles and coins
depending on current di�culty of the game.

Each segment is generated as nodes, following a spline with start points
placed to match the end points of the previous segment. Each of these nodes
are expanded to multiple points forming a circle. These points are rotated so
that the circle faces the next point of the segment. The points that are forming
the circle are used to render the pipe. Each segment contains 784 vertices that
are connected by 1632 indices (see Figure 29).

Figure 29: The vertices of the pipe, made visible by rendering with lines rather
than triangles.

Group 37 31 14th May 2012

4.4 Collision Detection 4 GAME LOGIC

The character is always on one of the segments, and when the character
passes on to the next segment, the previous segment is regenerated and moved
to the end of the last segment. This approach makes it easy for us to make
the game in�nitely long. It also comes with many other advantages, such as
allowing us to use frustum culling (see 5.6.3 Frustum Culling) to avoid sending
the entire pipe to the GPU each frame.

The level of di�culty in the game increases depending on how many segments
the user has passed. Because the pipe is generated in �ve segments, and each
segment is regenerated with the current di�culty when the character has passed
it, this means that there will be a delay of four segments before the user notices
the increase in di�culty. To avoid this, we made sure that the application
is aware of how many segments are left before the user will be noti�ed of the
increased di�culty, and that the actual di�culty increase happens four segments
before the user is noti�ed.

4.4 Collision Detection

Key features in Tisado are to be able to dodge objects, collect coins and power-
ups. What we needed was a way to detect collisions between these objects and
the player. This is done with the help of something called collision detection.
In this chapter we will give a brief introduction to what collision detection
is, and explain some commonly used techniques. We will �nish by describing
how we solved this task. What we looked for was a collision system that was
fast enough to run on smartphones, while still being accurate enough to detect
collisions between the player and the obstacles.

The process of collision detection is to �nd out when two object intersect.
There are several ways to achieve this. The problem can be divided into two
groups - collision detection and collision handling. Collision detection classically
seeks a binary answer: intersection or no intersection. Collision handling is the
response to the collision.

Collision detection is often divided into two parts, a broad phase and a
narrow phase [29].

4.4.1 The broad phase

The purpose of the broad phase, is to reduce the number of potential collision
checks needed by checking whether or not two object are in the vicinity of each
other. A common practice is to use some sort of bounding volume that covers
the object. This bounding volume can be any simple geometric shape, such as a
box, a cone or a sphere. Since they are of simple geometric shapes, they take a
short time to calculate and give a good indicator if the objects are in the vicinity
of each other. By having this easy to calculate bounding volume, the overhead
is reduced by simply checking whether or not the two objects are close to each
other. When they are close to each other, more detailed checks can be made to
see if they actually collide. These detailed checks are also known as the narrow
phase.

Group 37 32 14th May 2012

4.4 Collision Detection 4 GAME LOGIC

Another method to reduce the number of collisions to be checked is known
as Sweep 'n Prune, also known as Sort and Sweep. This algorithm is a broad
phase algorithm, which sorts all the objects that may collide in a list; often a
linked list. This list is sorted in such a way that objects close to each other in
the game world are close to each other in the list. Since objects are sorted in
such a list, the narrow phase algorithm needs only to check neighboring objects
in the list for a collision, thus reducing the number of total checks needed. The
Sweep 'n Prune algorithm exploits the fact that objects do not move very far
between frames, therefore the list will remain almost sorted in the next frame.
Sorting an almost sorted list takes linear time with a simple insertion sort and
therefore the list is easily maintained [30].

4.4.2 The narrow phase

The narrow phase is to check if two objects, that passed the broad phase, have
actually collided. Since this check is more precise than the broad phase, it takes
a longer time to calculate. This test is often done to collect information about
the collision so that it may be handed over to the collision handler. An example
of additional information could be the angle of impact, the speed of the colliding
objects and the mass of the two objects. Since the broad phase helps to reduce
the number of narrow phase checks done, the narrow phase checks may be more
precise.

One way to check if two objects collide is to check every triangle of the
�rst object against all the triangles of the other object. This has a very poor
performance and is rarely used. Another way to do this is to represent the
object with one or more bounding volumes. Since most objects in games are
meant to represent real world objects, they may be hard to represent with a
single bounding volume. Therefore, objects are often represented with numerous
bounding volumes to better emulate their shape.

4.4.3 Continuous vs discrete time

There are two ways to implement a collision detection system; with discrete time
or continuous time. When working with discrete time, the collision detection
algorithm is called at regular time intervals, and collisions may only be detected
at these time intervals. The continuous time, however, operates by predicting
when and where a collision will happen. The bene�ts of a discrete time system
is that you only have to feed the algorithm with a list of bodies that can collide,
while a continuous time system needs to know about all the bodies at all times
to be able to predict when a collision will occur.

A problem with discrete systems is that they may miss collisions if the bodies
pass through each other before a call to the algorithm can detect the collision
[30].

Group 37 33 14th May 2012

4.4 Collision Detection 4 GAME LOGIC

4.4.4 Our Implementation of Collision Detection

In our game, we chose to implement a simple but e�ective collision detection.
The playerd model can collide with obstacles and pick ups. Since the obstacles
and pick ups are of geometric shapes, we chose to use axis-aligned bounding
boxes for all the obstacles (see Figure 30). To represent the player model, we
used a list of six vectors that covered key points of the model (see Figure 31).

Figure 30: The bounding box of a large half circle is rendered.

Figure 31: Showing the collision points of the robot.

Group 37 34 14th May 2012

5 OPTIMIZATION

As mentioned in 4.3 World Generation, the pipe and the obstacles are divided
into segments. These segments contain about 10-15 obstacles each, and in order
to reduce the number of collision checks needed, we only check the segment
the player model is currently on. Since our narrow phase checks are made up
of axis-aligned bounding boxes, we can a�ord to make the narrow phase check
10-15 times every frame without risking to impact the performance of the game
noticeably. Since axis-aligned bounding boxes, as the name suggests, can only
be axis-aligned, we had to compensate. Every obstacle in the game has a model
matrix that represents where in the game world the obstacles are positioned.
When an obstacle is loaded into the game, it is positioned at origin. At this
point the obstacle is axis-aligned, and we may represent it as an axis-aligned
bounding box. However, when we multiply it with its model matrix, it may
be rotated. Since an axis-aligned bounding box cannot be rotated, we had to
multiply the inverse of the model matrix for the obstacle we were about to
check, with the points of the player model. This way, we move the points of
the player model to origin, and we can represent every obstacle, even if it is
not axis-aligned, with an axis-aligned bounding box. The advantage with an
axis-aligned bounding box is that the computations needed to check whether
or not a point is contained within the box are few. The axis-aligned bounding
box is represented by two points - max and min. The max point represents
the top-right furthest away corner. The min represents the closest bottom-left
corner. The process of checking whether or not a point is contained within a
axis-aligned bounding box is simple. A point is contained within the box if it is
within the constraints of min and max.

5 Optimization

Even though mobile devices have been developed greatly during the last few
years, performance is still an issue. Optimizing the code is often a time con-
suming part, but it is important to certify that the code is as close to optimal
as possible. This often means that it is necessary to go against and break ba-
sic programming rules. For example, using public methods for accessing and
setting private variables is seven times slower than directly referencinging them
as public variables [31]. This chapter will explain some of the most common
performace problems and how we solved them.

5.1 Vertical sync

Vsync, or vertical sync, is used for limiting the frame rate of an application to
the refresh rate of the screen, and thus saving power by not calculating frames
that would not be displayed anyway. Its primary use, however, is not to save
power but to prevent screen tearing. Screen tearing is when two or more parts of
di�erent frames are shown in the same screen draw (see Figure 32). As good as
vsync might sound, it comes with some problems. These problems involve the
possibility of the application skipping entire monitor refreshes and thus reducing

Group 37 35 14th May 2012

5.1 Vertical sync 5 OPTIMIZATION

the visible frame rate by, at minimum, �fty percent.

Figure 32: Screen tearing with one tear point.

Screen tearing happens when the actual frame rate is higher than the refresh
rate of the device. If the actual frame rate is 90 and the refresh rate is 60Hz,
the following will happen:

� In the �rst 10.67ms, the frame bu�er will be �lled.

� In the next 5.33ms, the application writes a new version of the �rst third
of the screen to the frame bu�er.

� After 16ms, the device takes the frame bu�er and renders it to the screen.

This means that the �rst third of the screen will be from frame number two,
while the two other thirds will be from frame number one. Thus, frame tearing
appears.

There is a technique called double bu�ering which tries to mitigate the tear-
ing problem. It does this by writing new screens to the back bu�er instead of
the frame bu�er. When the back bu�er is full, the bu�ers are swapped. Thus it
will always pull completed screens. Or at least this would have been the case,
if the swapping could never happen during rendering; but it can. Thus, it is
possible that the monitor pulls part of the data from the wrong bu�er, and
again screen tearing will happen.

Vsync solves this problem by only swapping the bu�ers right after a monitor
refresh has happened. With a frame rate higher than the monitor refresh rate,
this is all �ne. But if the frame rate goes below the actual frame rate, the
following will happen:

Group 37 36 14th May 2012

5.2 Hardware 5 OPTIMIZATION

� In the �rst 16 ms, ninety percent of the screen is rendered to the back
bu�er.

� Monitor refreshes itself after 16ms. The back bu�er is not ready. Thus no
new frame data is pulled.

� After another 1.6ms, the remaining ten percent of the screen is rendered
to the back bu�er. The back bu�er is now full, and nothing can be written
to it before the bu�ers have been swapped. Thus, it has to wait for the
next monitor refresh, leaving 14.4ms of wasted time. After those 14.4ms,
the monitor refreshes itself and the backbu�er is now empty and ready to
be written to.

In two screen updates, only one new frame has been written to the screen. This
means that the only possible frame rate is monitor refresh rate divided by N,
where N is a positive integer. The gap between N = 1 and N = 2 is big compared
to the other gaps. If the monitor has a refresh rate of 60Hz and the time to
update and render a frame is between 1ms and 16ms, the frame rate will be 60
frames per second. But if the time to update and render is 17-32ms, the frame
rate will be cut by half. Thus, one millisecond extra can cause the frame rate
to drop from 60 to 30 frames per second [32].

5.2 Hardware

Android.com lists over 220 di�erent devices using the Android operating system
[33]. It is likely that not one of these devices has the exact same hardware spec-
i�cations as any of the other devices. Because some devices are much stronger
than others, it is hard to make a game which works good on all devices and still
uses the full potential of each device.

Because the hardware speci�cations are di�erent between the devices, it is
easy to understand that the problem with vsync, as described in 5.1 Vertical
Sync, is likely to occur on at least a few out of the many devices. Thus, it
is often a good idea for developers to set a minimum target device. Minimum
target device means that the application is designed to work without stuttering
or other problems on devices with hardware equal to, or stronger than, the
minimum target. This, however, does not necessarily mean that the application
will not work on devices with weaker hardware.

In our project, we consider the application to be working if the frame rate
does not drop below 30 frames per second at any point. On the Samsung Galaxy
S2, our minimum target device, we run the application with 40 to 60 frames per
second. Each lap in our game loop takes between 12ms and 20ms, depending on
the amount of objects being rendered. This means that it is the vsync problem
that is reducing our frame rate. It also means that a device that renders �fty
percent slower would still be getting 30 frames per second. 20ms*1.5 is still less
than 32ms.

Group 37 37 14th May 2012

5.3 Bottlenecks 5 OPTIMIZATION

5.3 Bottlenecks

Locating the bottleneck of an application can be done in multiple ways. One of
the simplests ways to locate them, is to reduce the workload on particular parts
of the application. If the frame rate increases because of the reduced workload,
the bottleneck has been found [34].

Pro�lers are great tools for �nding bottlenecks in applications. We used a
pro�ler called YourKit, which is free and fully functional, during an evaluation
period and after that paid [35] . This pro�ler allowed us to pro�le the CPU, and
check which methods required the most work from the CPU. A CPU pro�ler is
best used to track game logic methods, and because all of our game logic is run
from the class simulation, we can track methods run by this class and view the
results (see Figure 33).

Figure 33: The output of the pro�ler YourKit, searched for simulation.

Because the pro�ler slows the system down, the times are not what they
would normally be. This, however, does not mean that the information is use-
less. The methods that are only invoked once are run in the constructor and
are therefore not of high interest for optimization. In this pro�ler data there
is nothing that really stands out, because we have already spent many hours
optimizing these methods to make them as fast as possible. For example, in
the past we used collision detection for all obstacles and power ups, not just a
smaller list with the nearby ones, this meant that the collision check took up to
�ve times longer than the current one. This was easy to overlook when writing
the code, but it was also easy to �nd that the collision detection was taking too
long when a pro�ler was used.

There is another type of pro�ler, for the GPU, that could be used to pro�le
OpenGL calls. These pro�lers are, however, considerably harder to set up than
a CPU pro�ler is. We felt that the time spent on setting one up was not likely
to make up for the gains. Therefore, we chose to optimize the rendering of
objects manually, by looking through the shaders, the models, and the amount
of objects.

Group 37 38 14th May 2012

5.4 Garbage Collecting 5 OPTIMIZATION

5.4 Garbage Collecting

The CPUs of smartphones are not as strong as those used in modern desktop
computers. Thus, so is the garbage collecting. Slow garbage collecting is one of
the largest problems that the project came across during the development (see
Figure 34).

Figure 34: Logcat displaying the pause of an application, due to garbage col-
lecting.

Whenever an object is eligible for garbage collecting, work needs to be done
by the garbage collector. An object becomes eligible if it is not reachable from
any live threads or any static references. Cyclic dependencies are not counted
as references, so if object A has a reference to object B and object B has a
reference to object A and they have no other references, then both objects will
be eligible for garbage collecting [36].

This means that it is important not to create unnecessary objects, and to
reuse those already created. While old Android devices have to pause every
time the garbage collector needs to work, new Android devices support con-
current garbage collecting. A concurrent garbage collector can collect garbage
concurrently with the running applications, but needs to pause them to remove
the collected garbage [37].

Many of the calculations for the game logic are made using vectors and
matrices, and because there might be hundreds of the same calculations being
run after each other every frame, it is possible to set these calculation vectors
and matrices as static. For example, this means that even if there are multiple
obstacles to check collision detection with, only one vector will be used, thus
saving a signi�cant amount of time. Pooling is another way to avoid trouble
with garbage collecting. Pooling means that instead of removing the references
to objects when they are no longer needed, they will be placed in a list of unused
objects. These objects will then be used next time an object of the same type
needs to be created. An example where pooling is used in the project is for the
pipe. The pipe is generated in �ve segments, and each of these segments are in
turn a list of 100 nodes. When the ship has passed one of these segments, it
will have its nodes moved to become the new last segment of the pipe. This is
done without creating any new objects.

Group 37 39 14th May 2012

5.5 Loops 5 OPTIMIZATION

5.5 Loops

When optimizing loops that iterate through collections, it is important to know
that the best way to do this is di�erent depending on the type of the objects
in the collection, and the type of the collection. When the collection is a plain
array of any type, enhanced for loops are to be preferred, but they are only
slightly better than hand written counted loops. This can be compared to when
the collection is an ArrayList or similar. Using an enhanced for loop in this case
will create an iterator, and thus making the loop up to three times slower than
using a hand written counted loop [31]. It is also important to remember that
when iterating through an ArrayList, or similar collections, with an enhanced
for loop, a new iterator will be generated each time to loop is initiated and
discarded by the end of the loop. This iterator will need to be taken care of
by the garbage collector, which in turn will cause the problems described in
5.4 Garbage Collecting. We tested this ourselves on a Samsung Galaxy S2 by
writing an application that iterates an ArrayList with an enhanced for loop 10
000 times every frame. This caused garbage collecting to be called frequently;
at least once for each time the code was run. We then rewrote the application
so that it iterated the objects in the ArrayList using a normal for loop and,
with this approach, garbage collecting was never called. Thus it is easy to see
why and how high performance penelty enhanced for loops can be compared to
normal loops.

Case 1, using enhanced for loop Case2, using handwritten counted loop
ArrayList<Cat> cats = new Ar-
rayList<Cat>(); for (int i = 0; i < 10;
i++)

cats.add(new Cat());

applicationLoop:

for (int i = 0; i < 10000;i++) {

for (Cat c : cats) {

c.doStu�();

}

}

ArrayList<Cat> cats = new ArrayList<Cat>();

for (int i = 0; i < 10; i++)

cats.add(new Cat());

applicationLoop:

for (int i = 0; i < 10000;i++) {

for (int j = 0; j < cats.size();j++) {

cats.get(j).doStu�();

}

}

5.6 Shaders

When writing shaders, it is important to remember that the fragment shader
will be run for each pixel of each triangle, while the vertex shader will be run
once per vertex. See 3.1.3 Shader Programs, for more information. The objects
in Tisado vary in vertices between 24, for the most simple obstacles, and 90,
for coins. In total, roughly 15000 vertices are used to render each frame. This
can be compared to a full screen object in resolution 800x480 (Samsung Galaxy
S2 resolution)[38]. Such an object contains 384000 pixels, and it is likely that
many more will be sent through the fragment shader. This means that it is
important to have as little code and maths as possible in the fragment shader
and calculate as much as possible in the vertex shader. It is also important

Group 37 40 14th May 2012

5.6 Shaders 5 OPTIMIZATION

to remember that the GPU is faster with matrix and vector calculations than
the CPU, and therefore as much maths as possible should be run in the vertex
shader rather than calculated by the CPU.

5.6.1 Fillrate

Fillrate is a big limitation in the GPU of mobile devices. Fillrate is a word
for how many pixels the GPU can write to the frame bu�er each second [39].
In order to best avoid problems with �llrate, it is important to send as few
pixels as possible through the fragment shader. This means that avoiding to
render objects or pixels, that will not be shown in the �nal scene anyway, is of
high priority. Avoiding sending objects to the GPU can be done using di�erent
culling techniques.

5.6.2 Depth Test

Depth testing is used for checking whether the pixels calculated by the fragment
shader should be rendered or not. This is done by checking whether there is
anything blocking the view from the camera to the object. If the depth test is
disabled, all objects will be rendered on top of the previously rendered objects
(see Figure 35).

Figure 35: Visual di�erence of rendering with depth test (left) and without
depth test (right). Sky sphere has been removed to visualize the impact of
depth testing.

Many modern GPUs support a concept called early depth testing. This
means that the depth testing will be run before the fragment shader is executed.
Thus, it is possible to save performance [40].

A simple way of utilizing early depth testing, is to render objects in an order
based on their distance to the camera. In Tisado we �rst render the player
model, because the camera will always follow the player model and thus, it will
always be visible. Second, we render the pipe because it is a large object and it
takes up the most amount of screen space, apart from the sky sphere. We then
go on with minor objects such as obstacles, pick ups and environment objects.

Group 37 41 14th May 2012

5.6 Shaders 5 OPTIMIZATION

The sky sphere is rendered last because it will always be further away than the
other objects.

5.6.3 Frustum Culling

Frustum culling is a useful tool used to avoid sending unnecessary data to the
GPU. The idea is to check whether an object is within the camera's view. The
camera's �eld of vision may look in various di�erent ways, but generally, and
in Tisado, it is a frustum of a rectangular pyramid (see Figure 36). For this
reason, the cameras �eld of vision is often called the camera's view frustum. It
is important to set a relatively big frustum for the camera to make sure that the
object's near the far plane are small enough to not look like they are jumping
from not visible at all to full size when they pass the far plane. The idea is to
have the far plane just behind where the horizon would be. However, setting
a too big frustum will result in a lot of objects, that are very small due to the
distance, being sent to the GPU and rendered even though it is not necessary.

Figure 36: The frustum of a general camera.

If the object is not in the camera's view frustum, the object does not need
to be sent to the GPU. Thus, saving time. Because the idea of this check is
to save time, it is important that the actual check is very quick. To achieve
a check as fast as possible, it is often a good idea to create a sphere or box
around each object and check whether or not this geometrical form is inside the
frustum. A check like this is less precise, but much faster than a vertex-perfect
check would be. It is also possible to just check whether the centre of the object
is inside the frustum. However, this can result in the object jumping into the
screen. Imagine a cube twice the size of the frustum slowly moving towards the
camera. If only the centre of this object is checked for being inside the frustum,
the entire frustum will be �lled with the cube when this �nally happens [41].

Group 37 42 14th May 2012

5.6 Shaders 5 OPTIMIZATION

In Tisado, however, we use the centre check approach even though it has
some downsides. We do this because we need to optimize everything as much
as possible to make sure the game runs as good as possible on all devices, and
because all objects are relatively small compared to the frustum and the jumping
will not be visible more than it would with normal frustum culling.

5.6.4 Back-Face Culling

Back face Culling is, unlike the Frustum Culling, made by the GPU. The idea
here is to only �ll the triangles that are facing towards the camera. Thereby,
only half as many faces must be rendered. For example if you render a cube
without any back face culling enabled, the inside of the cube will also be �lled.
This is generally not necessary in games. Thus, enabling back face culling is
standard and should be used. Back face culling is responsible for the e�ect often
seen in games in which, if the camera is inside a mesh, rather than seeing the
insides of the mesh, the camera is able to look out of the mesh through what
would be seen as a wall from the outside.

In order to check if the triangles are facing the camera or not, OpenGL
checks whether the vertices of the triangles are appearing in an order that is
clockwise or counter clockwise. One would think that it would be possible for
the GPU to just check the normals of the vertices. This is not ideal, because
the programmer might choose to set the normals in any direction, to create
interesting lighting e�ects. Thus, if the normals were used, the faces would not
always be rendered [42].

5.6.5 Occlusion Culling

Occlusion culling is the process of determining whether an object is hidden by
another object from a certain viewpoint, generally from the viewpoint of the
camera. It works much like depth testing, with the exception that Occlusion
Culling is run before the objects are sent to the GPU. There are various di�erent
ways to do occlusion culling, but these ways are generally very expensive and
are therefore not suited for a mobile game like ours. There are, however, special
cases where occlusion culling can be very cheap and easy to do. For example,
if the pipe in Tisado were always moving straight forward it would be possible
to check the rotation of each object and compare that with the rotation of the
camera. With coins, which are very small, it would be possible to check if the
object is within cameras rotation plus 120 and camera's rotation minus 120 to
determine whether it is visible or not. The number 120 is just an approximation,
and this value would di�er depending on the size of the objects. Minecraft is
another example of where occlusion culling could easily be implemented and
used with pro�t. If a block has all 26 neighbours, it does not need to be rendered
[43].

Group 37 43 14th May 2012

6 MUSIC AND SOUND

6 Music and Sound

The resource demands of the music and sounde�ects, in a smartphone game,
must be kept as low as possible, because we had to consider the limitated storage
and memory availible in the devices [44]. There are several di�erent music
formats to choose from, and it must be something that is suitable for Android,
and more speci�cally libgdx, both in �lesize and sound quality [45]. First, we
will explain the availible implementation methods and music formats. After
that, we are comparing them and showing our result.

6.1 Implementation

We were developing this game on an Android mobile phone with the help of a
third party game library, Libgdx. To be able to make the best choice of the
music formats within our limitations, we had to take into account that there
were some di�erent audio implementationts that was not covered by Libgdx. In
the methods we used, we also tried out the Android native code to see which
di�erent audio formats that were availible to us.

6.1.1 Libgdx music class

The music class is built into the libgdx library. It represents a streamed audio
�le, and allows us to play, stop, pause, and adjust volume of the music. It
is created via the libgdx audio class, with the method `new Music(FileHandle
�le)', where the currently supported �le extensions are wav, mp3, and ogg [46].

6.1.2 Libgdx Sound class

As with the music class, the sound class is also built into the libgdx library - but
with the di�erence that this one is also giving us methods for setting the pan
and pitch, allowing us to do more dynamic changes of the sound. The creation
and supported �le extensions are the same as for the music class [47].

6.1.3 Android native audio system

The Android native audio system provides hardware support for the audio.
This allows us to use di�erent audio formats than the one we are provided
with from the libgdx audio class, and it also increases the quality of the sound.
All of the above codecs for libgdx are supported, as well as many others [48].
In 6.3 Our Music and Sound, we focus on comparing libgdx' audio formats
with the successor of MPEG Audio Layer III (mp3), which is Advanced Audio
Coding (AAC), we think this will give us the most ben�ts because it is the latest
compression method after mp3.

Group 37 44 14th May 2012

6.2 Audio formats 6 MUSIC AND SOUND

6.2 Audio formats

Waveform audio, Ogg Vorbis and MPEG audio layer III are all formats com-
patible with Libgdx audio classes. Advanced Audio Coding is a part of the
Android native audio system. All of these will be described and presented here
as candidates for the audio formats in our game, a brief history of each format is
also presented. There are still other formats availible to us, but as you will see
in the results, none of them would qualify to be a competitor to these formats.

6.2.1 Waveform audio

The waveform audio �le format is more commonly known as wav. Though a
wav �le can hold compressed audio, the most common wav format contains
uncompressed audio in the linear pulse code modulation(LPCM) format. The
standard format contains two channels of 44,100 samples per second and 16 bits
per sample. Wav audio can also be edited and manipulated with relative ease
of use with many open source softwares [49].

6.2.2 Ogg Vorbis

Ogg Vorbis is an open source digital audio encoding format that uses lossy data
compression. It is used to store and play digital music and is roughly comparable
to mp3 and aac. Ogg Vorbis has been designed to completely replace all old
patented audio formats. It is completely free to use, and distribute, with no
cost at all[50].

6.2.3 MPEG Audio Layer III

MPEG Audio Layer III, also know as mp3, is a patented digital audio encoding
format using a form of lossy data compression. It means that a part of the
audiosignal is lost when compressing with the mp3 algorithm. The mp3 patent
is owned by Frauhofer IIS, and was developed in 1991, at the University of
Hannover, Germany [49].

6.2.4 Advanced Audio Coding

The advanced audio coding, also more known as aac, is designed to be the mpeg
audio layer III's successor. It is patented, but there are no licenses required to be
able to stream or distribute content in aac format. AAC compresses an audio
�le to almost half the �lesize compared to mp3, while still maintaining same
audio quality. AAC has been standardized by ISO and IEC as parts of mpeg-2
and mpeg-4 speci�cations [51].

6.3 Our Music and Sound

When we compared the four audio formats, we started by sorting them out in
which order we belived they would have the smallest �lesize from the above

Group 37 45 14th May 2012

7 RESULTS

data (wav, mp3,ogg,acc). A comparison between an mp3 and a wav �le gave as
result that the wav required 180KB, while the mp3 only needed 20KB of storage.
When choosing between mp3 and acc, we relied upon a test from coolutils.com
[52], which said that the acc was a both smaller in �lesize, and had better sound
quality compared to mp3. However, acc is not supported by libgdx, and due to
the complexity of the native code, we decided to select mp3 instead [53]. Finally
we saw that when mp3 was compared with ogg, ogg had a smaller �lesize with
the same quality [54]. One other di�erence was that ogg is open source, and
mp3 is limited with licences by its patent. Therefore, the best choice is ogg,
which we use for both music and sound e�ects.

Due to that the increasing music and sound e�ects, it was neccesary to do
some class that handled them, so we made our own audiomanager class which
allowed us to insert and remove instances of a music or sound class into a
list. This simpli�ed starting and repeating a particular music or sound e�ect,
for example in the pipeNodeList class who is controlling all the obstacles and
pickups (see Appendix A.3).

6.3.1 Music

Fruity Loops for PC was used to create the music in Tisado. We used a calm
sound so that the players can identify themselves as a lonely robot in space.
FruityLoops also allowed us to manipulate pitch correction, harmonization and
time stretching which we used. We then exported it into the Vorbis Ogg format
[50].

6.3.2 Sound e�ects

An example of sound e�ects is when the player picks up a coin or crashes into an
obstacle. The most prefereble format would have been the Vorbis Ogg format
because of the small �lesize, but we decided that even the wav format works.
The tradeo� with larger �lesize against easier editing would not matter because
all sound e�ects together were already small compared to an mp3 music �le.

7 Results

The resulting product of this project turned out relatively true to our initial
vision. The planned game play features were all implemented, though some of
our graphical intentions had to be excluded for various reasons.

The �nal version of this project, is a fully playable game in which the player
travels along a pipe and dodges objects to survive as long as possible, as well as
collecting coins and power-ups. The game world is randomly generated for every
new game session. However, a static seed, for the random number generator,
can be set to force the same level generation each time.

The graphics include multiple light sources, per-pixel shading, re�ections,
particle e�ects, and post-processing. We also implemented animations and re-
�ections for the player model, and a simple, but e�ective, form of collision

Group 37 46 14th May 2012

9 CONCLUSION

detection for obstacles and pickups. Furthermore, the heavy focus on optimiza-
tion during the second half of our project, allowed for inclusion of several e�ects
that were unachievable before optimizing the rendering process.

8 Discussion

The outcome of the project is, visually, not as appealing as our initial ideas
and goals were. The reason for this, is that it was simply not possible to �t
as much in a mobile phone as we expected, without spending countless hours
on optimization. Something that the big game developers can a�ord, but we
could not. We are, however, happy with how the game turned out. Even though
various aspects of the game play might need minor tweaks, the game logic meets
all the requirement we decided on early in the development process.

Using libgdx instead of a more powerful tool for development, such as Unity,
turned out good for us. We are pleased that we were given the possibility to
chose our own framework, and we are happy that we chose libgdx. Doing so led
to us understanding the fundamental parts of game development more than we
think we would have if we used Unity, or any other tool equal to Unity.

The only real setback we had during the development of this project was
that a member of our group, the 3D artist, decided to drop out of the group
early on, due to unknown reasons. Apart from this, developing a project of
this size, as a group, turned out great for us. We set up an SVN server early
in the development and any code changes were committed to this server. Of
course, there were times where collisions would be caused by trying to commit
to the server. But, because we worked in smaller groups with each problem,
these collisions happened rarely and when they did, they were easy to �x manu-
ally. The way the workload was divided between us during the weekly meetings
was perfect, and even if some things took longer than expected, we ended up
completing the features for our prototype releases in time.

Although we have yet to receive a more public opinion of how entertaining
our product became, we are very satis�ed with the overall experience it provides.
As of now, the game could use some more work to reach its full potential, though
we are �rm believers that it will eventually be ready for commercial release.

9 Conclusion

In order to make a fun and visually appealing game, within a short time limit,
it is important to have a good and simple game idea. It is also important
to distribute the workload evenly amongst the participants of the project. To
make sure that the application runs smoothly on smartphones, it is important to
consider the di�erent ways of adding each graphical e�ect. The di�erent types
of lighting, �at shading, Gouraud shading and Phong shading, all have their
own, di�erent, advantages and disadvantages, and it is important to compare
these to each other, to �nd the best available solution for the game in question.

Group 37 47 14th May 2012

REFERENCES REFERENCES

Such comparisons and considerations are important to go through for each of
the di�erent graphical e�ects.

Knowing the hardware and how to optimize for the given platform is im-
portant as well. For Android phones, there are few parts that should be given
extra attention when optimizings. These parts include garbage collecting, pub-
lic methods for accessing private variables, and �llrate. If the game contains
advanced and complex logic, this too should be carefully monitored and opti-
mized.

References

[1] Feeney, C. Android and iPhone now hog 91% of Mobile OS Mar-
ket Share [Internet]. 2012 Mar 6 [cited 2012 May 12]. Avail-
able from: http://www.jumptap.com/android-and-iphone-now-hog-91-of-
mobile-os-market-share/

[2] Ruddock, D. iPhone 4S VS. Android Posted: Even The Galaxy
S II Is getting Smoked (For Now, At Least) [Internet]. 2012
[updated 2012 Jan 16; cited 2012 May 12]. Available from:
http://www.androidpolice.com/2011/10/11/iphone-4s-vs-android-
benchmarks-posted-even-the-galaxy-s-ii-is-getting-smoked-for-now-at-
least/

[3] Anthony, S. iPhone 4S benchmarks: Twice as fast as the Galaxy
S II, Droid Bionic [Internet]. 2012 Oct 11 [cited 2012 May 12].
Available from: http://www.extremetech.com/computing/99379-iphone-
4s-benchmarks-twice-as-fast-as-the-galaxy-s-ii-droid-bionic

[4] Bachmann, S. Why we switched to libGDX [Internet]. 2011
[updated 2011 May 8; cited 2012 May 12]. Available from:
http://thegreystudios.com/blog/?p=30

[5] OpenGL ES 2.0 [Internet]. 2012 [cited 2012 May 13]. Available
from: http://developer.android.com/resources/tutorials/opengl/opengl-
es20.html

[6] Zechner, M. Libgdx [Internet]. 2012 [cited 2012 May 12]. Available from:
http://code.google.com/p/libgdx/

[7] Games Build with Libgdx [Internet]. 2012 [updated 2012 May
11; cited 2012 May 12]. Available from: http://code.google.com
/p/libgdx/wiki/LibgdxGames?ts=1332862877&updated=LibgdxGames

[8] OpenGL Lighting or How Light Sources Work (Long, In-depth
Tutorial) [Internet]. 2012 [cited 2012 May 12]. Available from:
http://www.falloutsoftware.com/tutorials/gl/gl8.htm

Group 37 48 14th May 2012

REFERENCES REFERENCES

[9] List of common shading algorithms [Internet]. 2011 [up-
dated 2011 Jun 7; cited 2012 May 14]. Available from:
http://en.wikipedia.org/wiki/List_of_common_shading_algorithms

[10] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
Natick, MA: AK Peters ; 2008. Chapter 5, Visual Appearance; p.115.

[11] Gouraud, H. �Continuous Shading of Curved Surfaces,� IEEE Transactions
on Computers, vol. C-20, pp. 623-629, June 1971.

[12] Phong, Biu Tong, �Illumination for Computer Generated Pictures,� Com-
munications of the ACM, vol. 18, no. 6, pp. 311-317, June 1975.

[13] Basics of Light in 3D Computer Graphics [Internet]. 2010 [updated 2010
Feb 10; cited 2012 May 12]. Available from: http://robertokoci.com/basics-
of-light-in-3d-computer-graphics/

[14] About Shader Programs [Internet]. 2007 Mar 7 [cited
2012 May 13]. Available from: http://idlastro.gsfc.nasa.gov
/idl_html_help/About_Shader_Programs.html

[15] de Greve, B. Re�ections and Refractions in Ray Trac-
ing [Internet]. 2006 [cited 2012 May 12]. Available from:
http://graphics.stanford.edu/courses/cs148-10-summer/docs/2006�
degreve�re�ection_refraction.pdf

[16] Guinot, J. The Art of Texturing Using The OpenGL Shading Language �
Environment Mapping [Internet]. 2006 [cited 2012 May 12]. Available from:
http://www.ozone3d.net/tutorials/glsl_texturing_p04.php

[17] Post-Processing E�ects [Internet]. 2008 [cited 2012 May 12]. Avail-
able from: http://www.leadwerks.com/�les/Tutorials/CPP/Post-
Processing_E�ects.pdf

[18] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
Natick, MA: AK Peters ; 2008. Chapter 10, Image Processing; p.467-468.

[19] How to do good bloom for HDR rendering [Internet]. 2006 May 20 [cited
2012 May 13]. Available from: http://kalogirou.net/2006/05/20/how-to-
do-good-bloom-for-hdr-rendering/

[20] Gaussian Blur Filter Shader [Internet]. 2008 Oct 11 [up-
dated 2008 Oct 11; cited 2012 May 12]. Available from:
http://www.gamerendering.com/2008/10/11/gaussian-blur-�lter-shader/

[21] Hämäläinen, H. Bloom lib [Internet]. 2012 Jan 21 [up-
dated 2012 Mar 29; cited 2012 May 13]. Available from:
http://www.badlogicgames.com/forum/viewtopic.php?f=17&t=3131

Group 37 49 14th May 2012

REFERENCES REFERENCES

[22] Welcome To The World Of 3D Computer Graphics [Internet]. 2011
[cited 2012 May 12]. Available from: http://www.squidoo.com/computer-
graphics-introduction#module147978701

[23] Russo M. Polygonal Modeling: Basic and Advanced Techniques [mono-
graph online]. Plano, Texas: Wordware Publishing; 2006 [cited 2012 May
12]. Available from: Books24x7.

[24] Müller-Prove M. Sketchpad [Master thesis]. Hamburg: Department of In-
formatics, University of Hamburg; 2002 [cited 2012 May 12]. Available from:
http://www.mprove.de/diplom/index.html

[25] Parent R, Computer Animation [monograph online]. Kingston, Ontario:
Elseveier Inc; 2002 [cited 2012 May 12]. Available from: ScienceDirect

[26] Henry D. MD2 �le format [Internet]. 2004 Dec 19 [updated 2004 Dec 19;
cited 2012 May 12]. Available from: http://tfc.duke.free.fr/coding/md2-
specs-en.html

[27] Samsung [Internet]. 2012 [cited 2012 May 13]. Available from:
http://www.samsung.com/ie/mobile/featured-applications/game-
hub.html

[28] Nordling, C, Osterman, J. Physics Handbook. 8th ed.Lund: Studentlitter-
atur; 2006.

[29] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
Natick, MA: AK Peters ; 2008. Chapter 17: Collision Detection

[30] Ericson, C. Real-Time Collision Detection. Amsterdam; Boston : Elsevier;
2005.

[31] Designing for Performance [Internet]. 2012 [cited 2012
May 12]. Available from: http://developer.android.com
/guide/practices/design/performance.html

[32] Watson, B, David Luebke, �The Ultimate Display: Where Will All the
Pixels Come From?� Computer, pp.54-61, August 2005

[33] Android [Internet]. 2012 [cited 2012 May 12]. Available from:
http://www.android.com

[34] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
2008. Chapter 15; p.699-700.

[35] The Industry Leader in .NET & Java Pro�ling [Internet] 2012 [cited 2012
May 13]. Available from: http://www.yourkit.com/

[36] Javin, P. How Garbage Collecting works in Java. [Inter-
net]. 2011 April 11 [cited 2012 May 12]. Available from:
http://www.javarevisited.blogspot.se/2011/04/garbage-collection-in-
java.html

Group 37 50 14th May 2012

REFERENCES REFERENCES

[37] Bruno, E. G1: Java's Garbage First Garbage Collector [In-
ternet]. 2009 Aug 21 [cited 2012 May 12]. Available from:
http://www.drdobbs.com/jvm/219401061

[38] Galaxy S II [Internet]. 2012 [cited 2012 May 12]. Available from:
http://www.samsung.com/se/consumer/mobil/mobil/smartphones/GT-
I9100LKANEE-spec

[39] Woligroski, I. Fill Rates [Internet]. 2006 July 31 [cited 2012 May 12]. Avail-
able from: http://www.tomshardware.com/reviews/graphics-beginners-
2,1292-3.html

[40] Early Depth Test [Internet]. 2012 [updated 2012 Apr 29; cited 2012 May
12]. Available from: http://www.opengl.org/wiki/Early_Depth_Test

[41] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
2008. Chapter 14; p.664-667.

[42] Face Culling [Internet]. [updated 2012 April 29; cited 2012 May 12]. Avail-
able from: http://www.opengl.org/wiki/Face_Culling

[43] Akenine-Möller, T, Haines, E, Ho�man, N. Real-Time Rendering. 3d ed.
2008. Chapter 14; p.670-677.

[44] Crooks, C. Mobile Device Game Development [monograph online]. Hing-
ham, Mass.: Charles River Media; 2004 [cited 2012 May 12]. Available
from: Chalmers Library.

[45] Zechner M. Libgdx Features Homepage [Internet]. 2011 [cited 2012 Apr 30].
Available from: http://libgdx.badlogicgames.com/features.php

[46] Zechner M. Interface Music [Internet].
2010 [cited 2012 Apr 30]. Available from:
http://libgdx.l33tlabs.org/docs/api/com/badlogic/gdx/audio/Music.html

[47] Zechner M. Interface Sound [Internet].
2010 [cited 2012 Apr 30]. Available from:
http://libgdx.l33tlabs.org/docs/api/com/badlogic/gdx/audio/Sound.html

[48] Zechner M. Interface Audio [Internet]. 2010 [cited 2012 Apr 30]. Available
from: http://libgdx.l33tlabs.org/docs/api/com/badlogic/gdx/Audio.html

[49] Viers R. The Sound E�ects Bible Studio City. CA: Michael Wiese Produc-
tion; 2008

[50] Waggoner B. Compression for great video and audio. Oxford: Focal Press;
2009

[51] ISO/IEC 13818-7:2006, Information technology - Generic coding of mov-
ing pictures and associated audio information - Part 7: Advanced Au-
dio Coding (AAC) [Internet]. 2006 [cited 2012 Apr 30] Available from:
http://jaadec.sourceforge.net/specs/ISO_13818-7_AAC.pdf

Group 37 51 14th May 2012

A UML DIAGRAMS

[52] MP3 VS AAC, or the best music �le format for mobile
phones [Internet]. 2012 [cited 2012 Apr 30]. Available from:
http://www.coolutils.com/musicformobilephones

[53] Android developers Homepage [Internet]. 2012 [cited 2012 Apr 30]. Avail-
able from: http://developer.android.com/sdk/ndk/overview.html

[54] Di�erence Between OGG and MP3 [Internet]. 2012 [cited 2012 Apr 30].
Available from: http://www.di�erencebetween.net/technology/di�erence-
between-ogg-and-mp3/

A UML Diagrams

A.1 Libgdx Startup Classes

Group 37 52 14th May 2012

A.2 Main Class A UML DIAGRAMS

A.2 Main Class

Group 37 53 14th May 2012

A.3 PipeNode Cass A UML DIAGRAMS

A.3 PipeNode Cass

Group 37 54 14th May 2012

B CODE EXAMPLES

B Code Examples

B.1 Rotation Algorithm Aode

B.2 Rotation Speed Code

Group 37 55 14th May 2012

B.3 Online Highscore PHP Code B CODE EXAMPLES

B.3 Online Highscore PHP Code

Group 37 56 14th May 2012

	Bachelor's Thesis
	Gustav bodare			ROBERT SILVERFLOD
	Ann michelsen 		DAVID TERMANDER

