
TankAction
A 3D-Action Game with Network Capabilities
Bachelor’s Thesis
Computer Science and Engineering Programme

SEBASTIAN BJURMAN DAVID KARLSSON
JOHAN KNUTZEN SHAHROUZ ZOLFAGHARI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2007

Abstract

This bachelor thesis deals with the fundamental aspects of implementing a 3D
computer game: real-time graphics, collision detection, game dynamics, network and
design. We discuss our own solutions in relation to those used in contemporary games
and in scienti�c papers.

This thesis shows that an iterative, incremental software process is well suited to
game development. We demonstrate that quite simple methods can provide adequate
solutions to problems that arise in game development.

1

Contents

1 Introduction 3

2 Method 3

3 Real-time Computer Graphics 4
3.1 Terrain rendering 4
3.2 Lighting and shadowing . . 9
3.3 Sky rendering 13
3.4 E�ects 16

4 Design 18
4.1 Background 18
4.2 Method 18
4.3 Techniques 18
4.4 Comparison 27
4.5 Results and Conclusions . . 28
4.6 Discussion 28

5 Game Dynamics and Imple-
mentation 29
5.1 Background 29
5.2 Techniques 29
5.3 Results and Conclusions . . 37
5.4 Discussion 38

6 Collision Detection 39
6.1 Background 39
6.2 Techniques 40
6.3 Results and Conclusions . . 45
6.4 Discussion 46

7 Network 47
7.1 Background 47
7.2 Techniques 47
7.3 Result and Conclusion . . . 54
7.4 Discussion 54

8 Results and Conclusions 54

9 Discussion 55

A Abbreviations 56

2 METHOD

1 Introduction

Games have become a huge and increas-
ingly important industry. In 2005, the gam-
ing industry annual income nearly reached
the same levels as the movie industry, and
the gaming market is growing rapidly. As a
result of the increasing demand, more and
more research has gone into improving the
performance and visual quality of games.
The aim of the Tank action (TA) project

was to create a visually impressive game in
three months, by using relevant technology,
a robust game engine architecture, and a
suitable project model.
The requirements on the game was that

it should be visually pleasant, relatively free
of serious bugs, and provide multiplayer
support over network connections. The
problems experienced during the implemen-
tation can naturally be divided into �ve dif-
ferent parts:

Realtime Computer-Graphics
Rendering realistic scenes at real-
time frame rates.

Design Robust architecture without de-
creased performance.

Game Dynamics and Implementation
Modeling the physics and laws of the
game world.

Collision Detection A large sub�eld
of game dynamics for determining
whether collisions between objects
occur.

Network To allow players to play in the
same game world over a network con-
nection.

2 Method

The TA team decided to use the Rational
Uni�ed Process (RUP) [1] model to orga-
nize development. The RUP emphasizes ag-
ile, iterative development with �exible plan-
ning and design. In the RUP, programming
starts early on, in order to discover con-
straints and problems which are di�cult to
predict in purely theoretical design reason-
ing. The RUP is also highly con�gurable to
the individual needs of the project, rather
than being as strict as for instance eXtreme
Programming [2]. The RUP, like other it-
erative project models, also recognizes the
advantages of informal, frequent discussion
rather than only formal meetings.
C++, due to its high performance in

speed, and many available libraries is the de
facto standard for game development, and
was used in the TA project. Early on in the
development process, the decision was made
to make the game cross-platform. Simple
Direct Media Layer (SDL) was chosen for
a common interface for audio, keyboard,
mouse, and 3D hardware via OpenGL. SDL
was originally developed to port games from
Windows to GNU/Linux, which are the
main platforms which we wanted to sup-
port. Other libraries were used for loading
e.g. images, mixing sound and loading 3D-
models. The following libraries were inte-
grated:

• SDL_image

• SDL_mixer

• SDL_net

• lib3ds

• Boost C++ Libraries

3

3.1 Terrain rendering 3 REAL-TIME COMPUTER GRAPHICS

For synchronizing work and integration,
Subversion [3] was used. This made con-
current work on di�erent areas of the code
possible and also served as a repository for
shared documents.

3 Real-time Computer

Graphics

In real-time applications, physically accu-
rate algorithms for computer graphics are
too slow. As a result, real-time com-
puter graphics often employs empirical al-
gorithms to implement features that can be
seen in reality, such as shadows, lighting etc.
The choice of which features to include in

a game is usually arbitrary, based solely on
personal preference. One common method
is to simply put a limit on minimum frame
rate, and implement as many features as
possible until the limit is reached. This ap-
proach was used in TA.
Below, the rendering is divided into four

problems: terrain, lighting, sky and e�ects.

3.1 Terrain rendering

3.1.1 Background

Terrain rendering in real-time is a cen-
tral and challenging problem in computer
graphics. In fact, for a long time games
simply avoided the problem altogether by
selecting a setting for the game in indoor
environments or dungeons.
Rendering of outdoor landscapes is chal-

lenging for several reasons:

• a signi�cant amount of triangles are
needed to cover a huge world with de-
cent detail

• there is a risk for potentially huge
amount of overdraw if the world con-
tains many valleys and mountains

• it is di�cult to perform occlusion
culling, as the terrain is open, and
should it be possible to perform oc-
clusion culling in only some regions,
frame rates may vary drastically dur-
ing movement in the world

• there are drastic di�erences in light
strength between bright and shadowed
spots

• texturing level of detail is required to
avoid high-frequency noise problems
and too repetitive look in the distance

• atmospheric scattering (the sun light
being re�ected in random directions
by particles in the atmosphere) makes
realistic-looking lighting systems com-
plex

• shadow generation techniques run into
performance or precision problems
when dealing with such large worlds

• generating a realistic-looking terrain
can be more di�cult than generating
indoor environments with �at walls

The problem of generating a convincing
terrain can be solved either by creating a
mesh, or by so-called heightmaps - simple
grayscale bitmaps showing the landscape
from above, where the color determines the
height of the landscape at that point. Both
of these can be generated either automat-
ically through fractals or similar solutions,
or manually by an artist.

4

3.1 Terrain rendering 3 REAL-TIME COMPUTER GRAPHICS

Most work within the �eld of terrain ren-
dering has gone into developing faster algo-
rithms for the heightmap approach, which
is preferable for a number of reasons. Not
only is it very easy for anyone to create
a heightmap, but some forms of simplistic
collision detection suitable to games is also
easier performed against a heightmap than
against a general, modeled mesh.
There are, however, two major draw-

backs. First, most image �le formats al-
low only 256 levels of grayscale, meaning
a very limited vertical precision for the
heightmaps. Second, it's impossible to ren-
der cli�s which hang out over the ground
below. Both of these problems are however
possible to solve, as will be demonstrated
below.

3.1.2 Solutions to heightmap prob-
lems

The vertical precision problem of
heightmaps can be compensated by
�ltering the height values with a Gaussian
�lter, and saving the heightmap in a custom
�le format with �oating point values for
the heights. This approach was used in the
TA implementation. Alternatively, some
of the existing �oating point texture �le
formats that have been released recently,
for instance OpenEXR [45], can be used.
Another method is to simply use a very
sparse height�eld or a terrain without very
high mountains, but this is less elegant and
less general.
The problem with overhanging cli�s can

be solved by putting extra objects in the
terrain on top of the heightmap. As long
as the terrain doesn't contain excessive
amounts of overhanging cli�s, this doesn't

reduce performance notably.
In short, there are good reasons why

the heightmap is the most commonly used
method for representing and storing terrain,
and why so much work has gone into opti-
mization of height�eld rendering.

3.1.3 Rendering terrain

Below, some of the existing work on opti-
mization of terrain rendering is presented.

ROAM The acronym ROAM stands for
Real-Time Optimally Adapting Mesh. This
algorithm, published in 1997 [46], processes
the entire height�eld mesh and merges tri-
angles in an optimal way depending on the
movement of the camera, and depending on
whether the merging of two triangles will
cause a small enough change that it won't
be visible.
The algorithm works on a per-triangle

level and the calculations are performed on
the CPU, meaning it's not suitable to mod-
ern hardware since it doesn't allow batch-
ing, and competes with AI and game dy-
namics for CPU resources.

SOAR Several optimized versions of al-
gorithms like ROAM have been proposed,
for instance in [47]. A signi�cant im-
provement in data storage layout ensures
that despite performing per-triangle pro-
cessing which makes batching impossible,
the SOAR (Stateless One-pass Adaptive
Re�nement) algorithm, which is a simpli-
�cation of the techniques described in [47]
still performs well. However, it still has
the disadvantage of competing with AI and
game dynamics for CPU resources, as well
as poor batching.

5

3.1 Terrain rendering 3 REAL-TIME COMPUTER GRAPHICS

Geomipmapping A more batching-
friendly algorithm for terrain LOD was
proposed in [48]. The terrain is divided
into a grid of patches, and di�erent detail
level versions of each patch are generated
o�ine. During rendering, the version
with as low LOD as possible that doesn't
exceed a maximum tolerable height error
is chosen to be rendered. The algorithm
saves further CPU time by precomputing
these distances (for the worst case, which
occurs when the viewer sees the terrain
patch from the side).
There are two problems with the algo-

rithm. First, patches which contain at least
one rough piece of geometry will not switch
to lower LODs, which can mean the algo-
rithm can't give any improvements at all
for certain worst-case height�elds. Second,
the junctions between patches with di�er-
ent LOD can contain visible "cracks" [48],
see �g. 1, unless special measures are taken
to prevent this. The solution proposed
in [48] is to change index bu�er whenever
a patch is rendered. Another suggestion,
given in [49], is to use "skirts", which are
additional triangles that create vertical sur-
faces to cover the cracks. This saves the
cost of computing di�erent index bu�ers de-
pending on the LOD of surrounding patches
whenever a patch is rendered. A third
method is geomorphing, which replaces the
instant LOD switches by a smooth interpo-
lation between two LODs [50].

Vertex texture fetch terrain Further
re�nements of the geomipmapping algo-
rithm have been proposed. In [51], an algo-
rithm that takes advantage of the recently
introduced vertex texture fetch feature in

(a) Heightmap patches of di�erent LOD gener-
ated in geomipmapping. Notice the T junctions
between the patch on the left, and the lower LOD
patch to the right. If the vertex marked in red
hasn't got exactly the same height as the aver-
age height of the blue marked vertices, cracks
will appear

(b) Rendering of "cracks" artifact in a practical
implementation of geomipmapping. Notice the
holes, through which the gray background can
be seen

Figure 1: Demonstration of the problems that
arise in geomipmapping

6

3.1 Terrain rendering 3 REAL-TIME COMPUTER GRAPHICS

modern GPUs is proposed. Previously, only
pixel shaders were capable of reading from
textures, but vertex texture fetch now al-
lows looking up height�eld values in a ver-
tex shader. This makes it possible to use
a single vertex bu�er for terrain geometry
patches that build up the terrain, decreas-
ing GPU memory requirements dramati-
cally. The paper also proposes that terrain
normals be calculated with vertex texture
fetch in realtime in the vertex shader, us-
ing the simpli�ed height�eld normal calcu-
lation method described in [52] (however, a
normal map can also be generated o�ine,
requiring only a single vertex texture fetch
for acquiring the normals). The paper also
uses geomorphing, not only to avoid cracks,
but also to avoid "popping" artifacts which
may occur when instant LOD switches are
made [48] as an object passes the distance
where LOD switch is scheduled to occur.

Geometry clipmaps Geometry
clipmaps, as described in [53], switch
between di�erent detail levels purely based
on distance, using vertex texture fetch
to look up height values. The mesh is
precomputed, centered around the camera,
and more sparse further away from the
camera. The texture lookup coordinates
are calculated in the vertex shader, and
the terrain can be drawn in a single Draw
call. While it gives more visible errors
than geomipmapping to have LOD choices
based on distance rather than maximum
error, the almost uniform rendering cost
and worst-case performance guarantees
may be preferable in many cases.
The implementation uses geomorphing to

avoid major popping artifacts, but the dis-

tance based LOD selection means that ver-
tices will be moving in a way somewhat
reminiscent of popping, but much more
slowly.
The geometry clipmap algorithm can be

performed entirely on the GPU, as shown in
[56]. Similar techniques, but with a spher-
ical instead of square grid have been used
in water rendering in [54]. Spherical grids
have also found their way to terrain render-
ing in [55] because they're better suited to
performing view frustum culling.

3.1.4 Results

In the TA implementation, a heightmap was
used to generate the terrain. A heightmap
size of 1024*1024 provided more than su�-
cient horizontal precision.
To overcome the problem of lacking ver-

tical precision, a custom �le format storing
each height sample as a �oating point value
was used. The grayscale bitmap used as
data source was �ltered through a Gaus-
sian �lter in order to smoothen it to take
advantage of the potential of the �oating
point representation. Although a Gaussian
�lter reduces overall sharpness, using a nar-
row Gaussian curve was found to preserve
the shape of the terrain well, while remov-
ing local sharpness caused by too high de-
gree of quantization in the original 256 level
heightmap.
Gaussian �lters are symmetric and as a

result can be applied in two passes, one ver-
tical and one horizontal [57], thus making
it possible to reduce its complexity (where
n ∗ p denotes the image resolution) from
the O(n log n ∗ p log p) of general convo-
lution for two-dimensional signals (using
Fast-Fourier transforms [58]), to the much

7

3.1 Terrain rendering 3 REAL-TIME COMPUTER GRAPHICS

faster O(max(nlogn, plogp)). For a narrow
Gaussian curve, values far from the center
of the kernel are so small that they can be
ignored without major di�erences in the re-
sult. Cutting o� such values that contribute
little to the end result can reduce complex-
ity to O(max(n, p)). Despite this, the �l-
tering was considered too time consuming
and the processing had to be performed be-
forehand to decrease loading times.
The TA implementation found that

su�cient performance for rendering a
1024*1024 height�eld could be achieved
without any geometrical optimization tech-
niques. Rendering the entire height�eld by
brute force in a single Draw call and with-
out any view frustum culling was one of the
most expensive parts of the rendering of the
scene, however.
Texturing was done by blending four tex-

tures together. Two of these were appear-
ance textures, one large texture stretched
over the entire terrain, blended together
with a detail texture repeated 10 times over
the terrain. The other two textures were
normal maps applied with the same texture
coordinates. The detail normal map had to
be gradually blended out in the distance in
order to avoid high-frequency noise, espe-
cially when applying lighting.
The terrain was given a more convinc-

ing look by the addition of waving grass
as described in [59], and by inserting var-
ious objects on top of the terrain. Grass
was planted in the terrain according to a
special grassmap, a bitmap where black in-
dicated grass and other colors were inter-
preted as no grass. This grassmap could
be of a di�erent size than the heightmap to
make the grass density independent of the
heightmap density. The grass was blended

out gradually in the distance, and divided
into batches which were culled when far
away enough to be fully blended out.

3.1.5 Discussion

A uniformly applied Gaussian �lter may not
be the best way of generating �oating point
heightmaps from grayscale bitmaps. A bet-
ter option could have been to use a level ed-
itor, since image processing programs don't
provide support for more precision than
256 grayscale levels, and the Gaussian �lter
doesn't give full control over the smoothing
process.
Level editors are however di�cult and

time-consuming to implement. A faster
way to allow generation of local sharpness
may be to generate the heightmap from
two bitmaps - one for the actual height-
�eld, and another containing sharpness val-
ues. The heightmap o�ine processor could
interpolate between the �ltered and un�l-
tered height value for each vertex, with in-
terpolation weights determined by the de-
gree of sharpness.
If there had been more time, the TA im-

plementation would also have implemented
one of the more recently developed algo-
rithms for geometrical level of detail, for
example geomipmapping or radial geome-
try clipmaps. As more and more features
were implemented in the terrain shaders,
the performance costs of the overdraw and
unnecessarily high detail level even for dis-
tant terrain became one of the bottlenecks
in the engine.
Since the geometrical LOD algorithms

require the terrain to be divided in sev-
eral batches, view frustum culling could
have been easy to add as well. A radial

8

3.2 Lighting and shadowing 3 REAL-TIME COMPUTER GRAPHICS

grid clipmap approach could have achieved
all of this without increasing the number
of Draw calls, however at the cost of a
distance-based instead of maximum-error
based LOD switch.

3.2 Lighting and shadowing

3.2.1 Background

Adding lights and shadows makes a dra-
matic di�erence to how convincing a scene
looks.
Physically accurate lighting through

methods such as ray-tracing are still con-
sidered too performance-consuming to be
feasible in real-time, even though promising
progress has been made in the �eld recently
in for instance [60]. As a result, real-time
applications are still restricted to simpler
lighting systems.
Some of these lighting techniques incor-

rectly calculate light in some of the spots
that should be shadowed. This has to be
compensated by combining the results of
the lighting algorithm with the results of
a separate shadow algorithm.

3.2.2 Lighting techniques

Below, several lighting systems for real-time
rendering are described.

Lightmapping Lightmapping essentially
means blending precalculated light textures
onto surfaces. The lighting precision is
limited by the skill of the artist, and the
amount of texture memory available. The
technique is further limited by its poor sup-
port for dynamic scenes with moving light
sources and moving shadow casting objects.

Although it's possible to enable sup-
port for dynamic scenes with moving light
sources according to [61], the accuracy is
low. Shadows are also inaccurately rep-
resented by this technique, and the tech-
nique may need to be combined with sepa-
rate shadowing techniques. The enormous
inaccuracy in practice, and the lack of sup-
port for fully dynamic environments, limits
the usefulness of this technique today.

Phong lighting model The Phong
lighting model is an empirical, non-physical
model of lighting. It calculates light based
on the normal of surfaces compared to the
location of the light source. Thus, ob-
jects not facing the light source are cor-
rectly shadowed, but objects occluded from
the light source but facing it are not (�g.
2). This means that in order to achieve ac-
curate shadowing, a separate shadow algo-
rithm must be used and its result combined
with the light calculated by the Phong
model. See [62] for a complete descrip-
tion of the Phong model lighting equations.
The Phong lighting model has good sup-
port in current hardware and together with
a shadow algorithm is accurate in most as-
pects except for its lack of secondary re�ec-
tions.
Bump mapping [63], used to make the

objects look more detailed without making
the geometry more complex, can easily be
combined with the Phong lighting model.
Bump mapping is less accurate than other
suggested techniques, for instance parallax
mapping [64]. The original bump mapping
paper [63] also lacks support for bumps that
shadow other bumps, a problem whose so-
lution is discussed in [65].

9

3.2 Lighting and shadowing 3 REAL-TIME COMPUTER GRAPHICS

Ray-tracing Ray-tracing is physically
accurate since it traces photons as they col-
lide on surfaces, but as mentioned above,
the technique can still not be performed in
real-time. It can be combined with bump
mapping and similar techniques.
As of now, the Phong lighting model

seems to be the most commonly used light-
ing model. Lightmapping is too inaccurate
(and not possible to combine with bump
maps) and doesn't give enough performance
gains compared to Phong lighting to be jus-
ti�able today, and ray-tracing is still in-
tractable for real-time applications. How-
ever, there's room for using slightly di�er-
ent light equations for combining the dif-
fuse, specular and ambient terms in the
Phong lighting model; this was done in the
TA implementation.

3.2.3 High-dynamic range

As mentioned in 3.1.1, there is a signi�cant
di�erence in light strength in outdoor land-
scapes. An accurate lighting model must
account for this high-dynamic range of light
strengths.
The introduction of HDR lighting tech-

niques in computer graphics [66] allows in-
ternal rendering the scene to render targets
with a signi�cantly wider allowed value in-
terval for colors (the entire range of �oat-
ing point numbers, instead of only [0..1]).
The colors are then scaled by an exponen-
tial function with a base smaller than 1.0
to compress the color values non-linearly, a
process known as tone mapping. The re-
sulting scene is usually perceived as more
realistic, and the technique is also easily
combined with bloom �lters [67], which
make strong lights in the scene "bleed out"

light into surrounding pixels, see �g. 3.
Although HDR lighting makes it more

di�cult to predict how the colors of the �nal
image will look - which may be a problem
for content-creating artists - many games
today have considered the bene�ts stronger
than the disadvantages.

3.2.4 Shadowing techniques

There are two major shadowing techniques
in use today: shadow volumes [68], and
shadow maps [69].
The shadow volume algorithm processes

individual triangles in the scene to create
polyhedra which contain the entire volume
behind each shadow-casting object, then
render these polyhedra with a stencil bu�er
to mask regions that will be shadowed.
The Shadow mapping algorithm creates

shadows in two render passes. The �rst pass
renders the scene from the light source and
stores the depth values of the geometry in
a texture render target (called the shadow
map). The second pass renders the geom-
etry from the viewer. Each point is trans-
formed into the space of the light source,
and compared to the depth value stored in
the shadow map. If the object was fur-
ther from the light source than the depth
value generated in the �rst pass, the object
is shadowed.
Shadow volumes su�er from being CPU

intensive, thus competing with AI and game
dynamics in game engines, and they aren't
batching-friendly because they process in-
dividual triangles. They do however result
in very exact shadow edges and su�er from
no aliasing problems. The shadow volume
algorithm can also be extended to allow ren-
dering of soft shadows as described in [70].

10

3.2 Lighting and shadowing 3 REAL-TIME COMPUTER GRAPHICS

Figure 2: Phong lighting compared to physi-
cally accurate lighting. The left picture shows
the desired result, with red indicating lit areas
and black indicated shadowed areas. In the pic-
ture to the right, the results of Phong light-
ing are shown. Notice the green areas, which
will incorrectly become lit even though they are
shadowed by the hill.

Figure 3: Left: scene from TA rendered with
HDR and bloom. Right: scene from TA with-
out HDR and bloom. Notice the feeling of a
greater light intensity of the specular highlight
to the left, due to the bloom �lter. Also notice
the di�erent scaling of color values achieved by
HDR tone mapping. The image without HDR
has sharper contrasts between lit and unlit re-
gions, and looks more arti�cial.

Shadow maps work well with batching,
but su�er from aliasing artifacts because
the shadow map has limited resolution. An
especially problematic situation is the "du-
eling frusta" case as described in [71], when
the light is shining towards the viewer (be-
cause the shadow map has the least pre-
cision where the second render pass has
the maximum precision), but there are also
aliasing artifacts when the light source is
nearly parallel to the geometry to be lit [71],
see �g. 4.
Several solutions have been proposed to

deal with the shadow map aliasing prob-
lems, for example PCF �ltering [72] in
which the results of several depth compar-
isons are combined, which also results in
soft shadow edges as a bonus. Another
method is to render multiple shadow maps
next to each other [73] in the �rst pass,
but this is performance-consuming. An im-
proved version with adaptive resolution is
proposed in [74]. A di�erent approach,
which doesn't decrease performance com-
pared to the original shadow mapping al-
gorithm, is described in [71].
Shadow maps can be used to generate

soft shadows by using Percentage-closer �l-
tering (PCF), or blurring the shadow map
with a Gaussian �lter in additional render
passes [75].

3.2.5 Results

In the TA implementation, the Phong light-
ing model was used, however simpli�ed for
a single light source (the sun), and without
support for colored lights. The objects in
the world were given a rougher surface by
bump maps, which despite their inaccura-
cies were found to be a good compromise

11

3.2 Lighting and shadowing 3 REAL-TIME COMPUTER GRAPHICS

between e�ect and performance. Specular
lighting was improved by HDR lighting with
bloom e�ects implemented by two Gaussian
passes, one horizontal and one vertical [76].
Shadows were implemented using the ba-

sic shadow mapping algorithm [69], but to
simulate a directional light such as the sun,
the �rst pass (from the viewpoint of the
light) was rendered with an orthogonal pro-
jection instead of a perspective projection.
This didn't add any additional complex-
ity to the algorithm, because the second
pass could still be performed by multiply-
ing the world space position with a matrix
M = VlPl, where Vl denotes view matrix
for the light, and Pl denotes the projection
matrix for the light, as in the original al-
gorithm. PCF and a Gaussian �lter were
applied to achieve softer shadow edges.
Because the depth comparisons between

the shadowmap and the point calculated in
the second pass are �oating point compar-
isons, a small hardcoded bias had to be
applied to the comparison to avoid arti-
facts. These artifacts were caused because
the shadow-casting object will have approx-
imately the same depth value as the value in
the shadow map, and the �oating point pre-
cision sometimes makes the shadow-caster
depth in the second pass slightly greater
than the depth it wrote in the �rst pass,
see �g. 6.
Using the maximum texture size capabil-

ity of modern graphics cards barely gave
su�cient shadow map accuracy for the �rst
pass, even when using PCF and Gaussian
blur in the second pass, because the ter-
rain was too large and perspective shadow
maps and similar aliasing-reducing tech-
niques weren't used. The Gaussian �lter
addition slowed down the execution dra-

Figure 4: The dueling frusta case in shadow
mapping. When the frusta are facing each
other, the shadow map precision is minimal
where the view precision is maximal, resulting
in the worst possible result.

Figure 5: An illustration of the problem of
precision in shadow map depth comparisons.
The right image shows a pure implementation.
Notice how areas that should not be shadowed,
due to numerical precision limits, sometimes
incorrectly are calculated as shadowed. These
numerical imprecision errors are more or less
randomly located in the scene, giving a visu-
ally unpleasant appearance, and may also cause
very visible �ickering by appearing in di�er-
ent spots at di�erent times as the user moves
through the scene. The left image shows the
result of applying a small bias for unshadowed
to the comparison. The depth comparison arti-
facts are gone (but horizontal lack of precision
due to limited shadow map resolution remains).

12

3.3 Sky rendering 3 REAL-TIME COMPUTER GRAPHICS

matically because the addition of a Gaus-
sian �lter meant that the shadow map
couldn't be applied to the �nal scene in
the second pass. Instead, the second pass
generated a "shadow mask" containing the
shadows of the scene in post-projective
space. A third and fourth pass performed
Gaussian blur on this mask, while a �fth
pass blended the blurred shadow mask onto
the image when the normal geometry was
rendered in its �nal pass.

3.2.6 Discussion

The aliasing of the shadow maps was a
much bigger problem than perceived at
�rst. With more time, an implementa-
tion of perspective shadow maps could have
been added. Future hardware may also pro-
vide support for textures with higher res-
olutions. It was also found that shadow
mapping in combination to HDR led to an
extensive usage of GPU texture memory.
Many of these render targets could have
been reused, resulting in less memory usage
and better cache behavior for the GPU.
It is di�cult to assess the possible per-

formance gains that could be made from
this. Moreover, in order to be supported
on the hardware and software platform on
which the game was developed, unnecessary
memory waste was caused by using �oat-
ing point RGBA render targets instead of
a single �oating point output value. Ex-
plicit planning of render target surface us-
age and sharing could become an important
optimization technique in modern graphics
engines, now that an increasing amount of
algorithms use several passes with o�screen
render targets to achieve interesting e�ects.
Additional problems were caused by the

sky dome (see 3.3.1). Depth precision is
an issue in rendering large outdoor terrains
with close up detail because the quotient
between the view frustum far plane distance
and the near plane distance becomes large,
making numerical precision lower. To have
a �xed sky dome position in relation to
the terrain would require a further away far
plane. On the other hand, sky dome mov-
ing with the viewer would require the sun
lightmap projected on the sky to move with
the sky dome in order to avoid artifacts giv-
ing an appearance of the sun moving back
and forth across the sky. With the sun and
sky dome moving, it felt natural to move
the position of the light source used in the
shadow map passes accordingly. However,
this resulted in problems since di�erent re-
gions would switch between being shadowed
and lit as the viewer moved around, rather
than being based on the day-night cycle
and sun movement alone. It was eventually
considered accurate to let the shadow map
light source position be �xed in relation to
the landscape, while moving the sun tex-
ture and sky dome. For a directional light
source such as the sun, this is also the most
logical choice.

3.3 Sky rendering

3.3.1 Background

Rendering a realistic sky is at least as im-
portant as an accurately rendered terrain,
because the sky covers a very large per-
centage of the screen surface, and the ap-
pearance of the sky a�ects the overall per-
ception of a scene dramatically. Accurate
atmospheric scattering simulations for sky
rendering are expensive and di�cult to per-

13

3.3 Sky rendering 3 REAL-TIME COMPUTER GRAPHICS

form on the GPU. As a result, similar to
general lighting techniques, physically ac-
curate models have often been ignored in
favor of empirical models.
Sky is usually rendered by a textured or

colored box, plane or half-sphere. Ren-
dering with a half-sphere has largely re-
placed the sky box method, and is also the
method into which most research has gone
lately. Rendering with half-spheres, a.k.a.
sky domes, has several advantages:

• The triangle processing speed of mod-
ern hardware is so high that a dome
requiring more vertices than a box
doesn't cause a signi�cant reduction in
performance

• The atmosphere is reminiscent of a
half-sphere, not of a box. The square
shape of a sky box may become visible
when the user rotates in the scene un-
less special more advanced texture gen-
eration techniques are used, in which
case using a sky box may cost more
performance than using a sky dome.

• A sky dome gives simple, intuitive
equations for calculating color and tex-
ture attributes. For instance, texture
coordinates for a cloud texture can be
generated by simply scaling the x and
z coordinates of the sky dome vertices
to the [0..1] interval.

3.3.2 Skydome coloring techniques

Nishita et al [77] presents equations for col-
oring a skydome based on physically accu-
rate atmospheric scattering models. How-
ever, the method has been considered to
be too costly in terms of performance

to become the method of choice used in
games. O'Neil in [78] presents a version
in which the equations have been sim-
pli�ed greatly by replacing costly compu-
tations by approximately identical, sim-
pler functions, ignoring insigni�cant terms.
Still, the method may be too performance-
demanding for average games, compared
to simpler empirical sky rendering systems
which can be implemented more quickly
and produce su�ciently accurate results.
Another problem with accurate scattering
models is that there is little theory on how
to combine them with clouds in a realistic
manner.
The empirical sky coloring models aren't

well documented in any scienti�c papers,
but are used extensively in contemporary
games. If the game engine doesn't need dy-
namic environments and day-night cycles,
the problem of sky dome coloring can be
solved by simply letting an artist gener-
ate a texture which is projected onto the
sky dome. This can give higher preci-
sion than per-vertex calculated atmospheric
scattering simulations at minimal perfor-
mance cost.
For dynamic environments, more com-

plex systems have to be devised. One imple-
mentation suggestion, see [79], is based on
a two-dimensional LUT texture containing
sky dome colors which have been acquired
from a real sky through the use of a digi-
tal camera. Interpolation is then performed
between these color values, based on time of
the day and sky dome height.

3.3.3 Cloud rendering

Adding clouds makes a signi�cant di�erence
to sky rendering techniques, and makes for

14

3.3 Sky rendering 3 REAL-TIME COMPUTER GRAPHICS

much more realistic scenes.
There are many ways of generating

clouds. One is to let an artist model cloud
meshes, but such clouds are di�cult to an-
imate, may look repetitive, and takes a lot
of time from the artist, but in return can
be lit accurately. Another is to model vol-
umetric clouds as particle systems. These
can be animated to any degree of complex-
ity that may be desired and it doesn't look
repetitive if done well, but particle system
clouds are di�cult to light accurately, and
can be quite performance intensive. A third
method is to use procedural, dynamically
generated cloud textures to project onto the
sky dome. Some theory behind procedural
textures is given in [80] and [81]. A pro-
cedural approach to rendering clouds is de-
scribed in [82], and can easily be extended
to animated clouds.
With procedural clouds it is also easy to

avoid a repetitive look, the rendering is in-
expensive, and no work at all is required by
the artist. Simple tweaking of parameters
can adjust cloud thickness and whether the
clouds will look more like cumulus or cir-
rus, for instance. The main drawbacks are
the lack of complete control and di�culty
of lighting the clouds accurately.

3.3.4 Results

The TA implementation used Perlin noise
clouds projected onto a sky dome. The sky
dome was colored with a simple interpola-
tion between a top color and a bottom color.
A LUT stored the top and bottom color for
di�erent times of the day. A simple linear
interpolation between the LUT values was
used to make the changes during the day-
night cycle smooth. A sun lightmap was

rendered by drawing a simple billboard onto
the sky dome with additive alpha blending.
The e�ects of atmospheric scattering on the
world were approximated by blending far
way terrain and other objects with the sky
dome bottom color.

Figure 6: The �nal result of rendering the sky
in TA with Perlin noise clouds, top and bottom
color interpolation, additive sun lightmap, and
HDR tone mapping.

3.3.5 Discussion

The simple implementation used in TA pro-
vided decent results, but there were some
aspects which could have been improved
without switching to more complex scatter-
ing simulation implementations. One such
improvement would have been to calculate
an aura of light around the sun. Looking
at a real sky, it is apparent that the sky
is signi�cantly brighter in the third of the
sky that is immediately adjacent to the sun.
Another improvement could have been to
adapt the HDR system to the angle of the
viewer, so that if the sun ends up in the
user's line of sight (a simple view frustum

15

3.4 E�ects 3 REAL-TIME COMPUTER GRAPHICS

culling test), tone mapping exposure would
increase and give the viewer a feeling of be-
ing dazzled.
The next step of improvement may very

well be to adopt one of the scattering simu-
lation methods. Since the approach in [78]
is performed entirely on the GPU, there are
no batching problems. Since the sky dome
is usually spherical and follows the viewer,
and there is a maximum pitch angle for the
viewer, only a sector of the sky dome will
need to be rendered each frame. This means
a clever memory layout can allow view frus-
tum culling to be applied as well without
any notable overhead or batching problems.

3.4 E�ects

3.4.1 Background

Graphical e�ects such as �re and smoke are
important to make a scene look more alive
and realistic. However, they are di�cult to
implement realistically for several reasons:

• The e�ects are often caused by incred-
ibly small particles

• The number of particles is huge

• Semi-transparency is di�cult to simu-
late

• Smoke and �re may cause refraction of
light that passes through water vapor

The de facto standard method for ren-
dering special e�ects particles is the Parti-
cle Systems method as introduced in [83].
Particle systems consist of an emitter from
which particles are created and sent out
in the world. Once emitted, the particles
describe a movement de�ned by attributes
speci�ed at the time of their emission.

3.4.2 Techniques

Real smoke contains too many particles to
be feasible to simulate in real-time with
completely physical models. Instead, the
particle systems are often abstracted with
a smaller number of larger particles. These
larger particles can either be simulated by
point sprites, which are �xed-size screen-
aligned quads, or by billboards, which are
large, textured screen-aligned quads.
Nguyen [84] for instance uses the bill-

boarding approach, with animated textures
to make up for the too small amount of par-
ticles. This method also solves the problems
caused by the limited size of particles. The
main problem with billboards is that they
are di�cult to light.
Semi-transparency is typically imple-

mented by using alpha blending. Alpha
blending may give rise to artifacts if the ob-
jects aren't rendered in back to front order,
see [85]. Therefore, it may be necessary to
sort objects depending on view depth each
frame. This requires an e�cient memory
management strategy, and may also pre-
vent bu�ering since the vertex data must be
sorted each frame. Other approaches than
sorting have been suggested to avoid arti-
facts, see [85], however they require addi-
tional render passes.
Refraction is usually ignored in modern

special e�ects implementations because it
may require additional render passes, see
[86], or ray-tracing approaches.

3.4.3 Results

The TA implementation implemented a
particle manager reminiscent of the system
described in [87]. A particle system class

16

3.4 E�ects 3 REAL-TIME COMPUTER GRAPHICS

Figure 7: Rendering of a smoke shell particle
system in TA. The particles are implemented
by only around 200 billboard particles.

manages the creation and deallocation of
particles for an individual e�ect, a particle
class manages movement of already existing
particles and signals to the particle system
class when it has faded out completely and
can be removed. Finally, a particle manager
class is used to manage particle systems.
E�ects that die after a pre-speci�ed amount
of time, such as an explosion, are automat-
ically deallocated by the particle manager,
while other e�ects can be removed by ex-
plicit calls to the particle manager.
Sorting of particles was carried out each

frame by the sort() function implemented
in the standard template library (STL) in
the C++ standard. STL sort() uses the in-
trosort algorithm [88], which is a combina-
tion of heap sort and quick sort, see [89].
Billboarding was implemented on the

GPU in a vertex shader, in order to o�oad
the transformation to special-purpose hard-
ware, however one transformation had to be
done on the CPU in order to calculate the
depth of each particle to be able to perform
the sorting. In order to be able to draw all

particles in a single Draw call, all particle
textures were stored in a single texture at-
las.
In order to synchronize the particles with

the rest of the day-night cycle, the output
color was multiplied by a factor approxi-
mately depending on sun height.

3.4.4 Discussion

The implementation used in TA unnec-
essarily restricted the number of textures
available to rendering by being able to use
only a single texture atlas. However, this
approach made it possible to render all par-
ticles in the scene in a single Draw call.
If this approach had been replaced by an
approach allowing more textures, a general
and correct sorting would give no guaran-
tees that the number of Draw calls wouldn't
increase to the same as the number of parti-
cles in the scene. To allow for more textures
then, it would be necessary to either use an
array of several textures, or simply restrict
the accuracy of the sorting. One possibility
could be to use exact sorting within each
particle system, and sort the particle sys-
tems after emitter position.

17

4.3 Techniques 4 DESIGN

4 Design

4.1 Background

When designing a game, there is certainly
no silver bullet. The larger the game, the
more intricate details proliferate, and one
realizes that there is a need for organiza-
tional structure. With this in mind, it is
still very important not to over-design in
the early stage of development, as not to
restrict nor cripple the development itself.
The design of TA was meant to be very
clean and adaptable and does not incorpo-
rate a scene-graph, as is usual when design-
ing a game of larger proportions. Scene-
graphs are elaborated on in 4.3.3 but for
a more elementary introduction, see [4,
"Scene Graph Basics", Chapter 19].
Instead of relying on a scene-graph, most

components of the game were rather de-
signed with general design patterns. This
allows for greater �exibility and adaptabil-
ity, and will also make understanding the
concepts of the design for experienced pro-
grammers easier.
However, due to the lack of a com-

mon rending interface, this choice of design
made the merging of components di�cult
at times. A scene-graph is a powerful al-
ternative, which will be explained in more
detail as we proceed.

4.2 Method

In the initial design of TA, much of the de-
sign and planning was done parallel to the
development. This allowed patterns and or-
ganization of software objects to be incre-
mentally established.
As such, it eased the process of adding

new code and new components to the
game. When newly programmed compo-
nents reached maturity, they were gradually
integrated into the system. This allowed for
a testing period in which components could
be properly structured and conceived.
Moreover, by following this paradigm,

one does not need to make critical nor �-
nal decisions in the early design phase, but
instead encourage frequent and iterative up-
dates to the design architecture as work
progress. Much e�ort was also put into cre-
ating a robust and �exible framework in the
system. This provided programmers an in-
terface early on, which they could use to dy-
namically load concrete objects such as tex-
tures, 3D-models and shader source code.
Furthermore, by ensuring a static inter-

face for programmers to work with in the
early design phase, the underlying imple-
mentation could dynamically be changed.
This proved very helpful at times, such as
when there was a need to replace the un-
derlying 3D-model loading library.

4.3 Techniques

4.3.1 The Managers

By investing time and e�ort early on in cre-
ating a robust framework, coding of new
components proved to be an e�cient task.
The most noteworthy fundamental compo-
nents which comprise the framework of TA
are as follows:

• Texture Manager

• Shader Manager

• Mesh Manager

• Sound Manager

18

4.3 Techniques 4 DESIGN

These managers comprise the interface
from which any software object in the sys-
tem may request resources.
Essentially, they all work in the same

way, except that they provide di�erent
resources. The motivation behind hav-
ing `managers' to provide resources derives
from the need to share resources. In partic-
ular, sharing the memory needed for exam-
ple vertex- and texture-coordinates can be
crucial in order not to exhaust the video
memory on the graphics card.
To elaborate further on how these man-

agers work. Let's consider that a particular
software object requests a `mypicture.jpg'
from the Texture Manager. The Tex-
ture Manager would �rst match the string
'mypicture.jpg' in a map data structure.
Them, in the case of a mismatch, the pic-
ture would be allocated from scratch into
video memory.
Otherwise, a shared pointer1 to one

which has already been loaded into video
memory is returned. By making use of
shared pointers, TA ensures deallocation
of memory automatically. The program in
�g. 8 demonstrates an example request to
the Texture Manager.

The bene�ts of having clever managers
are many, and do not strictly only surface
when it comes to the creation and handling
of video memory on the graphics card. In
fact, when intuitively used as singletons2,
they provide a central point of resource al-
location for all software objects, regardless

1A type of smart pointer which holds a counter
for every listener and self-destructs if that counter
becomes zero

2For more information about design patterns,
see [11].

initialize a map m
from string to TXHandle;

TXHandle LoadTexture(string fn) {
if(fn was present in m) {

m[filename] = a new OpenGL
texture generated from fn;

}
return m[filename];
}

Figure 8: The function used to register tex-
tures in the Texture Manager. A TXhandle is
a shared pointer to a OpenGL texture.

of coupling.
One useful aspect of these managers is

that one can allocate all needed resources
at initial runtime so that later dynamic cre-
ation will only involve shared pointers.
An example of this is the creation of

tanks in the game. TA provides a Tank-
Type structure which holds pointers to re-
sources used by a tank.

Figure 9: A simple TankType containing
shared pointers to shared memory.

Fig. 9 depicts a simpli�ed TankType
structure of the one which is used in the
game. Other variables such as hit points,
weapon information and maximum veloc-
ity are hidden from view, but are naturally
needed to represent a tank.
Moreover, by compiling all necessary

shared memory objects into a well de�ned
structure, one allows allocation of all tank

19

4.3 Techniques 4 DESIGN

types to be loaded initially - when the game
is started. Furthermore, if two tanks uti-
lize the same texture or 3D-Model for in-
stance, this would only be loaded when �rst
requested. Therefore, the programmer us-
ing the TA framework does not need to
bother to check speci�cs such as if a tex-
ture, shader, or 3D-model has already been
requested.
Since this framework spans across all as-

pects of the game, a tank model which is
used to represent the player can also be
used, without extra memory usage, as a
decorative static object3 in the terrain.

4.3.2 The Object System

By further embracing shared memory and
its advantages, more complex object struc-
tures can be designed. For instance, a gen-
eral loading scheme for loading a 3D-model,
textures and shader parameters could be
easily realized.
TA uses a scheme called The Object

System to gather common procedures and
make use of inheritance to generalize com-
mon concerns of rendering an object in the
game.
An object in the game is simply some-

thing which is transformed and rendered.
An object of this sort will simply be de-
noted as an object in this section, as to not
confuse the reader. When trying to under-
stand the Object System's way of loading
objects, it's helpful to think of it as a hid-
den class - of which implementation is not
of important.
To this hidden class's constructor, one

could, for example, supply �lenames for the
3A 3D-model which is unmovable and placed ar-

bitrary in the terrain.

3D-model, texture and bump-map. Given
this information, the Object System would
generate kd-trees[14], OBBs[15], OpenGL
VBOs4 and OpenGL textures.
To provide this usability, The Object Sys-

tem gathers common procedures and sepa-
rates concerns on a level chosen by the pro-
grammer. What this actually means is eas-
iest to demonstrate with a �gure. Fig. 10
depicts how inheritance can separate di�er-
ent concerns of the process of loading and
rendering an object. Fig. 10(a) depicts
the members of the base class GameObject,
which are initialized on creation. Note that
this class is abstract and is not possible to
instantiate.
Generally, TankObject's responsibility is

to initialize its members, though this alone
does not justify its existence. More impor-
tantly, what the class GameObject general-
izes is actually the common steps of what
one really does when rendering. GameOb-
ject disregards the implementation of the
helper functions it uses when rendering, and
instead reserves these functions as abstract
for the programmer to implement by ex-
tending GameObject. Note that this is a
simpli�ed version of the Object System; in
the real implementation we need three dif-
ferent types of render procedures because of
the shadow mapping. This further justi�es
the need for abstraction of common func-
tionality. Moreover, describing just ren-
der() is su�cient. The two other render
passes, which shadowmapping requires have
similar functionality. What these two are,
is clari�ed in 3.2.4.

4Vertex Bu�er Object, for a more detailed de-
scription - see [4, "3D-Modeling and Object Com-
position", Chapter 9].

20

(a) A GameObject which stores
various shared pointers. The
render() operation, provides an
order of which parameters are
set. The transform(), draw() and
shaderParameters() are left ab-
stract.

(b) A StaticObject provides a
way of rendering the GameOb-
ject. The transform() func-
tions is left abstract so a Stati-
cObject can not be instanti-
ated. The draw() function on the
other hand, is implemented and
outlines the draw calls to 3D-
model's meshes.

(c) Concrete classes implement the StaticObject and provide a way of transformation.
These three classes are ones which extend from StaticObject. They have implemented
the transform() function and are eligible for instantiation. SolidObject in the middle,
de�nes transform() re�ecting it's transformation in world-space. The TankObject to the
left works a bit di�erent. TankObject's transform() function di�ers depending on it's
member �eld, tank. This tank member �eld, is of the class Tank. The Tank class includes
quaternions and a vector which in conjunction de�ne transformation. Lastly to the right,
The ShotObject class. The ShotObject class listens to an instance of a Shot class. The
Shot class comprises a quaternion for it's rotation, and a vector for translation. These two
outline the transformation of a ShotObject.

Figure 10: The hierarchy of the GameObject system.

4.3 Techniques 4 DESIGN

Refer to �g. 11 which illustrates the
basic outline of how render() de�nes the
order of how a rendering proceeds.

void render() {
setShaderParameters();
// Iterate over and render all meshes
for i = 0; i < model.numMeshes; i++) {

glPushMatrix();
transform(i);
draw(i);
glPopMatrix();

}
}

Figure 11: The render() function in
GameObject.

As a �rst step, set the shader parame-
ters which are the same for every model
to be rendered. Thereafter, since a model
may consist of many meshes, loop through
each mesh and apply their unique transfor-
mation and draw call. In this case, be-
cause transform(i) modi�es the OpenGL
modelview matrix, we need to push and pop
the stack in order not to apply the same
world space transformation equally on each
mesh. How matrices work, and how the
OpenGL modelview matrix stack works is
well described in [5, "Page 83", Chapter 3].
It could be questioned which shader the

parameters render() actually is giving ar-
guments to with setShaderParameters().
GameObject does not provide an answer to
this. What is necessary, though, is that
some shader has been set in the OpenGL
context before any GameObject is ren-
dered.
The reason for not applying a shader

switch5 before setting the parameters for
each GameObject is related to cost. The
cost of switching shader context is one of
the most expensive state changes one can
do in OpenGL, as these kinds of state
changes should always be done in batches
[6, "Shader Management", Chapter 6].
GameObject instead relies on the cre-

ator of the GameObject to do a shader
switch before calling render(). This im-
plies that this so called creator should try
and keep as many GameObjects with the
same shader as possible in grouped batches.
Hence, minimizing the amount of shader
switching needed per frame.
As illustrated in Fig. 10(a), GameOb-

ject also supplies a few abstract functions
which need to be implemented. These
functions are used obliviously by GameOb-
ject, in hopes of an object supplying them
by inheritance. Now, let's move on to
what Fig. 10(b) illustrates. Here we have
something called StaticObject implement-
ing GameObject. This stimulates the ques-
tion of which functions StaticObject actu-
ally implements. The answer is, in fact
- only draw(), and by doing so one could
conclude that StaticObject provides a way
of rendering. It could be asserted that
one could have embedded this procedure in
GameObject instead of StaticObject. Al-
though not illustrated in Fig. 10(c), there
may almost certainly be some kind of ob-
ject which does not use the standard draw()
procedure such as the one StaticObject pro-
vides.
While a basic version of the draw() func-

tion of StaticObject was being developed

5What a shader switch is and how this a�ects
the OpenGL context is delineated in [10].

22

4.3 Techniques 4 DESIGN

class TankObject {
public:

...
private:

...
Tank tank;

};
void TankObject::transform(int i) {
glTranslatef(tank->getXPos(),

tank->getYPos(),
tank->getZPos());

pair<Vec3, float> meshRot
= tank->getRotation(i);

glRotatef(meshRot.second,
meshRot.first.x,
meshRot.first.y,
meshRot.first.z);

}

Figure 12: The transform() function in
TankObject. The tank->getRotation(i) method
returns the per-mesh speci�c rotation (depend-
ing on i) in form of a pair {axis being rotated,
angle in degrees}. This pair is calculated by the
tank's quaternions. An example is if i = 0 then
getRotation(i) might return the pair represent-
ing the rotation of the turret.

early on, simultaneous development involv-
ing bump mapping and HDR was being ex-
perimented with on the TankObject. To
be able to do this, TankObject initially ex-
tended GameObject directly - to relax con-
straints put upon by StaticObject. There-
after, when the TankObject draw() function
was perfected, it served as a replacement
for the draw() function of StaticObject. As
such, all objects which extended StaticOb-
ject could gain from newly created features
such as bump mapping.
Finally, �g. 10(c) illustrates an example

of some classes extending StaticObject. By
doing so, they commit to using the same

draw() procedure provided by StaticObject.
In order to be instantiated, these three ob-
jects also provide a way of transforming an
object. How this is done by the TankObject
in �g. 10(c) is of most interest because of
it's complexity. The C++ code in �g. 12
demonstrates the functionality of the trans-
form() function.
The Tank member in TankObject sup-

plies getter functions for the transformation
of a tank in the game. These getters re-
turn the necessary quaternions6, matrices
and vectors which TankObject uses to sup-
ply an implementation of transform().
Thereby, these three subclasses to Stati-

cObject are in a sense listening or observ-

ing7 an object in order to decide on what
transformation is to be applied on the 3D-
model and its mesh.

4.3.3 Scene-graph

A scene-graph on the other hand, re-
quires fundamental rendering directives to
be known in advance in order to decrease
the amount of context switches in the
OpenGL context8. These rendering di-
rectives may consist of context proper-
ties e.g. shader switches, transformation
matrices, bound textures and coloring.
These properties change the state of the

OpenGL context before polygonal primi-
tives are rendered. Large scenes often re-
quire large amounts of geometry to be ren-
dered, much of which if rendered indepen-

6Quaternions form a 4-dimensional normed di-
vision algebra over real numbers. Its uses in com-
puter game development is elaborated in Pipho et

al. [9, "Introduction to Quaternions", Chapter 2],
7The Observer pattern, outlined in [11].
8OpenGL context is well documented in [5].

23

4.3 Techniques 4 DESIGN

dently may store a great deal of redundant
context properties.
Scene graphs can not only be used when

rendering, they can also be used in frustum-
and occlusion culling[12]. Occlusion culling
can be done in the sense of the painters
algorithm[8], where one paints every ob-
ject in the order of which it's draw calls
are made. Then by calculating the pro-
jected size of the AABB9, one can examine
whether an object is occluded or not.

De�nitions Intuitively, one would like to
group the use of redundant properties and
recurring state changes. This can be dealt
with in many ways, but usually redun-
dant properties are identi�ed and used as
'switches' when creating a state hierarchy.
This state hierarchy is usually implemented
with a tree data structure, with these
switches as balancing agents. This kind
of tree will hereby simply be known as a
scene-graph. The following categories of
node classes are usually identi�ed[7]:

Shape Nodes Represents geometric
objects, such as cubes, spheres and meshes.
These so called shapes are basically draw
calls to OpenGL. Note that a 3D-model
and its meshes will usually be split into
many shapes and have model-space10 trans-
formations extracted and created as prop-
erty nodes.

9Axis-aligned bounding box
10Every 3D-model may have a world-space trans-

formation and many local 'model-space' o�sets lo-
cally. Therefore the coordinate of one mesh is
the 3D-model's world-space transformation matrix
multiplied with the mesh's model-space matrix.
See [5].

Group Nodes These may have any
amount of children attached to it, and are
used to collect nodes into hierarchies. When
grouping di�erent Property Nodes for in-
stance, a group node may be used as a sep-
arator when traversing the graph. This
separator stores the state which the Prop-
erty Nodes together de�ne and provides a
way of traversing the graph with as few
state changes as possible.

Property Nodes Attributes of a
Shape Node, such as shader used, texture,
transformation. Most importantly a prop-
erty node consists of information which
might change the OpenGL context.

By classifying of nodes in the above man-
ner, one can use the Composite Design
Pattern[11] in order to create a hierarchi-
cal representation of group nodes and leaf
nodes. Take notice that these categories
are not restrictive. There could be a class
of node that incorporates shape, properties
and group characteristics[7].
In fact, when creating the scene-graph,

nodes are created according to their classi-
�cation. Much of this exhaustive work can
usually be done at initial runtime. This also
involved the creation of the nodes them-
selves and balancing of the scene-graph tree
data structure. Other property nodes which
are usually static - such as type of shader
and texture, may also be created at this
time.
Static Property Nodes such as those

switching by transformation can also be cre-
ated at runtime. This is done usually from
sources such as a 3D-model. Since a 3D-
model may consist of many meshes, but

24

4.3 Techniques 4 DESIGN

(a) A Tank consisting of �ve meshes is
transformed and rendered. These meshes
are: the base, the turret, the gun and two
wheels.

(b) A scene-graph depicting transforma-
tion property nodes. The turret and
pipe derive from the same transformation,
only the pitch di�ers. The wheels and the
base of the tank share the same yaw and
roll but not pitch.

Figure 13: illustrates in a scene-graph created
from a 3D-model.

have the same world-space transformation,
the world-space transformation could be
used as root. Fig. 13 illustrates how trans-
formation Property Nodes can be ex-
tracted from a model and be organized in a
scene-graph. The children Property Nodes
of this root will naturally be created from
the individual meshes' model-space trans-
formation o�set. In this way, properties
may be extracted from a 3D-model to cre-
ate local scene-graphs, which will later be
inserted into the root scene-graph. Other
properties such as which shader or texture
a 3D-model would like to be rendered with
can also be extracted, and organized in this
way.
Moreover, by de�ning which properties a

Shape Node may be characterized by, one
can group recurring state changes with
the help of Group Nodes. However,
before doing this, certain inter-object rela-
tions which group nodes in the scene-graph
must be understood by the programmer[7].
These inter-object relations must be de�ned
in beforehand in order for the entire scene
to make use of the scene-graph as much as
possible. Adding new properties to a scene-
graph involves taking all inter-object rela-
tions into account when structuring the or-
der of which the scene-graph is to be tra-
versed.

Traversal When traversing the scene-
graph, the graph must �rst be sorted and
structured. The way in which a scene-graph
is structured varies dependent on which and
how many di�erent properties there are.
These properties are assessed in how they
dictate rendering. Let's say that the scene
graph consist of these di�erent types of

25

4.3 Techniques 4 DESIGN

Property Nodes:

• Shader Property

• Transformation Property

• Texture Property

• Color Property

In this case, one should consider the cost

for doing each state change which these
properties convey. A shader switch might
be considered more expensive than binding
a texture for instance, and would therefore
be higher up in the hierarchy of the scene-
graph.
Certain properties can also be nested and

should therefore be considered in a di�erent
way. Transformations for instance, which
are pushed on the OpenGL matrix stack;
are not very expensive to do but can cre-
ate many recurrent state changes. Since
transformations are pushed and popped o�
and on the matrix stack, one should con-
sider inter-object transformation dependen-
cies when balancing the scene-graph.
Properties such as Color or Texture

switches are on the contrary not nestable.
The cost of these state switches in the
OpenGL context are however not signi�-
cant compared to switching a shader for in-
stance. This implies that the scene-graph
constructed from the above relations should
consider having shader switches high up in
the scene-graph. An example of how a few
Shape Nodes' properties can be modeled is
illustrated in �g. 14.
Note, this does not demonstrate a scene-

graph, it just depicts the relationships be-
tween certain objects. The so called sep-

arators are meant to illustrate where a

Figure 14: Grouping of properties with sepa-
rators. These separators create Group Nodes
and comprise Property, Separator and Shape
children. legend: SP = separator, TX = tex-
ture, T = transformation, S = shader, C =
color.

OpenGL context change should be made.
To create Group Nodes from separators,
�rst collect all Property Nodes which are
extended. Record these properties in Group
Nodes, then add extended Group and Shape
Nodes as children. Moreover, when later
rendering and traversing the Group Nodes,
set their respective properties and loop over
all it's children.

Keep in mind that separators are not the
same as Group Nodes. This is because sep-
arators are used to model the current inter-
object relations in the scene. With this
information, and the cost for each Property
Node de�ned; a grouping in form of Group
Nodes can be organized in order to mini-
mize cost. Note that the graph depicted in
�g. 14 is not actually used by the scene-
graph creation algorithm, it is just a way
of illustrating from what information one
would create it.

When the scene-graph has been built up,
traversing can be done according to the
pseudo code in �g. 15.

26

4.4 Comparison 4 DESIGN

void Traverse(GroupNode n) {
for all property nodes p in n {

push property modified by p;
p.setProperty();

}
for all shape nodes s in n

s.render();
for all group nodes g in n

Traverse(g);
for all property nodes p in n

pop all properties modified by p;
}

Figure 15: Pseudo code for the traversal of a
scene-graph.

The steps of the algorithm in �g. 15, are
elaborated as:

• First of all, loop over all of the Prop-
erty Nodes in the Group Node. Note
that all properties which change the
OpenGL context are also pushed in be-
forehand.

• Then, all objects which do not require
any more state changes are drawn with
the help of the second loop.

• Next, traverse over all submodes, these
nodes are a�ected by the Property
Nodes in the �rst loop

• Finally, pop all properties which were
pushed in the �rst loop. Pushing and
Popping might in this sense be et al. gl-
PushAttrib or glPushMatrix. For more
information about what state stacks
can be pushed and popped in OpenGL,
see [5, "OpenGL State Variables", Ap-
pendix B].

4.4 Comparison

Just over a decade ago, games were devel-
oped by a handful of people. Game design
was still a new notion in the industry and
not much practice was standardized. This
resulted in that companies such as ID Soft-
ware to a great degree created their own
design schemes. The design outlined were
to a great degree dependent on the hard-
ware which was used.

Doom for instance, has a very clever ras-
terizer but not much scene complexity to
begin with [16]. This is due to the hard-
ware requirements at the time. Later, with
the wave of ID Software's Quake, general-
purpose retained-mode graphics packages
such as Criterion Software's Renderware
were introduced. Scene management and
culling became widely used as hardware al-
lowed for more complex scenes. This gave
way to more organized scene management,
much in the form of scene-graphs. Scene-
graphs and design however, are generally
widely abstract notions and most develop-
ers choose to implement their own.
The traditional sense of developing games

changed as developing �rms began to buy
third-party developed game engines licenses
and middleware. A concrete success story
of this is Grand Theft Auto 3, which uses
the Renderware engine. GTA3 not only
demonstrated great use of the Renderware
engine, but it also serves as an argument
that game play has become more important
than the game engine itself[17].
The Unreal Engine, developed by Epic

Games, delivers in their latest version
3.0, everything developing a game requires.
Many developers have chosen to craft their
own engine, using the third-party developed

27

4.6 Discussion 4 DESIGN

game engine as a base. One notable success
of this, is Gears of Wars which uses the Un-
real Engine 3.0, which was released in 2006.
The current trend also leans towards

developers buying third-party middleware
along with third-party developed game en-
gines. One example of this is speed-tree11
which is used by the 2006 released game
S.T.A.L.K.E.R.. Middleware also exists in
other areas of game development, providing
network code, sounds and more. Especially
massive-multiplayer games which are far
more complex than ordinary single-player
games bene�t from middleware - most im-
portantly in the area of network code[18].

4.5 Results and Conclusions

Two main branches of techniques have been
evaluated in this section. One is that of
a scene-graph and the other one includes
initiatives taken by the developer team. A
scene-graph is a powerful game design alter-
native to that of the one presented in TA,
though it also restricts and delimits.
This however, is only true when develop-

ing a small game such as TA. When design-
ing a project of larger proportions, a scene-
graph reveals a notable increase in perfor-
mance which can be vital when creating a
real-time game[13].

4.6 Discussion

Due to lack of time, the decision was made
to create a framework as fast as possible in
order to immediately create contents for the

11This is a middleware which supplies a means
of rendering trees and vegetation. Developed by
Interactive Data Visualization, Inc.

game. Moreover, development was done in-
dependently on most components, and cre-
ating a scene-graph would have been too
time consuming.

Had a change to scene-graph instead been
made, it would likely not have contributed
much to the performance in speed of TA.
Therefore, it is hard to justify why we
should have considered it. When the game
was �nished however, we noticed that com-
ponents were increasing rapidly in size and
therefore if we would have expanded the
game further; a scene-graph would have
been a must.

It is often satisfactory to rely on com-
mon design patterns when designing a sim-
ple game. However, when more and more
features clutter a scene, it is useful to ap-
ply a scene-graph, which provides an in-
creased level of organized structure and not
just performance.

For TA, as noted above, performance
would probably not have increased, as the
Object System does already deal with min-
imizing shader switches. Moreover, there
are no nested transformations in the scene,
except those of the 3D-models. These are
in The Object System dealt with in the
same way as in a scene-graph. Each 3D-
model has its own world-space transforma-
tion which is pushed on the stack. Then all
meshes are iterated over and their per-mesh
speci�c transformation is applied.

28

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

5 Game Dynamics and

Implementation

5.1 Background

One cornerstone of creating a game lies in
the game dynamics. Decorative static ob-
jects need to interact with the terrain in a
realistic way. The physics simulation of ob-
jects in the game need to be believable. The
tank needs to be able to move on the terrain
smoothly and correctly.
These issues and others need to be dealt

with in order to tie all the components of
the game together. Collision detection in
essence does not know when or how it is
used. How shots and tanks move in the
game also have to be outlined and imple-
mented.
In computer graphics, Game Dynam-

ics encompasses di�erent ways of describing
how rigid bodies interact with each other.
Game Dynamics has been center of much
research in recent years and this has led to
a new �eld of middleware.
Most notably, commercial middleware

such as Physx[20] and Havok[21] have been
included in the development process. Open-
source middleware has also been considered
by many developers and is growing in popu-
larity. The 2007 hit game S.T.A.L.K.E.R12

uses a range of open source alternative
middleware such as ODE13 and OpenAL14.
ODE is a powerful alternative to Physx or
Havok but has not yet reached equivalent
popularity. ODE as an alternative will be

12A FPS game developed by GSC World Games.
13Open Dynamics Engine, an open source game

dynamics system. Website: http://www.ode.org/
14An open source audio library.

examined in this section, but was not im-
plemented in TA.
Other techniques, such as the camera sys-

tem will also be elaborated on in this sec-
tion. Camera systems in general are usu-
ally implemented in unique ways, depend-
ing on the game. Due to this, there is not
much documentation about how one gener-
ally would implement a third-person cam-
era.

5.2 Techniques

5.2.1 The Player Tank

The player tank is arguably the most im-
portant entity in the game. It's what the
player perceives and interacts with and be-
cause of this, it is important to convey a
realistic experience.
Inconsistencies may disinterest and an-

noy the player so a good interface is needed.
The game listens to the player's keyboard
and mouse input and responds accordingly.
For instance, when the player presses for-

ward, the tank should move as is expected
by the player. The orientation (rotation
and translation) of the tank should alter de-
pending on the surface of Terrain.
In the implementation of TA, the player

tank is not tightly coupled with the terrain
but receives input from it every frame. The
player tank does not rely on very complex
information from the terrain and requires
the following:

y position Given x and z coordinates; a
y position on the terrain is needed. This
is required in order to translate the tank
in Euclidean space, re�ecting the given two
dimensional coordinate.

29

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

Normal Vector Given x and y coordi-
nates; a normal vector for the face15 on
the terrain is requested. This is needed
to create the quaternions which de�ne the
orientation of the tank.

A mathematical background in under-
standing quaternions[25] is somewhat as-
sumed in this section. In computer science,
quaternions serve as an excellent choice for
representing rotations of an object. They
are also often used when designing virtual
cameras[22], as will be explained in section
5.2.2. See [29, Section 3.3] for a in-depth de-
scription of mathematical operators in lin-
ear algebra with quaternions. This section
deals mostly with quaternion multiplication
and SLERP16; so an understanding of these
along with how quaternions represent rota-
tions might be su�cient. The members of
a quaternion q will be de�ned as

q = {qx, qy, qz, qw} (1)

In TA, there are two classes of tanks,
PlayerTank and Tank. How these are re-
lated in conjunction with TankObject is il-
lustrated in �g. 17(a). The Tank class is a
slimmed class which only supplies necessary
quaternions and a translation vector. This
base class which is used by TankObject on
the client side, is described in 4.3.2.
The PlayerTank on the other hand, sup-

plies methods and extra information to rep-
resent the tank with which the user inter-
acts.

15In geometry, a face of a polyhedron is any of
the polygons that make up its boundaries. For ex-
ample, any of the squares that bound a cube is a
face of the cube.

16Spherical Linear Interpolation

Figure 16: The Tank base class.

These methods handle how the quater-
nions and the translational vector of the
tank are modi�ed as the user moves around
on the terrain.
Refer to �g. 16 for the di�erent quater-

nions and the translation vector which Tank
comprises of. The vector pos is the position
which the tank has in Euclidean space. The
quaternions on the other hand, might be a
bit less intuitive to understand.
The orientation quaternion in Tank de-

scribes the orientation of the base of the
tank. The base of the tank refers to the the
tracks and engine compartment of the 3D-
model. A rendered image of the default 3D-
model used in TA is depicted in �g. 17(b)
and �g. 17(c). The turretYawRoll holds
the yaw and roll rotations of the tank.
The turretOrientation holds the ori-

entation of the gun. And lastly, the tur-
retPitch quaternion holds the pitch of the
turret.

Yaw, pitch and roll are Euler angles
and for a basic introduction to them, see
e.g. Akenine-Moller and Haines[29, Sec-
tion 3.2.1]. To see how these Euler angles
correspond to the rendering of the tank, see
�g. 17(b). To understand the correlation
between the Euler angles and the Euclidean
components of the tank, see �g. 17(c).

30

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

(a) The di�erent types of tanks in relation to TankObject. The TankObject listens to a Tank for its
transformation. The PlayerTank on the other hand, is only used on the client side. All the enemy tanks
in the game which are rendered, are of the class Tank. The TankType class, is the same as depicted in
�g. 9, section 4.3.1. Since TankType holds information necessary to create a TankObject, it may serve
as a model for doing so. This is what the top right class depicts, which shows an instant of the type
M1_abrams.

(b) The three Euler angles of the tank.
Note that the pitch correlates with the
arc formed by the z- and y-component in
�g. 17(c).

(c) A tank in Euclidean space. The z-
component points towards what could be
perceived as being the forward direction
of the tank. The y-component naturally
points upwards and the x-component is
the cross product of the two.

Figure 17: The relationships between a PlayerTank, TankObject and Tank.

31

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

Moving on the Terrain When moving
on the terrain, the base of the tank should
be rotated according to the normals of the
terrain. A part from the normal of the ter-
rain, the yaw must also be calculated. This
yaw, is based on the input which the user
supplies when he rotates the base of the
tank with the keyboard. Figure 18 demon-
strates how the tank's orientation quater-
nion is recalculated each frame.

Note that the degrees y in �g. 18

rotateY(y)
yaw = quaternion rotated

y degrees around
(0,1,0);

orientation = yaw *
orientation;

Figure 18: Pseudo code demonstrating a pro-
cedure which modi�es the orientation quater-
nion of the PlayerTank. Y denotes the yaw
angle in degrees from the user.

is the di�erence in rotation in which the
orientation should be changed. The yaw

quaternion from this information is later
pre-multiplied with the old orientation.
Yaw is pre-multiplied in order to rotate
around the orientation quaternion's local
y-component. This follows from the non-
commutative property of quaternions when
multiplied.
In more understandable terms, this

means that the former rotation of orien-
tation is �rst applied, then the tank is yet
rotated around the resulting y-axis in order
to create the new orientation. The dif-
ference in mere visual appearance between
the old orientation and the new, is that
the new tank is rotated around it's y-axis;
regardless of positioning on the terrain.

Now the pseudo code in �g. 18 does
only demonstrate how a rotation around
the tanks y-axis can be done. Let's elab-
orate on how the tank's quaternion is cre-
ated from the terrains normal. Let's denote
this normal as −→n . First of all, we need the
y-axis vector component of the tank's ori-
entation. Let's denote this as −→m.
To understand the de�nition of the

conversion from a quaternion to a rotation
matrix, refer to equation (3) in �g. 19.
As depicted, −→m is simply the resulting
y-component in the rotation matrix. This
vector can be extracted from the orienta-
tion quaternion which for ease will hereon
be denoted as simply q. Following this
notation, we have
−→mx = 2.0(qxqy − qzqw)
−→my = 1.0− 2.0(qxqx + qzqz)−→mz = 2.0(qzqy + qxqw)

Now we have the normal −→n from the
terrain and the vector −→m which is the y-
component in the matrix of q. The next
step is to create a quaternion which rep-
resents the rotation from −→m towards −→n .
One could do this statically with no inter-
polation but since the normals over each
frame are not so �ne grained, the rotation
is SLERPed.
SLERP stands for spherical linear in-

terpolation and is often used when do-
ing interpolation from one quaternion to
another[19]. In our case we would like to
rotate from q to the quaternion which rep-
resents the rotation from the vector −→m to
−→n . Let's denote this rotation as q2, then
we would have

φ = arccos(−→m · −→n) (6)

32

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

R̂x(q) =

 1.0− 2.0(qyqy + qzqz)
2.0(qxqy + qzqw)
2.0(qxqz − qyqw)

 (2)

R̂y(q) =

 2.0(qxqy − qzqw)
1.0− 2.0(qxqx + qzqz)

2.0(qzqy + qxqw)

 (3)

R̂z(q) =

 2.0(qxqz + qyqw)
2.0(qyqz − qxqw)

1.0− 2.0(qxqx + qyqy)

 (4)

R(q) =
(

R̂x R̂y R̂z

)
(5)

Figure 19: Conversion from the quaternion q
to the rotation matrix R[22, �Page 248�]. R is
a right-handed transformation matrix consist-
ing of the column vectors R̂x,R̂y, and R̂z. Note
that the resulting matrix R is a 3 × 3 rotation
matrix..

−→α = −→n ×−→m (7)

With the axis −→α in (7) and the angle φ
in (6), the q2 quaternion can be created.
Q2 is simply the quaternion representing a
rotation φ degrees around −→α .
With q and q2 de�ned, SLERP can be

done. Figure 20 depicts a mathematical
de�nition of a spherical linear interpolation
from q to q2 using SLERP. The resulting
unique quaternion from the slerp(q, q2, t)
(8) function will be a linear interpolation
from q to q2; where t = 0 would result in
no interpolation (q) and t = 1 in full(q2).
This constitutes the shortest arc on a four-
dimensional unit sphere from q to q2 as ex-

slerp(q, q2, t) =
sin(φ(1− t))

sin φ
q +

sin(φt)

sin(φ)
q2

(8)
t ∈ [0, 1], φ = arccos(q + q2)

Figure 20: The Spherical Linear Interpolation
function of quaternions[26].

plained in Akenine-Moller and Haines[29,
Section 3.2.2].
This is hard to visualize, but think of it

is as an arc from one point to another on
a sphere. This arc spans from one point q
to q2 where t ∈ [0, 1] de�nes how far along
this arc from q to q2 a point is traveling. If
t = 0.5 for instance, the point would have
traveled 50% along the way. Moreover,
slerp(q, q2, t) would have returned the
quaternion representing the rotation of q
animated half the way towards q2.

With the orientation of the base of the
tank outlined, the orientation of the turret

and gun remains. These orientations are
represented in form of quaternions as tur-
retYawRoll, turretPitch and their prod-
uct turretOrientation; as depicted in �g. 16.
The turret is simply the part of the tank

which is stacked on top of the base. The
turret also comprises the gun but let's focus
on it's orientation disregarding the gun for
now.
The turret is naturally rotated indepen-

dently in yaw, but roll and pitch are the
same as that of the base. This implies
that the y-component of the turret 's quater-
nion in matrix-form is equivalent to that
of the base. Moreover, because the x and
z-component of the quaternion in matrix-

33

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

Figure 21: Top view of the tank and its tur-
ret. The turret shares the same y-component as
the tank. Due to that the tank does not share
the same x- and z-components, rotation is pos-
sible as depicted.

form is di�erent of that of the base - the yaw
will be di�erent. Therefore the orientation
of the base and the turret is essentially the
same, with the exception of the yaw being
di�erent.
Examining �g. 21 may help in under-

standing this, which depicts the turret's
independent rotation in yaw contra that of
the tank. Moreover, the yaw of the turret
is calculated in the same way as the with
the base, as outlined in �g. 18.

The gun however, is a di�erent matter.
The gun conforms to the same orientation
as the turret, but adds pitch. This so that
the player is able to raise and lower the

gun of the tank. A myopic implementation
might be to store a quaternion in the Tank
class which would represent the gun and the
turret together. However, the turret alone,
needs no pitch. Therefore, in order to ro-
tate the turret correctly, the pitch needs to
be removed. This brings forth di�culties,
which can not be solved in a sensible man-
ner. Therefore, in TA, the pitch is stored in
a separate quaternion.
When the user moves the mouse, in

hopes of rotating the gun upwards and
downwards; the turretPitch quaternion is
modi�ed. This works in similar ways as in
�g. 18 except that the variable yaw would
be inter switched by pitch. In modifying
the pseudo code, this would involve setting
the variable yaw = (0, 0, 1). By modifying
the variable yaw in this way, pitch would
be invoked instead. Now turretPitch
alone does not constitute the orientation of
the gun. This resulting product does:

turretOrientation = turretYawRoll

* turretPitch;

By post-multiplying turretPitch with
turretYawRoll, the yaw and roll of the
turret is applied with an additional rota-
tion in pitch by turretPitch. This vari-
able, called turretOrientation is memo-
ized and stored in the Tank class because it
is often requested.
Moreover, by substituting quaternion

multiplication for rotation matrix multipli-
cation, less computational operations are
required[24, �Page 425�]. This is also an
argument for use of quaternions contra ma-
trices when storing rotational data.

34

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

5.2.2 The Camera System

Robust tank cameras are usually imple-
mented with quaternions because of their
interpolative abilities and their lack of gim-
bal locks[22].
In TA on the other hand, a di�erent ap-

proach has been taken. Since the player's
tank rotations are represented by quater-
nions and interpolated with the help of
SLERP, there is no need to implement a
camera based on such.
The camera instead receives input from

the tank which it is observing. Every
frame this input is received, and since the
tank advocates smooth movement through
quaternions - the camera bene�ts as well.

Figure 22: A camera in two-dimensions.

Camera Speci�cation The camera
works in close relation with gluLookAt()
which is de�ned in Smith and Frazier [23,
�Page 5�]. gluLookAt() takes three vectors;

eye, center, up. These arguments are given
to gluLookAt() for the construction of the
view matrix. The following speci�es the
three:

• Eye De�nes the origin of the eye in
world-space, the point of reference.

• Center De�nes the point at which the
eye is looking at. Regardless of where
the eye is, it will always point in the
direction of the center.

• UpDe�nes the roll of the eye and spec-
i�es the direction of what the eye sees
as `up'. An analogy could be drawn to
when you are up-side down; then your
`up' direction would point {0,−1, 0},
i.e. facing the earth.

Refer to �g. 22 for a two-dimensional de-
scription. The center de�nes the position
of an eye looking at the center which is the
center of the tank.

The Tank Camera Basically, the cam-
era is listening on the turretYawRoll
quaternion, which is noted in �g. 16.
From this quaternion, the z-component of
the derived matrix is extracted. The z-
component, which will be denoted as simply
−→γ is extracted from this matrix as in equa-
tion (4), �g. 19. That is
−→γ x = 2.0 ∗ (qx ∗ qz + qy ∗ qw)
−→γ y = 2.0 ∗ (qy ∗ qz − qx ∗ qw)
−→γ z = 1.0− 2.0 ∗ (qx ∗ qx + qy ∗ qy)
This in a way, represents the vector which
the gun is aligned with. In fact, −→γ also rep-
resents the ray which a shot �red from the
gun employs. This ray is depicted in �g. 23
and is intersected by the crosshair.

35

5.2 Techniques 5 GAME DYNAMICS AND IMPLEMENTATION

Figure 23: A tank, crosshair and the ray of
the z-component of the matrix from gunOri-
entation.

In TA the center (using the above nota-
tion) is in fact the crosshair. This means
that the user is always looking towards
where he is aiming.
To acquire the point of the crosshair in

world-space, one needs to translate �rst to
the tank, then to the position of the ray.
Then when on the ray, translate up until
the intersection between the ray and the
crosshair.
To simplify the mathematical notation,

the following de�nitions are made

• −→or The model-space o�set from the
tank to the root of the ray.

• −→ot The tank world-space position.

• l The length from −→or to the crosshair.

The �nal point in world-space which is

used as the center is then:

−−−−→
center = (−→ot +−→or) +−→γ · l (9)

With the center de�ned (9), there remain
two vectors. The up vector in TA is always
(0, 1, 0) which results in the same kind of
perspective as one has in real life.
This leaves the eye vector which is the

reference of the viewer, as depicted in �g.
22. Since the tank camera has access to
the PlayerTank, it can request its members.
What's of most importance to the cam-
era when computing the eye, is the tur-
retYawRoll in �g. 16. With this quater-
nion, the direction of the tank can be cal-
culated. This direction will be denoted as−→
ζ . With the help of

−→
ζ , the camera can be

positioned behind the tank. As above, this
is the z-component of the matrix derived
from the quaternion, which equation (4) in
�g. 19 demonstrates.
Apart from the direction y, a distance is

also needed in order to adjust where on the
x-, z-, and y-axis the eye should be rela-
tive to the tank. These o�sets are naturally
�exible and interpolation is done whenever
the camera eye is moved from one point to
another.
Some threshold however, need to restrict

the camera's eye. The eye should obvi-
ously never be beneath the terrain for in-
stance. This kind of threshold restrict the
camera from certain extreme positions but
in order not to make the camera eye move-
ment jerky, interpolation is always done.
What de�nes the threshold of the camera
is denoted by d and h in �g. 22. Refer to
�g. 24 for the interpolation from the eye
to it's new position. In equation (10) and
(12), the x- and z- components of the eye

36

5.3 Results and Conclusions 5 GAME DYNAMICS AND IMPLEMENTATION

−→
∆x =

−−−−→
centerx −

−→
ζ xd (10)

−→
∆y =

−−−−→
centery + h (11)

−→
∆z =

−−−−→
centerz −

−→
ζ zd (12)

−→eyen = −→eyen−1 +

−−−−−→
eyen−1∆

|
−−−−−→
eyen−1∆|

δ (13)

Figure 24: Interpolation in world-space from
the −→eyen−1 to −→eyen (13). −→eyen is −→eyen−1 plus

the desired position
−→
∆, which is scaled by d and

h. The n variable denotes the frame in the
game, and δ denotes the interpolation speed.
In TA, δ is equivalent to the time it takes to
render each frame times a constant.

are rotated around the center. The radius
which this circle of rotating creates is in �g.
22 denoted by d. The height of the eye (11)
however, always strives to be h above the
center. Also note that

−→
∆y in equation (11)

is una�ected by
−→
ζ y. This is because tur-

retYawRoll does not provide any pitch.

5.2.3 Open Dynamics Engine

An alternative to creating one's own game
dynamics in a game, is using middleware.
There are a lot of commercial middleware
available which provides game dynamics to
a game, but in this section, the open-source
alternative Open Dynamics Engine (ODE)
will be evaluated.
ODE emphasizes speed and stability over

physical accuracy, which makes it an ex-
cellent choice of middleware for games[27].
ODE provides essential collision detection
but allows the developer to provide it's own.

One of the major features of ODE provides,
is the simulation of what is called articu-

lated rigid body17 structures.
An articulated rigid body is one which is

comprised by many joints and is simulated
accordingly. Joints connect rigid bodies and
build up a hierarchy. A human for instance,
might have �ve joints which connect to the
torso. These are the arms, legs and head.
ODE provides a way of simulating this kind
of articulated rigid body, in a realistically
way as possible.
ODE also provides fast and robust col-

lision detection. The most common colli-
sion primitives such as sphere, box, ray and
triangular meshes can be collision queried.
Collision response in the form of physics
simulation is also provided.

5.3 Results and Conclusions

By altogether designing and implementing
the game dynamics from scratch, an accept-
able degree of realism has been achieved.
The tank moves smoothly on the terrain
and can rotate in all of the expected ways.
The tank can on the other hand, not be air-
borne nor drive over objects. This derives
from the fact that the tank is not repre-
sented as a rigid object. The tank is basi-
cally just represented as a vector in world-
space. This is not enough information to
conduct a physics simulation regarding how
the tank should collide with the terrain and
static decorative objects in the scene.

Static Decorative Objects A Static
decorative object (hereon shortened to

17A rigid body is an idealization of a solid body
of �nite size in which deformation is neglected.

37

5.4 Discussion 5 GAME DYNAMICS AND IMPLEMENTATION

SDO) refers to an object which is placed in
the scene and is only for decorative reasons.
These objects could be e.g. trees, houses or
rocks.
In TA, SDOs are created from 3D-models

and placed arbitrary on the terrain, de�ned
in the level information. Level information
in TA is stored in a �le which can dynami-
cally be changed if desired. The level �le
consists of information such as the rota-
tional properties of a SDO and its place-
ment in world-space.
By supplying the player's tank and all

SDOs with OBBs, primitive rules of inter-
action can be enforced. These restrict the
tank as to not collide with any SDOs in
the scene, i.e. by rejecting movement which
would result in the tank clashing with any
SDO. This does not imply that there is any
collision response. On the contrary, there
is none. In TA, this does not irritate the
player unacceptably, though it is de�nitely
something which is noticeable. If two tanks
ram into each other for instance, they just
stop abruptly on collision.
It should be noted that, if ODE would

have been considered instead of the player
tank technique in section 5.2.1, collision re-
sponse could have been simulated.

The Camera System A robust cam-
era system was also developed. This sys-
tem provides satisfactory capabilities and
is highly con�gurable. Since the camera
moves according to the orientation of the
tank, it can also be used to spectate other
users. Due to this, if a player has died, he
could be able to spectate others, even see
where they are aiming.
The concepts explained in section 5.2.2

do not only apply to creating a camera
which strictly listens to a tank. The cam-
era can be modi�ed to listen on any kind of
vector. Most usefully one which serves as
the character's view in third-person.

5.4 Discussion

As usual, the choices of implementation re-
�ect the amount of time able to be invested.
In this project, the team did not want to im-
plement third-party middleware and by do-
ing so have all problems solved. We wanted
to design something hands-on, and learn
the concepts of Game Dynamics by creating
systems by ourselves.
If ODE or some other game dynamics

SDK would have been implemented instead,
the game would have most certainly been
more realistic. By doing so though, we
would not have had the chance to learn
how to work with quaternions and the fun-
damental pillars of what actually build up
the game dynamics. Our implementation of
how the tank moves on the terrain is some-
what primitive, though we would hope the
user �nd it surprisingly agile. Our goal was
to reach this basic level of terrain move-
ment, while learning and developing our
own system foundation - without the help
of third-party middleware

38

6.1 Background 6 COLLISION DETECTION

6 Collision Detection

6.1 Background

Collision detection is done in order to de-
termine if two objects collide. Collision de-
tection is an important aspect, as a sig-
ni�cant component of the players' interac-
tion in the game is determined by collision
queries, and collision response. Performing
collision detection is often not possible to
do in real-time if certain acceleration algo-
rithms aren't used.
Collision handling involves three separate

stages when working with object interac-
tion. These stages are collision detec-
tion, collision determination and colli-
sion response. Collision detection tells us
if the objects collide. Collision determina-
tion tells us how the objects collide. Lastly
the collision response determines how ob-
jects are a�ected by each other after a colli-
sion has been detected, such as a change of
momentum. Most importantly, one should
distinguish between collision detection and
collision response, whereas the latter dic-
tates the response which occurs after an ac-
tual collision has been detected.
In a fast-paced game such as TA, the

amount of collision queries are especially
frequent, and require rapid real-time re-
sponse. The response must not only be fast,
but also precise. The player often antici-
pates the consequence of a certain collision
before it visually occurs. A noticeable in-
consistency could alienate the players' sense
of interactivity. Care must be taken when
choosing an algorithm for fast collision de-
tection. The choice of algorithm is depen-
dent on the kind of objects that are going
to be detected for collision, and the con-

straints we impose on them. The di�er-
ent algorithms and data structures which
can be used when mitigating collision de-
tection are often categorized with respect
to the type of objects they can be applied
to. These algorithms exploit di�erent prop-
erties and constraints of the objects they are
used on. Certain constraints are implicitly
or explicitly imposed on the objects we are
accelerating - when using such algorithms
and data structures. What it really comes
down to is what kind of compromises one is
willing to make for higher performance.

Coarse pruning When performing colli-
sion detection between objects composed of
many smaller primitives, it may be bene-
�cial to calculate some enclosing primitive
object. It might then be faster to discard
a collision by testing this enclosing volume,
also called bounding volume, instead of
the many primitives. The objective is to
quickly discard pairs of objects that does
not intersect.

Temporal coherence When objects fol-
low physically accurate motions, their rel-
ative change is small between the collision
tests. Many objects does not move at all
times.
Knowing this, many algorithms exploit

the temporal coherence and reuse results
from previous collision tests. Information
related to how objects are allowed to change
between collision tests can also be used to
exclude objects as potential colliders, e.g.
the maximum velocity for an object. Ex-
amples of such algorithms are [32] and [33].

39

6.2 Techniques 6 COLLISION DETECTION

Exact collision detection When two
object have been deemed potential collid-
ers they must be examined further. Com-
plex objects are often composed of smaller
primitives e.g. triangles. The intuitive ap-
proach would be to test all the primitives
of one of the objects against the primi-
tives in the other primitive. This naive
approach is however not practically viable
when objects are composed of a large quan-
tity of primitives. Fast algorithms are avail-
able using methods from linear program-
ming for solving these problems. There are
methods even more e�cient when the simu-
lated system is an iteratively simulated. A
method that is used for precise collision de-
tection for convex polyhedral objects is the
Voronoi-clip algorithm also called V-clip
[33]. The V-clip algorithm is a feature-
based algorithm. The features of a polyhe-
dron are the vertices, edges and faces of the
object.

Pre-processing When the objects are
known to be static, certain algorithms can
be used to construct hierarchies which sig-
ni�cantly improves the performance for
some type of queries. Fired shots and
polygonal meshes are essentially the di�er-
ent kinds of objects which can collide in TA.
The polygonal meshes are never deformed
and only translated and rotated. The only
moving mesh in TA, which require collision
detection is the tank mesh.
The �red shots are represented as line

segments. Shot ray-mesh collisions, from
�red shots, are frequently queried so accel-
erating these queries is important. Collision
detection between polygonal meshes are
also needed for collision between the player

tank and the various decorative static ob-
jects in the scene. In TA however, mesh-
mesh collisions are approximated with col-
lision between the OBB's for the meshes.
This choice was made because of lack of
time. When considering algorithms for
ray-mesh collision detection for TA, sev-
eral widely used and well documented data-
structures were examined.

6.2 Techniques

6.2.1 Sweep-and-prune

(a)

Figure 25: This �gure illustrates that all axis
projections of objects that collide intersect (the
intervals), must overlap.

A method that uses both temporal and
spatial coherence is the sweep-and-prune

40

6.2 Techniques 6 COLLISION DETECTION

algorithm, explained in [42]. The sweep-
and-prune algorithm is bene�cial when
there is a large number of independent ob-
jects that may be colliding and they only
move slightly between the collision tests.
This algorithm assumes that the objects
that are going to be pruned only are rotated
and translated.
A tight �tting �largest bounding box� is

computed for each object. The idea is that
the object �ts inside this bounding box re-
gardless of rotation. When testing for pos-
sible collision, the interval created by the
largest bounding box for an object is pro-
jected to each axis. Each object will have an
interval in this list for each axis. This list is
then sorted. The criterion for intersection
of two bounding boxes and thus, possible
intersection, is that and two objects inter-
vals intersect in all the axes. See �gure 27.
When two objects have been deemed possi-
ble colliders, an exact collision detection is
performed.
This method is fast because when while

the sorting of the interval lists usually takes
O(n2), the relative change of the intervals
between collision test are small. This means
that if the lists from the last test were to be
used, it would be almost sorted already. If
using a suitable sorting algorithm like bub-
ble sort or insertion sort, the expected sort-
ing complexity would be O(n).

6.2.2 Quadtree

The quadtree is explained and examined
in Finkel and Bentley et al. [30]. The
quadtree spatial tree data structure is a
data structure in which each internal node
in the tree can have four children. Each
node in the quadtree represents a square

(a) This illustrates how the nodes divide the
space.

(b) Here we see the node hierarchy for the
quadtree.

Figure 26: This �gure illustrates a quadtree.
NE, NW, SW and SE denotes the quadrants of
the parent.

41

6.2 Techniques 6 COLLISION DETECTION

or rectangular region of the space. See
�gure 26. The children of a speci�c node
correspond to the quadrants of the parent
space.
As with other spatial data structures,

many di�erent kind of primitives can be
contained in a quadtree. A simple way of
constructing a quadtree for a set of points
would be to �nd a square or rectangle that
encloses all of the points, then recursively
divide each node with more than one point
contained.
Quadtrees can be used for collision detec-

tion between rays and terrain. This is pos-
sible because of the way the terrain mesh
is constructed. No parts typically overlap
vertically in a terrain constructed from a
grid.
A quadtree may also be used to deter-

mine what LOD di�erent parts of the ter-
rain should be rendered with. Parts of
the terrain close to the camera should then
be rendered with high detail, while dis-
tant parts with lower detail. This can
be done with quadtrees by constructing a
quadtree of the terrain. When traversing
the quadtree, a check is made for the dis-
tance between the camera and the node cur-
rently being traversed. If the node is farther
away than a setting, it is not traversed fur-
ther, and a low-quality version is instead
used.
The depth of a square quadtree is related

to the distance between points and is at
most log(s/c) + 3/2, where c is the small-
est distance between any two points, and
s is side length of the square. The cost of
construction for a quadtree depends on the
depth of the tree. See Langetepe and Zach-
mann et al. [31, �Quadtrees and Octrees�,
Chapter 1].

6.2.3 Octree

Octrees are the three-dimensional analog
to quadtrees. Internal nodes of the octree
have eight children commonly called oc-
tants. These child nodes partition the par-
ent space in eight subspaces. Where along
the point which this space subdivision is
made categorizes di�erent kind of octrees.
Octrees are like quadtrees generally best

suited for rigid bodies where the geometry
does not deform in any way. This because of
the time it takes to construct the tree. Ray
traversal in octrees can be di�cult to im-
plement, whereas this is a rather relatively
simple task for kd-trees. The generation of
octrees is however relatively a computation-
ally cheap task.
Octrees where the subdivision point im-

plicitly is located in the middle of the parent
space are called MX octrees. The opposite
equivalent of MX octrees are when the sub-
division point can be arbitrary, and is some-
thing that is stored with each node. These
trees are denoted point region octrees or
PR octrees. With the exception of a few
cases it has been shown that the number
of nodes in an octree representation of an
object, is proportional to the surface of the
object [34].

6.2.4 kd-tree

The kd-tree is a type of binary space
partitioning (BSP). A BSP-tree is a tree
which recursively subdivides space by ar-
bitrary planes. kd-tree is short for k -
dimensional tree and is the special case of
the regular BSP-tree. Instead of having ar-
bitrary splitting planes as in a BSP-tree,
it uses axis aligned hyperplanes to subdi-

42

6.2 Techniques 6 COLLISION DETECTION

(a)

Figure 27: This �gure illustrates searching in
a segment tree.

vide the space. kd-trees can also be seen as
a k-dimensional generalization of the one-
dimensional segment search tree explained
in Langetepe and Zachmann et al. [31,
�Segment Trees�, Chapter 2] or as show in
�gure 27.
The kd-tree accelerates ray tracing signif-

icantly because large quantities of potential
colliding primitives can be excluded for each
recursive step in the tree. The construction
of a kd-tree can be very expensive compu-
tationally and is therefore suited for rigid
bodies that are not deformable.
The cost of constructing a kd-tree de-

pends largely dependent on the algorithm
used for construction. The construction of
the kd-tree is usually a part of the pre-
processing of the rendering and not some-
thing that is performed every frame. Some
construction schemes are so costly that the
kd-tree structure is saved to disk to reduce

loading time.

Construction of the kd-tree The e�-
ciency of a kd-tree depends to a large degree
on the algorithm used when constructing
the tree. The algorithm should be chosen
depending on which type of data the kd-
tree contains and what type of queries that
are going to dominate when using the tree.
The outline of the construction code for a
kd-tree is straightforward.

void construct_kdtree(Node & node)
{

if(termination_criterion_met())
return

node.splitpos = find_split_pos()

for each p in primitives
{

if(node.is_on_left_side(p))
node.left.add_primitive(p)

if(node.is_on_right_side(p))
node.right.add_primitive(p)

}

construct_kdtree(node.left)
construct_kdtree(node.right)

}

The termination criterion is a criterion
that will stop the recursive construction of
the kd-tree when some criterion is ful�lled.
What di�erentiates the various construc-
tion algorithms is the termination criterion
and the splitting rule that actually deter-
mine where the split position should be for
maximum e�ciency. For ray-tracing, a bal-
anced tree is not generally desired.

43

6.2 Techniques 6 COLLISION DETECTION

Splitting rules

Standard split Standard split also
known as spatial median splitting is de-
scribed in [28]. Splitting dimension is
chosen along with the axis with maximum
spread. maximum spread is the di�erence
between the maximum and minimum val-
ues. The splitting location is then deter-
mined to be the median. This is the most
well known and most used splitting criteria.

Midpoint split The splitting plane is
chosen to pass through the center of the cell
and splits the longest side of the cube. If
the root is a cube the resulting subdivision
is similar to a binary version of the quadtree
and octree.

Sliding midpoint split Sliding mid-
point explained by Mount and Arya et al

[39] is a variation of the midpoint-split.
When doing a split and any of the sub
node's are empty, the split is "slid" towards
the other node until a data point is encoun-
tered and the size of the empty sub-node is
maximized. Songrit Maneewongvatana and
David M. Mount showed in [40] that the
sliding midpoint split satisfy the packing
constraint and thereby explaining the split-
method's good performance. Their paper
�It's okay to be skinny, if your friends are
fat.� showed that the sliding midpoint split
sometimes produces skinny long cells, but
that every such cell has a neighbor that is
fat along the same direction. The result of
this is that a generated tree cannot be com-
posed only of skinny cells since the presence
of fat cells then also must exists. The aspect
of the skinny cells are still unbounded, but

the amount of skinny cells is still limited.

SAH (Surface Area Heuristic) split
Described in [38] Idea is to maximize the
empty space cells and to do that as close to
the root node as possible, this results in an
unbalanced tree. The SAH estimates the
emphcost of traversing the split cell with
regard to the resulting geometry of the split.
In order to do so the heuristic makes certain
assumptions about the rays that are used in
the traversals, and uses these assumptions
for the cost function of a split:

• Intersection rays are uniformly dis-
tributed.

• Intersection are in�nite in length (they
don't start or stop in a cell).

• Cost of the intersection test and traver-
sal is known.

• The intersection cost of n intersection
tests is directly linear to the cost of a
single test.

In addition to estimating the cost of a
split, the SAH also determines when to ter-
minate the subdivision.

Ray traversal The kd-tree in TA should
be able to contain objects that can have
rotations and translations performed on
them. Hence, the kd-tree itself should be
transformable. To do the intersection test,
both the ray and the kd-tree should be in
a common space. Assume that the ray that
is going to be intersected with the kd-tree
is given in world space.
The kd-tree need to be axis-aligned by

nature, so the ray is the only thing that can

44

6.3 Results and Conclusions 6 COLLISION DETECTION

(a) Ray segment starts on the left side and
stops before the split plane. Traversing the
left side and culling the right side.

(b) Ray segment starts on the right side
and stops before the split plane. Traversing
the right side and culling the left side.

(c) Ray segment intersects the split plane.
Traversing both sides, beginning with the
left side.

Figure 28:

be transformed. To transform the ray into
the space of the kd-tree, the inverse of the
kd-tree transformation is needed. The ray
is transformed with the inverse of the kd-
tree transformation and the resulting ray is
used when doing the intersection test. Note
that the inverse of a transformation con-
sisting of only rotations and translations is
trivial.
When traversing a cell, the half-spaces

that the ray-segment intersects are checked,
and the half-spaces are checked so that the
spaces closest to ray origin are checked �rst.
See �gure 28.
Performing the kd-tree ray traversal fast

is important because one typically perform
many more traversal steps than triangle in-
tersections [38, Table 7.5]. When travers-
ing a kd-trees, the ratio of computation to
the amount of accessed memory is low. The
choice of how to store the kd-tree nodes is
therefore key when optimizing traversal.

6.3 Results and Conclusions

TA games used a simple implementation of
the kd-tree for shot-mesh intersection test-
ing. The standard splitting rule was used
when generating the kd-tree. The load-
ing time for TA was approximately 15 sec-
onds on the target machine and was ex-
tensively tested with extreme parameters
when generating the tree. The inspiration
for using kd-trees came from Jacco Bikker's
ray-tracer capable of rendering at interac-
tive rates. His ray-tracer is able to trace
millions of rays each second on in static
scenes consisting of millions of triangles,
[36]. Note however that Jacco Bikker's ray-
tracer is speci�cally optimized with packet
tracing as explained in [35]. Packet trac-

45

6.4 Discussion 6 COLLISION DETECTION

ing would not work well with non-coherent
rays. Jacco Bikker brie�y outlined how he
implemented his ray-tracer in [37]. An-
other reason for choosing kd-tree's was that
the ray traversal algorithm is shorter and
easier than octrees [38, p. 95] The sam-
ple implementation provided is the one used
for reference when writing the TA imple-
mentation. The sample implementation in-
corporate certain memory-alignment, and
stack optimizations, for the kd-tree, which
is brie�y explained in [38].
Collisions between polyhedral objects in

the game was approximated with bounding
volumes. The OBB bounding volume was
utilized for this purpose. The OBB-OBB
intersection algorithm used is the one ex-
plained in [29, p. 602].
The primitives contained in the kd-tree's

of TA was triangles. The ray-triangle in-
tersection algorithm used in TA is the one
described in [29, p. 573].

6.4 Discussion

The error that the approximated bounding
volume created was far to great and notice-
able for certain meshes. With more time,
we probably would have used V-Clip [33]
or GHJ [32]. While these collision schemes
are far more complex and demanding to im-
plement from scratch, ready and free im-
plementations exists. Examples of such an
implementations is the MERL V-Clip Colli-
sion Detection Library18. These implemen-
tations would presumably be quite easy to
implement and would yield more realistic
results.
We would also implement a faster and

18http://www.merl.com/projects/vclip/

more intelligent split function for the kd-
tree when doing ray intersections, presum-
ably a variant of the SAH split rule. The
variant would be implemented according
to the method mentioned in Ingo Wald,
and Vlastimil Havran [41]. They de-
scribe a method for creating a SAH kd-
tree's with O(n log(n)) complexity, the the-
oretical lower bound.
Some kind of spatial partitioning that can

handle visibility queries, like the polygon
aligned BSP-tree's used in Quake3, would
be useful to reduce network tra�c. The
data-structure would be used for deduc-
ing which regions the players can see, and
only sending game state updates that each
player can see.

46

7.2 Techniques 7 NETWORK

7 Network

7.1 Background

Players tend to have the same performance
and consistency expectations of their online
multiplayer games as they do of their single
player games. Both network latency and a
�nite network bandwith makes this a big
challange for multiplayer game developers.
To be able to solve these problems a suitable
network platform has to be developed.

7.2 Techniques

Client/Server Every player connects to
the same server using a client. Current
game state is computed on the server while
the client only handles user input, which it
sends to the server, and renders the current
game state, received from the server. The
server could be dedicated remote from any
client or reside on the same machine as one
of the clients. Because the server is in con-
trol of the game state a lot of cheating can
be avoided as the server can discard all ille-
gal requests. Clients dont depend on each
other and can join or leave a game without
restarting the game session.

Peer-to-peer In the peer-to-peer archi-
tecture, there is no central repository of the
game state and no computer is more im-
portant than any other. Each client con-
trols a part of the game state which it sends
to every other client. This protocol's pri-
mary advantage is reduced network latency.
In the client/server protocol each message
travels to a potentially distant server and
the resulting game state is sent to all the

clients. In p2p each client sends directly to
all other clients.

7.2.1 Latency and Bandwidth

The term bandwidth in computer network-
ing refers to the data rate supported by a
network connection or interface. One most
commonly expresses bandwidth in terms of
bytes per second. Because network band-
width is limited, an action game server
(such as TA's) can not send an update ev-
ery time the game state change. Instead,
the server takes snapshot of the game state
at constant rate which it then sends to all
clients. Bandwdth is not the only prob-
lem when communicating over a network,
one other thing is delay in message delivery
called latency or ping. Latency is the time
between the client sending a user command,
the server responding to it, and the client
receiving the server's response.
It should be noted that if the client only

renders the scene with the objects at the
positions received from the server, moving
objects and animations will appear choppy.
There are several ways to prevent this:

Interpolation One solution to this prob-
lem is to go back in time when rendering
the scene so animations and moving objects
can be smoothly interpolated between two
recently received snapshots. The amount
of time to go back need to be at least as
much as the time between server snapshots.
Games based on the Source Engine goes
back double that time [90] to prevent prob-
lems if a packet is lost or delayed. If more
than one packet is lost or delayed, linear
extrapolation is used to create an approxi-
mated snapshot.

47

7.2 Techniques 7 NETWORK

Extrapolation Extrapolation is the pro-
cess of constructing new data points outside
a discrete set of known data points. This
could be a very simple linear function (i.e.
keep moving the object in its current direc-
tion), or more advanced, see [94] for an ex-
ample where several di�erent functions are
used depending on the object and purpose.

Client Prediction When a player makes
any action such as moves, the client sends
a request to the server which updates the
position of the player and eventually sends
a new game state back to all clients with
the next snapshot. This will make a de-
lay between input and visual update. If the
client predicts what the server will return
with the next snapshot it can start to move
the player instantly. Then, if the next snap-
shot does not match the predicted one, the
client will have to correct (preferably using
interpolation) its own position because the
server has �nal authority.

Roll-Back Contrary to the above solu-
tions this is a server side re�nement and
its purpose is not to make visualization
smoother but to hide player latency. When
the server receives a shoot request (this only
concern instant hit weapons) from a client,
it will roll back the game state until the
time when the player pressed the shoot but-
ton on the client (i.e. half the client's la-
tency). This reduces the otherwise signi�-
cant penalty of incurring high latency, but
can allow players feel like they are being
"shot around a corner". This can happen if
a player hides behind a corner (or anything
else), and a player with such a high latency
that when the server make the roll-back, the

player that hide will appear to be hit even
though he is behind protection. However,
the player who shot will perceive it as a di-
rect hit.
There are also several optimizations to keep
bandwidth utilization as low as possible.

Variable Quantization Variable Quan-
tization is a way to reduce network use by
decreasing the number of bytes sent per
variable. A �oat can be converted to an in-
teger, and by doing so lose precision and re-
duce the bytes needed to represent its value.
For example, the position of a tank is rep-

resented by a vector using three �oats, four
bytes each. Often, it is not necessary to
send all those 12 bytes - a player will not no-
tice if the tank is positioned at 325, rather
than 325.12. A two bytes integer could be
used instead of the four byte �oat, thus cut-
ting the network utilization in half.
This is a lossy coding, which implies that

the lost precision can never be reproduced.

Lossless Data Compression Before
sending a packet, a lossless compression al-
gorithm can be applied on the data string
in order to reduce the bytes which need to
be sent. When the data string is received
by the other end, it can be restored to the
original string before being processed. One
of the most common compression algorithm
used in several games, (such as Tribes [91]
and Quake 3 [93]) is the Hu�man coding
[98].

Delta Compression or Delta Encod-
ing 19 is a way to reduce the data sent by

19The unix commando di� is a delta encoding
software.

48

7.2 Techniques 7 NETWORK

only sending the di�erences between the re-
ceivers current data, and the new data [96].
For example, if the client has a string �Hello
World?� and the server wants to update it
to �Hello World!�. Then, in this case, send-
ing the entire string would be unnecessary.
All that actually has to be sent, is the di�er-
ence between the two strings, i.e. '?' to ' !'.
This can also be applied to when sending
the position and orientations of the tank.
As explained in section 5.2.1, the tank

contains three quaternions and a transla-
tion vector. If none of the quaternions
are changed between two server ticks, then
we only need to send the translation vec-
tor. This would decrease the amount of
�oats sent, i.e. by four �oats per quater-
nion× three quaternions. This would result
in that only three �oats would have been
sent, which is what the translation vector
requires.

7.2.2 Endianness

Endianness is the byte ordering20 in mem-
ory used to represent data (e.g. an
integer).Big-endian and little-endian are
the two most commonly used orders but
not the only two available. The relation-
ship between the two is depicted in �g. 29.
With little-endian the bytes are ordered in-
creasing numeric signi�cance with increas-
ing memory addresses, "little end �rst".
Big-endian is the opposite order. i.e. de-
creasing numeric signi�cance with increas-
ing memory addresses. All x86 platforms
use the little-endian format and Motorola,
PowerPC and SPARC platforms use the
big-endian format.

20Note that endianness can also refer to bit order.

(a) The big-endian byte ordering with 1-
byte address increment.

(b) The little-endian byte ordering with 1-
byte address increment.

Figure 29: The di�erence between big-endian
and little-endian.

Communications between systems which
uses di�erent endianness could be a prob-
lem without some precautions taken. Net-
works generally use big-endian order and
the Internet Protocol [97] de�nes a stan-
dard big-endian network byte order. There
is a set of functions de�ned in theBerkeley
sockets[99] API which convert 16- and 32-
bit integers to and from a network byte or-
der:

htonl() host-to-network-long, converts a
32-bit integer from host byte order to
network byte order

htons() host-to-network-short, converts a
16-bit integer from host byte order to
network byte order

ntohl() host-to-network-long, converts a
32-bit integer from network byte order
to host byte order

49

7.2 Techniques 7 NETWORK

ntohs() host-to-network-short, converts a
16-bit integer from network byte order
to host byte order

7.2.3 Tribes Networking Model

Tribes [91] uses both reliable and unreliable
packets. All data are classi�ed into four dif-
ferent categories:

Non-guaranteed data Data which is
never re-transmitted if lost.

Guaranteed data Data which must be
retransmitted if lost, and delivered to
the client in the order it was sent.

Most Recent State data is volatile data
of which only the latest version is of
interest.

Guaranteed Quickest data is data that
needs to be delivered in the quickest
possible manner.

The Tribes network model consist of two
di�erent layers. The �rst layer is the Con-
nection Layer which actually delivers the
UDP packets. The Connection Layer
doesn't guarantee that these packets are de-
livered but it does provide packet delivery
status noti�cations. These noti�cations can
be used by the Stream Layer to achive a
guaranteed packet delivery. The Stream
Layer consist of three di�erent managers
which send data:

Ghost Stream Manager This manager
is responible for creating a "ghost", i.e., a
copy, of a local object on a remote host and
keeping it up to date. An object's data is
classi�ed as Most Recent State data and if
a packet for an object is dropped and the

position of that object has changed since
the packet was sent, the new position will
be sent instead of sending the old packet
again. The creation of a new copy on a
remote host is classi�ed as Guaranteed data
and will be resent if lost.

Move Stream Manager Delivers client
input moves as Guaranteed Quickest data
to the server. This manager is also respon-
sible for sending the clients' movement data
from the server to all clients (actually, to all
players who can see, hear or in any other
way need it). This is done in two separate
ways. First it send this move data with ev-
ery packet to all clients, it also creates a
control object which is transmitted through
the Ghost Stream Manager. This control
object contains data used to validate, and
if necessary correct, the clients objects po-
sition.

Event Stream Manager The Event
Stream manager is responsible for provid-
ing guaranteed and non-guaranteed delivery
of all other data from one host to another.
Guaranteed deliveries will also be processed
in order.
All three manager uses separate slid-

ing windows [95] to track packet delivery.
When these windows are full, transmission
of new data will be halted until acknowl-
edgements arrive and the window can ad-
vance.

50

7.2 Techniques 7 NETWORK

if (newState.sequence < lastState.sequence)
{
//discard packet

}
else if (newState.sequence > lastState.sequence)
{

lastState = deltaUncompress(lastState,newState);
ackServer(lastState.sequence);

}

Figure 30: The client receive logic in Quake 3.

deltaCompressState(client.lastAckState, newState, &compressedState);
sendToClient(client, compressedState);

Figure 31: The server send logic in Quake 3.

update shot positions;
for each colided shot s

spawn new explosion at s's position;
if any player dies,

increase the shooter's score;
respawn player;

Send new game state to all players

Figure 32: Tank Action's main server loop.

51

7.2 Techniques 7 NETWORK

Figure 33: The client-server relationship. Note that there are kd-trees on the server and
SolidObjects and TankObjects on the client. This means that only rendering data (such as
meshes and textures) is on the client. Some things are of the same type on the server as on the
client though. The shot for instance, is the same, but is observed by the ShotObject on the client
- to enable rendering.

52

7.2 Techniques 7 NETWORK

7.2.4 Quake 3 Networking Model

The core concept with the Quake 3 Net-
working Model [93] is that there is only
one main packet type, the client's neces-
sary game state. This packet is a se-
quenced delta compressed [96] state built
for each client from the last acknowledged
game state and current state. Clients ac-
knowledge entire states and never indepen-
dent commands.
If a packet is dropped, the server will

never resend the same packet but build a
new one from the current state and pack-
ets recieved out of order will be discarded.
There are no reliable packets, all reliable
data (e.g. chat messages) will be sent
repeatedly with the game state until the
server receives acknowledgement for an up-
date containing that data. For psuedo code,
see program in �g. 31 and 30.
For example, if a player sends a chat mes-

sage (reliable) with update 6, he will contin-
ually send that chat message on subsequent
state updates until he receives noti�cation
from the server that it has received an up-
date >= 6.
With this approach the server never waits

for an acknowledgement. As a result, la-
tencies are much lower but more bandwith
is used. Because the server uses old game
states when building new packets it may
have to bu�er a lot of data, especially if
latencies are high.

7.2.5 Tank Action

Since the focus of this project was graphics
and not gameplay or security, the TA net-
work implementation is very simple. TA
uses the client/server model for simplic-

ity and the server is dedicated and console
based. All communication uses UDP pack-
ets to ensure low latencies and keep band-
width use as low as possible.
One major di�erence to most other fast-

paced action games (e.g. Quake, Unreal,
Half-Life, Tribes) is that TA trusts the
client and allows it to just convey its po-
sition to the server. This in contrast to in-
stead of making move requests or allowing
the server to correct its position.
Refer to �g. 33 for a UML diagram of

the client-server components in the game.
Collision detection of projectiles (shots) is
handled on the server. A ServerLevel object
is used to load all data necessary for a game
session and for creating all kD-trees used for
collision detection. The ServerShotHandler
is used for managing shots, adding new, re-
move old and update positions. kd-trees
are on the server only, so the client is not
burdend by generating these. Instead, the
client holds bounding boxes for culling and
box-box collision detection with static dec-
orative objects.
Refer to �g. 32. The server main loop

is fairly simple. Every frame, the server
iterates over all shots and check whether
a collision has occurred using the kD-trees
for all objects, including terrain and play-
ers. If that is the case, the shot will be
removed and an explosion will be spawned
at that position and players in its vacinity
will be damaged accordingly. The destruc-
tion of a tank will lead to that the player
who shoot the �nal blow will get a "frag"
and his score will increase. Any updated
state is sent from the server to all clients
when at least 20 ms has elapsed since the
last update.
There are three main messages:

53

8 RESULTS AND CONCLUSIONS

• NEW STATE The main message sent
from the server ot all clients, contain-
ing positions and rotations for every
player, position of every shot and infor-
mation about new players. This packet
will be sent to all players each server
tick.

• NEW STATE Sent to server when a
client moves, contains the new position
and rotations.

• NEW SHOT Sent whenever a player
�res a projectile.

7.3 Result and Conclusion

The network platform used in TA is very
simple but very e�ective. Players can fo-
cus on their action and ignore the fact that
all other tanks in the game are controlled
by other players. By allowing each client to
be in total control of his own position, no
clientside re�nement such as Client Predic-
tion is of use.
Since TA does not have many interactive

objects which need to be sent over network,
a lot of optimization is not required. Hu�-
man compression and quantization for in-
stance, would have decreased the packet-
size, but since the packetsize would never
have been surpassed in the �rst place - it
would not really matter. If the game were
to be expanded on the other hand, this
would have been a must.

7.4 Discussion

If we had used a common network model
instead of our empirical solution, we think
that we could have avoided some of the

problems which we had during develop-
ment. Things that are very simple in a
single player game can become a really big
problem when trying to keep things syn-
chronized on several clients. Many prob-
lems can seem very elementary until actual
implementation.
An example of this, are the shots. At

our �rst implementation, the players sent
two vectors for each shot. One which repre-
sented the position in world-space, and the
other which represented the direction. This
seemed to work well, but when several play-
ers and shots were present in a game, the
amount of data being sent could easily sur-
pass the limit of the packetsize. Because
of this, we had to re-think how the shots
should be handled over the network. Our
�rst solution to this, was to on the client-
side, calculate the directional vector of the
shots from the di�erence in position of the
position vectors. This seemed to work well,
but with many players we had the same
problem with the packetsize.
A �nal solution to this, was to instead

send a directional vector and position vec-
tor only once to the clients, when a shot
is �red. The clients then, would themselves
simulate and predict movement of the shots.
This works well, but synchronization is hard
and is never exact.

8 Results and Conclu-

sions

For the TA project, the use of the RUP
model was greatly bene�cial for many rea-
sons. Programming early on allowed the
team to better assess the time needed for

54

9 DISCUSSION

each task, which led to more accurate plan-
ning. However, using an agile model with-
out rigid early design also caused problems.
An example of this is the network code,
which had to be rewritten several times to
cope with changing requirements on what
data to be sent.

9 Discussion

We believe that the e�ectiveness of the
team and the e�ciency with which we
conducted our respective tasks was signi�-
cantly improved by dividing responsibilities
amongst the team members. When pro-
gramming independently, it is however im-
portant to have a uni�ed vision of the prod-
uct. We did experience some synchroniza-
tion problems. For example, some untested
code was committed to the subversion sys-
tem and was assumed by others to be cor-
rect, although it was not tested until sev-
eral months later. We gained great respect
for the fact that independent programming
must be balanced and closely coupled with
e�ective means of team communication.
We also experienced that using a

component-based software engineering
methodology can save a lot of time. Most
libraries proved to be valuable - and gener-
ally saved a lot of time. However, we also
experienced that libraries sometimes can be
more time consuming to use than writing
the code from scratch. For instance, two
3DS model loader libraries were tried, and
both turned out to be incorrect. How-
ever, in general, using libraries improved
e�ciency, allowing us to concentrate on
high-level details. In general, the libraries
seemed to be very well tested and robust.

We believe that a common style guide
could have improved e�ciency. This would
have made it easier to read and edit each
other's code.
Some code was unnecessarily rewritten

because of our programming methodology.
For example, the network code was rewrit-
ten several times. One conclusion is that
lack of strict design early on in agile de-
velopment doesn't necessarily have to mean
not committing to solutions to some prob-
lems already from start. At the very least,
more careful planning of the network packet
layout in the early phases of the project
could have improved our e�ciency. How-
ever, our agile methods proved e�ective for
graphics. Rather than being slowed down
by introducing a scene graph before any-
thing at all was known about the rendering
code for objects, this was postponed until
later in the development.
Some of us discovered that reading more

about the subject before starting imple-
menting speci�c features would have im-
proved e�ciency. For instance, the tank
movement was �rst implemented with ma-
trices, then implemented with quaternions.
A lot of time was also lost in the imple-
mentation of particle systems, because it
wasn't known at �rst that particles had to
be sorted. We realized that a good source
of information is usually to read scienti�c
papers. Books are also good, but in our
cases seldom went into depth regarding im-
plementation details, and also were less up
to date.

55

A ABBREVIATIONS

A Abbreviations

• TA - Tank Action

• GPU - Graphics Processing Unit

• API - Application Programming Inter-
face

• LUT - Look-up Table

• LOD - Level of Detail

• FPS - First Person Shooter

• ODE - Open Dynamics Engine

• AABB - Axis-aligned Bounding Box

• OBB - Oriented Bounding Box

• RUP - Rational Uni�ed Process

• SDO - Static Decorative Objects

• SLERP - Spherical Linear Interpola-
tion

• SDL - Simple Direct Media Layer

56

REFERENCES REFERENCES

References

[1] Kruchten P., �The Rational Uni�ed Process: An Introduction�, 3rd ed., 1998.

[2] Beck K., �Extreme Programming Explained: Embrace Change�, Addison-Wesley Pro-
fessional, US Ed edition, 1999, ISBN: 0-201-61641-6.

[3] http://subversion.tigris.org/, 2007.

[4] Richard S. Wright, Jr. and Michael Sweet, �OpenGL SuperBible�, 2000, ISBN:
1571691642.

[5] Jackie Neider, Tom Davis, Mason Woo, �OpenGL Programming Guide�, Release 1,
1994.

[6] Guennadi Riguer, �Performance Optimization Techniques for ATI Graphics Hardware
with DirectX 9.0�, ATI Technologies Inc., 2002.

[7] Paul S. Strauss, �The Inventor Mentor: Programming Object-Oriented 3D Graphics
with Open Inventor�, ACM Press, 1993.

[8] M. E. Newell, R. G. Newell, T. L. Sancha, �A solution to the hidden surface problem�,
ACM Press, 1973.

[9] Evan Pipho, �Focus On 3D Models (Game Development)�, Course Technology PTR,
2002, ISBN: 1592000339.

[10] Randi Rost, �OpenGL Shading Language�, 2nd Edition, 2006.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides., �Design Patterns:
Elements of Reusable Object-Oriented Software�, 1994, ISBN: 0-201-63361-2.

[12] Dirk Staneker, �A First Step towards Occlusion Culling in OpenSG PLUS�,
WSI/GRIS, University of Tubingen, Germany, 2002.

[13] Sowizral, H., �Scene graphs in the new millennium�, IEEE, Sun Microsystems, USA,
2000, ISSN: 0272-1716.

[14] Jon Louis Bentley, �Multidimensional binary search trees used for associative search-
ing�, ACM Press, Stanford University, 1975, ISSN: 0001-0782.

[15] Stefan Aric Gottschalk, "Collision queries using oriented bounding boxes", ACM
Press, 2000, ISBN:0-493-01573-6.

[16] Lars Bishop, Mark Finch, Michael Shantz, �Designing a PC Game Engin�, IEEE
Computer Graphics and Applications, Vol 18, Issue 1, pp 46 - 53, January 1998.

57

REFERENCES REFERENCES

[17] Rick Gibson,David MacQueen, �Outsourcing in Next Generation Games Develop-
ment: Delivering cost and production e�ciency�, Screen Digest, 2006.

[18] Shanika Karunasekera, Scott Douglas, Egemen Tanin, and Aaron Harwood, �P2P
Middleware for Massively Multi-player Online Games�, 6th Internation Middleware
Conference, ACM/IFIP/USENIX, 2005.

[19] Alan H. Barr, Bena Currin, Steven Gabriel, John F. Hughes, �Smooth interpola-
tion of orientations with angular velocity constraints using quaternions�, ACM SIG-
GRAPH Computer Graphics, 1992.

[20] http://www.ageia.com/, 2007

[21] http://www.havok.com/, 2007

[22] Ken Shoemake, �Animating rotation with quaternion curves�, SIGGRAPH; ACM
PRESS, 1985, ISSN:0097-8930.

[23] Kevin P. Smith, Chris Frazier, �The OpenGL Graphics System Utility Library�,
Silicon Graphics, 1995.

[24] Russel H. Taylor, �Planning and Executiono f Straight Line Manipulator Trajecto-
ries�, IBM J. DEVELOP., VOL.23, NO. 4, July 1979

[25] William R. Hamilton, �On Quaternions; or on a new System of Imaginaries in Alge-
bra�, Philosophical Magazine, 1844-1850.

[26] David Eberly, �Quaternion Algebra and Calculus�, Geometric Tools Inc., 1999 (Up-
dated 2002)

[27] Russel Smith, �Open Dynamics Engine User-Guide�, 2006, http://www.ode.org/ode-
latest-userguide.html

[28] Freidman, J. H., Bentley, J. L., and Finkel, R. A. ,�An Algorithm for Finding Best
Matches in Logarithmic Expected Time.� ACM Trans. Math. Softw 1977.

[29] 2nd Edition, Tomas Akenine-Moller, Eric Haines, �Real-Time Rendering�, 2002,
ISBN: 1568811829.

[30] Raphael Finkel and J.L. Bentley, �Quad Trees: A Data Structure for Retrieval on
Composite Keys�, Acta Informatica 4 (1): 1-9. 1974

[31] Elmar Langetepe and Gabriel Zachmann, �Geometric Data Structures for Computer
Graphics�, A K Peters Ltd (February 1, 2006), ISBN: 1568812353. 2006

58

REFERENCES REFERENCES

[32] Chong Jin Ong Gilbert, E.G. ,�Fast versions of the Gilbert-Johnson-Keerthi distance
algorithm�, 2001 Robotics and Automation, IEEE Transactions on Aug 2001.

[33] Brian Mirtich, �V-Clip: Fast and Robust Polyhedral Collision Detection�, ACM
Transactions on Graphics. 1998

[34] Gregory Michael Hunter, �E�cient computation and data structures for graphics�,
"PhD Thesis, Order Number: AAI7823520, 1978.

[35] Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss, Jan Kautz, Ingo Wald,
and Peter Shirley, �Packet-based Whitted and Distribution Ray Tracing�, 2007.

[36] Jacco Bikker, �Flipcode Image of the day�, http://www.�ipcode.com/cgi-
bin/fcarticles.cgi?show=65091 as seen 2007-06-15.

[37] Jacco Bikker, �Raytracing Topics & Techniques�,
http://www.�ipcode.com/articles/article_raytrace01.shtml as seen 2007-05-21

[38] Ingo Wald, �Realtime Ray Tracing and Interactive Global Illumination�, PhD Thesis,
Saarland University. 2004

[39] D. M. Mount and S. Arya. , �ANN: A library for approximate nearest neighbor
searching.�, Center for Geometric Computing 2nd Annual Fall Workshop on Compu-
tational Geometry, 1997, http://www.cs.umd.edu/ mount/ANN .

[40] S. Maneewongvatana and D. M. Mount. , �It's okay to be skinny, if your friends are
fat.�, 4th Annual CGC Workshop on Comptutational Geometry. 1999

[41] Ingo Wald, and Vlastimil Havran, �On building fast kd-trees for ray tracing, and on
doing that in O(N log N)�, Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, 2006, pages 61-69. 2006

[42] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. �I-COLLIDE: An in-
teractive and exact collision detection system for large-scale environments.� In Pat
Hanrahan and Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics,
pages 189-196. ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7.

[43] Ingo Wald, Solomon Boulos, and Peter Shirley, �Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies�, 2007.

[44] W Hunt, WR Mark, G Stoll, �Fast kd-tree Construction with an Adaptive Error-
Bounded Heuristic�, 2006.

[45] Kainz F., Bogart R., Hess D., �The OpenEXR File Format�, GPU Gems, 2004.

59

REFERENCES REFERENCES

[46] Duchaineau M., Wolinsky M., Sigeti D. E., Miller M. C., Aldrich C., Mineev-
Weinstein M. B. ,�ROAMing Terrain: Real-time Optimally Adapting Meshes�, IEEE
Visualization, pp 81-88, 1997.

[47] Lindstrom P., Pascucci V.,�Visualization of Large Terrains Made Easy�, Proceedings
of IEEE Visualization 2001, pp. 363-370, 574, October 2001.

[48] de Boer W. H.,�Fast Terrain Rendering Using Geometrical MipMap-
ping�, Fast Terrain Rendering Using Geometrical MipMapping.
http://www.�ipcode.com/articles/article_geomipmaps.pdf, 2000.

[49] Vistnes H., �GPU Terrain Rendering�, Game Programming Gems 6, pp 461-471,
2006.

[50] Wagner D.,�Terrain Geomorphing in the Vertex Shader� ShaderX-2, Wordware Pub-
lishing, 2003.

[51] Vistnes H., �GPU Terrain Rendering�, Game Programming Gems 6, pp 461-471,
2006.

[52] Shankel J., �Fast Height�eld Normal Calculation�. Game Programming Gems 3,
Charles River Media, 2002.

[53] Losasso F., Hoppe H.,�Geometry clipmaps: Terrain rendering using nested regular
grids.�, ACM SIGGRAPH, pp. 769-776, 2004.

[54] Kryachko Y.,�Using Vertex Texture Displacement for Realistic Water Rendering�,
GPU Gems 2, 2005.

[55] Clasen, M., Hege, H.-C. �Terrain rendering using spherical clipmaps,� In Proc. Eu-
roVis, pp 91�98, 2006.

[56] Asirvatham A., Hoppe H., �Terrain Rendering Using GPU-Based Geometry
Clipmaps�. 2005, GPU Gems 2 .

[57] Young I.T., Gerbrands J.J., van Vliet L.J., �Image Processing Fundamentals�,
http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/�p.html

[58] Rader C., Brenner N., �A new principle for fast Fourier transformation�, IEEE Acous-
tics, Speech & Signal Processing 24: pp 264-266, 1976.

[59] Pelzer K., �Rendering Countless Blades of Waving Grass�, GPU Gems, 2004.

[60] Woop S., Schmittler J., Slusallek P., �RPU: A Programmable Ray Processing Unit
for Realtime Ray Tracing�. Proceedings of ACM SIGGRAPH 2005.

60

REFERENCES REFERENCES

[61] Channa K., �Light Mapping - Theory and Implementation�,
http://www.�ipcode.com/articles/article_lightmapping.shtml, 2003.

[62] Bui-Tuong P., �Illumination for Computer-Generated Images�, Phd Thesis, 1973.

[63] Blinn, J. F., �Simulation of Wrinkled Surfaces�, Computer Graphics, Vol. 12 3, pp.
286-292 SIGGRAPH-ACM, 1978.

[64] Tomomichi Kanek, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Yasuyuki
Yanagida, Taro Maeda, Susumu Tachi, �Detailed Shape Representation with Parallax
Mapping�, Proceedings of ICAT 2001, 2001.

[65] Kautz J., Heidrich W., Daubert K., �Bump map shadows for OpenGL rendering�,
Max-Planck-Institut für Informatik, Saarbrücken, Germany, MPI-I-2000-4-001, 2000.
citeseer.ist.psu.edu/kautz02bump.html

[66] Cohen J., Tchou C., Hawkins T., Debevec P., �Real-time High Dynamic Range
Texture Mapping�, Eurographics Rendering Workshop 2001, London, England, 2001.
http://www.debevec.org/Research/HDRTM/egwr-01-cohen.pdf

[67] Shastry A. S., �High Dynamic Range Rendering�.
http://www.gamedev.net/columns/hardcore/hdrrendering/, 1999.

[68] Crow F. C., �Shadow algorithms for computer graphics�, Computer Graphics
Proc.ofSIGGRAPH77, 112:242-248, 1977.

[69] Williams L., �Casting curved shadows on curved surfaces�, 1978.

[70] Assarsson U., �A Real-Time Soft Shadow Volume Algorithm�. PhD thesis, Depart-
ment of Computer Engineering, Chalmers University of Technology. ISBN 91-7291-
333-9, 2003.

[71] Stamminger M., Drettakis G., �Perspective Shadow Maps�, 2002.

[72] Reeves W. T., Salesin D. H., Cook R. L.. �Rendering antialiased shadows with depth
maps.� Computer Graphics SIGGRAPH87Proceedings, pp 283-291, 1987.

[73] Arvo, J., �Tiled shadow maps.�, Proceedings of Computer Graphics International
2004, IEEE Computer Society, pp 240-247, 2004.

[74] Zhang F., Sun H., Xu L., Lun L. K., �Parallel-Split Shadow
Maps for Large-scale Virtual Environments�, ACM VRCIA'06, 2006,
http://appsrv.cse.cuhk.edu.hk/ fzhang/pssm_project/shadow_vrcia.pdf.

[75] Shastry A. S., �Soft-Edged Shadows�,
http://www.gamedev.net/reference/articles/article2193.asp, 2005.

61

REFERENCES REFERENCES

[76] Shastry A. S., �High Dynamic Range Rendering�.
http://www.gamedev.net/columns/hardcore/hdrrendering/, 1999.

[77] Nishita T., Dobashi Y., Kaneda K., Yamashita H., �Display Method of the Sky Color
Taking into Account Multiple Scattering�, Proc. of Paci�c Graphics 1996, pp.117-132,
1996-8.

[78] O'Neil S., �Accurate Atmospheric Scattering�, GPU Gems 2, 2005.

[79] Abad J. A., �A simple model for fast, realistic sky dome color rendering�,
http://www.geocities.com/ngdash/whitepapers/skydomecolor.html, 2006.

[80] Perlin K., �Making Noise�, http://www.noisemachine.com/talk1/, based on a talk
presented at GDCHardCore, 1999.

[81] Ebert et al. �Texturing and Modeling - A procedural Approach�, 3rd ed., 2002.

[82] Elias H., �Cloud Cover�,
http://freespace.virgin.net/hugo.elias/models/m_clouds.htm, 2000.

[83] Reeves W. T., �Particle Systems - a Technique for Modeling a Class of Fuzzy Ob-
jects�, ACM Transactions on Graphics TOG archive, Volume 2, Issue 2 April1983,
ISSN:0730-0301, pp 91-108, 1983.

[84] Nguyen H., �Fire in the Vulcan Demo�, GPU Gems, 2004.

[85] Everitt C.,
�http://developer.nvidia.com/object/order_independent_transparency.html�, 2004.

[86] Sousa T., �Generic Refraction Simulation�, GPU Gems 2, 2005.

[87] van der Burg J., �Building an Advanced Particle System�,
http://www.gamasutra.com/features/20000623/vanderburg_01.htm, 2000.

[88] , �Standard Template Library Programmer's Guide�, 1993-2006,
�http://www.sgi.com/tech/stl/�.

[89] Musser D. R., �Introspective Sorting and Selection Algorithms�, Software Practice
and Experience 278:983, 1997.

[90] �Source Multiplayer Networking.�,
http://developer.valvesoftware.com/wiki/Source_Engine, 21-05-2007

[91] Mark Frohnmayer, Tim Gift, �The TRIBES Engine Networking Model.�, GDC,
March, 2000.

62

REFERENCES REFERENCES

[92] Tim Sweeney, �Unreal Networking Architecture.�,
http://unreal.epicgames.com/Network.htm, 1999

[93] �The Quake3 Networking Model.�,
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking, 21-05-
2007

[94] Jesse Aronson, �Dead Reckoning: Latency Hiding for Networked Games�,
http://www.gamasutra.com/features/19970919/aronson_01.htm, 1997

[95] Comer, Douglas E. �Internetworking with TCP/IP, Volume 1: Principles, Protocols,
and Architecture�, Prentice Hall, 1995. ISBN 0132169878

[96] James J. Hunt, Kiem-Phong Vo, Walter F. Tichy, �Delta algorithms: an empirical
analysis�, ACM Press New York, NY, USA, 1998

[97] �RFC791�, http://tools.ietf.org/html/rfc791, 1981

[98] D.A. Hu�man, �A method for the construction of minimum-redundancy codes�, Pro-
ceedings of the I.R.E., sept 1952, pp 1098-1102

[99] Joy, William, Robert Fabry, Samuel Le�er, M. Kirk McKusick, and Michael Karels.
�Berkeley Software Architecture Manual 4.3BSD Edition�, Department of Electri-
cal Engineering and Computer Science. University of California, Berkeley, California
94720, April, 1986.

63

