
An evaluation of techniques for
use in a 3D computer game

Bachelor's Thesis

Rickard von Haugwitz
Daniel Lindén
Bartolomeus Jankowski

Magnus Olausson
David Sundelius

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2010

Abstract

In this thesis, we evaluate di�erent techniques common in real-time rendering to
see which are suitable for the purpose of implementing a 3D game application
and what sorts of compromises would have to be made to make it feasible
within a short timeframe and with little manpower. The case study application
is intended to contain high graphical �delity and entertainment level. To be
able to evaluate this to any greater extent, we developed a racing game during
the spring term of 2010.

During the development process, we found that time was of huge importance
and that our end result could have been even more polished should we have had
more time. However, we did implement many of the techniques and features that
we were aiming for. Among these techniques were deferred lighting, shadows,
bloom, high dynamic range and particle systems, all of which we consider to have
turned out to be bene�cial for the visual quality of the end result and suitable
for our purpose. The �nal product is, however, clearly lacking content-wise, but
content was not our main concern.

Although all planned e�ects and features could not be implemented within
the given timeframe, the graphical �delity of the application can, keeping the
various limitations of the project in mind, be regarded as fairly high.

Acknowledgements

First of all, we would like to thank our supervisor Ulf Assarsson for providing
invaluable help and feedback throughout the project, particularly during the
writing of this report. Our thanks also go to former group member Alexander
Göransson, who inspired the rest of the group with his enthusiasm for functional
programming as well as his awesome beard, which is rumoured to be the longest
in the Computer Science department. Furthermore, we express our thanks to
groups 3 and 41, with whom we shared the project room. Lastly, we thank
Anders Davallius for feedback and advice regarding game development, and
other friends for their support.

Contents

1 Introduction 1

1.1 Purpose . 1
1.2 Limitations . 1
1.3 Background . 1

1.3.1 The graphics pipeline . 2
1.3.2 Ever-increasing speed . 2
1.3.3 Graphics in games . 3

1.4 Problem . 3
1.4.1 The rendering equation 3
1.4.2 Post-processing e�ects . 4
1.4.3 Other e�ects . 5

1.5 Method . 5
1.5.1 Agile Development . 6
1.5.2 Design and UML . 6
1.5.3 Programming language and framework 6
1.5.4 Version control . 7

2 Game Design 8

2.1 Game Presentation . 8
2.1.1 Usability . 8
2.1.2 Result . 9

2.2 Software Architecture . 10
2.2.1 Results . 11

3 Graphics 12

3.1 Rendering . 12
3.1.1 Shading . 12
3.1.2 Forward rendering . 13
3.1.3 Deferred rendering . 13
3.1.4 Gamma correction . 15
3.1.5 Results . 16

3.2 Shadows . 17
3.2.1 Shadow volumes . 17
3.2.2 Shadow mapping . 18
3.2.3 Results . 21

i

Bachelor's Thesis Contents

3.3 Particle Systems . 21
3.3.1 Billboards . 22
3.3.2 Result . 22

3.4 Global illumination . 23
3.4.1 Real time implementation 23
3.4.2 Ambient occlusion . 23
3.4.3 Indirect illumination and colour bleeding 24
3.4.4 Results . 25

3.5 Post-processing e�ects . 26
3.5.1 Motion blur . 26
3.5.2 Tone mapping . 27
3.5.3 Glare e�ects . 31
3.5.4 Results . 35

4 Game engine 37

4.1 Collision detection . 37
4.1.1 Collision detection using rays 37
4.1.2 Intersection testing . 38
4.1.3 Space-partitioning data structures 40
4.1.4 Results . 43

4.2 Network Gaming . 44
4.2.1 Client/Server Networking 45
4.2.2 Peer-to-Peer Networking 45
4.2.3 Results . 46

5 Conclusion 47

5.1 Results . 47
5.2 Discussion . 47
5.3 Future work . 48

A Contributions 56

A.1 Responsibilities . 56
A.2 Problem solving, synthesis and analysis 57
A.3 Report contributions . 57

Group 40 ii 27th May 2010

Chapter 1

Introduction

1.1 Purpose

This thesis aims to discover and evaluate what techniques are suitable for engi-
neering of real-time computer graphics in projects with a short time span and
few developers. Its purpose is to highlight certain of these techniques in order
to identify the aspects of a game application that make it enjoyable to watch
and use.

Our aim was also to implement a game application to help support the in-
tentions stated above, with the ambition of making it as entertaining as possible
and with a high graphical standard.

1.2 Limitations

The research is limited by the computers which are used for development; a
graphical application should be runnable on these since they are fairly repre-
sentative to what our target audience has available. Also, since the project is
aimed towards evaluating rendering techniques, our main focus will not be on
di�erent network technologies or physics. However, we have implemented basic
networking and physics functionality in order to provide the user with a more
complete gaming experience, and therefore such algorithms are covered, albeit
brie�y, in the report.

1.3 Background

Computer graphics is an area which has seen rapid development in recent years.
Films use computer graphics to increasingly better e�ect; chances are good of
having seen a computer-generated visual e�ect scene last time going to the ci-
nema, regardless of it being a drama or fantasy �lm, although the frequency of
the visual e�ect shots generally vary between genres. These scenes or shots are
often very detailed and take a long time to render. In gaming, which in contrast
to �lm involves rendering in real time, graphics have become more realistic, and
convincing human characters are now possible and even common in modern
state-of-the-art game applications. Here, completely di�erent prerequisites ap-

1

Bachelor's Thesis Chapter 1. Introduction

ply due to the real-time requirement, and special algorithms and techniques
have to be used in order to deliver a convincing scene while maintaining an
acceptable rate at which screens are rendered to the display.

The computer generated scenes in games, and, for that matter, �lms, are
built using triangles. Each triangle is shaded and/or textured individually and
then drawn to the screen, which makes the scene come to life. This process
is generally too heavy for the central processing unit (CPU) to handle all by
itself, particularly when it is required to perform other tasks, so for shading and
drawing these triangles to the display, a graphics card designed especially for
drawing triangles is used. On this graphics card one �nds, among other things,
the graphics processing unit.

1.3.1 The graphics pipeline

The graphics processing unit (GPU) operates by pushing data down a rendering
pipeline consisting of several stages, each of which performs a speci�c function.
In modern GPU:s, this pipeline is implemented with the vertex shader, geometry
shader, clipping, screen mapping, triangle setup, triangle traversal, pixel shader
and merger stages, in that order (Akenine-Möller et al., 2008). Out of these, the
vertex shader, geometry shader and pixel shader stages are fully programmable
and therefore of foremost interest to the programmer; the clipping and merger
stages are con�gurable but cannot be programmed, and the remaining stages
are �xed. There are currently two widely accepted standard graphics pipeline
models: Microsoft's Direct3D (part of the DirectX standards suite) and the
open standard OpenGL.

Early commercially available GPU:s, although often providing highly con�-
gurable rendering pipelines, did not support programmable shaders; it was not
until 2001 that the �rst GPU (NVIDIA's GeForce 3) supporting programmable
vertex shaders was released. During the following year, this was expanded upon,
resulting in DirectX 9.0 and Shader Model 2.0, the �rst to support fully pro-
grammable vertex and pixel shaders (Akenine-Möller et al., 2008). The intro-
duction of programmable shaders gave the graphics programmer signi�cantly
higher control. Shader programming was originally done using assembly lan-
guage, which quickly proved too cumbersome as shaders became increasingly
long and complex. In order to alleviate the increasing burden placed on the
programmer, higher-level shader programming languages were introduced. In-
cluded with DirectX 9 in 2002 was HLSL (High Level Shading Language), and
OpenGL saw the introduction of GLSL (OpenGL Shading Language) at around
the same time (Akenine-Möller et al., 2008). Graphics hardware are classi�ed by
shader capabilities within the DirectX model using the Shader Model concept,
the current version being Shader Model 5, introduced along with DirectX 11.

1.3.2 Ever-increasing speed

The prime contributing factor that has made many of today's graphics e�ects
possible is the continually evolving computation speed and memory size and
bandwidth in the graphics hardware. To the end of aiding graphics computa-
tions, microprocessors have also had their �oating-point units (FPU:s) impro-
ved, allowing more �oating-point computations to be executed per clock cycle.
The area of computer graphics has seen a consistent development of more and

Group 40 2 27th May 2010

Bachelor's Thesis Chapter 1. Introduction

more functionality being implemented directly in the hardware in order to incre-
ase computation speed as much as possible. A major step in this direction oc-
curred in 1999 and 2000 when NVIDIA and ATI, respectively, released the �rst
commercially available GPU:s featuring hardware-implemented Transform and
Lighting (T&L) capabilities, thereby freeing the CPU of substantial calculations
(Sanford, 2002). This quickly became the industry standard, with most new ga-
mes expecting hardware-implemented T&L, enabling signi�cantly higher limits
on performance and thus more advanced e�ects to be implemented. This deve-
lopment has continued to the present day, and graphics hardware manufacturers
constantly strive to increase available memory and the amount of computations
executed in parallel per clock cycle on the graphics card.

The current trend with both GPU:s and CPU:s is that they are built with
more and more cores, enabling even more parallelism and hence more computing
power. In certain cases GPU:s are becoming more like CPU:s in that that they
are used for more than computer graphics. Intel's Larrabee GPU is one example
of how GPU:s are moving towards a more general-purpose architecture. Its
architecture is based on multiple in-order CPU cores and it has fewer �xed-
function units, which makes it more programmable than current GPU:s (Seiler
et al., 2009).

1.3.3 Graphics in games

In modern games, a lot of e�ort is put into delivering as good graphical content
as possible. In order to achieve this, developers often try to add large amounts
of e�ects as well as utilise techniques with high capability for visual realism.
However, trade-o�s in the use of di�erent techniques and algorithms have to be
made due to hardware limitations to maintain acceptable frame rates, system
response times and in some cases network load.

1.4 Problem

1.4.1 The rendering equation

How to render realistic graphics is described in the rendering equation (Kajiya,
1986) that normally is written on the form:

Lo(p,v) = Le(p,v) +

∫
Ω

f(l,v)⊗ Li(p, l)cosθidωi, (1.1)

where Lo(p,v) is the outgoing light from a point p in a direction v. The result
of equation 1.1 is represented by the �nal colour of each pixel. Le(p,v) is the
emitted light from a point p in a direction v.

∫
Ω
is an integral that integra-

tes over all incoming directions in the hemisphere. f(l,v) is the bidirectional
re�ectance distribution function (BRDF), which is a function that describes
the re�ectance of the material based on the incoming direction l and outgoing
direction v. Li(p, l) is the light from an incoming direction l.

The rendering equation is far too complex to be used for real-time rendering.
Instead, it must be approximated by algorithms that can be executed must faster
on modern graphics hardware. Our problem is mainly to �nd algorithms that
can do this e�ectively in real time, and, if there are several options, investigate

Group 40 3 27th May 2010

Bachelor's Thesis Chapter 1. Introduction

these algorithms in order to �nd the one that is best adapted to implementation
in a real-time application.

Emitted light

The emitted light component is not a part of the integral and hence fairly trivial
to implement. However, there are a number of ways in which this can be done,
and we must compare the performance loss to the gain in visual quality in order
to �nd the most appropriate technique.

BRDF function

There are several BRDF models available, and one of the most common is the
Phong lighting model. Each of the di�erent BRDF models provided a visual
look that suits a special kind of material. It is most likely that several of these
are needed in a single application in order to provide the maximum realism
when rendering the di�erent materials visible in a scene.

Incoming light

Approximating the incoming light is a problematic task as we need to consider
many di�erent phenomena.

Shadows There are techniques available for displaying high quality shadows,
but those might not be applicable to a real-time fast racing game. We have
studied several shadowing techniques in order to determine how well they are
suited for the purpose of this report.

Indirect illumination When light hits a point, it is partially re�ected, in
either a di�use or in a specular re�ection. These re�ections cause surfaces that
are not directly hit by light to still be lit up. This also means that the colour
of the surface that re�ected the light will �bleed� into the receiving surface.

Ambient occlusion When an object is close to a point, some of the ambient
lighting in the scene is occluded. This is called ambient occlusion.

1.4.2 Post-processing e�ects

There are several types of e�ects that can occur as artifacts in lenses, and,
when simulated in a game, increase the sense that the image was produced with
a camera rather than having been computer generated.

Bloom

Bloom refers the phenomenon where a very bright point �bleeds� light onto its
surroundings in image space, reducing contrast.

Depth-of-�eld blur

Depth-of-�eld blur occurs when a lens has its focal length set at a certain
distance, and objects closer and farther from the focal point get blurred.

Group 40 4 27th May 2010

Bachelor's Thesis Chapter 1. Introduction

Motion blur

When an object moves relative to the camera, the time in which the shutter is
open can cause the light receptors to capture the positions of parts of the object
at several locations. This causes the e�ect called motion blur.

1.4.3 Other e�ects

In a racing game, there are several other types of e�ects that might be considered
for inclusion in order to achieve as striking graphics as possible, e.g. a particle
system that can handle a lot of particles in order to simulate, for example, gases,
�uids, collision sparks or exhaust plasma from a racing ship.

1.5 Method

The research for this thesis was partly done by implementing and testing some of
the techniques that were to be evaluated. To be able to evaluate the techniques
available to render convincing graphics, the decision was made to implement a
game application and use it as a platform. There are many di�erent game gen-
res, ranging from sport games to role-playing games, each of which comes with
its own set of challenges and possibilities. Out of several di�erent alternatives
proposed for the genre of the game application, the racing game was decided
upon. The racing game alternative was among the project group members con-
sidered to have a large potential for implementing interesting shading, particle
and post-processing e�ects in a 3D world. The vision was that of creating a
game with hovercrafts rather than racing cars. The decision to build a racing
game, and moreover one with hovercrafts, also meant that the game application
could be built without worrying too much about large amounts of animation
(for example, there would be no need to animate wheels). This was considered a
good thing since the main focus was decided to be upon creating and evaluating
the use of di�erent rendering and e�ect techniques.

The rest of the report describes this case study, from idea to �nished pro-
duct. The development of the game is divided into three main chapters: Game
Design, Graphics and Game Engine. Game Design describes the planning stage,
development methods and interaction design of the game. The Graphics chap-
ter describes our work of choosing the correct algorithms and techniques for
creating a visually appealing game. The last chapter, Game Engine, provides
information about how the game engine is implemented. Finally, the results
of the research are presented to show how all parts of a game a�ect the visual
quality of the end product.

SLERP 3D

The name of the case study project is SLERP 3D (Space Laser Epic Racer
Power 3D). It is a fast paced racing game that takes place in space. The game
has one track on which the user can compete against other over LAN, or the
user can choose to beat a record time with the in-game race timing system.

Group 40 5 27th May 2010

Bachelor's Thesis Chapter 1. Introduction

1.5.1 Agile Development

The software engineering method chosen for the project was Agile development,
AD. AD is a develompent model that evolved as a reaction to the waterfall
model. AD is de�ned by the Agile Manifesto (Beck et al., 2001), a document
consisting of twelve principles dictating how a development team should do their
work.

AD began forming in the 1990s as an alternative to the waterfall model.
In the waterfall model development of software can be broken down into four
main components: requirements, design, implementation and veri�cation. This
model works when you have a solid requirement set. The four steps are then
done in sequence, i.e. starting on the implementation is not done before the
whole design phase is completed. This way of developing makes requirement
changes hard and expensive to implement.

With AD, development is done in smaller time frames (1-4 weeks instead of
the waterfall model's, which is one time frame for the entire project). For each
iteration a full software cycle is done (from designing to testing). This short
iteration period enables the project to dynamically adapt to changes without the
large cost of refactoring that the waterfall model has. In the Agile Manifesto,
the second principle states:

�Welcome changing requirements, even late in development.�

AD was chosen as a development method since it strongly encourages face-to-
face meetings between the members, something we considered necessary for this
project. From the Agile Manifesto:

�The most e�cient and e�ective method of conveying information to
and within a development team is face-to-face conversation.�

This also worked well since the group had to use computers in one speci�c room,
making daily meetings (as encouraged by AD) easy to have.

1.5.2 Design and UML

During the design process, the Uni�ed Modelling Language (UML) was used.
The UML provides good visualisation of the software components, which greatly
helped getting a general view of how the di�erent parts of the system will
interact.

1.5.3 Programming language and framework

The choice of programming language, as well as the possible framework, is
very important for the project and a considerable amount of time was spent
choosing the right one for our intentions. Also, the question of which 3D API
(application programming interface), OpenGL or DirectX, should be used had
to be answered.

The language has to be high-level enough to free the programmer from such
mundane tasks such as memory allocation/deallocation, implement basic data
structures, etc., while retaining high performance and �exibility.

The framework should provide the project with ready-to-use components
such as network libraries or sound libraries and relieve the programmer from
having to write these components from scratch.

Group 40 6 27th May 2010

Bachelor's Thesis Chapter 1. Introduction

A couple of di�erent languages and Integrated Development Environments
(IDE) were considered. Among the discussed options discussed were: Java/Eclipse,
Java/NetBeans, C++/MSVS, C#/MSVS and C#/XNA; also, Haskell and Pyt-
hon were brought up in the discussions.

Finally, a Microsoft-oriented environment was agreed upon; the language to
develop the game in was chosen to be C#, the framework XNA Game Studio
and the IDE to be Microsoft Visual Studio. Regarding 3D-API, this choice left
DirectX as the only option.

The reason for choosing C# was its simplicity and generality. C# provides
support for such software engineering principles as object orientation, strong
type checking, array bounds checking and automatic garbage collection. It also
integrates very well with XNA.

XNA is a framework developed by Microsoft, based on the native imple-
mentation of .NET Compact Framework 2.0 for Xbox 360 development and
.NET Framework 2.0 on Windows. It is targeted at game development, and as
such includes an extensive set of game development speci�c class libraries and
tools. Together with C#, XNA felt as a natural choice of platform for our game
development.

1.5.4 Version control

Software development in larger teams demands some kind of a version control
software; for this purpose Subversion (SVN) was chosen.

Group 40 7 27th May 2010

Chapter 2

Game Design

2.1 Game Presentation

For the game to feel polished and of high quality, care needs to be taken with
even the �ne details. With smooth transitions between di�erent states of a game
comes a seamless feeling and, if done well, can give a game the extra �air needed
to really stand out. Such a transition can, for example, be a sweeping motion
or a fading of menu alternatives, revealing the next state of the game.

Hargreaves (2007a) talks about this in one of his blog posts and notes that
transitions are everywhere, from the selection of menu alternatives to HUD
(heads-up display) changes. He also highlights, in another blog post, the im-
portance of always having the menus responsive to user input, so that they
are easily skipped. This is to avoid the users' annoyance of having to endure
time-consuming transitions or displays when in some kind of impatient mood
(Hargreaves, 2007b). In addition, as Hargreaves hints at, it is convenient for
debugging purposes.

2.1.1 Usability

As with any interactive product, it is important in a computer game to consider
how to design the interface for human interaction; everything from the menu
system to the controls of the in-game unit (for a racing game this would most
likely be a vehicle of some sort) controlled by the player. These issues are baked
into the concept of usability, which is built up from the following usability
goals according to Sharp et al. (2007): E�ectiveness describes the e�ect of the
product (application) in relation to what it set out to accomplish. How well
and e�ciently the functionality of the product can be used is referred to as the
E�ciency. Safety refers to the characteristics of a product that enables it to
be interacted with without any hazard to the user; be it a real world hazard or
loss of work, data or other e�ects of correct or incorrect user behaviour. Utility
describes the product's ability to provide the user with appropriate and expected
features in order to satisfy the user's needs. People do not generally want to
spend large quantities of time trying to learn how to use a product. How easy
a product is to learn to use is described by the Learnability goal. Memorability
is connected to how well the interface is designed in order to make the user
remember how to operate the product.

8

Bachelor's Thesis Chapter 2. Game Design

(a) The main menu of SLERP 3D.
The default option selected will lead
the user one step closer to playing
the game.

(b) The settings screen of SLERP
3D. There are several features that
can be turned on or o�.

Figure 2.1: Examples of menu screens in SLERP 3D

Sharp et al. (2007) also mentions in their book Interaction Design how these
rules can be used to form usability criteria, which in turn can be used to actually
test the product and get numbers from it. Another important aspect that they
discuss in their book is the user experience. There are many di�erent experiences
related to the interaction with a product, and also the experience varies between
people; therefore there are naturally also many di�erent goals. This subject
essentially involves reactions to di�erent situations encountered when using the
product, be it a negative, positive or neutral reaction.

Computer games su�er a little in this area due to a delicate dilemma, since
many players desire the challenge of a di�cult video game. This goes against
many of the usability goals described above, which also has to be conside-
red(Sharp et al., 2007).

2.1.2 Result

When it comes to the usability of SLERP 3D we have made several deliberate
decisions.

The menu system basically works as follows: The user is shown a screen
presenting the available choices. When picking an alternative a new screen is
shown, in turn presenting the alternatives for the user's next action. We have
designed the menu �ow in such a way that the button highlighted on default
(that is when you are facing a new screen) is always the button that will get you
fastest into the game. This makes it easy to start a new game fast and not only
is this good for debugging purposes and testing, but also for users who know
the menus well and want to enter the game without wasting time manoeuvring
the menus.

In the menus, the buttons are arranged so that the option to go up (from now
on referred to as the �back button�) in the menu hierarchy is only one keyboard
interaction away as default (two interactions if counting the actual selection
of the option) if the user chooses to utilise the menu alternatives displayed.
There is also an option to use the Escape button on the keyboard to achieve the
same result. This is to make it as fast and convenient as possible to navigate

Group 40 9 27th May 2010

Bachelor's Thesis Chapter 2. Game Design

with ease, which is related to the e�ciency usability goal. Also, the layout is
designed in such a way that the back button is positioned some distance away
from the other menu options in order to avoid that the user mistakenly presses
this button trying to do something else. Using the keyboard, it is true that the
back button is still only one press of a button away from the button selected
by default, but in this case this navigational route was deemed convenient.
However, SLERP 3D also supports mouse input, and when using the mouse
to navigate the menus, the separation of the back button and the rest of the
buttons is indeed convenient and strengthens the safety of the menu.

The menu is in its presentation quite simple and shows only what is necessary
to guide the user forward and has the user select as few alternatives as possible
to begin playing the game. This increases the learnability of the product. In-
game, the game is interacted with through the keyboard only. We have chosen
to implement a fairly complicated standard control which we thought would
enrich the gaming experience and give the user very good control of the vehicle.
However, we discovered that this layout was quite di�cult to learn quickly, so
we decided to include an alternative easy scheme in order to provide choice and
increase the game's learnability.

The ability of SLERP 3D to deliver what is expected of it is described by
the utility property. In the case of a racing game, there are several things that
we believe the game should provide. It should o�er di�erent game modes to
enable several kinds of interactive experiences. For example, a user who prefers
to play solo would perhaps expect a racing game to have a campaign mode of
sorts where they can race against AI-controlled opponents, and also a time trial
mode. SLERP 3D features no campaign mode, however, and although a form
of time-trial is implemented, it does not feature a leader board or any other
means of comparing oneself to others or one's own previous achievements.

When it comes to expectations on multiplayer racing games, we believe the
following game modes could be expected: LAN, Online and Split screen mul-
tiplayer. A user looking for multiplayer races will �nd that SLERP 3D features
LAN multiplayer races, but lacks the other two modes mentioned.

Concerning all games for the PC platform, we believe that a certain amount
of customisation is not only expected by the user, but also necessary due to the
vast amount of di�erent hardware setups on the market and in the consumers'
hands today. Therefore SLERP 3D provides options to change many graphical
settings (see �gure 2.1b), as well as the control layout.

Clearly SLERP 3D is not a complete package and does not o�er everything
expected from a full-�edged racing game. This is due to several factors, among
them the limitations we have had on this project. For example, our choice
of development platform restricted us to LAN networking, we had a limited
development time, and our aims with the project made us prioritise features to
implement.

2.2 Software Architecture

When the size and complexity of software systems started to increase, a new
problem emerged for the developers; the overall system design. To be able to
create a complex system such as a computer game, a good structure of the pro-
gram and the process is essential. The software architecture of a given software

Group 40 10 27th May 2010

Bachelor's Thesis Chapter 2. Game Design

is a description of this structure, what the di�erent components the software
consists of and how they interact (Garlan and Shaw, 1994).

2.2.1 Results

The software architecture of SLERP 3D is based on design patterns, and was
planned from the beginning to be extensible to the work we were planning to
perform. The subsystems for rendering, game logic, reading/writing to hard
drive, network interfacing and sound are clearly separated into di�erent name-
spaces and classes. The base of the application is the state handling system. It
contains a stack on which the program pushes game states, e.g. a new in-game
state, the main menu or the title screen. The state machine then sends update
signals down hierarchically to each updatable object (de�ned by the IUpdatable
interface) in the current state. If a state returns the boolean value true from
the update call, signaling that it is �nished, it is popped from the stack and
the previous game state reappears. The rendering is handled by the Graphics
namespace, which contains classes for management of the e�ects that can be
used for shading, as well as lighting and the particle system. The main class for
rendering is the GraphicsManager, which uses the Singleton design pattern to
ensure that only one instance is initialised, and the Scene class, which contains
information about all the nodes (renderable objects) in a scene. The network
is using the singleton P2PManager, which controls peer-to-peer networking fun-
ctionality. Sound is modulated with the class SoundManager, which is used as
an interface to the XACT framework of XNA.

The SLERP 3D architecture is extensible and modulated so that new func-
tionality is easy to implement, especially in the graphics namespace. This was
essential to our development process, since our research demanded use of evo-
lutionary development. The design patterns used helped our development and
cooperation during the project.

Group 40 11 27th May 2010

Chapter 3

Graphics

3.1 Rendering

3.1.1 Shading

The shading of a surface is the process where the outgoing light from a shaded
point is calculated based on the type of material and the lighting conditions
in the point. Shading can be evaluated at di�erent resolutions as a balance
between performance and visual quality, where higher resolution results in slower
execution of the application. In modern games that strive for state-of-the-art
graphics, shading is performed per pixel, a technique known as Phong shading
(Phong, 1975). In older games, it was more common to evaluate the shading
per vertex, called Gouraud shading (Gouraud, 1971), and then interpolate the
result, or even to perform the shading per polygon (�at shading). In order to
simulate the type of material used for the surface, a certain BRDF (Bidirectional
Re�ectance Distribution Function; see section 1.4.1) model based on the type
of rendered material is used. These BRDF models can be quite expensive to
evaluate, so in some cases it might be preferable to implement a faster BRDF
model at the cost of a less correct result.

When calculating the lighting, it is common to divide the light re�ected
o� the material into two terms: di�use and specular (Akenine-Möller et al.,
2008). Specular refers to the high-frequency re�ection of the light source by the
material. The di�use term corresponds to the light re�ected by the material as
a result of transmission, absorption and scattering of the incoming light. The
Blinn-Phong BRDF model (Blinn, 1977) is likely the most common model in
real-time computer games, and produces materials that look quite plastic. For
metals and similar materials, the Cook-Torrance model (Cook and Torrance,
1982) can be used instead in order to provide a more realistic look. Other BRDF
models include, for example, Oren-Nayar (Oren and Nayar, 1994), Ward (Ward,
1992) and Ashikhmin-Shirley (Ashikhmin and Shirley, 2000). A reference of
many BRDF models can be found in Hoxley (2008).

Transmission, absorption and scattering

When light travels and reaches a media with a new refraction index, it will
scatter, causing the light to change direction. The phenomenon when the light

12

Bachelor's Thesis Chapter 3. Graphics

is scattered and travels into the matter is called transmission. Inside the matter,
the light can either continue to scatter until it travels out of the matter, or get
converted into another form of energy due to absorption.

3.1.2 Forward rendering

The traditional way of rendering graphics is to use the forward rendering tech-
nique, where objects are rendered directly to the screen and shaded while they
are rendered. This technique is good for older hardware, which does not have a
large amount of video memory available to hold the intermediate bu�ers used
by other rendering techniques. Forward rendering is also capable of handling
transparency if the transparent objects are sorted from front to back before be-
ing rendered. If the objects are not sorted, the �nal result might be incorrect
depending on the chosen blending operator.

3.1.3 Deferred rendering

Deferred rendering is a rendering method where one or several geometric bu�ers
(g-bu�ers) are used in order to store data about the visible pixels on the scene.
Depending on the needs of the application, these g-bu�ers can contain informa-
tion about position, normal, texture or other surface and material data. This
data is then used to produce the �nal image, and thus the shading is calculated
only once per visible pixel on the screen, which is not normally the case for
forward rendering techniques. However, transparent objects are problematic to
render in the deferred pipeline as the object that is visible through the trans-
parent object would also need to be shaded, something that deferred rendering
algorithms do not support. Instead, a fallback to traditional forward rendering
algorithms for the transparent objects is necessary.

Deferred shading

Traditionally, using forward rendering with the so called multi-pass technique,
the object is rendered and shaded once for each light that a�ects it; if objects in
a 3D scene is a�ected by several light sources this can be quite costly (Akenine-
Möller et al., 2008). Another method when utilising forward rendering is the
single pass technique. Here, all lights a�ecting an object are calculated and then
one shader is used to render the lighting and material, which results in having to
use a unique shader for each light/material combination possible (Valiant, 2007).
Also, redundant shading may be applied. For example, if a pixel contains more
than one fragment and one fragment covers another completely, the shading has
still been computed on both fragments (Akenine-Möller et al., 2008).

The main deferred rendering algorithm has so far been deferred shading.
Deferred shading is possible due to the availability of multiple render targets
(MRT), which are used to store information in geometric bu�ers. Firstly, a ren-
dering pass is performed to gather information about the closest visible surface.
This information, which usually includes z-depth, normals, texture coordina-
tes and material parameters, is then stored to multiple render targets. These
g-bu�ers are then used by the shader programs to compute lighting and post-
processing e�ects (Akenine-Möller et al., 2008). This gives the method several
advantages. Light-shading can be optimised to only be computed on areas that

Group 40 13 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

are a�ected by the lights using geometrical shapes. This makes the method
very e�cient when handling many light sources. Deferred shading also separa-
tes lighting from material de�nitions, reducing the amount of shaders needed
(Akenine-Möller et al., 2008).

However, deferred shading has three major disadvantages. Firstly, the g-
bu�ers demand large amounts of video memory and memory bandwidth. Se-
condly, the technique cannot make use of hardware antialiasing on older hard-
ware. This is due to the fact that the lighting is handled as a post-processing
e�ect and therefore added to the back bu�er after antialiasing has already been
applied. This will nullify the e�ect the antialiasing had on the image, since
aliasing appears after the lighting is done. Finally, alpha blending is not pos-
sible due to the fact that only one object per pixel is stored in the g-bu�er
(Akenine-Möller et al., 2008) (Koonce, 2007).

Nevertheless, there are solutions to the antialiasing and transparency pro-
blems. Both Shishkovtsov (2005) and Koonce (2007) suggest using an edge-
detection technique, while Guerilla Games found a introduction of hardware
supporting the Direct3D 10 standard, supplying means of accessing data nee-
ded to perform multi-sample antialiasing (NVI, 2006).

To solve the problem of alpha-blending, transparent objects are often ren-
dered using a forward renderer after the deferred shading has been completed
and then added to the scene. This is the case in the shipped games Tabula Rasa
and Killzone 2 (Koonce, 2007; Valiant, 2007), as well as StarCraft II (Filion
and McNaughton, 2008).

Deferred lighting

The deferred shading algorithm requires large amounts of available render-to-
texture memory in order to store all the g-bu�ers. This is viable on mid- to
high-end PC systems as well as on the PlayStation 3 console. However, in
the Xbox 360 there is only 10 megabyte of available render-to-texture memory
(Akenine-Möller et al., 2008) and thus deferred shading is not always feasible.
Deferred lighting, also known as pre-pass lighting, is an algorithm proposed
by Engel (2008) that tries to solve this by using a much lower amount of g-
bu�ers. There are three main passes in the light pre-pass algorithm: generating
the g-bu�ers, performing the lighting, and shading. Similarly to the deferred
shading technique, the g-bu�ers are generated by drawing the geometry, the
only necessary data for the next pass in the technique being the normal and the
depth of each pixel on the screen.

The second pass uses these g-bu�ers in order to generate a light accumulation
texture (see �gure 3.1) which contains the light of each pixel on the screen. Each
light to be added to the scene is rendered with a bounding volume that fully
bounds the light volume. A full screen quad would also be possible, but in
order to run the pixel shaders only on the pixels which actually can be lit, a
bounding volume is preferred. Each light is rendered in this fashion, and the
light contribution is additively blended into a light accumulation bu�er where
the di�use and the specular components are stored in separate channels.

The last pass renders all geometry again and performs lighting based on the
light accumulation bu�er in order to produce a lit image of the scene. This is
also the pass where algorithms such as screen-space ambient occlusion, described
in section 3.4.2, are integrated into the image.

Group 40 14 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.1: The light accumulation bu�er used in SLERP 3D. The reddish tint
is caused by light emitted from a red light source placed behind the ship, which
is visible in the centre of the image. A number of spotlights are shining white
light down on the track, and this light is accumulated with the illumination from
the red light source and the white ship headlights.

Deferred lighting is, just as deferred shading, a very fast technique for rende-
ring large amounts of light sources, and scales very well with increasing amounts
of lights. The downsides are, like for the deferred shading technique, that trans-
parent objects are not handled very well and require special treatment. Another
algorithm, which is similar to deferred lighting, is inferred lighting presented by
Kircher and Lawrance (2009).

3.1.4 Gamma correction

CRT displays are a�ected by a non-linear response curve from the input colour
due to the relation of input voltage and the displayed intensity1. Thus, in
order to produce the correct image, gamma correction needs to be taken into
consideration during the whole graphics pipeline. Gamma correction is when
intensity values of pixels are converted from or to linear space. Images that
are created by artists are normally stored in non-linear space, and in order to
properly use them in calculations this has to be taken into account. Modern
graphics hardware has built-in functionality to perform this conversion, and
the textures can then be used normally. All lighting calculations should be
performed in linear space in order to avoid incorrect calculations that could

1This is also emulated on modern LCD displays.

Group 40 15 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

(a) Gamma correction on (b) Gamma correction o�

Figure 3.2: Comparison of gamma corrected output in SLERP 3D.

result in some areas becoming too dark (Gritz and d'Eon, 2007), see �gure 3.2.
When sending the �nal image to the display it is important to make sure that
the image is in non-linear space; this can be performed e�ciently by modern
graphics hardware. The current standard gamma in computer graphics is known
as sRGB, and modern graphics hardware has support for conversion to and from
this standard when sampling texures or when writing to render targets.

3.1.5 Results

In SLERP 3D we have implemented deferred lighting, enabling us to have a
very large number of light sources on the screen. Tests carried out with around
300 light sources showed no signi�cantly reduced performance. We do also have
a way to render transparent objects in our renderer. However, those objects will
not be sorted, so in certain conditions artifacts may occur. Deferred lighting
also enables us to add minor light sources on objects which are expected to
emit light into the surrounding environment in order to increase the perceived
realism of the scene. The algorithm itself imposes little to no compromises on
the quality on the lighting. Since we are only using phong shading, the material
of our objects does not have quite the same characteristics as the corresponding
materials in reality when considering e.g. specular and di�use re�ections or
sub-surface scattering (Akenine-Möller et al., 2008).

We have taken some measures to make sure that our pipeline was gamma
correct. In XNA, the application cannot directly change the gamma correction
output mode on the GPU. Instead, this has to be done through the DirectX
e�ect framework when writing the shader code.

Because of the fact that we only developed graphics for the PC platform, we
could have chosen to use the deferred shading algorithm. However, we did not
quite need the added g-bu�ers for most of our other visual e�ects, and thus we
decided to implement deferred lighting.

The main work for us when trying to make sure that our pipeline was gamma
correct was to correctly specify for all texture samplers in the shaders whether
to use sRGB conversion or not.

Group 40 16 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.3: Illustration of a light source that gives rise to an umbra and a
penumbra on a receiving surface.

3.2 Shadows

In the rendering equation, the lighting of a surface is dependent on the number
of direct photons that reach the surface point. Therefore, any occluder that
prevents photons from reaching this surface will impact the lighting of the sur-
face point. Real-time dynamic shadows on arbitrary surfaces is something that
is desirable to include in order to improve the visual quality of the game; such
shadows also help the user to perceive depth and the relative position of di�e-
rent objects in the scene correctly. An important problem that some of these
algorithms try to solve is how to correctly produce the soft shadows that occur
due to the fact that light sources has a certain area. This, in turn, gives rise to
an umbra and a penumbra, as can be seen in �gure 3.3. The penumbra varies
in size depending on the distance from the occluder, the distance from the light
source and the size of the light source.

There are two main techniques available for implementing dynamic shadows
in real times: shadow mapping (Williams, 1978) and shadow volumes (Crow,
1977). This text focuses on various shadow mapping techniques, since shadow
mapping scales well with high geometrical complexity and is well suited for use
with deferred lighting, wherefore it is very popular in modern computer games.

3.2.1 Shadow volumes

Shadows can be thought of as volumes where no direct illumination from a
light source reach due to occluders blocking the photons. The shadow volumes
technique uses this in order to create sharp dynamic shadows which can be cast
on arbitrary geometry. These shadow volumes are extended from the edges of
all the occluding geometry in the direction away from the light sources towards

Group 40 17 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

in�nity. Every rendered pixel that is inside a volume is considered to be in
shadow. This technique was later extended to make use of stencil bu�ers in
order to improve the rendering speed (Heidmann, 1991). Also, Assarsson (2003)
has presented an algorithm based on shadow volumes that can be used render
soft shadows in real time.

3.2.2 Shadow mapping

Shadow mapping is an image-based technique for rendering real-time dynamic
shadows on arbitrary surfaces (Williams, 1978). The algorithm is based on the
creation of a depth texture from the shadow point of view, where each pixel
contains the distance from the light to the rendered geometry. When rendering
geometry, the position of the pixel that is being rendered is transformed into
light projection space where the depth is compared to the depth stored in the
shadow map. If the depth of the pixel being rendered is greater than the depth
stored in the depth texture, the rendered pixel is in shadow.

There are, however, several problems with this technique, some of which are
related to the use of a depth texture. The �rst problem is called surface acne,
and occurs due to imprecision in the depth texture; quantisation imprecision as
well as depth imprecision. This problem can be signi�cantly reduced by adding
a bias to the stored depth, and with a �nely tuned bias few artifacts can be
noticed. However, as the bias increases the shadow line gets smaller and some
accuracy is lost, which is why it is important to �nd a bias as small as possible.
Another problem is aliasing which also occurs due to quantisation of the depth
texture (see �gure 3.4a). Aliasing can be reduced by increasing the resolution
of the depth texture as well as using percentage-closer �ltering (described in
section 3.2.2) when sampling from the depth texture (Reeves et al., 1987).

Since the introduction of this algorithm by Williams (1978), several algo-
rithms based on this technique have been presented. Some of these algorithms
produce a better visual result and try to solve mainly the aliasing problem
present in the original shadow map algorithm.

Perspective shadow maps

When several pixels in camera projection space cover the same pixel in the sha-
dow map, aliasing artifacts occur (see �gure 3.4a). Such artifacts can be reduced
by increasing the resolution of the shadow map, but doing so will require more
memory and makes the rendering of the shadow map slower due to the increa-
sed number of pixels that need to be processed by the graphics hardware. Per-
spective shadow maps (PSM, presented by (Stamminger and Drettakis, 2002))
is a technique that adapts the shadow map's projection to better �t the visible
scene in order to attempt to make each pixel in the shadow map cover as little
space as possible on the screen. This complicates the shadow map biasing pro-
blem because of the double projection, and Stamminger and Drettakis (2002)
do not present a way of solving this. The algorithm is best suited for light sour-
ces that illuminate possibly large areas; such light sources will in most cases be
directional lights, of which the most commonly used example is the Sun.

There are other, related techniques that attempt to reduce the aliasing pro-
blem by using several shadow maps of lower resolution as well as providing a

Group 40 18 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

(a) Aliasing artifacts, visible as
blocky edges on the shadow, caused
by shadow mapping.

(b) Little to no aliasing visible when
using variance shadow maps.

Figure 3.4: Comparison of standard shadow mapping and variance shadow
mapping at the same resolution of the shadow maps in SLERP 3D.

better �t to the visible area compared to the standard shadow mapping algo-
rithm. One such technique is cascaded shadow maps, presented by Dimitrov
(2007). It uses several, cascaded, shadow maps, where shadow maps closer to
the camera are set up to cover a smaller area than shadow maps further away
from the camera. Doing this will make sure that most precision in the shadow
maps is used for rendering of objects close to the viewer. This technique im-
plies no further biasing problems, but the cost of rendering the shadow maps
increases slightly since more shadow maps are needed.

Percentage-closer �ltering

Special �ltering techniques are necessary when gathering samples from the sha-
dow map in order to reduce aliasing and creating a slightly blurry shadow. The
blurry edge of such shadows resembles the penumbra of soft shadows, with the
exception that the blurry edge is of constant width in most of the algorithms,
which is not physically correct. Using normal bilinear �ltering when sampling
from shadow maps is not possible since they are depth textures, and averaging
depth does not produce correct results. Percentage-closer �ltering is a techni-
que that allows correct �ltering of shadow maps in order to reduce the aliasing
problem (Reeves et al., 1987). This �ltering technique averages the occlusion
at the receiver by performing the shadow map test on many pixels and then
averaging the result.

Group 40 19 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Variance shadow maps

Modern graphics cards have built-in functionality for performing �ltering on
textures. Using variance shadow maps (VSM), introduced by Donnelly and
Lauritzen (2006), enables this hardware to be used for correctly �ltering shadow
maps to produce softened shadows (see �gure 3.4b). When sampling an area in
the variance shadow map, the �rst two moments of the depth distribution are
retrieved, as can be seen in equation 3.1.

M1 = E(x) =
∫∞
−∞ xp(x)dx

M2 = E(x2) =
∫∞
−∞ x2p(x)dx

(3.1)

These two moments are subsequently used for calculating the mean and the
variance of the depth distribution in the �ltered region of the variance shadow
map (see equation 3.2).

µ = E(x) = M1

σ2 = E(x2) = M2
(3.2)

In order to resolve the occlusion factor, Chebyshev's inequality (equation 3.3) is
used for determining the average occlusion at the rendered pixel. This also me-
ans that the shadow map can, aside from being �ltered with graphics hardware,
be pre-blurred or processed in other ways before being used. Furthermore, Don-
nelly and Lauritzen (2006)'s algorithm has been extended by Dong and Yang
(2010) to be able to render soft shadows.

P (x ≥ t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(3.3)

VSM produces light bleeding artifacts in certain situations where the depth
complexity is high. This means that penumbrae are visible in areae which
should be fully shadowed. In order to reduce these artifacts, a technique can
be used that cuts o� the darkest penumbrae and interpolates the rest of the
penumbra between 0 and 1 (Lauritzen, 2007). Doing this will darken the rest
of the penumbra a bit and only reduce the light bleeding, but the overall visual
quality is improved.

Percentage-closer soft shadows

The soft shadows produced by the previously described algorithms have a �xed
penumbra width. This is not very realistic, however, since the penumbra gets
wider the farther away the receiver is from the occluder. Percentage-closer soft
shadows (PCSS) present a solution by changing the width of the PCF kernel
used for sampling the depth bu�er (Fernando, 2005). In order to �nd the depth
of the occluder, several samples are gathered from the shadow map. The depths
of the pixels that are closer to the light than the rendered pixel are then averaged
and used as the depth of the occluder. The kernel size of the percentage-closer
�lter is then approximated with the following function:

wPenumbra = (dReceiver − dOccluder) ∗ wLight

dOccluder
(3.4)

The shadow at the pixel is determined by sampling the shadow map using a
PCF �ltering technique.

Group 40 20 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

The main di�erence of the PCSS algorithm compared to other shadow map
algorithms is that it approximates the �lter kernel width. This means that PCSS
can be used in combination with other types of shadow map �ltering techniques,
such as CSM, VSM, SAVSM (Summed-Area Variance Shadow Maps, presented
in Lauritzen (2007)) or ESM (Exponential Shadow Maps, presented in Annen
et al. (2008)). The PCSS algorithm can also be combined with a technique for
increasing the quality of the shadow map closer to the camera position such as
PSM or cascaded shadow maps in order to further increase the visual quality of
the shadows.

3.2.3 Results

We implemented variance shadow maps since it is a technique which is fast
enough for our game, yet produces excellent results. Pre-blurring of the variance
shadow map was attempted, but the resulting performance was signi�cantly
lower than if we instead performed the averaging when sampling the variance
shadow map; however, the results were slightly better. Averaging in this manner
gives rise to a slight penumbra of constant width. The main purpose of this
gradient (visible in �gure 3.4b) is to reduce the aliasing artifacts, and thus the
penumbra is an additional advantage.

Since we have chosen to use a shadow map-based technique we will su�er
from aliasing artifacts due to the limited resolution of the shadow map. However,
due to the nature of the variance shadow map algorithm, these artifacts are
reduced and instead traded for another visual artifact known as light bleeding
(Lauritzen, 2007), but that artifact is only visible under certain conditions. One
trade-o� that we have chosen to make, in order to have acceptable performance,
is to limit the number of light sources that can cast shadows. When rendering
the scene, only the light sources that are closest to the viewer are used as
shadow-casting lights. Generating a shadow map is rather costly, so we have
provided an option for the user to choose the number of shadow maps which
should be used each frame.

Soft shadows is an e�ect that generally increases the realism of the scene.
However, the fact that basically the only occluder in the scene is the ship, and
that the ship travels at a relatively constant distance from the shadow receiver,
makes soft shadows a bit redundant.

3.3 Particle Systems

A particle system consists of several independent objects called particles. Each
particle has a set of properties: position, velocity, colour, etc., as well as system-
speci�c properties, for instance gravitation. A particle system is mainly used
for simulating objects that are not solid geometry. Water, sparks, explosions,
�re and beams are some e�ects that quite easily can be represented using this
method. The basic functionality of a particle system should, in practically all
cases, include: spawning, updating and removal of particles (Reeves, 1998).

Group 40 21 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.5: The particle system in use in SLERP 3D.

3.3.1 Billboards

To simulate objects that are normally too complex to be rendered using geo-
metry or simply does not gain any visual quality by being rendered with geo-
metry, such as grass or clouds, billboards can be used. A billboarded object is
a �at and textured polygon that is always facing the viewer in order to create
the illusion of a 3D object.

There are several di�erent ways of achieving a billboarding e�ect. Screen-
aligned billboards are implemented so that the polygon is rotated according to
the camera's up vector. This is a simple technique that is both cheap to use
and provides good results. A problem is that the billboards will be rotated if
the camera rolls. However, since particles are rotationally invariant they are
not a�ected by that problem.

World-oriented billboards use the world's up vector instead of the camera's,
making it possible to roll the camera. Axial billboards are billboards that are
rotated around their own axes to get the desired illusion. The world's up vector
and the viewport's direction vector are used to rotate the billboard to the right
viewing angle (Akenine-Möller et al., 2008).

It is common to represent the particles in a particle system with billboards
since particles and billboards share the property that they should be facing the
screen at all times. Billboards are also fast enough to enable the particle system
to contain the large quantity of particles necessary to be able to display the
wide range of e�ects that can be visible on the screen.

3.3.2 Result

In SLERP 3D, we have chosen to implement a fairly simple CPU-based particle
system that uses screen-aligned billboards, since this is the easiest and one of

Group 40 22 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

the most e�cient ways of implementing the e�ects we wanted to achieve.
The particle system is used to create sparks on ship collision, show the

power beam behind all ships, display background e�ects and create explosions.
We have also decided to use the particle system for visual feedback when the
player respawns or uses certain power-ups. The end result improves the visual
quality of the game and adds to the sense of movement and speed in the game.

3.4 Global illumination

Global illumination is when all signi�cant light bounces and refractions is taken
into consideration when computing the lighting for the scene. When global
illumination is used, there are a few important e�ects that can be seen in the
�nal image: indirect illumination, ambient occlusion, refraction, colour bleeding,
soft shadows and caustics.

3.4.1 Real time implementation

The global illumination problem is inherently hard to solve due to the integral
over the hemisphere, which can be seen in the rendering equation (equation 1.1).
There are currently no algorithm that can achieve full global illumination in a
real-time game. A very fast recent algorithm is image-space photon mapping
(McGuire and Luebke, 2009) which takes advantage of the GPU in order to
render images in interactive frame rates and is based on the photon mapping
technique (Jensen, 2001). However, this algorithm is still too slow for being
used in a fast racing game. Since there is no real-time algorithm for global illu-
mination, focus must be shifted to simulate one or more of the most important
visible e�ects of global illumination. What e�ects are most important depends
on the type of application, the layout of the scene and the desired type of visual
e�ects.

3.4.2 Ambient occlusion

Ambient occlusion, also known as contact shadows, occurs when an object close
to a surface occludes the incoming ambient light and thus darkens an area at
the surface. The e�ects of ambient occlusion can be seen in �gure 3.6 and in
�gure 3.7.

Ambient occlusion volumes

Ambient occlusion volumes is an algorithm that produces results that are very
close to the ground truth in real time (McGuire, 2009). The algorithm extrudes
volumes from all polygons on the screen and for each pixel which are contained
in these volumes calculates the ambient occlusion based on the distance of the
occluding polygon as well as how large part of the pixel's hemisphere is covered
by the polygon. The visual results of this algorithm are of high quality and
considering the speed of the algorithm it is certainly plausible for real time
use as well. Under some conditions in the tests performed by McGuire (2009),
the ambient occlusion volumes were faster than Crytek's screen-space ambient
occlusion algorithm (Mittring, 2007) depending on the settings used.

Group 40 23 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Screen space ambient occlusion

A technique which has been used for ambient occlusion in games is the screen
space ambient occlusion (Mittring, 2007). This algorithm operates on the sto-
red depth values of the scene in order to calculate occlusion from nearby pixels.
This data is then used to lower the ambient lighting contribution to the rendered
pixel. The algorithm can also be slightly modi�ed to also take into consideration
the normals at each surface point in order to get a slightly di�erent result. Since
the algorithm operates in screen space, it has a constant cost each frame and the
performance is only dependent on screen resolution. In order to improve perfor-
mance it is possible to make this algorithm work on a down-sampled version of
the depth bu�er, and since ambient occlusion is primarily a low frequency phe-
nomenon the quality of the ambient occlusion will still be su�cient. However,
as noted by McGuire (2009), this technique is not very accurate and contains
a few visual artifacts, but the �nal results which is achieved when using this
algorithm is of su�cient quality to be used in modern computer games.

3.4.3 Indirect illumination and colour bleeding

When photons hit a surface, they are either re�ected or transmitted2, depending
on the characteristics of the material. Re�ected or transmitted photons will
then illuminate other surfaces in the scene. This phenomenon is called indirect
illumination. Another phenomenon called colour bleeding occurs when outgoing
photons from a surface are coloured by the material and spread this colour to
the surfaces they reach. Indirect illumination is a very important part of the
global illumination as it is responsible for the ambient lighting in the scene.

These types of e�ects are very slow to render fully correctly in real time, and
thus one needs either to make approximations which can give slightly incorrect
results or choose to pre-compute all the lighting information in the scene.

Cascaded light propagation volumes

Cascaded light propagation volumes (Kaplanyan and Dachsbacher, 2010) can
simulate indirect illumination as well as colour bleeding from the �rst bounce of
the light, which is the most important bounce, as on each bounce a large fraction
of the photons are absorbed. The algorithm works by creating virtual point
light sources in the scene by rendering re�ective shadow maps from each light.
These virtual point lights are then injected into a light propagation volume,
where they are stored using spherical harmonics. The resulting light in the
light propagation volume is subsequently propagated in several iterations where
the light can be occluded as well as bounce on geometry, that is injected into
a separate volume. The �nal light propagation volume represents the indirect
illumination in the scene and can be used for rendering the ambient lighting in
the scene. This algorithm is designed for real-time use and runs very fast on
modern hardware, but because of the limited resolution of the light propagation
volumes, the results are not completely accurate. The authors present a possible
improvement by using cascades of the light propagation volumes where volumes
of higher resolution are used closer to the viewer.

2There are also other phenomena such as subsurface scattering and absorption, which occur
when the photon is transmitted.

Group 40 24 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Precomputed radiance transfer

Some algorithms, such as the precomputed radiance transfer (Sloan et al., 2002),
pre-compute the lighting information prior to rendering in order to display good
results in real time. The precomputed radiance transfer algorithm stores a large
number of spherical harmonics for each object, which then are used to calculate
lighting. These spherical harmonics represent the occlusion as well as indirect
illumination across the hemisphere at the point where the spherical harmonic
is sampled. Rendering by using these spherical harmonics is quite fast, and the
technique can correctly handle dynamic light sources since the entire hemisphere
for each point is stored. However, this also means that animated objects are
not supported very well since these spherical harmonics would change for each
point in the animation. This algorithm also requires the storage of extra data;
depending on how many bands are used for the spherical harmonics, it can be as
much as 36 to 100 bytes per vertex. The number of bands a�ects how detailedly
the spherical harmonic approximation can reconstruct the original data.

3.4.4 Results

(a) Low resolution (b) Mid resolution (c) High resolution

Figure 3.6: Comparison of di�erent resolutions when calculating SSAO in
SLERP 3D in similar conditions. The result of these images are subsequently
blurred which lowers the di�erence slightly.

The only algorithm of the above mentioned that we have implemented is
the screen space ambient occlusion algorithm. We found that there are a large
number of slightly di�erent versions of this algorithm with di�erent sampling
patterns and di�erent depth fall-o� functions that alter the look of the generated
occlusion. What we �nally used was a slight modi�cation of an algorithm that
also operates on the normal of each point. This algorithm runs rather fast, and
there is in fact little performance di�erence with the algorithm deactivated on
the computers which we tested it on. This is also probably due to the fact that
we perform the SSAO using a sixteenth of the screen resolution. Using such a
low resolution does not a�ect the visual quality very much, however (see �gure
3.6). It is important to note that we found out that SSAO gives very little gain
in visual quality on the kind of level that we have at the moment. Since the
geometry is quite �at, there are few situations where the e�ect is clearly visible.
A comparison can be seen in �gure 3.7.

We had an idea of another ambient occlusion technique which utilised the

Group 40 25 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.7: Comparison of with and without SSAO in SLERP 3D. Left: SSAO
is on. Right: SSAO is o�.

fact that our lighting system can handle a large number of concurrent light
sources. In this technique, we place a negative light source in the centre of
each object. The light source will then darken nearby objects, but since the
normals of the object is directed outwards of the object, it will itself not receive
any darkening on surfaces pointing away from the centre. Surfaces pointing
slightly towards the centre of the object will, however, receive a slight amount
of darkening, which is to be expected of ambient occlusion as well. However,
this technique does not work very well for simulating ambient occlusion of large-
scale hollow geometry, such as a room, for obvious reasons. The technique is,
however, not at all physically based, but provides plausible results. Also, it
executes very fast and required only a few lines of code to implement in order
to get our ship to cast occlusion on nearby geometry.

We have not, implemented any kind of indirect illumination. Partly, because
these algorithms are rather complex and would require a lot of time to implement
with little gain in visual quality and we felt that time could be better spent on
other areas of the game.

3.5 Post-processing e�ects

3.5.1 Motion blur

Motion blur is a physical e�ect that occurs due to the fact that cameras has a
certain shutter speed. During the time the shutter is open, fast moving objects
will be captured at several di�erent locations in the picture, and the result will
be blurred. Motion blur is an important visual e�ect in order to increase the
sense of speed, as can be seen in �gure 3.8, and to make the game feel smoother
to play as well as help the player perceive fast moving objects better (Wloka
and Zeleznik, 1996). Akenine-Möller et al. (2008) notes that a game running
in 30 frames per second with proper motion blur often looks smoother than a
game running in 60 frames per second without motion blur.

Group 40 26 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.8: Comparison of motion blur on (left) and o� (right) in SLERP 3D.

Current algorithms

One option that creates very realistic results is to use the accumulation bu�er
to accumulate several renderings over a frame and move the objects slightly
between each render (Haeberli and Akeley, 1990). This will, however, be too
slow for real time applications and needs a large number of renderings in order
to converge to the correct result.

Performing motion blur as a post-process is preferable, as most post-processing
e�ects operate in constant and known time, since the input3 is of the same size
every frame. Rosado (2007) proposes an algorithm which only uses the current
depth bu�er and the view projection matrix of the previous frame in order to
calculate the motion blur. The depth bu�er is used to calculate the world space
position which is then transformed by the view projection matrix of the previous
frame in order to �nd where in projection space the position would be in the
previous frame. Using the current and the previous projection-space positions,
a velocity is calculated and subsequently used to determine the kernel size of
the blur that is used.

Another technique, which is also calculated in screen space but results in a
more correct result, uses a velocity bu�er to store the velocity of each pixel on
the screen (Green, 2003). Since all velocities are known per pixel no incorrect
blurring will occur, unlike the algorithm proposed by Rosado (2007), but will
cause more overhead and is more complicated to integrate in an existing rende-
ring pipeline due to the larger changes involved in rendering the velocity bu�er.

3.5.2 Tone mapping

The luminance (amount of light passing through a given solid angle, measured
in candela per square metre) that can be perceived by the human visual system
ranges between 10−6 cd/m2 for below starlight and 106 cd/m2 for sunlit snow; a
range of approximately ten orders of magnitude (Reinhard et al., 2002; Durand
and Dorsey, 2000). In a single real scene, the range from the darkest shadows

3The input is based on the rendered image and thus only its content changes

Group 40 27 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

(a) Original image

(b) Tone-mapped image

Figure 3.9: The tone mapping operator is applied to the original HDR image
(a) to produce the tone-mapped image (b), where colours have been converted to
the output range [0, 1].

to the brightest highlights may span up to four orders of magnitude. The ratio
between the highest and the lowest luminance in a scene is referred to as the
dynamic range of the luminance (Reinhard et al., 2002).

A computer display is limited in its output capabilities and is unable to
reproduce the high dynamic range (HDR) lighting of a real scene. While ligh-
ting calculations may be performed in high dynamic range on today's graphics
hardware with high-precision render targets and no upper limits on luminance,
colours must therefore be converted to the lower dynamic range of the output
device. This process of compressing dynamic range is known as tone mapping
(Calver, 2004; Akenine-Möller et al., 2008; Reinhard et al., 2002; Durand and
Dorsey, 2000). Most applications of tone mapping aim to achieve good tone
reproduction; that is, the mapping of scene luminances to display luminances
in such a way as to produce a (subjectively) pleasing image (Reinhard et al.,
2002). An evaluation of a number of tone mapping operators can be found in
�adík et al. (2008).

Group 40 28 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Visual adaption

The high dynamic range of real scenes is handled by the visual system through a
process known as visual adaption. Visual adaption is itself constituted of three
separate processes: light adaption, dark adaption and chromatic adaption.

Light adaption is responsible for recovering visual sensitivity when moving
from a dark to a bright setting such as when exiting a tunnel, or when moving
from a bright to a slightly less bright setting such as when coming indoors from
sunlight. This is a rapid process, normally taking a few seconds. Daylight, or
photopic, vision is provided by the cone photoreceptors in the retina (the other
type being the rods), which adapt quickly to changes in light intensity and are
very sensitive to colour.

Dark adaption is the change of sensitivity that happens after a dramatic
decrease in light intensity and is considerably slower than light adaption, taking
up to tens of minutes. The photoreceptors responsible for dark-adapted (scoto-
pic) vision are the rods, which are considerably more sensitive to light than the
cones but provide less precise chromatic vision and lower visual acuity.

The perception of objects as having constant colour when observed in di�e-
rently coloured light is due to chromatic adaption. Chromatic adaption depends
on the colour of the illuminant rather than the colour of the object and causes
the visual system to adjust the perceived hue of the stimulus based on the com-
position of the illuminating light, approximated from the visual information of
the surroundings. The colour of the illuminant is then said to be discounted.

The mechanics of visual adaption is described in fuller detail by Durand and
Dorsey (2000), who also provide references to in-depth texts on the subject.

Implementation

The easiest way of outputting HDR images is to simply clamp the colour va-
lues to the displayable range (Akenine-Möller et al. (2008, p. 476) note that
this simple method can work surprisingly well in applications with predictable
lighting and camera conditions). However, it is often desirable to use a method
that adapts to the overall illumination in the scene. Although simple adaption
can be achieved by setting the luminance of the brightest pixels in the scene to
the highest displayable value and linearly scaling the luminance of the rest of
the scene accordingly (an operator known as maximum to white), this can result
in the overall scene becoming very dark in the presence of a single extremely
bright pixel (Akenine-Möller et al., 2008). A better approach would be to use a
model of the human visual system.

Reinhard et al. (2002) present a tone mapping algorithm based on a method
long used in conventional photography called the Zone System, developed by
the photographer Ansel Adams for use in his black-and-white photographs. The
algorithm �rst calculates the key of the scene, a value indicating whether the
scene is subjectively light, dark or normal (a light scene would be high-key
while a dark scene would be low-key), at full dynamic range and sets the white
point to the maximum luminance in the scene. It then uses the key and the
white point to scale the results to the displayable range. Lastly, a technique
known as dodging-and-burning is used to lighten or darken regions in the �nal
image. However, following the presentation given in Calver (2004), the method
described in this text omits the dodging-and-burning feature for the sake of

Group 40 29 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

brevity.
The key of the scene is approximated by calculating the logarithmic average

luminance L̄w:

L̄w = exp

(
1

N

∑
x,y

ln(δ + Lw(x, y))

)
, (3.5)

where N is the total number of pixels, δ is a small constant value to avoid the
introduction of ln(0) in the case of black pixels, and Lw(x, y) is the �world�
luminance of the pixel at the 2D coordinates (x, y). The luminance function
Lw derives from the equation for conversion from RGB to XYZ colour space as
given in Dutré (2003, p. 63) and Akenine-Möller et al. (2008, p. 215-216) and
can be written as:

Lw(x, y) = 0.212671Rxy + 0.715160Gxy + 0.072169Bxy (3.6)

The constants in equation 3.6 are weights based on the sensitivity of the human
eye to di�erent wavelengths of light as well as the spectra of the three phosphors
in modern CRT and HDTV displays (Akenine-Möller et al., 2008).

Next, the luminance of the current pixel is scaled depending on the key of
the scene using the following function:

L(x, y) =
a

L̄w
Lw(x, y), (3.7)

where a ∈ [0, 1] is the middle-grey value of the scene. The middle-grey is closely
related to the key of the scene (and is in fact usually referred to as the key value),
and is commonly assigned the value 0.18 for moderate illumination conditions
(i.e. normal-key) (Reinhard et al., 2002; Krawczyk et al., 2005). Krawczyk
et al. (2005) suggest using the following formula to dynamically interpolate the
middle-grey value between a set of empirically determined key values for several
illumination conditions:

a(L̄w) = 1.03− 2

2 + log10(L̄w + 1)
(3.8)

Lastly, the scaled luminance obtained from equation 3.7 is compressed to within
displayable range:

Ld(x, y) =
L(x, y)

1 + L(x, y)
(3.9)

Using this method, Ld(x, y) is guaranteed to fall within [0, 1]. However, as noted
by Reinhard et al. (2002), it is usually desirable to let high luminances burn
out in a controllable fashion. This is achieved by extending equation 3.9 to the
following form:

Ld(x, y) =
L(x, y)

(
1 + L(x,y)

L2
white

)
1 + L(x, y)

, (3.10)

where Lwhite is the white point; that is, the lowest luminance value that will be
mapped to pure white. Lwhite is set by default to the maximum luminance in
the scene, causing a subtle contrast enhancement for low dynamic range scenes.
However, it will need to be set lower to result in burn-out, and setting the white
point to in�nity will revert the function to equation 3.9.

An example of the tone mapping operator described above can be seen in
�gure 3.9.

Group 40 30 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

(a) The ciliary corona (picture by
van den Berg et al. (2005))

(b) The lenticular halo

Figure 3.10: In the eye, the �are e�ect consists of the ciliary corona (a) and
the lenticular halo (b).

3.5.3 Glare e�ects

Glare is a collective term for a number of related visual e�ects caused by scatte-
ring and di�raction in the eye, as well as by microscopical defects and impurities
in a camera lens. Computer displays are, however, unable to output the high
luminances required to directly produce these e�ects. Instead, digitally adding
glare to an image produces an illusion of increased luminance of very bright
pixels by mimicking the way the human eye perceives bright light in various
brightness settings and makes it possible to simulate a camera lens, adding to
the perceived realism of the scene if done right (Akenine-Möller et al., 2008;
Spencer et al., 1995). For the purposes of rendering, glare e�ects can be divided
into the major components lens �are and bloom.

Lens �are

A lens �are (or simply �are) is composed of a ciliary corona and a lenticular
halo. The ciliary corona appears as radial rays emanating from the centre of the
light source, as illustrated in �gure 3.10a, and is caused by scattering due to local
variations in the density and thus the refractive index of the lens. As the solid
angle subtended by the light source decreases, the individual rays of the ciliary
corona become brighter and more easily discernible, while as the subtended solid
angle increases the ciliary corona appears to blur due to superimposition of the
rays. The lines are barely visible for light sources with a visual angle greater
than 20 arcminutes (Spencer et al., 1995).

The lenticular halo, shown in �gure 3.10b, takes the form of concentric co-
loured rings in the full visible spectrum surrounding the ciliary corona (although
the radial streaks of the ciliary corona may extend beyond the lenticular halo).
It is caused by di�raction in the crystalline lens of the eye due to radial �bres
forming a circular optical grating surrounding the central clear part of the lens.
The optically homogenous central portion is 3 mm in diameter, so any beam of

Group 40 31 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

Figure 3.11: Left: some of the constituent lens �are textures used in SLERP
3D. Right: an ingame example of a lens �are from the Sun.

light with a diameter less than this can pass unhindered through the lens. This
is the case in average daylight conditions, as the pupil is contracted to 2 mm
across. Beams wider than 3 mm, however, pass through the circular grating
and give rise to a lenticular halo. The lenticular halo always subtends the same
solid angle at the eye, creating an illusion of more distant light sources having
larger halos; however, the intensity of the lenticular halo decreases with distance
(Spencer et al., 1995).

Further, secondary e�ects can also be caused by camera lenses as light is
refracted or re�ected internally by parts of the lens. These e�ects manifest as
patterns such as rings or circles arranged in a row across the view through the
image centre. The shape of the lens's aperture also a�ects which patterns are
seen; a six-bladed aperture, for example, may produce hexagonal �are patterns
(Akenine-Möller et al., 2008).

Implementation Lens �ares can be algorithmically generated and added to
an image by a shader, but it is signi�cantly more e�cient to instead use a set
of textures for the di�erent parts of the �are and add these where appropriate.
Each texture is applied to a black square facing the viewer, and treated as
an alpha map when blended into the scene. These squares are given colour,
typically pure red, green or blue, when rendered and additively blended when
they overlap to obtain other colours. To make the lens �are change with the light
source, the squares are arranged on a line going from the light source through
the middle of the view, and may change size and intensity as the distance to
the light source varies correspondingly. This method can be quite convincing if
applied skilfully (Akenine-Möller et al., 2008).

Bloom

The visual phenomenon of very bright areas �bleeding� light onto their sur-
roundings and thereby reducing contrast (see �gure 3.12) is referred to as bloom
or glow. The bloom e�ect has become tightly associated with HDRI (High Dyna-

Group 40 32 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

mic Range Imaging) due to it routinely being used together with tone mapping
(described in section 3.5.2) when rendering to approximate the look of HDR
images (Sousa, 2004). Bloom may be used without HDR, however, and HDR
may likewise be used without bloom.

Figure 3.12: Extremely high
bloom visible around the light
sources and on the ground texture,
with streaking caused by an after-
image e�ect

In the eye, bloom is caused by the scat-
tering of light by the lens, cornea and retina
in roughly equal contribution. Scattered light
from one source A is added to the light from
another source B, increasing the perceived lu-
minance of B and decreasing the contrast ra-
tio since light is added equally to light and
dark parts (Spencer et al., 1995). In a camera,
the e�ect is due to charge sites in the camera's
charge-coupled device (CCD), which captures
images by converting photons to charge, be-
coming saturated and over�owing into sur-
rounding sites (Akenine-Möller et al., 2008).

Implementation There are several ways
to implement bloom. One common way is
to �rst downsample the original image to a
smaller size, e.g. a quarter of the original,
and then perform a simple thresholding ope-
ration to keep only high-luminance pixels.
The resulting texture is then blurred using a
Gaussian blur �lter to create the bloom tex-
ture with glow, which is then added back to the original image. It may be
desirable to adapt the level of bloom (or glare e�ects in general) to the average
luminance of the scene; one such algorithm for adaptive glare is presented by
Sousa (2004) and is described in the following paragraphs.

The adaptive glare4 algorithm works by �rst downsampling the original
image to a 1 × 1 texture, which is converted to a scalar value representing
the average luminance of the scene. The conversion to luminance is done using
equation 3.6. In order to minimise �ickering due to �uctuation of sampled lu-
minance from frame to frame, the computed luminance is linearly interpolated
with that of the previous frame.

Secondly, the bloom texture is computed. The original scene image is down-
sampled to a low-resolution texture, from which the brightest pixels are extrac-
ted by subtracting a threshold value and clamping (saturating) the result to
a [0, 1] interval5 (see �gure 3.13b). This method of reducing all dim pixels to
black and retaining brighter pixels is called bright-pass �ltering (Akenine-Möller
et al., 2008). By multiplying the result with the inverse luminance 1−L (where
L is the luminance value obtained in the previous step), the amount of bloom is
decreased for very bright scenes. The bloom texture is then obtained by blurring
the thresholded image using a simple separable Gaussian blur �lter (see �gure
3.13c), which is applied in two one-dimensional passes (one horizontal and one

4Glare here refers only to the bloom e�ect, so to avoid confusion this text uses the latter
term.

5Sousa (2004) suggests downsampling to 1/64 of the original texture's size and using a
threshold value of 0.4

Group 40 33 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

(a) Downsampled image (b) Thresholded image

(c) The blurred bloom texture with
after-image

(d) Composited �nal image

Figure 3.13: The original image is �rst downsampled to (a), from which the
thresholded image (b) is obtained by applying a bright-pass �lter and adding
glow on areas designated by the alpha values. The thresholded image is then
blurred to create the bloom texture (c), to which an after-image e�ect has been
applied by blending in the faded bloom texture from the previous frame. Lastly,
the bloom texture is composited with the original image, yielding (d) (which has
also been tone-mapped as shown in �gure 3.9b and gamma-corrected as this is
the last pass applied before the image is output to the screen).

vertical) for e�ciency; the number of samples required are reduced from d2 to
2d, where d is the blur diameter, compared to performing one two-dimensional
pass (O'Rorke and James, 2004).

Lastly, the �nal image with bloom is created by compositing the bloom tex-
ture with the original scene image. This can be done using simple additive
blending (i.e. adding both textures together), but this may cause undesirable
side e�ects if the bloom texture is not carefully generated. The approach sug-
gested by Sousa (2004) is to instead make the contribution of the bloom texture
proportional to the luminance of the original pixel.

An extension to the bloom e�ect suggested by O'Rorke and James (2004) is
to use the alpha channel of certain textures to store a �glow texture�. Essentially,
the glow texture is used to designate areas of the main texture that should glow
in the �nal image, and is taken into consideration when computing the bloom
texture by adding the term rgb · α. Another possible extension is the after-
image e�ect, simulating the lingering vision of an image caused by bright areas
�burning� onto the retina. After-image is implemented by saving the texture

Group 40 34 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

from the previous frame and blending it with the current scene image using an
appropriate ratio, thus letting it fade out. While this can be applied to the
bloom texture to generate light streaks as the observer moves, O'Rorke and
James (2004) caution that this may cause the bloom to bleed out of control if
done carelessly, and suggest instead to use the original texture without bloom.
The use of a glow texture and an after-image e�ect on the bloom texture is
visible in �gure 3.13.

3.5.4 Results

For motion blur, we have chosen to implement the algorithm presented by Ro-
sado (2007) because of its speed and the fact that it provided a better �t to
our current graphics pipeline than the algorithm described by Green (2003).
The performance impact is quite low compared to the improvements of the re-
sults. However, we did not implement the masking described in the algorithm
for objects moving at a relatively constant speed compared to the camera. An
example of such an object in SLERP 3D would be the player ship. The ship
does now receive some incorrect motion blurring (see �gure 3.8; note that this
is also one of the worst cases we have been able to produce) in some cases, but
in most cases this is not visible, and that is one reason why we have not imple-
mented the masking. Another reason is that it �ts very badly in our pipeline,
and in the case that a �x had been necessary, we would probably have chosen
to implement the Green (2003) algorithm instead.

In SLERP 3D, we perform all lighting and shading calculations in high dy-
namic range until the very end of the rendering pipeline. Before outputting the
image to the screen, tone mapping and bloom are applied as part of the same
e�ect technique. Tone mapping was implemented using the algorithm by Re-
inhard et al. (2002), with the extension of the method presented by Krawczyk
et al. (2005) for dynamically computing the middle-grey value for a scene. Vi-
sual adaption was approximated using a simple model of light/dark adaption
that interpolates the average luminance for one frame with the value retained
from the previous frame, causing the luminance to vary smoothly and make a
transition over the course of a few seconds. This was primarily done to avoid
�ickering between frames due to rapid �uctuations in scene luminance, and it
was decided that a correct implementation of dark adaption, with an adaption
time of up to thirty minutes before optimum scotopic vision is obtained, did not
make sense in a fast-paced racing game.

The luminance is averaged according to equation 3.5 from a �xed number
of samples performed over a downsampled version of the original scene texture
and written to a 1×1 render target as described by Sousa (2004). The sampled
luminance is then used to separately perform tone mapping on the original image
and compute the bloom texture from the downsampled image. For the bloom
e�ect, which is otherwise implemented using the adaptive glare algorithm by
Sousa (2004), we have chosen to add streaking with the after-image e�ect using
the bloom texture saved from the previous frame, as this gives an increased
sense of motion blurring and was considered visually pleasing. Furthermore, a
glow texture stored in the alpha channel as suggested by O'Rorke and James
(2004) is used to allow the artist to add a glow e�ect to speci�c areas in the
texture, the use of the alpha channel for transparency having been rendered
ine�ective due to our use of deferred lighting. However, since the alpha values

Group 40 35 27th May 2010

Bachelor's Thesis Chapter 3. Graphics

are by default set to 1, we use 1 − α when adding glow, meaning 0 (black) in
the glow texture designates full glow.

With the tone-mapped original image and the bloom texture in hand, those
two textures are composited together in the manner described by Sousa (2004)
to form the output image.

Group 40 36 27th May 2010

Chapter 4

Game engine

4.1 Collision detection

Collision detection is very important, not only for racing games, but also most
other types of dynamic games where the player interacts with the environment.
The uses of collision detection are very game dependent; some games can, for
example, provide a fully dynamic world where all objects can collide and inte-
ract, while other games use collision detection in order to keep the player from
entering certain areas. A racing game typically uses collision detection to pro-
vide believable vehicle physics and to keep the player from going through the
ground. Collision detection can also be used to add another game element where
players can collide with each other on purpose in order to get an advantage in
the game.

There are several di�erent types of collision detection algorithms, where the
di�erences can be e.g. speed and correctness. The di�erence in speed is also
a�ected by the type of collisions that are expected to occur in the game, since
some algorithms handle certain scenarios better (Akenine-Möller et al., 2008).

4.1.1 Collision detection using rays

One very e�cient method of performing collision detection is to approximate
a moving object using a set of rays. The rays are placed at �xed positions
on the object's surface and tested for intersection along their respective paths
(Akenine-Möller et al., 2008). A ray R is de�ned by its point of origin o and
direction vector d, yielding the following expression for computing any point
lying on the ray half-line:

r(t) = o + td, (4.1)

where t is the signed distance from the ray's point of origin to the point r(t)
along the direction de�ned by the direction vector, which is then assumed to
be normalised (Havran, 2000; Akenine-Möller et al., 2008) (see �gure 4.1). An
intersection query should return the closest intersection, i.e. the lowest value of
t for any intersecting point on the ray half-line, and the object which the ray
intersects.

This method of performing collision detection and determination with rays
is commonly referred to as ray casting or ray tracing, although the latter term

37

Bachelor's Thesis Chapter 4. Game engine

Figure 4.1: A set of rays on a ship, used for collision detection in di�erent
directions. o is the point of origin, and d is the direction vector. The inlay
illustrates equation 4.1: r(t) is a point lying t units of distance away from the
origin along the normalised direction vector.

correctly applies to a slightly di�erent technique used to render photo-realistic
scenes in which an intersection might spawn new rays as the original ray is
re�ected o� a surface. When used in the context of collision detection, however,
it is not enough to know whether the ray intersects somewhere down the ray
from the point of origin; if a collision has already occurred, it is also necessary
to determine where the extended ray intersects the object, potentially yielding
negative values of t as the solution to equation 4.1. For this reason, a slightly
modi�ed version of the ray casting algorithm (which only handles t ≥ 0) has to
be used, where the ray's point of origin is �rst moved back along the extended
half-line de�ned by the ray to outside the scene's bounding box, from where
intersection testing is performed (Akenine-Möller et al., 2008).

4.1.2 Intersection testing

Ray-triangle

As triangles are the most common rendering primitive, there are many tests
for ray-triangle intersection available. The algorithm used in SLERP 3D and
presented here is from Möller and Trumbore (1997) (and is also presented in
Akenine-Möller et al. (2008, p. 746-750)) and does not presume that normals
are precomputed, as storing precomputed triangle plane normals can be quite
costly for large triangle meshes in terms of memory. The presentation here
follows the one given in Akenine-Möller et al. (2008).

Group 40 38 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

Figure 4.2: Barycentric coordinates for a triangle.

A triangle is de�ned by three vertices p1, p2 and p3 as 4p1p2p3. A point
f(u, v) on the triangle can be computed using the formula

f(u, v) = (1− u− v)p0 + up1 + vp2, (4.2)

given two barycentric coordinates (u, v) for the triangle. Barycentric coordi-
nates can be seen as weights showing how much each of the triangle's vertices
contribute to a given point on the triangle; at each vertex one of the three values
u, v and w = (1−u−v) is 1 and the other two 0, and along the edges one value
is always 0, as shown in �gure 4.2. It follows that a point is inside the triangle
if and only if u, v, w ∈ (0, 1) (Dutré, 2003).

Using the de�nition of a ray r(t) given in equation 4.1, the intersection
between the ray and the triangle, if it exists, can be computed by equating their
equations:

r(t) = f(u, v)⇔ o + td = (1− u− v)p0 + up1 + vp2 (4.3)

Rearranging the terms gives a linear system of equations: −d p1 − p0 p2 − p0

 t
u
v

 = o− p0 (4.4)

Solving this yields the distance t from the ray origin to the intersection point
as well as the barycentric coordinates (u, v). Using Cramer's rule, the solution
to equation 4.4 is t

u
v

 =
1

det(−d, e1, e2)

 det(s, e1, e2)
det(−d, s, e2)
det(−d, e1, s)


=

1

(d× e2) · e1

 (s× e1) · e2

(d× e2) · s
(s× e1) · d

 , (4.5)

Group 40 39 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

where e1 = p1 − p0, e2 = p2 − p0, and s = o − p0. The factors q = d × e2

and r = s×e1 can be computed �rst, saving two unnecessary (and costly) cross
products. Equation 4.5 then becomes t

u
v

 =
1

q · e1

 r · e2

q · s
r · d

 (4.6)

If storage is not an issue, there are faster algorithms available. Havel and Herout
(2010) present a very fast (when implemented using Intel's SSE4 instruction set,
which has an instruction for calculating dot products) algorithm for ray-triangle
intersection. This algorithm requires the triangle's normal plane as well as two
planes perpendicular to the triangle, used for computation of the barycentric
coordinates, to be stored. It should be noted, however, that storing the triangle
vertices is not necessary in this case, as the triangle is fully described by these
three planes. The total memory cost of storing a triangle in this way is thus
twice that of storing the three vertices (storing a plane as a point and a normal
vector).

4.1.3 Space-partitioning data structures

As performing intersection testing on every primitive for each ray on every
update is quite expensive, some sort of data structure is needed to store the
triangles in such a way as to decrease the number of tests needed for each ray.
There is a range of options available for this purpose, the most prominent being
quadtrees for two dimensions, their three-dimensional counterpart octrees and
k-d trees, which can be applied to any number of dimensions.

These data structures are all examples of space-partitioning trees, and work
by decomposing a scene into progressively smaller parts according to a certain
algorithm. Each node in such a tree then represents a geometric subdivision
of the cell represented by the parent node (the root node, then, corresponds
to the entire original scene) and contains, in addition to other data needed by
the particular structure, a list of references to the primitives fully or partially
contained in the node's cell. This de�nition is given in fuller detail in the
discussion on spatial subdivision structures in Havran (2000, p. 10-11).

Quadtrees and octrees

Quadtrees, introduced in 1974 by Finkel and Bentley, are data structures most
commonly used for decomposition of two-dimensional space. In the two-dimensional
case, every node in the quadtree represents a rectangle. This rectangle might
then be divided into four sections corresponding to the quadrants of the rectangle
relative to the coordinates of a given point (chosen to optimise search time) in
the rectangle, forming four subtrees (Knuth, 1998). An example of space sub-
divided by a quadtree can be seen in �gure 4.3.

The octree (octal tree) is an analogous construction in three dimensions
having eight-way branching with each subtree corresponding to an octant in
a cuboid. The quadtree structure might thus be generalised to k dimensions,
with a k-dimensional quadtree having 2k branching (making a one-dimensional
quadtree a normal binary search tree) (Knuth, 1998; Havran, 2000).

Group 40 40 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

Figure 4.3: Two-dimensional space subdivided by a quadtree. Picture by Epps-
tein et al. (2005).

Whether or not to perform further (recursive) subdivision of a node's cell is
usually decided based on the recursion depth compared to a maximum allowed
depth or the number of objects occupying the cell; cells containing many objects
might be further split if it is computationally optimal to do so (Havran, 2000).

k-d trees

The k-d tree (k-dimensional tree) was introduced by Bentley in 1975 and is
a form of binary search tree and a simpli�cation of the quadtree structure.
However, instead of comparing on every coordinate at each branching, k-d trees
compare on only one coordinate at a time. On branching, a hyperplane called a
splitting plane is selected, splitting the k-dimensional hyperspace represented by
the parent node at a certain value of the branching coordinate into two nodes,
making the basis vector of the branching coordinate the normal vector of the
splitting plane. In general, branching at the lth level might be performed on
coordinate number (l mod k) + 1, yielding x, y, z, x, y, . . . in a 3-d tree (with the
root node as level 0) (Knuth, 1998).

Since the splitting planes are always perpendicular to one of the coordinate
axes, the k-d tree is said to be axis-aligned. This property greatly simpli�es
intersection testing between a ray and the splitting planes, requiring about
one third as many elementary operations as for arbitrarily oriented splitting
planes, as shown by Havran (2000, p. 52-53). Furthermore, testing of whether
a given object belongs to one of the halfspaces induced by an arbitrarily oriented
splitting plane is considerably more computationally demanding, and the build
time of the k-d tree increases from O(N) to O(N3).

Positioning of the splitting plane The positioning of the splitting plane
in non-leaf nodes is an important problem in the construction of k-d trees, and
Havran (2000) proposes a cost model, based on the model introduced by Mac-
Donald and Booth in 1989, for this. Other possible methods are the spatial
median and object median methods, which position the plane so as to balance

Group 40 41 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

the space and number of objects, respectively, on both sides. The cost model,
however, performs statistically better and will therefore be explained in greater
detail. It attempts to algorithmically estimate the average cost, in terms of
computation needed, of an arbitrary ray traversing the k-d tree, under certain
assumptions, during the construction of the tree. The most important underly-
ing observation is that the conditional probability P (Y |X) of an arbitrary ray
intersecting the convex spatial area Y given that it passes through the enclosing
convex spatial area X (such that X∩Y = Y) is proportional to the surface area
of Y divided by the surface area of X:

P (X|Y) =
SA(Y)

SA(X)
(4.7)

For axis-aligned bounding boxes X and Y , this yields the expression:

P (X|Y) =
YwidthYheight + YwidthYdepth + YheightYdepth

XwidthXheight +XwidthXdepth +XheightXdepth
(4.8)

Havran (2000) goes on to show that the upper bound of the estimated total cost
ĈT [s], then, of shooting an arbitrary ray through a k-d tree can be expressed
as follows:

ĈT [s] =
1

SA(root)
·

[
ĈTI ·

i=1∑
Ni

SA(i) + ĈTL ·
l=1∑
Nl

SA(l) + ĈIT ·
l=1∑
Nl

SA(l)N(l)

]
,

(4.9)
where

Ni the number of interior nodes in the tree,
Nl the number of leaf nodes (Nl = Ni + 1),

N(l) the number of objects stored in the leaf node l,
SA(n) the surface area of node n (root, then, being the whole scene),
ĈTI the estimated cost of traversing an interior node,
ĈTL the estimated cost of traversing a leaf node,
ĈIT the estimated cost of performing a ray-object intersection test.

Because of the relation between the cost and the surface areae of the node cells,
an algorithm that tries to minimise the estimated total cost is referred to by
MacDonald and Booth as a surface area heuristic (SAH). For a more compre-
hensive description and analysis, as well as algorithms, see Havran (2000).

Traversal Wald (2004), building primarily upon previous work by Havran,
discusses a few algorithms for fast ray traversal of k-d trees. Throughout tra-
versal, the current line segment [tnear, tfar] is maintained and updated in each
step. This is the parameter interval of the ray that actually intersects the cur-
rent cell, and is �rst initialised to [0,∞) and then clipped to the root node's cell
(i.e. the bounding box of the entire scene). At each step, the signed distance d
to the current node's splitting plane is calculated and compared to the distance
to the current line segment. Three distinct possibilities arise:

d ≥ tfar The ray segment is completely in front of the SP
d ≤ tnear The ray segment is completely behind the SP

tnear > d > tfar The ray segment intersects both sides of the SP

Group 40 42 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

In the �rst two cases, where the ray segment lies completely on one side of the
splitting plane, the subtree on the other side can be �culled� and only the sub-
tree corresponding to the intersected cell traversed. If the ray intersects both
children, however, both subtrees need to be traversed in turn. First, the �near�
side is traversed with line segment [tnear, d], and then the �far� side is traversed
with [d, tfar]. This use of parametrised ray segments allows all computations to
be performed in one dimension, which signi�cantly simpli�es the process. Since
the cells are traversed in front-to-back order, traversal may be terminated as
soon as intersection with an object is detected inside a cell, yielding potentially
large performance gains. This algorithm naturally lends itself to a recursive
implementation, however Wald (2004) and Havran (2000) note that an iterative
implementation gives better performance.

Performance According to Havran (2000), the k-d tree performs statistically
better than its competitors when used with common heuristic ray shooting
algorithms. Furthermore, he argues that the k-d tree has relatively low memory
complexity, with the number of cells increasing roughly linearly with the number
of objects in the scene. Construction of a static k-d tree for orthogonal rectangles
in three dimensions can, using the right approaches, be achieved in O(N logN)
time (Wald and Havran, 2006).

4.1.4 Results

Due to the simplicity of the objects involved in collision detection in a racing
game, rays are suited very well for this particular application. In essence, the
player ship, which cannot be deformed in any manner and thus can have rays
attached to �xed points on its surface, needs only be tested for collision against
the environment, which is static, and other ships.

The ship class in SLERP 3D stores one two-dimensional array of rays for each
side of the ship (up, down, right, left, forwards and backwards). The placement
of those rays may either be de�ned by the ship model in a way e�cient for the
particular model or determined dynamically by the program upon initialisation
by shooting a given number of rays inwards from the six sides of the ship's
bounding box and a�xing rays where intersection with the ship is detected.
The stored rays are de�ned in object space, and a world-space copy is created
for each ray on every update using the ship node's transformation. In order
to detect negative values of the parameter t in the ray equation (equation 4.1),
an attempt was made to move the origin of the world-space ray back to the
opposite side of the ship before evaluation of the ray. It was not moved back
further as to avoid detecting intersections with obstacles lying on the other side
of the ship, since no assumptions might be made about the environment or
orientation of the ship. However, this caused unpredictable side e�ects such as
the ship being erratically relocated even when not colliding with the ground, and
falling through was still possible (although less likely) and occurred seemingly
at random. Since the precise cause could not be determined, it was decided that
the reduced risk of driving through the walls and thus falling o� the track was
not worth the problems caused by this method.

As other intersection test methods are provided by the XNA framework,
ray-triangle intersection testing is the only method explicitly implemented in
SLERP 3D, using the algorithm by Möller and Trumbore presented in section

Group 40 43 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

4.1.2. The environment is stored in a k-d tree, the construction of which incre-
ases the loading time but which substantially decreases the load on the CPU,
giving better performance during gameplay. In order to reduce loading time,
however, the construction of the k-d tree is performed in a separate thread from
the moment the application starts. Other space-partitioning data structures
were considered, such as the octree, but the k-d tree was settled upon due to
its superior performance despite its complexity in implementing. The ray tra-
versal algorithm implemented in SLERP 3D is the TAB

rec algorithm presented
in Havran (2000, appendix C, p. 157-159).

A further, albeit minor, improvement in performance was obtained by in-
cluding an extra parameter to the ray traversal method of the k-d tree setting
the maximum distance a ray should be traced (or null if the ray is to be traced
until it intersects an object or leaves the scene), allowing early termination of
traversal. This parameter is obtained once for all the rays pointing in the same
direction by calculating the dot product vd = v · d of the ship's velocity v and
the rays' direction vector d before sending the array containing the rays for eva-
luation. If vd ≤ 0, none of the rays need to be tested against the environment as
it is known to be static and the ship is not currently moving in the direction d.
It should be noted that this is not done for the rays going down from the ship,
as the current distance to the ground needs to be measured on every update in
order to maintain height.

4.2 Network Gaming

Support for multiplayer functionality in games is becoming an increasingly cri-
tical feature to implement for game developers. With a huge amount of games
entering the market each year, the publishers and developers are �ghting for
the money and spare time of the gamers. With most of the games tending to
leave big holes in the gamers' wallets, the gamers are looking for lasting appeal
in games, and multiplayer support can vastly improve the amount of time spent
with a game. Also, with the current trend of games being rented or sold second
hand, the multiplayer functionality of the game can be the di�erence of a game
kept and a game traded in.

Networked multiplayer games are most commonly played either over the
Internet (online) or on the local network (LAN). A game session held on a local
network very much resembles a session held over the Internet when it comes
to the communication between the involved units, but with a few important
di�erences. Firstly, only computers connected to the same local network may
join the network session. Also, due to the high proximity of the networked
computers, a LAN o�ers a high connection speeds. This made the LAN a
popular solution when network gaming was in its infancy, and it continues to
appeal to a lot of gamers, alongside the networking possibilities of the Internet
(Lecky-Thompson, 2008).

Online games, in contrast, are played with computers possibly distributed
all over the world, with possibly hundreds or thousands of intermediate routers
and links with varying bandwidth and quality. Therefore, online games face far
more synchronisation problems related to latency than a local network game.
Latency is the time it takes for a request to be answered, in other words the
network delay (often called lag) (Lecky-Thompson, 2008, p. 91).

Group 40 44 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

4.2.1 Client/Server Networking

One approach to networking is the so-called Client/Server model. The setup for
this networking model is that one network node (this could be a computer or any
other machine with network capabilities), called the server, is responsible for the
communication between all of the connected computers. The other computers
are called clients to this responsible node that services their requests (Kurose
and Ross, 2007, p. 38). An application using this networking technique is an
example of a so-called distributed application. Applications commonly using
the Client/Server networking solution include e-mail programs and the World
Wide Web (Kurose and Ross, 2007, p. 170).

The Client/Server networking solution has also been commonly used in vari-
ations for computer games, for example in Half-Life, Counter Strike and Unreal
Tournament gngine games (Bernier, 2001).

Bernier (2001) describes, at an abstract level, how the client and server
applications divide the tasks of real-time rendering. Basically it is done in the
following way: the client samples the user input and sends the associated data
over the network to the server. The server processes the user input and moves all
involved objects accordingly. The server then responds to all connected clients
with the relevant data of the objects/world involved in the scene. When this
data is received by the client it determines visible objects and �nally renders
the scene accordingly.

A positive e�ect concerning latency with the Client/Server model is that
the latency perceived by the server is roughly the same for all nodes connected
to it. This can for example make fast-paced games fairer. Steed and Oliveira
(2009) discusses this and claims that the most important bene�t from using
the Client/Server approach is that the server's activities can be controlled and
secured, while the peers of a peer-to-peer network are unreliable and prone to
perform activities such as cheating.

One of the most prominent negative e�ects of using a Client/Server approach
is the need to maintain a centralised unit, which can be both economically costly
and onerous (Isensee and Ganem, 2003).

4.2.2 Peer-to-Peer Networking

With the peer-to-peer networking model the nodes in the network communicate
directly between each other, in contrast to the Client/Server model which uses
a responsible unit called a server through which the communication data is
distributed (See section above about Client/Server Networking) (Brookshear,
2006).

For game applications this means that game data has to be sent to all of the
other nodes in the network, not just one node as in the Client/Server model. If
communicating over the Internet, this will put strain on the Internet connection,
demanding more bandwidth. This issue can however be managed by allowing
one node to act as a host ; each node will send its data to this host, and the host
will gather all of the data into one package and send it to all of the other nodes.
This makes it possible for a host with a reliable and fast Internet connection to
handle and support several other nodes, which could su�er from poor bandwidth
(Lincroft, 1999; Isensee and Ganem, 2003).

Group 40 45 27th May 2010

Bachelor's Thesis Chapter 4. Game engine

Steed and Oliveira (2009) performs a case study of Criterion's Burnout Pa-
radise. The game uses peer-to-peer networking where one player acts as a host,
which performs no extra networking functionality other than controlling the
initialisation of di�erent game-events.

A positive thing about the peer-to-peer model is that host migration is ea-
sily implemented, in contrast to the Client/Server model(Mic, Unknown year).
Furthermore it is easy to administer a peer-to-peer implementation since no
centralised unit such as a server needs to be maintained (Isensee and Ganem,
2003).

4.2.3 Results

In a racing game, there are several di�erent game modes that are often present
in games currently on the market, and historically. A set of commonly imple-
mented game modes for racing games include: time trial, single player racing
against AI, split-screen multiplayer racing and online racing (sometimes also
over LAN). However, all of these are not present in SLERP 3D.

Split-screen multiplayer was a candidate for implementation; much so because
we considered this functionality easy to implement. However, the implementa-
tion of this feature would contradict one of our main goals with the project,
namely the ambition to make a game �lled to the brim with graphical e�ects
and 3D splendour. The reason for this was that an implementation of split-
screen multiplayer would demand an impairment of the game's visual quality
due to the fact that the 3D scene would need to be rendered two (or up to four
1) times.

Our intention was to make the gaming experience both fun and compelling.
The time trial feature was spoken of as a worst case game mode to implement,
if no other game modes could be implemented adequately. That, and the fact
that feedback from potential short-term users of the game requested it2, led to
us focus on implementing network functionality. From the beginning, however,
we felt no urgency to implement this feature; the reason being that the focus
of the project was the real-time graphics. A contender to the implementation
for network multiplayer support was the inclusion of AI-controlled opponents.
Here, the fact remains that both alternatives do not directly coincide with the
aims of the project, but as already mentioned, an other intention was to make
the game entertaining, which requires a certain amount of game play. What
it �nally came down to was, besides the feedback previously mentioned, that
the LAN-multiplayer simply was considered by us as the most fun to play game
mode of the two.

About choosing what network model to use, we reasoned that peer-to-peer
would be most feasible in our situation. Mostly, because it demands very little
support from our part, and, as a bonus, we were able to implement host mi-
gration with just one line of code in XNA. Furthermore, since we only provide
LAN multiplayer support for SLERP 3D, the problem with latency is pretty
much nonexistent.

1 XNA allows a maximum of four players split-screen.
2During a Q&A session in connection to the half-time presentation of the project, the

audience asked if multiplayer was to be supported.

Group 40 46 27th May 2010

Chapter 5

Conclusion

5.1 Results

When implementing the algorithms in our case study, SLERP 3D, we found that
certain algorithms provide a more visible result than others. We estimate that
about 50% of our time spent on the project went into implementing graphics,
and this has to be taken into consideration when reading the results of this
thesis. Since the focus was to �nd what algorithms are suited when developing
a game with a short time-frame as well as a limited amount of people, we believe
that it is most important to focus on the e�ects that provide a signi�cant gain
in visual quality. The algorithms which we found added most visual quality to
the game were deferred lighting, shadows, bloom, HDR and particle systems.
Deferred lighting gave us the possibility to insert numerous lights into our 3D
scene, giving us artistic freedom of placing light sources pretty much wherever
we want them without having to consider their cost. Shadows give the 3D scene
a great sense of depth, which makes the scene seem more realistic. The Bloom
and HDR techniques both mimic the behaviour of either the human eye or a
camera lens; these techniques give the e�ect of observing something through a
real camera, and moreover have the potential to substantially a�ect the game's
visuals. By mainly focusing on these algorithms, we think that it is very possible
to create a game with relatively high graphical quality in a short amount of time.

5.2 Discussion

Since we used the XNA Game Framework when creating the game, we had a
certain base framework to build our code upon. This certainly helped us save
a lot of development time, but at the same time caused a few bugs due to a
few non-intuitive features in the framework. Nevertheless, in the long run, the
XNA framework saved us a lot of time by providing built-in functionality for
e.g. mathematical functions, game loop updating and window creation and ma-
nagement. These gains do not mainly a�ect the development time for computer
graphic algorithms, but mostly the code needed around the graphics and the
game kernel.

There are other e�ects that we think should have been implemented should
we have had enough time. Using di�erent BRDF models for di�erent materials

47

Bachelor's Thesis Chapter 5. Conclusion

is important in order to provide a convincing and realistic look of the rendered
image. We should also have chosen a better motion blur algorithm and made
sure that it could be properly integrated into our rendering pipeline early in the
development process.

5.3 Future work

Since we did not focus on the creation of content to our game, we tried as much
as possible to avoid algorithms that required additional work when creating the
assets (e.g. bump mapping (Blinn, 1978)). However, these types of e�ects are
also important and we think that future work could evaluate the e�ciency of
these techniques in a setting where more focus can be spent on creating assets
for the game, both based on visual gain as well as considering the time it takes
to implement these algorithms.

Group 40 48 27th May 2010

Bibliography

Tomas Akenine-Möller, Eric Haines, and Natty Ho�man. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008. ISBN 987-1-56881-
424-7. URL http://realtimerendering.com. Cited on pages 2, 12, 13, 14,
16, 22, 26, 28, 29, 30, 31, 32, 33, 37, and 38.

Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and Jan
Kautz. Exponential shadow maps. In GI '08: Proceedings of graphics inter-
face 2008, pages 155�161, Toronto, Ont., Canada, Canada, 2008. Canadian
Information Processing Society. ISBN 978-1-56881-423-0. Cited on page 21.

Michael Ashikhmin and Peter Shirley. An anisotropic phong brdf model. Journal
of Graphics Tools, 5:25�32, 2000. Cited on page 12.

Ulf Assarsson. A Real-Time Soft Shadow Volume Algorithm. PhD thesis, De-
partment of Computer Engineering, Chalmers University of Technology, oct
2003. Cited on page 18.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Je�ries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Je� Sutherland, and Dave Thomas. Principles behind the agile
manifesto, 2001. URL http://www.agilemanifesto.org/principles.html.
Cited on page 6.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509�517, 1975. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/361002.361007. Cited on page 41.

Yahn W. Bernier. Latency compensating methods in client/server in-
game protocol design and optimization. Wiki, 2001. URL http://

developer.valvesoftware.com/wiki/Latency_Compensating_Methods_

in_Client/Server_In-game_Protocol_Design_and_Optimization#

Basic_Architecture_of_a_Client_.2F_Server_Game. Cited on page
45.

James F. Blinn. Models of light re�ection for computer synthesized pictures.
In SIGGRAPH '77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, pages 192�198, New York, NY, USA,

49

http://realtimerendering.com
http://www.agilemanifesto.org/principles.html
http://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
http://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
http://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
http://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game

Bachelor's Thesis Bibliography

1977. ACM. doi: http://doi.acm.org/10.1145/563858.563893. Cited on page
12.

James F. Blinn. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.,
12(3):286�292, 1978. ISSN 0097-8930. doi: http://doi.acm.org/10.1145/
965139.507101. Cited on page 48.

J. Glenn Brookshear. Computer Science: An Overview (9th Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN
0321387015. Cited on page 45.

Martin �adík, Michael Wimmer, Laszlo Neumann, and Alessandro Artusi.
Evaluation of hdr tone mapping methods using essential perceptual attri-
butes. Computers & Graphics, 32:330�349, 2008. ISSN 0097-8493. URL
http://www.cgg.cvut.cz/members/cadikm/tmo/cadik08cag.pdf. Cited
on page 28.

Dean Calver. Deferred lighting on ps 3.0 with high dynamic range. In Engel
(2004), pages 97�105. ISBN 1584503572. Cited on pages 28 and 29.

R. L. Cook and K. E. Torrance. A re�ectance model for computer graphics.
ACM Trans. Graph., 1(1):7�24, 1982. ISSN 0730-0301. doi: http://doi.acm.
org/10.1145/357290.357293. Cited on page 12.

Franklin C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH
'77: Proceedings of the 4th annual conference on Computer graphics and in-
teractive techniques, pages 242�248, New York, NY, USA, 1977. ACM. doi:
http://doi.acm.org/10.1145/563858.563901. Cited on page 17.

Rouslan Dimitrov. Cascaded shadow maps, 2007. URL http:

//developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_

shadow_maps/doc/cascaded_shadow_maps.pdf. Cited on page 19.

Zhao Dong and Baoguang Yang. Variance soft shadow mapping. In I3D '10:
Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, pages 1�1, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-939-8. Cited on page 20.

William Donnelly and Andrew Lauritzen. Variance shadow maps. In I3D '06:
Proceedings of the 2006 symposium on Interactive 3D graphics and games,
pages 161�165, New York, NY, USA, 2006. ACM. ISBN 1-59593-295-X. doi:
http://doi.acm.org/10.1145/1111411.1111440. Cited on page 20.

Frédo Durand and Julie Dorsey. Interactive tone mapping. In Proceedings of
the Eurographics Workshop on Rendering. Springer Verlag, June 2000. URL
http://people.csail.mit.edu/fredo/PUBLI/EGWR2000/index.htm. Held
in Brno, Czech Republic. Cited on pages 27, 28, and 29.

Philip Dutré. Global illumination compendium, sep 2003. Available at
http://www.cs.kuleuven.be/�phil/GI/. Cited on pages 30 and 39.

Wolfgang Engel, editor. ShaderX3: Advanced Rendering with DirectX and
OpenGL. Number 3 in ShaderX. Charles River Media, Inc., Rockland, MA,
USA, 2004. ISBN 1584503572. Cited on pages 50 and 55.

Group 40 50 27th May 2010

http://www.cgg.cvut.cz/members/cadikm/tmo/cadik08cag.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://people.csail.mit.edu/fredo/PUBLI/EGWR2000/index.htm

Bachelor's Thesis Bibliography

Wolfgang Engel. Light pre-pass renderer, 2008. URL
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/

light-pre-pass-renderer.html. Cited on page 14.

David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The skip quadtree:
a simple dynamic data structure for multidimensional data. In Joseph S. B.
Mitchell and Günter Rote, editors, Symposium on Computational Geometry,
pages 296�305. ACM, 2005. ISBN 1-58113-991-8. Cited on page 41.

Randima Fernando. Percentage-closer soft shadows. In SIGGRAPH '05: ACM
SIGGRAPH 2005 Sketches, page 35, New York, NY, USA, 2005. ACM. doi:
http://doi.acm.org/10.1145/1187112.1187153. Cited on page 20.

Dominic Filion and Rob McNaughton. E�ects & techniques. In SIGGRAPH
'08: ACM SIGGRAPH 2008 classes, pages 133�164, New York, NY, USA,
2008. ACM. doi: http://doi.acm.org/10.1145/1404435.1404441. Cited on
page 14.

Raphael Ari Finkel and Jon Louis Bentley. Quad trees: A data structure for
retrieval on composite keys. Acta Informatica, 4:1�9, 1974. Cited on page
40.

David Garlan and Mary Shaw. An introduction to software architecture. Te-
chnical Report CMU-CS-94-166, Carnegie Mellon University, January 1994.
Cited on page 11.

H. Gouraud. Continuous shading of curved surfaces. IEEE Trans. Comput.,
20(6):623�629, 1971. ISSN 0018-9340. doi: http://dx.doi.org/10.1109/T-C.
1971.223313. Cited on page 12.

Simon Green. Stupid opengl shader tricks, 2003. URL http://developer.

nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf. Cited on
pages 27 and 35.

Larry Gritz and Eugene d'Eon. The importance of being linear.
In Nguyen (2007), chapter 24. ISBN 0321515269. Available at
http://developer.nvidia.com/object/gpu-gems-3.html. Cited on page 16.

Paul Haeberli and Kurt Akeley. The accumulation bu�er: hardware support for
high-quality rendering. In SIGGRAPH '90: Proceedings of the 17th annual
conference on Computer graphics and interactive techniques, pages 309�318,
New York, NY, USA, 1990. ACM. ISBN 0-89791-344-2. doi: http://doi.acm.
org/10.1145/97879.97913. Cited on page 27.

Shawn Hargreaves. The importance of transitions. Blog, 2007a.
URL http://blogs.msdn.com/shawnhar/archive/2007/03/02/

the-importance-of-transitions.aspx. Cited on page 8.

Shawn Hargreaves. The importance of transitions. Blog, 2007b.
URL http://blogs.msdn.com/shawnhar/archive/2007/05/24/

transitions-concluded-there-is-no-spoon.aspx. Cited on page
8.

Group 40 51 27th May 2010

http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf
http://blogs.msdn.com/shawnhar/archive/2007/03/02/the-importance-of-transitions.aspx
http://blogs.msdn.com/shawnhar/archive/2007/03/02/the-importance-of-transitions.aspx
http://blogs.msdn.com/shawnhar/archive/2007/05/24/transitions-concluded-there-is-no-spoon.aspx
http://blogs.msdn.com/shawnhar/archive/2007/05/24/transitions-concluded-there-is-no-spoon.aspx

Bachelor's Thesis Bibliography

Ji°í Havel and Adam Herout. Yet faster ray-triangle intersection (using sse4).
IEEE Transactions on Visualization and Computer Graphics, 16:434�438,
2010. ISSN 1077-2626. doi: http://doi.ieeecomputersociety.org/10.1109/
TVCG.2009.73. Cited on page 40.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Depart-
ment of Computer Science and Engineering, Faculty of Electrical Enginee-
ring, Czech Technical University in Prague, nov 2000. URL http://www.

cgg.cvut.cz/~havran/phdthesis.html. Cited on pages 37, 40, 41, 42, 43,
and 44.

Tim Heidmann. Real shadows, real time. Iris Universe, 18:23�31, 1991. Cited
on page 18.

Jack Hoxley. Lighting (summary), 2008. URL http://wiki.gamedev.net/

index.php/D3DBook:(Lighting)_Summary. Cited on page 12.

Pete Isensee and Steve Ganem. Developing online console games. Web Article,
2003. URL http://www.gamasutra.com/view/feature/2875/developing_

online_console_games.php. Cited on pages 45 and 46.

Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK
Peters, 2001. Cited on page 23.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20
(4):143�150, 1986. ISSN 0097-8930. doi: http://doi.acm.org/10.1145/15886.
15902. Cited on page 3.

Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation volu-
mes for real-time indirect illumination. In I3D '10: Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pages
99�107, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-939-8. doi:
http://doi.acm.org/10.1145/1730804.1730821. Cited on page 24.

Scott Kircher and Alan Lawrance. Inferred lighting: fast dynamic lighting and
shadows for opaque and translucent objects. In Sandbox '09: Proceedings of
the 2009 ACM SIGGRAPH Symposium on Video Games, pages 39�45, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-514-7. doi: http://doi.acm.
org/10.1145/1581073.1581080. Cited on page 15.

Donald Ervin Knuth. The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 1998. ISBN 0-201-89685-0. Cited on pages 40 and 41.

Rusty Koonce. Deferred shading in tabula rasa. In Nguyen (2007), chapter 19.
ISBN 0321515269. Available at http://developer.nvidia.com/object/gpu-
gems-3.html. Cited on page 14.

Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel. Perceptual
e�ects in real-time tone mapping. In SCCG '05: Proceedings of the 21st
spring conference on Computer graphics, pages 195�202, New York, NY, USA,
2005. ACM. ISBN 1-59593-203-6. doi: http://doi.acm.org/10.1145/1090122.
1090154. Cited on pages 30 and 35.

Group 40 52 27th May 2010

http://www.cgg.cvut.cz/~havran/phdthesis.html
http://www.cgg.cvut.cz/~havran/phdthesis.html
http://wiki.gamedev.net/index.php/D3DBook:(Lighting)_Summary
http://wiki.gamedev.net/index.php/D3DBook:(Lighting)_Summary
http://www.gamasutra.com/view/feature/2875/developing_online_console_games.php
http://www.gamasutra.com/view/feature/2875/developing_online_console_games.php

Bachelor's Thesis Bibliography

James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
fourth edition, 2007. ISBN 0321497708. Cited on page 45.

Andrew Lauritzen. Summed-area variance shadow maps. In Nguyen
(2007), chapter 8, pages 157�182. ISBN 0321515269. Available at
http://developer.nvidia.com/object/gpu-gems-3.html. Cited on pages 20
and 21.

Guy W. Lecky-Thompson. Fundamentals of Network Game Development.
Course Technology PTR, 2008. ISBN 9781584506256. Cited on page 44.

Peter Lincroft. The internet sucks: Or, what i learned coding x-wing vs. tie �gh-
ter. Web Article, 1999. URL http://www.gamasutra.com/view/feature/

3374/the_internet_sucks_or_what_i_.php. Cited on page 45.

J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing using
space subdivision. In Graphics Interface '89, pages 152�163, jun 1989. Cited
on pages 41 and 42.

Morgan McGuire. Ambient occlusion volumes. Technical Report CSTR200901,
Williams College Computer Science Department, Williamstown, MA, USA,
dec 2009. URL http://graphics.cs.williams.edu/papers/AOV09/. Cited
on pages 23 and 24.

Morgan McGuire and David Luebke. Hardware-accelerated global illumination
by image space photon mapping. In HPG '09: Proceedings of the Conference
on High Performance Graphics 2009, pages 77�89, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-603-8. doi: http://doi.acm.org/10.1145/1572769.
1572783. Cited on page 23.

Network Topologies and Host Migration. Microsoft Corporation, Unknown year.
URL http://msdn.microsoft.com/en-us/library/bb975826.aspx. Cited
on page 46.

Martin Mittring. Finding next gen: Cryengine 2. In SIGGRAPH '07: ACM
SIGGRAPH 2007 courses, pages 97�121, New York, NY, USA, 2007. ACM.
doi: http://doi.acm.org/10.1145/1281500.1281671. Cited on pages 23 and 24.

Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersec-
tion. journal of graphics, gpu, and game tools, 2(1):21�28, 1997. Cited on
pages 38 and 43.

Hubert Nguyen, editor. GPU Gems 3. Number 3 in GPU Gems. Addison-
Wesley Professional, �rst edition, aug 2007. ISBN 0321515269. Available at
http://developer.nvidia.com/object/gpu-gems-3.html. Cited on pages 51, 52,
53, and 54.

Microsoft DirectX 10: The Next-Generation Graphics API. NVIDIA Corpora-
tion, 2006. Cited on page 14.

Michael Oren and Shree K. Nayar. Generalization of lambert's re�ectance mo-
del. In SIGGRAPH '94: Proceedings of the 21st annual conference on Compu-
ter graphics and interactive techniques, pages 239�246, New York, NY, USA,

Group 40 53 27th May 2010

http://www.gamasutra.com/view/feature/3374/the_internet_sucks_or_what_i_.php
http://www.gamasutra.com/view/feature/3374/the_internet_sucks_or_what_i_.php
http://graphics.cs.williams.edu/papers/AOV09/
http://msdn.microsoft.com/en-us/library/bb975826.aspx

Bachelor's Thesis Bibliography

1994. ACM. ISBN 0-89791-667-0. doi: http://doi.acm.org/10.1145/192161.
192213. Cited on page 12.

John O'Rorke and Greg James. Real-time glow. Web article, 2004. URL http:

//www.gamasutra.com/view/feature/2107/realtime_glow.php. Cited on
pages 34 and 35.

Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311�317, 1975. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/360825.360839. Cited on page 12.

William T. Reeves. Particle systems�a technique for modeling a class of fuzzy
objects. In Seminal graphics: poineering e�orts that shaped the �eld, pages
91�108. ACM, New York, NY, USA, 1998. ISBN 1-58113-052-X. doi: http:
//doi.acm.org/10.1145/280811.280996. Cited on page 21.

William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. In SIGGRAPH '87: Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 283�291,
New York, NY, USA, 1987. ACM. ISBN 0-89791-227-6. doi: http://doi.acm.
org/10.1145/37401.37435. Cited on pages 18 and 19.

Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photograp-
hic tone reproduction for digital images. ACM Trans. Graph., 21(3):267�276,
2002. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/566654.566575. Avai-
lable at http://www.cs.utah.edu/ reinhard/cdrom/. Cited on pages 27, 28,
29, 30, and 35.

Gilberto Rosado. Motion blur as a post-processing e�ect. In
Nguyen (2007), chapter 27. ISBN 0321515269. Available at
http://developer.nvidia.com/object/gpu-gems-3.html. Cited on pages 27
and 35.

Bradley Sanford. Integrated graphics solutions for graphics-intensive applica-
tions. White paper, 2002. Cited on page 3.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey, Step-
hen Junkins, Adam Lake, Robert Cavin, Roger Espasa, Ed Grochowski, Toni
Juan, Michael Abrash, Jeremy Sugerman, and Pat Hanrahan. Larrabee: A
many-core x86 architecture for visual computing. IEEE Micro, 29:10�21,
2009. ISSN 0272-1732. doi: http://doi.ieeecomputersociety.org/10.1109/MM.
2009.9. Cited on page 3.

Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Beyond
Human-Computer Interaction. Wiley, 2 edition, 2007. ISBN 0470018666.
Cited on pages 8 and 9.

Oleg Shishkovtsov. Deferred shading in s.t.a.l.k.e.r. In GPU Gems 2, chapter 9.
Addison-Wesley, 2005. ISBN 0321335597. Cited on page 14.

Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments. In
SIGGRAPH '02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 527�536, New York, NY, USA,

Group 40 54 27th May 2010

http://www.gamasutra.com/view/feature/2107/realtime_glow.php
http://www.gamasutra.com/view/feature/2107/realtime_glow.php

Bachelor's Thesis Bibliography

2002. ACM. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.1145/566570.
566612. Cited on page 25.

Tiago Sousa. Adaptive glare. In Engel (2004), pages 349�355. ISBN 1584503572.
Cited on pages 33, 34, 35, and 36.

Greg Spencer, Peter Shirley, Kurt Zimmerman, and Donald P. Greenberg.
Physically-based glare e�ects for digital images. In SIGGRAPH, pages 325�
334, 1995. Cited on pages 31, 32, and 33.

Marc Stamminger and George Drettakis. Perspective shadow maps. In
SIGGRAPH '02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 557�562, New York, NY, USA,
2002. ACM. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.1145/566570.
566616. Cited on page 18.

Anthony Steed and Manuel Oliveira. Networked Graphics: Building Networked
Games and Virtual Environments. Elsevier Inc., 2009. ISBN 978-0-12-374423-
4. Cited on page 45.

Michal Valiant. Deferred rendering in killzone 2. Online, 2007. URL http://

www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf. Cited
on pages 13 and 14.

Thomas J T P van den Berg, Michiel P J Hagenouw, and Joris E Cop-
pens. The ciliary corona: physical model and simulation of the �ne need-
les radiating from point light sources. Invest Ophthalmol Vis Sci, 46(7):
2627�32, 2005. ISSN 0146-0404. URL http://www.biomedsearch.com/nih/

ciliary-corona-physical-model-simulation/15980257.html. Available
at http://www.iovs.org/cgi/content/full/46/7/2627. Cited on page 31.

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Computer Graphics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/. Cited on pages 42 and 43.

Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and
on doing that in o(n log n). In Ingo Wald and Steven G. Parker, editors,
Proceedings of IEEE Symposium on Interactive Ray Tracing 2006, pages 61�
69, September 2006. Cited on page 43.

Gregory J. Ward. Measuring and modeling anisotropic re�ection. In
SIGGRAPH '92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, pages 265�272, New York, NY, USA,
1992. ACM. ISBN 0-89791-479-1. doi: http://doi.acm.org/10.1145/133994.
134078. Cited on page 12.

Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH
'78: Proceedings of the 5th annual conference on Computer graphics and in-
teractive techniques, pages 270�274, New York, NY, USA, 1978. ACM. doi:
http://doi.acm.org/10.1145/800248.807402. Cited on pages 17 and 18.

Matthias Wloka and Robert Zeleznik. Interactive real-time motion blur. The
Visual Computer, 12:183�295, 1996. Cited on page 26.

Group 40 55 27th May 2010

http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf
http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf
http://www.biomedsearch.com/nih/ciliary-corona-physical-model-simulation/15980257.html
http://www.biomedsearch.com/nih/ciliary-corona-physical-model-simulation/15980257.html

Appendix A

Contributions

The planning of the project was done by the whole group during the meetings
throuhout the project. Information gathering was done individually depending
on each member's needs and responsibilities.

A.1 Responsibilities

Rickard von Haugwitz

Collision Detection - k-d tree, Rays
Game Logic - Physics, Input Management
Post Processing - Bloom, Tone Mapping
Networking

Daniel Lindén

Graphics Management
Collision Detection - Intesection Testing Framework
Post-Processing E�ects - Motion Blur, SSAO
Lighting System - Deferred Lighting, Shadows
Particle System - Mega Beams, Explosions
E�ect System
Resource Loading

Bartolomeus Jankowski

3D Modelling
Texturing
Level Design
Resource Organization

Magnus Olausson

Menu System - Design, Implementation
Mouse Input System
Settings - Con�gurations
2D Graphics and Design - Menu, HUD

56

Bachelor's Thesis Appendix A. Contributions

HUD - Reactions
Networking - Framework
Post Processing E�ects - Lens Flare

David Sundelius

System Design - UML
System Architecture
Particle System - Respawn Aura
HUD - Implementation, Functionality
Game Logic - State Management, In-Game Logic
Networking - Powerups
Powerup System

A.2 Problem solving, synthesis and analysis

Problems were most often solved by the individual that encountered them, and
if not, they were discussed and solved as a group. Everyone came with many
good and bad ideas, causing constructive discussions within the group, eventu-
ally leading to the good ideas appearing in the game (at least some of them).
Conclusions have been made as a group.

A.3 Report contributions

Editorial work was done by Daniel Lindén, Magnus Olausson and David Sun-
delius with special credits to our main editor Rickard von Haugwitz for his
extensive work on editing and typesetting.

Rickard von Haugwitz Sections 1.3, the parts on glare e�ects and tone
mapping in 3.5, and 4.1 (except the introduction).

David Sundelius Sections 1.1, 1.2, 1.5, 2.2 and 3.3.

Magnus Olausson Sections 1.3, 2.1, the parts on deferred shading in 3.1.3,
and 4.2.

Daniel Lindén Sections 1.4, 3.1 (except the part on deferred shading), 3.2,
3.4, the parts on motion blur in 3.5, the introduction to section 4.1 and 5.

Group 40 57 27th May 2010

	Introduction
	Purpose
	Limitations
	Background
	The graphics pipeline
	Ever-increasing speed
	Graphics in games

	Problem
	The rendering equation
	Post-processing effects
	Other effects

	Method
	Agile Development
	Design and UML
	Programming language and framework
	Version control

	Game Design
	Game Presentation
	Usability
	Result

	Software Architecture
	Results

	Graphics
	Rendering
	Shading
	Forward rendering
	Deferred rendering
	Gamma correction
	Results

	Shadows
	Shadow volumes
	Shadow mapping
	Results

	Particle Systems
	Billboards
	Result

	Global illumination
	Real time implementation
	Ambient occlusion
	Indirect illumination and colour bleeding
	Results

	Post-processing effects
	Motion blur
	Tone mapping
	Glare effects
	Results

	Game engine
	Collision detection
	Collision detection using rays
	Intersection testing
	Space-partitioning data structures
	Results

	Network Gaming
	Client/Server Networking
	Peer-to-Peer Networking
	Results

	Conclusion
	Results
	Discussion
	Future work

	Contributions
	Responsibilities
	Problem solving, synthesis and analysis
	Report contributions

