

Road Kill

– Game development with limited resources

Bachelor’s Thesis

Computer Science and Engineering Programme

Viktor Arvidsson Jonathan Gustafsson

Per Jamot Johansson Christoffer Nilsson

Adam Sällergård Robin Ytterlid

Institutionen för Data- och informationsteknik

CHALMERS TEKNISKA HÖGSKOLA

Göteborg, Sverige 2011

Kandidatarbete/rapport nr 2011:039

© Viktor Arvidsson, Jonathan Gustafsson, Per Jamot Johansson, Christoffer Nilsson, Adam

Sällergård, Robin Ytterlid, May 2011.

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Gothenburg

Sweden

Sammanfattning

Det här är ett kandidatarbete som beskriver en studie där ett spel utvecklas med begränsade

resurser och moderna tekniker. Fokus ligger på att utforska de olika stegen och de olika

tillvägagångssätten som man stöter på under utvecklingen av ett spel ur ett perspektiv där

spelutvecklaren har begränsade resurser. För att kunna undersöka dessa olika steg noggrant så

har ett spel, vid namn Road Kill, utvecklats vid sidan av de teoretiska studierna under

vårterminen 2011.

Trots att vi siktade högre än vad vi först var bekväma med så är vi väldigt nöjda med

slutresultatet. Vi har i detalj utforskat flera av spelutvecklings olika steg, så som utveckling

och implementering av fysik-, med tekniker som bounding volumes och spatial data

structures; och grafiklösningar, med tekniker som shadow volumes, culling och particle

systems; spellogik, flerspelarläge över nätverk och modellering. Dessa steg har utvärderats

och presenterats så att det ska vara lätt för utvecklare med begränsad erfarenhet ska kunna få

en snabb inblick i vanliga tekniker som kan användas för spelutveckling.

Abstract

This bachelor thesis presents a case study, where the development of a game is done with

limited resources and modern techniques. The focus lies in examining the different steps and

the many small choices that are continually made during the development of a game, from the

perspective of a game developer that is limited in resources. To be able to study these

different steps in detail, a game, Road Kill, has been developed in parallel with the theoretical

studies during the spring semester 2011.

Even though we aimed higher then we, at first, were comfortable with, we are very happy

with the end result of this thesis. We have studied, in detail, several of the different steps of

game development, such as, development and implementation of physics-, with techniques

such as bounding volumes and spatial data structures; and graphics solutions, with techniques

as shadows volumes, culling and particle systems; game mechanics, multiplayer over

network, and modeling. These steps have been evaluated and presented in a way that it should

be easy for a developer with limited experience to get gain insight quickly, in to the usual

techniques that can be used for game development.

Acknowledgements

There are a few people that have helped to heighten the quality of this thesis, to which we are

very grateful. As our supervisor, Ulf Assarsson continually supported us with much needed

advice and feedback. Our friends, who have continued to support us, despite our long working

hours. Two friends, Jesper Westerberg and Alexander Eriksson, supplied the soundtrack to

Road Kill, and to them, we are extra thankful.

Table of content

1 Introduction ... 1

1.1 Purpose ... 1

1.2 Problem .. 2

1.3 Delimitations .. 2

1.4 Method ... 3

1.4.1 Development ... 3

2 Program structure .. 5

2.1 Game initialization ... 5

2.2 Input loop ... 6

2.3 Game updates ... 6

3 Modeling ... 8

3.1 Blueprints ... 8

3.2 Modeling a car .. 9

3.3 Painting a model ... 10

3.4 Modeling the world .. 12

3.5 Results .. 13

3.6 Discussion .. 13

4 Graphics .. 15

4.1 Graphics Pipeline ... 15

4.1 Lighting .. 16

4.1.1 Results ... 19

4.1.2 Discussion ... 19

4.2 Shadows ... 20

4.2.1 Shadow Maps .. 20

4.2.2 Shadow Volumes ... 22

4.2.3 Results and discussion ... 23

4.3 Particle Systems ... 24

4.3.1 Billboards .. 24

4.3.2 Soft particles .. 25

4.3.3 Results and discussion ... 25

4.4 Culling .. 26

4.4.1 View frustum culling ... 26

4.4.2 Backface culling .. 27

4.4.3 Occlusion culling ... 27

4.4.4 Portal culling ... 27

4.4.5 Level of Detail ... 28

4.4.6 Results and Discussion .. 28

4.6 Reflections .. 29

4.7 Texture Blending .. 30

4.7.1 Results and discussion ... 31

4.8 Camera ... 32

4.8.1 Results ... 33

5 Physics engine ... 34

5.1 Detecting collisions between objects ... 34

5.1.1 Bounding volumes ... 35

5.1.2 Spatial data structures .. 38

5.1.3 Intersection test ... 40

5.2 Existing physics engines .. 42

5.3 Results .. 43

5.4 Discussion .. 43

6 Network and Multiplayer .. 44

6.1 Choosing the right Network Model .. 44

6.1.1 Transport Layer Protocols ... 44

6.1.2 Network topology .. 45

6.1.2.1 Peer-to-Peer .. 45

6.1.2.2 Client-Server .. 46

6.2 Limitations in network traffic – Bandwidth and Latency .. 46

6.2.1 Solving Latency Problems – Client-Side Prediction ... 47

6.2.2 Solving bandwidth problems ... 48

6.3 Results .. 49

6.4 Discussion .. 49

7 Sound ... 50

7.1 OpenAL .. 50

7.2 DirectX Audio .. 51

7.3 FMOD .. 51

7.4 Results .. 51

7.5 Discussion .. 51

8 Development of Road Kill .. 53

8.1 Results .. 53

8.1.1 Game Setting ... 53

8.1.2 Main features ... 53

8.2 Discussion .. 53

References .. 55

Appendix A .. 61

A.1 Development ... 61

A.2 Thesis writing .. 62

A.3 Other .. 63

 1

1 Introduction

Large game development studios have the

resources to develop new games with the

best techniques and, because of this, the

potential to produce the highest quality

games. Smaller game studios have a harder

time to compete in the same market due to

their more limited resources, such as

development time, funds, personnel and

experience. It is crucial, due to their

limited resources, that small game studios

develop their games as efficiently as

possible. Arguably, it is even more critical

for smaller than larger game studios, as

they have a larger capacity to correct errors

in the development process without

compromising the final product.

This thesis will be particularly interesting

for small game developers, who are

starting a new project where the goal is to

produce a modern game that can compete

with games in the same market, produced

by larger game studios. Furthermore, large

game studios should be able to use this

thesis to enhance their knowledge about

game development, smaller game projects,

or how to do a fast prototype for a game.

Even corporations other than game

developers should have use for our study,

as graphics- and physics engines can be

used in many different situations, such as

movie making or vehicle collision testing.

1.1 Purpose

The purpose of this thesis is to test the

different techniques game developers are

able to use and to find simple solutions for

the problems that occur during game

development. Developers should be able to

use our study to learn more about all the

stages in game development, and different

solutions for programming a game of high

quality in short time.

This thesis examines some of the main

parts of the game development process, to

make the process easier for a small

development studios and developers with

less experience. Sections of this process

that are of higher significance are

examined more extensively, and this might

provide value, not only to beginners but

also, to experienced developers. The thesis

brings up pros and cons for different

development methods, analyzes which

techniques are suitable for which game

type, and also considers how difficult and

time consuming different algorithms are to

implement in a game.

In parallel with the theoretical research

made during the writing of this thesis, a car

racing game has been developed to enable

the testing and evaluation of different

techniques in a real time graphics

environment. This game was named Road

Kill, and was mainly inspired by Death

Rally (Remedy Entertainment, 1996).

Road Kill was developed by six students

with programming experience from 2.5

years of computer science studies, but no

prior experience in game development.

Each person contributed with

approximately 200 hours of programming

time. C++ was chosen as the programming

language for the development of Road

Kill, as it is used by many game titles with

modern graphics. Road Kill was targeted

for the Windows platform, but uses the

graphics library OpenGL instead of

Direct3D and DirectX, which keeps the

option to port Road Kill to other platforms

than Windows in the future. All software

 2

used in this project was free of charge,

with the exception of the modeling tool 3D

Studio Max and the sound library FMOD.

1.2 Problem

This thesis describes the possible solutions

to the following subset of problems:

 Implementing an efficient and

precise physics simulation, with

many objects, in real time. That is

able to make the objects behave

lifelike and interact in a realistic

way.

 Choosing and developing a

multiplayer solution with good

flow and satisfying game play over

the local area network and the

World Wide Web.

 Creating a complete set of objects,

to fill the game world and make it

look realistic.

 Developing a complete racing game

with limited resources, such as

money and time. The game should

contain features such as full

multiplayer support and four

different cars to choose from, each

with a different set of physical

features. Players should be able to

destroy other players’ cars with

weapons mounted on their own

cars.

1.3 Delimitations

This thesis focuses on game development

with limited resources, such as

development time, personnel, experience

and funds. Therefore, delimitations have

been made to focus on the study of the

most fundamental parts of the game

development process.

The marketing aspect is of large

importance when it comes to creating a

successful game, as Braben claims

(Braben, 2011) that a typical $50 million

dollar title spends about 30% of its budget

on marketing. Due to the technical nature

of this thesis and due to the limitations of

the thesis budget, the marketing aspect was

not included, which allowed for more

focus on creating a more advanced game

and investigating its development

techniques in more detail.

During the development of Road Kill, it

was discovered that the development of a

physics engine, with a pleasing enough

result, would be too time consuming.

Therefore, an existing physics engine, that

supplies the features that was required, was

implemented with the rest of Road Kill’s

components.

Because of financial and time limitations,

this thesis has more focus on producing a

general answer to our problem, as

described in Section 1.2, than creating the

best game engine components or

describing all possible techniques with the

greatest possible depth. Due to this focus,

each section has been limited in its extent.

To simplify the modeling process of Road

Kill, this study does not feature any of the

other modeling software other than 3D

Studio Max.

For a game developer, there are many

choices when it comes to choosing

programming language, hardware and

software platforms. This thesis describes

only a limited selection of external

libraries, all of which are compatible with

the C++ language. Although Road Kill was

 3

developed exclusively in C++, and targeted

only for the Windows platform, most of the

techniques and algorithms described in this

thesis are general enough to be used for

other programming languages and

platforms.

1.4 Method

In this thesis, each step of the game

development process is divided into

different chapters. Chapters 2-7 each has a

background, followed by a study of

different techniques or algorithms that can

be used in the corresponding step of the

game development process. Each chapter

describes problems for the current step in

the process and presents different

approaches to reach a solution, with focus

on both time and resource efficiency.

Result and Discussion sections at the end

of each chapter further evaluate some

techniques that have been tested and used

in Road Kill.

While chapters 2-7 describe specific

details about different parts of game

development, Chapter 8 describes the

game Road Kill, which is a result of game

development with some of the techniques

and algorithms described in the other

chapters, and with the limitations described

previously in this chapter. Section 8.2

evaluates the development process of Road

Kill on an abstract level. A reader of this

thesis is therefore advised to see chapters

2-7 for details about and evaluations of

different techniques and algorithms, and to

see chapter 8 for an abstract summary of

Road Kill, its features, and its development

process.

1.4.1 Development

There are several different types of

development processes that, step by step,

describe how a small or big project should

be managed. There is the Waterfall model,

Incremental delivery, and Reuse-software

model (Royce, 1970). The Waterfall model

concept is to plan and build up a structure

of the project before the development

process is started. Early in the process, the

project goals are established: prepare a

time schedule, and deadlines for each step.

To move forward in the project, each phase

has to be signed off before the next phase

can commence. With this approach, it is

hard to deal with changes and problems

that are discovered during the process and

there is a good possibility that a large

amount of code has to be rewritten to suit

the new criteria.

Choosing the Reuse-software method,

which focuses on the reuse of old code

from previous projects, is a good way to

save time and to avoid reinventing the

wheel. This method, however, is only

useful if there is any relevant code already

available.

Incremental delivery is a good choice for a

beginner developer because the project is

broken down into small wieldy versions,

and the most important parts are the first to

be developed, to get the product going.

After that, new features are applied in each

new version of the product. Using this

method, a new version should be ready in

2-4 weeks and this will lead to a flow that

is tightly correlated to specification, and

even possible changes to it, during the

progression of the project. One major

downside with this process model is that

building a new version on top of the old

 4

one, tends to increase the complexity of the

product, making the structure and

maintainability more difficult.

For Road Kill, the incremental delivery

technique was used, where basic

specifications are decided in the beginning

of the study. All features that the finished

product should have decided early and

where new features are implemented in

each sprint.

In the beginning of each sprint, a short

meeting was held where all of the group

members emphasize problems and

exchanged thoughts, so that all the

members of the group were kept up to date

with the progress. After that, a jointly

decision was made on how to proceed in

the next sprint.

A group leader was elected to book

meetings, tracks the function list, write

down decisions, and supervise the progress

in the development.

The Waterfall-model requires experience

of the process before hand, to plan each

part of the game development process, and

this was why this model was not chosen

for Road Kill.

 5

2 Program structure

A game is a very large software

engineering project, which can contain

several thousands of rows of programming

code. Therefore, it is important for a

developer to keep the code structured and

modular. A part of the modularity is

keeping the abstraction of the game engine

as simple as possible, as illustrated in Fig

1.

Figure 1: The game engine used in Road

Kill.

2.1 Game initialization

The first step in the game engine is to

initialize the game and this is done in the

following steps that are illustrated in

Figure 2:

 Create the track.

 Prepare for multiplayer.

 Add physics.

 Build the cars.

Figure 2: The game engine, with expanded

initialization-section.

After the track has been created, Road Kill

prompts the players to choose their cars.

When the players are ready, Road Kill

connects to the server and establishes the

multiplayer communication. Now that

Road Kill has a set number players, the

physics engine and the players’ cars are

initialized. When the initialization is

finished Road Kill enters the main game

 6

loop, which begins with the input loop.

2.2 Input loop

When input loop has begun, Road Kill

looks for inputs, such as keyboard events

and window changes. All these events are

processed before the game state is updated

and the input loop is exited.

Figure 3: An illustration of the loop that

handles the different inputs.

2.3 Game updates

When inputs have been handled, Road Kill

is updated in five different steps, as shown

in Fig. 4. Each step updates the players’

game states variables, such as location,

velocity, and position in the race.

Transfer data to and from the server

This step updates the multiplayer state by

sending the client’s information and

receiving new information from the

opponents, if any. This step might be

limited to only sending data, since Road

Kill can receive data packets at a lower

rate than the frequency of which the game

state is updated. The information being

sent and received ranges from car positions

to lap times.

Step physics

Whether or not there was any new

information in the data transfer step, the

physics simulation can now be updated by

updating all the players’ physical states.

Apply game logic

After Road Kill has updated all of the

players’ physical states, the logic step

checks all new game state variables for

new information. This step takes the new

information and applies appropriate game

mechanics, like the car losing health points

when a car is hit by a missile or if the

player finished the race.

Render with effects

The new game state, with effects like fire

and explosions, is now drawn on the

client’s screen.

Sounds

New sounds are added where it is needed

and old ones are removed, depending on

the game state.

 7

Figure 4: Game update steps in Road Kill.

 8

3 Modeling

When developing a computer game, the

visual style depends a lot on the objects

that are contained in the game. There

would be no point in having good-looking

reflections, shadows and other effects if the

objects cannot convey them in a way that

has high visual appeal. Modeling is the

process where objects are created and in

this chapter we will explain, in detail,

some techniques that are useful. To be able

to give more concrete examples these

following sections have used 3D Studio

Max (Autodesk Inc., 2011a) as the

modeling software, this is presented in the

delimitation Section 1.3. The techniques

can be used in other modeling software but

some details may differ.

With modeling, the goal is to create an

object using something called vertices,

which is a point in the x,y,z space. These

vertices can be connected and form all

sorts of different objects.

Figure 5: Vertices (the red dots) that are

connected by edges to form a box.

Most 3D modeling software has an option

to create predefined standard geometric

forms such as cylinders, cones and spheres

automatically. These can be modified and

combined to create objects, making this the

easiest way for beginners to start

modeling.

3.1 Blueprints

To start modeling objects, a convenient

approach is to use something called

blueprints. A blueprint consists of an image

file including a view of the chosen object

from the sides, top, front and back.

Figure 6: Example blueprint of a car.

When a blueprint has been acquired, an

image editing program can be used to cut

out the different viewpoints and put them

in separate files. These images can then be

loaded onto planes in the 3D modeling

software, and should be setup like figure 3.

Figure 7: Example of how the blueprint

should look in the 3D modeling software.

 9

As seen, it is now a lot easier to make sure

that everything is aligned the way it should

be and that everything is in the correct

scale compared to the real object.

3.2 Modeling a car

When modeling a car from scratch there

are several different approaches that can be

considered. One of them is to start with a

box that consists of many vertices. A

vertex is one of the three corners in the

triangles, which build up the box. The

whole box is built up by small triangles so

the graphics card can draw them to the

screen. For example, a plane with four

vertices is usually divided into two

triangles. The surface of objects in 3D

Studio Max is called polygons, and the

surface is bounded by edges, which have

two vertices in each end. Another

technique that one can use to model a car

is to manually place every polygon so they

build up a car. One fast manner is to begin

with a box and extrude the polygons. For

beginners this is a good way to learn 3D

modeling fast. Common for all techniques

is that all of them have a trick to get the car

to look the same on right and left side.

First, one half of the car is modelled, either

the right or left side. Then, there is a

modifier called symmetry that can take a

half car and mirror it to the other side to

make it complete.

The box-technique

A technique that can be used is to start off

with a box that has many vertices. It is

important to keep all vertices organized

because when there are as many as 20000

vertices, such as one of the cars in Road

kill, it becomes too difficult to move

around the vertices one by one. An easy

way to keep them organized is to keep the

vertices aligned in rows so that an entire

row can be selected and the vertices can be

moved all at the same time. It is important

to think about that the box should have the

same amount of vertices from the

beginning as the finished car. If one vertex

is moved at a time, it is hard to get the

vertices in a level, and the finished car

would get uneven and dented.

Figure 8: Organized vertices in rows with

edges aligned straight seen from the Front

view in 3D Studio Max.

To start sculpting the car, one view in 3D

Studio Max is selected (front, left or top),

and then all the vertices are arranged along

the blueprints outline region. After this the

car should look such as a car from the

selected view but still have the shape of a

box in the other two views. The next step

in this technique is to do this method once

for each view in 3D Studio Max.

 10

Figure 9: Picture that shows the 4 different

viewports: top, front, left and perspective.

The polygon-procedure

A more tactful technique is to position

every polygon, one at a time. Usually the

start point is at a corner of the object and

one side of the object is modeled. The

polygons are placed directly where they

should be, contrary to the Box technique,

and they do not have to move afterwards.

This is a good way to make a nice looking

car because much time is spent on every

part of the vehicle and the focus is only at

a small part of the vertices at a time. For

this reason the complexity is often reduced

and if the vertices are under control it will

be easier and faster to get good results

(Gahan, 2010).

The extrude-method

Working on a box with fewer vertices can

be a good way to model an object fast.

Then new vertices are placed where they

should be and extrude the polygons to

form new parts. Even if the box is simple

at the beginning, complexity is added per

introduced vertex. Hence, the final result is

rather simple and does not look like a real

car. Because of the complexity it is

difficult to get a lifelike result and the

disorder of vertices prevent from continued

adding of new parts to the model.

3.3 Painting a model

To make a model look realistic, the parts of

the model need to be painted in different

colors. In 3D Studio Max, there is a

material editor that helps the user choose

color, select reflection, or decide on a

texture for the model. The fastest and

easiest way is to paint a part in only one

color but this can make the object look too

clean. For example, a car only looks

perfect directly after it has been produced.

Figure 10: First the barrel has only one

color and some shadow.

The best painting technique is to use a

texture to cover the whole model.

Texturing is like painting a picture on a

paper and then wrapping it around the car

(Heckbert, 1986). But when a model is

wrapped, the paper gets all wrinkled,

which does not look nice. An example of

this can be seen in Fig. 12, where the top

of the barrel is stretched, and the texture

from Fig. 11 is distorted. Therefore, much

time is spent on cutting this paper to fit

nicely on the model; this is called texture

mapping (Heckbert, 1986). To do this in

3D Studio Max, the tool modifier Unwrap

UVW can be used. With this tool, the

various parts of the object can be spread

out on the texture and then resized, moved

or transformed so that 3D Studio Max is

able to cut the texture along the green

wires in Figure 13.

 11

Figure 11: Barrel texture (CGTextures,

2011).

Figure 12: Barrel before the unwrapping,

stretched and distorted texture.

Figure 13: Unwrapping the surfaces of the

barrel on to the texture. Here the barrel is

represented as green and pink wires.

Figure 14: The barrel after the

unwrapping.

This helps explaining to 3D Studio Max

how to take a part on the texture and fit it

on the car so it does not get stretched out

or wrinkly. Something that gets stretched

out easily when modeling for a racing

game is the race track, because it has to be

very large. Graphics cards have a limit on

how large a texture can be, and even the

largest texture allowed would not be

enough to cover the landscape without

 12

being stretched out.

3.4 Modeling the world

A big part of modeling is the tracks to

drive on, and it is one of the most

important parts in a game. There are

several challenges when it comes to

modeling a landscape, one of them is to

simplify the real world to fit in a model

and still keep the realistic appearance. As a

game developer, the simplicity and the

realism has to be balanced to keep the

simulation look realistic and still avoid a

low frame rate.

There are two common ways to create a

landscape, for instance, by using a height

map (Finney, 2004). A height map is a 2

dimensional grayscale picture that maps

directly to the surface of the landscape

where the brightness of each pixel

represents the height of that area in the

landscape. Downside with this technique is

the resolution on the height map. For

example, if a game developer wants to

create a landscape that is 1 square

kilometer and the developer wants to

represent every square meter with one

pixel, then a height map with 1000 x 1000

pixels is needed. With 8 bits per pixel the

result is a height map at 1 MB, which is

large for a small landscape.

Figure 15: An example height map used

for creating the alley in Road Kill

Another way to proceed is to use 3D

Studio Max to create the landscape with

much flexibility to do changes. With this

approach, all the modifiers in 3D Studio

Max will be available for the developer’s

advantage and the height map technique

can even be used as one of the tools. While

this is a much more fine tuning way to go

by, it is inefficient and complex and, when

it comes to large landscapes, too heavy for

3D Studio Max because the number of

vertices is too many for the program to

handle and modify.

Figure 16: Example track in 3D Studio

Max.

 13

3.5 Results

For Road Kill, a large set of models were

created. These included: cars with

weapons, plant and a landscape. The

different techniques, discussed earlier in

Section 3.2, were all used in the modeling

of Road Kills different objects.

Figure 17: The rendered go-kart car.

Modeled with the extrude technique.

Figure 18: The rendered monster truck.

Modeled with the box technique

Figure 19: The rendered truck modeled

with the box technique

Figure 20: The rendered speedster car.

Modeled with the polygon technique

3.6 Discussion

One decision that was made early in the

study was that we wanted to make all of

the objects ourselves, to make sure that

Road Kill was so solely owned by the

members of the thesis group to make a

possible commercialization of Road Kill

easier. This made modeling a time-

consuming part of the study. Initially we

did not plan for the modeling group to

model the whole duration of the study. Due

to the amount of time needed to create as

many unique objects that are in Road Kill,

a decision was made to continue modeling.

The original plan was deviated from to

solve the main thesis problems, as

discussed in Section 1.2.

The modeling group decided to use 3D

Studio Max to create the objects in Road

Kill, Other alternatives that were taken into

consideration were Blender (Blender

Foundation, 2011) and Maya (Autodesk

Inc., 2011b). Due to the fact that none of

the members had any previous experience

of modeling, we wanted to use the most

beginner-friendly software. Based on our

first impressions, 3D Studio Max was the

best alternative for this purpose. As we

were limited in time we were unable to

study different modeling software

 14

extensively. Therefore, there is a good

possibility that we did not spend enough

time using the other alternatives to fully

appreciate their characteristics. One thing

that has to be taken into consideration here

is that as students, we had access to a

student license of 3D Studio Max. If we

had not been able to, we would have

chosen Blender as it is open source, and

therefore free to use,

The 3D Studio Max community is strong

enough, with over 20 000 topics in the

discussion groups (Autodesk Inc., 2011c),

to answer any problems a beginner could

have. Because of this, finding help on the

internet was easy and it was a good help.

Having beginner-friendly software was

important for the development of Road

Kill, because it was significant that we

started with the modeling process as early

as possible. The plan was to learn to use

the software during the first two weeks of

the study and then start modeling objects

for Road Kill. As we found out, there are

many things to learn about modeling and it

would take far more than two weeks to get

a grasp of everything. Instead we learned

most of the more advanced features, for

instance adding textures using UVW-

unwrapping, as discussed in section 3.3,

during Road Kill’s development process.

The process of modeling for Road Kill was

not a linear one, since the modeling group

found themselves returning to old models

and improving them with new proficiency.

One of the problems we faced during the

first weeks of the study was when

we loaded our objects into Road Kill, as

there had not been much consideration

about the scale of the objects in 3D Studio

Max, and this led to a problem. The scale

problem was made obvious in the Road

Kill environment, by objects not behaving

as expected. To illustrate the scale

problem, a car that is 20 meters tall will

appear to be falling in unnaturally slow,

compared to a normal sized car, with

earth’s normal gravitational pull of 9.82

m/s
2
. In order to compensate for this, we

could calculate our own values of these

types of physical constants to fit the scale

of our objects, which would take

unnecessary time. Instead this was handled

by trial and error rescaling of the models in

3D Studio Max until we found a size that

worked correctly with our physics-library.

We also had some trouble with applying

textures to our models at first. Later on we

found out about the UVW-unwrapping

feature in 3D Studio Max, which made it

easier to scale, move and resize the

textures to fit the objects.

 15

4 Graphics

The role of graphics in games grows more

and more important as the quality of

computers' graphics hardware and players'

demands increase. Better graphical effects

in games can give players a better gaming

experience and a stronger illusion of

reality. This chapter will describe some

basic properties of modern graphics

hardware and some algorithms that can be

utilized to create graphical effects in

games.

4.1 Graphics Pipeline

Fixed and Programmable Graphics

Pipelines

One of the most important features of

graphics cards today is that they have a

pipeline, the so called graphics pipeline,

which consists of mainly three different

steps: application, geometry and rasterizer.

The Application step is executed on the

CPU and is responsible for creating

graphical objects. This means that, in both

fixed and programmable pipelines, the

application step is programmable for the

developer.

The Geometry step is responsible for,

among other things, moving objects in the

world, some lighting computations on

triangles and projecting the world from 3D

to 2D.

The rasterizer step finds out which pixels

are inside each triangle and applies

textures and colors among other things to

the pixels.

A couple of years ago, graphics cards used

a fixed graphics pipeline for rendering

graphical scenes, which basically meant

that programmers were very limited in the

ways they could implement different

graphical effects. The fixed graphics

pipeline is not used almost at all in modern

games and consoles, and Nintendo’s Wii

console that came in late 2006 almost

certainly is the last console that is not

using a programmable pipeline (Akenine-

Möller, 2008).

A Programmable Graphics Pipeline differs

from its fixed counterpart in the way that

in addition to a programmable application

stage, some parts of the geometry and

rasterizer stages are also programmable for

the developer. The programs written for

these two stages are called vertex shaders

and pixel shaders. A vertex shader handles

parts of the geometry stage while the pixel

shader handles parts of the rasterizer stage

of the programmable graphics pipeline. A

vertex shader program executes for every

vertex that is rendered by the graphics card

and a pixel shader for every pixel. This

means that operations for every pixel or

vertex are pretty simple to add.

Matrix operations

The main task of graphics cards is to

perform matrix operations, and the shaders

of modern graphics cards are so efficient

and optimized for doing this that some

matrix operations have turned into single

instructions. Because it has been shown

that graphics cards today are better suited

for executing matrix operations than CPUs

(Fan Wu, 2010), overall system

performance can be improved by letting

graphics cards handle those operations.

This can be done by using, for example,

NVIDIA's parallel computing architecture,

CUDA (NVIDIA Corporation., 2011).

 16

4.1 Lighting

Lighting in a scene is a crucial part of the

visual experience and the absence of light

in a 3D game makes a dramatic difference,

as illustrated in Fig. 21 and 22.

Figure 21: A scene rendered in a world

without light sources. Each object is

rendered with its original textures and

colors, without the influence of lighting.

Figure 22: A scene similar to Fig. 1, but

this time with a light source.

Shading

Shading is the process of using an equation

to compute the lighting of an object based

on the properties of surrounding light

sources and material properties of the

object's surface. There are three different

shading models that are used for

computing light in games: flat shading,

Gouraud shading and Phong shading. In

flat shading, the lighting is calculated per

triangle, which might give objects an

angular and artificial appearance. Gouraud

shading (Gouraud, 1971) instead calculates

light per vertex, which gives a better result

than flat shading but still very unrealistic.

Phong shading (Phong, 1975) calculates

light per pixel, which is computationally

expensive but will give a better end result

than Gouraud shading.

There are numerous different kinds of

equations used for shading calculations.

Some of them consist of four different

parts, which are called ambient, diffuse,

specular and emission, where each part has

its own color.

Figure 23: The car in the upper left corner

has only the ambient part of the light The

one in the upper right corner has only the

diffuse part. The one in the lower left has

only the specular part, and finally, the one

in the lower right has all three of them.

There is no emission part, since the car is

not self-luminous.

The ambient part represents the light that is

not coming directly from the light source

but is reflected from other objects in the

world. The diffuse part comes directly

from the light source and is not reflected or

highlighted but spread out evenly on the

surface. An example of a very diffuse

 17

material is a blackboard. The specular part

represents highlights on reflective surfaces,

and the emissive part represents the light

coming from self-luminous objects. Fig. 23

shows a graphically rendered car with all

lighting parts except emission. The color of

the ambient light is usually a weighted sum

of the diffuse and specular colors, but in

some cases the ambient and diffuse colors

are the same (Cook & Torrance, 1981)

(Cook & Torrance, 1982).

Types of light sources

The light sources that surround us in the

real world illuminate objects in different

ways. The sun, for example, is very far

away, and illuminates our world uniformly.

The light from a burning candle, on the

other hand, spreads out evenly in all

directions, and grows weaker when the

distance to illuminated objects increases.

Because real light sources behave in such

different ways, realistic lighting in

computer graphics applications is not

efficiently approximated by a single

algorithm. Instead, light sources are

divided into categories, such as directional

lights, omni lights, and spotlights; and

implemented separately.

A directional light source does not have a

position from where it emits light, but only

a direction. An example of a directional

light source from the real world is the sun:

it is so far away that its rays can be

considered parallel, and in local scale it

illuminates the world uniformly. An

illustration of directional light can be seen

in Fig. 24.

Omni lights emit light equally in every

direction, from a certain point in the world.

The light's intensity also fades with greater

distance from the light source. A real world

example of an omni light source is a light

bulb that is small enough to be considered

a point source. Fig. 25 shows an example

of how omni light is spread evenly in every

direction.

A spotlight is a light source that unlike

omni lights is not emitting light equally in

every direction. Instead, it emits light in a

cone-shaped fashion, where the light

intensity is greatest near the cone's axis.

An example of a spotlight could be a car

lamp. One way to implement a spotlight is

to assign it a source point P, direction

vector L and maximum angle θ, as shown

in Fig. 26. The light intensity will decrease

the larger the angle is between the vector L

and the illuminated point, and when the

angle exceeds the maximum angle θ; the

point will be in complete darkness.

Figure 24: A scene lit by a directional light

source.

 18

Figure 25: The top picture shows how an

Omni light works. The light is faded out

according to the distance from the source.

Figure 26: An illustration of a spotlight.

A mathematical formula for a more

advanced algorithm for spotlights is shown

in Fig. 27. This algorithm has two angles:

θu and θp, which define two areas: an

umbra and a penumbra. While inside the

umbra, a point is lit by the maximum

possible amount of light. When outside the

umbra, the point becomes less lit

depending on the angle θs between the

point and the spotlight's direction vector.

When the point is outside the penumbra, it

is not lit at all by the spotlight. This

algorithm gives a smoother transition from

maximum light to complete darkness. An

illustration of the algorithm is shown in

Fig. 28.

Figure 27: Spotlight algorithm with umbra

and penumbra. L is final light intensity and

L Max is provided with the spotlight and

the other values are illustrated in Fig. 11.

Although all of the previously described

algorithms are useful for graphics

applications, they are still poor

approximations of real light sources.

Verbeck and Greenberg’s article describes

different measures of real light intensities

and how to apply them to real-time

rendering (Praun, 2001)

Figure 28: Spotlight algorithm with a

penumbra. This algorithm gives a

smoother transition between light and

darkness than the one illustrated in Fig.

 19

26. The three angles in the figure are the

same as in Fig. 27.

Figure 29: A picture from Road Kill where

the fire has an omni light source and the

car lamp has a spotlight with an umbra,

but no penumbra. The umbra is the area

where the light is, as illustrated inside the

white lines.

4.1.1 Results

For the lighting in Road Kill, we used the

Phong shading model together with omni

lights and spotlights with only an umbra

(see Fig. 26). Omni lights were used for

the moon, fires and explosions; and

spotlights were used for the streetlights and

car lamps (see Fig. 29). The ambient light

has the same color as the diffuse light for

all light sources in Road Kill.

4.1.2 Discussion

We chose Phong as the shading model to

use for Road Kill, with the reason that it

should provide a better visual result than

flat shading or Gouraud shading. Graphics

cards today give developers the ability to

program some parts of the graphics

pipeline themselves (as mentioned in

Section 4.1), and implementing Phong

shading in the fragment shader proved to

be fairly simple. The flat and Gouraud

algorithms should be as easy to use, but the

code must be written in the application

layer for flat shading, and in the vertex

shader for Gouraud shading.

The main disadvantage of having the

shading calculations in the application or

vertex shader, instead of in the fragment

shader, is that the resulting rendered scenes

would be of a lesser visual quality. Flat

shading and Gouraud shading can still be

good options, however. This is particularly

true if a large amount of light sources are

needed, since shading can be done many

times faster with these methods than with

Phong shading.

Despite the relatively high number of

calculations done by Phong, we noticed

that the graphics cards in our development

computers could handle shading for all our

light sources in a satisfactory way.

Therefore, we decided to keep using Phong

through the whole development process.

As mentioned in the results, we decided to

approximate the moon as an omni light

instead of a spotlight or directional light.

The reason for this is that we wanted the

moon to cast shadows, and therefore

needed a position for the light source, as

will be explained in Section 4.2. We did

not use any fading for the moonlight since

we wanted to illuminate the whole world

uniformly. Since the distance between the

moon and the Earth in Road Kill is so

great, using a directional moonlight instead

of an omni light would have made little

visual difference in local areas, and would

have been less computationally expensive.

Therefore, it might have been more

efficient to use a directional light source

for the moonlight and add a specific

additional point where the moon is and

from where shadows should be calculated.

 20

We decided to use omni lights for the fires

and explosions in Road Kill, since they

tend to spread light evenly in all directions

and fade out according to distance. Some

results can be seen in Fig. 12.

Figure 30: Omni light from fire

For the streetlights and car lights, we used

spotlights with only an umbra (see Fig.

26). An in-game picture of the spotlight

algorithm depicted in Fig. 26 is shown in

Fig. 31.

Figure 31: Car lamp approximated as a

spotlight with only an umbra, as illustrated

in Fig. 26. The white lines roughly show

where the light has faded out completely.

4.2 Shadows

While lighting does improve the visual

appearance of a scene, without shadows

the scene will still seem unrealistic. Fig. 32

and 33 show the difference between a

scene rendered with and without shadows.

Figure 32: A car from Road Kill on the

ground without any shadows.

Figure 33: The same car on the same place

as in Fig. 32, but this time with shadows.

The purpose of a shadow algorithm is to

decide for every pixel if it is in shadow or

not. There are mainly two different shadow

algorithms for real-time rendering: shadow

maps and shadow volumes.

4.2.1 Shadow Maps

In 1978 Williams introduced the Shadow

Map technique (Williams, 1978). The

algorithm works by rendering the scene

with the camera's position equal to the

position of the light source. Every pixel

that can be seen by the camera should then

be illuminated by the light source, and all

other pixels should be in shadow.

Before the scene is rendered, the position

of each pixel seen by the light source is

transformed into a coordinate system

 21

where the light source lies in the origin.

The scene is the rendered from the

perspective of this coordinate system, and

the depth of each rendered pixel (i.e. the

distance between pixel and light source of

each pixel that can be seen by that light

source) is stored in a so called depth buffer.

The elements of a depth buffer that is used

for shadow calculations are called shadow

map samples.

When shadows are calculated in the world,

a comparison is made between every

pixel’s depth–as seen through the light

source’s coordinate system–and the

corresponding shadow map sample’s depth

in the depth buffer. If the depth of the pixel

is the same as the depth of the sample, the

pixel is seen by the light source and should

be lighted. If the depth of the pixel is

greater than the depth of the sample,

however, another object must have

obstructed the pixel, and therefore, the

pixel should be in shadow (see Fig. 34).

Figure 34: Shadows are calculated for a

pixel below the car tire. The depth of the

pixel is first compared against the depth of

the corresponding shadow map sample in

the depth buffer. Since the depth of the

pixel is less, the pixel cannot be seen from

the light source, and is therefore rendered

in shadow.

The shadow map technique is a relatively

efficient method. Using shadow maps will

reduce the overall performance of

rendering a scene by a constant factor

equal to the number of shadow casting

light sources. This is because a scene will

always be rendered at least once per frame,

and the creation of one shadow map for

each light source leads to the scene being

rendered one additional time per light

source. There are, however, two problems

with shadow maps that need to be

considered during their implementation.

Both of these problems originate from the

fact that the sizes, or resolutions, of depth

buffers are limited. Because of this, a

shadow map sample may correspond to

multiple pixels in the world.

Perspective Aliasing problem

Because more than one pixel are

represented by the same shadow map

sample, either all of those pixels will be

shadowed, or none of them. Because

shadows are cast on pixel groups, instead

of individual pixels, the shadow image will

be aliased and pixelated. This phenomenon

is called Perspective Aliasing (Scherzer &

Drettakis, 2005) (Stamminger & Drettakis,

2002). There is no clear solution to this

problem except to limit the view of the

shadow map (King, 2004), but doing so

will decrease the size of the area where

shadows are cast.

Bias problem

Because of the way nearby pixels are

grouped together before their depths are

stored in the depth buffer, the depth of a

pixel might be slightly different than the

depth of its corresponding shadow map

sample, even if the pixel is actually seen

by the light source, i.e. not obstructed. The

effect of this is that some pixels that should

 22

be lighted are instead cast in shadow (see

Fig. 35). This problem is called the bias

problem, or self-shadowing. An example

of self-shadowing in a scene can be seen in

Fig. 36.

Figure 35: All the pixels above or under

the red line will have the same depth value

in the depth-buffer. The pixel in the blue

sphere will be self-shadowed because its

depth is greater than the corresponding

shadow map sample in the depth-buffer.

Figure 36: all the small black dots and

lines are results of self-shadowing.

A solution to the self-shadowing problem

is to add a so called bias (Shüler, 2005). A

bias is a constant value (Lengyel, 2000)

that determines a region where shadowing

is prohibited. Having a bias stops pixels

from casting shadows on nearby pixels that

are within this region.

4.2.2 Shadow Volumes

Shadow Volumes was introduced by

Heidmann in 1991 (Heidmann, 1991). In

one version of the Shadow Volume

technique, a volume is created for every

triangle. The volume is defined as the

region that is obscured from the light

source by the triangle. Fig. 37 illustrates

such a volume.

Figure 37: A Shadow Volume created for a

purple triangle.

A pixel that is inside one or more shadow

volumes will be rendered in shadow.

Shadow volumes from multiple triangles

can be merged into so called silhouette

edges. Doing this reduces the total number

of shadow volumes, and therefore, the

number of calculations made when

shadowing objects.

The main advantage of shadow volumes is

the sharpness of the resulting shadows.

Disadvantages include having to create the

numerous volumes and testing whether

objects are located inside them or not.

 23

4.2.3 Results and discussion

We have chosen to use the Shadow Map

technique as the shadow algorithm for

Road Kill. Because we had some previous

experience with shadow maps, we knew

that the technique would be relatively easy

for us to implement quickly. By

implementing a shadow algorithm as

quickly as possible, we could save

development time for other kinds of game

features. Another reason for using shadow

maps was that we wanted a way to render

shadows as quickly and efficiently as

possible.

In Road Kill, the moon is the only light

source that casts shadows. We have

reduced the effects of the resolution

problem by only rendering shadows within

a constant distance from the player's own

car, but we still need a small bias to

prevent self-shadowing.

Figure 38: Scene in Road Kill with

shadows and enough bias to prevent self-

shadowing.

Figure 39: The same scene as in Fig. 38,

but this time with a lower bias, which leads

to self-shadowing artifacts.

Finding the right balance between how

much of the world should be affected by

shadows, how high the bias should be, and

which resolution the depth buffer should

have, proved to be a delicate task.

Shadowing a greater part of the world,

while keeping the bias and depth buffer

resolution constant, would lead to an

increase in size of all shadow map

samples, which means that more pixels

would be mapped to the same sample. This

would lead to a greater amount of self-

shadowing (see Fig. 39).

By having a too high bias, some pixels that

should be in shadow may not be shadowed.

If, for example, an object was obstructed

by another object, but the distance between

them was less than the minimum distance

indicated by the bias, the obstructed object

would not appear in shadow.

While increasing the depth buffer

resolution would reduce the effects of self-

shadowing, it would also reduce

performance, since a higher number of

shadow map samples would have to be

 24

processed.

4.3 Particle Systems

Some objects are more dynamic than

objects with rigid bodies (which are

discussed in Section 3.2), and are therefore

ill-suited for modeling. To create these

graphical effects, like fire, smoke, and

explosions, a particle system can be, and

generally is, used (Reeves, 1983). To

create a more compelling game, it is

important to have these graphical effects

due to the added liveliness.

There are some characteristics of particle

systems that limit how well real world

phenomena can be simulated, e.g. a dust

cloud. The main problem is simply that it

is not possible to imitate a real dust cloud

with real-time graphics due to the complex

physical dynamics and the huge number of

particles. However, with the right

techniques it is possible to still produce a

visually pleasing result.

With two-dimensional particles, a

developer is able to use a larger number of

particles at the same time, improving the

look of the graphical effect. This increase

in particles is due to the much reduced

complexity of drawing a two-dimensional

object compared to a complex three-

dimensional one. This leads to the problem

of having two-dimensional particles in

three-dimensional space – rotating around

them would ruin the imitation of the real

world phenomena.

Figure 40: A collection of particles that do

not stay perpendicular to the camera.

Using two-dimensional particles is

preferable in real-time graphics, and to

solve the rotation problem, a technique

called billboarding is used.

4.3.1 Billboards

When a textured polygon is rotated based

on the view direction, a technique called

billboarding (McReynolds, T., Blythe, D.,

2005) is used. To solve the rotation

problem, which is discussed in Section 3.5,

each object is always drawn perpendicular,

by rotating them around their own axis, to

the screen to hide the fact that they are

two-dimensional.

Flattening of complex objects in to two-

dimensions has been used extensively in

real-time graphics, and the results are

generally quite good as long as a distance

is kept between the camera and the

flattened object. As soon as the object is

approached, it becomes obvious that it is

not a real three-dimension object,

especially if the object is only rotated

around a single axis, like trees.

 25

Billboards in particle engines

All particles in particle engines generally

each have some properties, e.g. velocity,

position, and whether or not they are alive

and should be rendered. At a distance, this

technique produces a good looking result

as seen in Fig. 41.

Figure 41: A torch fire consisting of three

different particle systems (each spawning a

different particle color) and a total of

17000 particles.

With billboarding, the number of particles

that are available can be increased by not

using three-dimensional objects, and

maximizing the number of particles that

are available is critical when it comes to

creating realistic fuzzy objects.

4.3.2 Soft particles

When a billboarded particle intersects a

surface, a common artifact appears where

the half intersected particle has an

unnaturally sharp edge against the surface.

These sharp edges are unwanted, because

they ruin the graphical effect by acting in

an unnatural way.

By implementing soft particles (T. Lorach,

2007), this artefact is avoided by fading the

pixels, of the particle, near the intersection.

As shown in Fig 42, the level of fading is

correlated to the distance to the nearest

object behind the

particle.

Fig 42: Here, the particle is faded

depending on the distance to the nearest

object behind the particle. The intersecting

part, near d1, is under the ground and is

therefore never drawn at all.

Even though this technique can improve

the look of particle systems, especially if

the particles of the system are quite large,

it requires reading of the depth buffer, to

get the distance between the particle and

the object behind it. The reading operation

can be quite costly if the buffer is large,

depending on the resolution of the screen.

4.3.3 Results and discussion

Due to the limitation of memory access on

the graphics card it is important to limit the

number of particles in each effect. An

example of the significance of this is that

the torch shown in Fig. N was not included

in Road Kill due to its high number of

particles, despite its good look. So there

was a large part in the development of the

effects that was merely optimization.

Road Kill has 13 particle engines that

 26

supply effects such as missile explosions,

muzzle flashes from miniguns, gravel

spray from the tires, and exhaust fumes.

Fig. 43 and Fig. 44 illustrate a number of

them.

Figure 43: An illustration of the in-game

explosion and torch particle effects of

Road Kill.

Figure 44: An illustration of exhaust and

gravel spray effects of Road Kill.

Because of the added memory accesses

and the lowered frame rate due to soft

particles, we decided not to use this

technique because we felt that the artifact,

which is discussed in Section 3.5.2, was

never really that prominent. We also felt

that we would benefit more from being

able to use a higher amount particles

compared to having fewer that were soft.

4.4 Culling

(Cohen-Or, 2003) Even today, with

graphics cards that can draw incredible

amounts of triangles very fast, rendering

entire 3D worlds will still result in a

bottleneck if the worlds are large enough.

By only rendering the objects that will

actually appear on the computer screen, a

graphics card can avoid doing unnecessary

calculations.

Culling is a method for filtering out objects

in the world that will not be seen on the

computer screen at a particular time. There

are many different culling techniques that

can be used, and which will be explained

in this section.

4.4.1 View frustum culling

In 3D graphics, the view frustum is a

volume that defines a camera's field of

view. Only primitives that are inside the

view frustum can be seen by the camera.

The view frustum consists of six planes, as

illustrated by Fig. 45.

Figure 45: A view frustum defined by the

six planes called Near, Far, Top, Bottom,

Left and Right.

Since the primitives that are outside the

view frustum will end up not being

 27

displayed on the screen, it is unnecessary

to send them to the graphics card at all.

Therefore, they can be culled.

4.4.2 Backface culling

Another, very simple culling technique is

called backface culling. It can be turned on

in OpenGL with one command, and then,

triangles that are facing the camera with

their back side will not be sent to the

graphics card for rendering. Fig. 46

illustrates two primitives which are back

face culled.

Figure 46: A view frustum with two

primitives inside. The primitives are drawn

after view frustum culling has been

applied. The red lines mark the triangles

that will be back face culled because they

are facing the camera with their back side.

4.4.3 Occlusion culling

Even with both view frustum culling and

backface culling enabled, objects that are

hidden behind other objects would be

drawn unnecessarily. For example, all the

three spheres in Fig. 47 would be drawn,

but only the leftmost one would be seen by

the camera.

Figure 47: The two red spheres are hidden

behind the white one, and will be

unnecessary to draw.

Occlusion culling deals with this problem

by filtering out primitives that are fully

hidden behind other primitives.

Nevertheless, most techniques for

occlusion culling are inefficient, and the

time taken to cull an occluded primitive is

in most cases greater than the time saved

by not rendering it.

4.4.4 Portal culling

The portal culling technique can be

described as a mixture between occlusion

culling and view frustum culling. When the

camera is positioned inside a building or

similar structure (such as the one in Fig.

48), it is possible to create multiple view

frustums that perfectly fit door openings

and similar gaps in the walls. The

primitives that are located inside any of

those view frustums can be seen by the

camera, and are rendered as normal. The

primitives that are outside all of the view

frustums are completely hidden behind the

building's walls, and can be culled by

using the relatively efficient view frustum

culling technique.

 28

Figure 48: A view frustum has been

created for each door opening. The red

spheres are hidden behind the building's

walls, and have been portal culled. The

white spheres are visible by the camera,

and will be drawn.

An algorithm for portal culling was first

introduced by John M. Airey in 1990

(Airey et. al., 1990) (Airey, 1990). Since

then, Teller and Sequin (Teller & Sequin,

1991) (Teller, 1992) and Teller and

Hanrahan (Teller & Hanrahan, 1994) have

created more efficient algorithms for portal

culling.

4.4.5 Level of Detail

Just like in the real world, objects far away

from the observer of a scene will appear

smaller than objects that are close. When

an object is far away enough, the viewer

cannot tell whether the object consists of

many vertices, or just a few. Rendering

objects with their full amount of vertices is

therefore unnecessary when the objects are

sufficiently far away. Level of detail is a

technique that utilizes this fact to reduce

the number of vertices rendered in a scene.

To be compatible with the level of detail

technique, a program must contain

multiple versions of the same model. Each

version of a model should be made up of a

different number of vertices. When an

object is about to be rendered to the screen,

a suitable model version is picked based on

the object's distance to the camera. For

example, when the object is very close, the

version with the highest number of vertices

is rendered. Fig. 49 illustrates a situation

where different versions of a cylinder are

drawn depending on its distance to the

camera.

Figure 49: A cylinder is approximated by

models with fewer vertices when the

distance to the camera increases.

Some versions of the level of detail

technique increase system performance

even further. Objects that are sufficiently

far away can be rendered as 2D images,

also called imposters, instead of real 3D

models (Maciel, 1995). If they are small

enough, and also far away, some models

may not be drawn at all. Memory can also

be saved by using textures of lower quality

for models that are further away

(Cebenoyan, 2004).

4.4.6 Results and Discussion

Road Kill uses the relatively simple

backface culling and view frustum culling

techniques to increase performance during

the rendering of scenes. Since these two

techniques are both simple to implement

and efficient to use, we recommend all 3D

 29

game developers to use one or both of

them in their games. The only reason for

not using these two methods is the time

needed to implement them. If, for example,

a game is developed, where the number of

objects rendered in the world is low, no

performance increasing algorithms may be

needed at all. In such a case, development

time may be better spent implementing

other features.

Occlusion culling was not implemented in

Road Kill, because we decided that the

time needed to find and implement an

efficient algorithm was better spent on

other game features and effects. The

benefit of having occlusion culling would

also be marginal, since, at the time of

writing of this report, Road Kill consists

mainly of open landscape, where few

objects obstruct each other.

There are no indoor environments in Road

Kill, but portal culling may still have been

useful if applied to the road valley that

makes up most of the race track (see Fig.

50). However, once again we decided that

the development time required for

implementing portal culling was better

saved for other, more important features.

Figure 50: This picture illustrates that by

treating cliffs as building walls, and the

valley as a door opening, portal culling

could have been implemented and used

successfully in Road Kill.

Level of detail was not used in Road Kill,

mainly because of the additional time

needed to model different versions of

objects. Even though we made only one

version of each object in Road Kill, we

still consider the amount of time that was

spent modeling to be significant. This is

further discussed in Chapter 10.

4.6 Reflections

Most models in a 3D world are made to

approximate real-world objects. Some of

those objects, such as mirrors, water pools,

and flat, shiny metal sheets, are highly

reflective. To render those objects in a

realistic way (compare Fig. 51 and 52), a

developer needs to implement a way to

approximate and cast reflections.

Figure 51: A car without reflections looks

too clean and unrealistic.

Figure 52: The same car as in Fig. 51, but

with reflections added. This car does not

look realistic either, but heavy reflections

have been added to illustrate the

difference.

 30

Cube maps

To cast reflections in a satisfactory way, a

reflection algorithm must be able to map

an image of the surrounding world onto the

surface of a reflective object. Such maps

were introduced by Blinn and Newel

(Blinn, 1977), and are called environment

maps.

In real-time rendering, the cube map

technique is the most widely used

environment mapping technique today

(Akenine-Möller, 2008). The technique

was introduced by Greene in 1986

(Greene, 1986), and, as the name implies,

it uses a cube as an environment map. The

cube is first created around the reflective

object. Images of the surrounding world

are then projected and stored in each of the

cube’s six sides

To calculate the color of reflections in a

pixel, a reflection vector is calculated from

the pixel’s normal vector and the eye

vector, i.e. the distance vector from the

camera to the pixel, according to the laws

of optics. The reflection vector will point

to a pixel in one of the cube’s sides. The

color of the reflection will be determined

by the color of this pixel.

Figure 53: Reflections for a certain pixel

in a teapot is calculated using cube maps.

A reflection vector is calculated from the

eye vector and the pixel’s normal vector.

The color of the reflection is determined by

the pixel pointed to by the reflection vector.

Incorrect Reflections

Due to performance and memory

limitations, a unique cube map cannot be

created for every pixel. Since the

reflections in multiple pixels are calculated

from the same cube map, this method does

not provide completely realistic shadows.

When the environment is projected onto

the cube map, a 3D world is reduced to six

2D images. During this transformation,

information about the depth of different

parts of the world is lost. An improvement

that can be made to cube maps and

environment maps in general, is to add a

depth value to each pixel stored in the map

(Szirmay-Kalos et al, 2008). These depths

can be used to create reflections of

increased realism.

4.7 Texture Blending

When creating models in modeling

software, such as 3D Studio Max, it is

possible to apply several textures together

on the same object. Directly placing

different textures next to each other will,

however, result in ugly transitions, as

illustrated in Fig. 54.

 31

Figure 54: Several textures are used

without texture blending. A particularly

ugly transition can be seen between the

grass and mud textures.

One solution to this problem is to simply

use only one texture. Doing this will

introduce another problem: texture

repeating. This results in a very unrealistic

world, such as the one depicted in Fig. 55.

Another solution is to blend textures

together in the programmable graphics

pipeline, as has been done in Fig. 56.

When blending two textures together, a

grey scale map is used to determine how

much of each original texture should cover

each point of the resulting texture. A bright

area of a grey scale map could, for

example, correspond to a grassy texture,

while darker areas correspond to a rocky

texture. A grey area would then correspond

to a texture which is both fairly grassy and

fairly rocky.

Figure 55: A small part of a world with

only one texture. This results in an

artificial visual appearance due to tile

repeating.

Figure 56: The same part of the world as

in Fig. 55, but this time with texture

blending between four textures.

4.7.1 Results and discussion

The world of Road Kill consists of a valley

located in a desert landscape. Inside the

valley lies the race track. The ground is

covered by a combination of four textures:

grass, dirt, sand, and cracked rock. The

race track is mostly covered by the cracked

rock texture. The open desert parts of the

landscape and the walls of the valley are

cover by the sand texture. Patches of grass

and dirt are also scattered around the game

world.

Texture blending is performed to create a

more realistic and visually pleasing terrain.

Since we have four different ground

textures, we need an additional three grey

scale textures for the blending. Because

texture blending of this amount of textures

takes a lot of time, we initially performed

the blending only once, during Road Kill’s

loading phase. We did this by blending all

textures onto a plane. This plane would in

turn be used as one large texture tile to

cover the whole game world. We soon

discovered that a texture tile of that size

would require a very large resolution in

 32

order to provide a visually pleasing result.

Such a high resolution proved to be

impossible to use due to memory

constraints. Therefore, we changed our

program to perform blending each frame,

which means that we no longer have to

store any resulting textures between

frames.

Some results of our final texture blending

method are shown in Fig. 56.

4.8 Camera

The control of cameras in a game is just as

important as the control of cameras in

movies. The movement of the camera can

influence how we think of the content in a

game and enhance the game experience.

Therefore it is important to implement a

well-functioning and realistic camera.

There are several different alternatives

when it comes to observing a game. The

two most common classifications are the

first person perspective and the third

person perspective.

Figure 57: (a) Third person camera

position and view. (b) First person camera

position and view.

The first person perspective is

implemented by setting the position and

rotation for the camera to the position and

rotation of the character. Ideally the

camera position should be the same as for

the player’s character’s eyes, but there can

be a problem that the own character

concealing the view of the player. To avoid

this problem the character can be excluded

from the rendering loop.

In the third person perspective, there are

several options how the camera will move.

The camera can be moved by the player

regardless of the position of the character,

which is usually used in strategy games, or

the camera can move and rotate depending

on the characters. The third person

perspective is more expensive for the

performance because of the need to check

if the camera collides with other objects

each frame. This collision detection is

needed to avoid that the camera, for

example, ends up on the wrong side of a

wall, i.e. not the same side as the character.

If the camera shall follow the characters

movement and rotation even more

calculations are needed calculate the

position and rotation of the camera.

One way to achieve the effect that the

camera is following the character is to get

the position and rotation for the character.

Then an offset is added to the position of

the character in a direction depending on

the rotation of the character and then make

the camera to look at the character. This

seems to work in theory, but in practice the

camera becomes unsteady and unrealistic.

A better way is to simulate that the camera

is following the player attached to a spring

with dampening. This will lead to

smoother movement for the camera, much

like a real camera in cinema productions

with accelerating movement, but it is still

 33

possible for the camera to end up inside

other objects, and consequently there is a

risk not being able to see the character at

all times. A solution for that problem is to

make the camera a part of the physics

world but without rendering it so that it

would stay invisible for all players. Now

another problem arises, the camera can

influence the other objects in the world and

if an object comes in the way of the

camera and prevents it from moving

forward then, because of the spring

attached to the character, the character will

not be able to move forward either.

Another way to implement a camera,

which follows the character with a smooth

movement, is to calculate the distance to

the desired new position but only move the

camera a fraction of the total distance. This

will make the camera move smoother and

much like a damped spring.

A more sophisticated way to follow the

player is to use an interactive camera that,

like in cinema, focuses on important parts

in the story and makes sure that the player

does not miss anything by looking in the

wrong direction. When an interactive

camera is used, there are one or more

preset routes that it will follow, depending

on the area that the character is located in.

In this way, there is more assurance that

the camera will behave satisfactory. In this

method, some colorful effects like

zooming and rotating the camera can be

used with good results.

4.8.1 Results

Road Kill uses a third person perspective

camera that follows the car with the

method of calculating the distance of the

desired new position, but moving it a

fraction of the distance for smoother

movement.

To save some time, we decided to use the

existing spring constraints in the Bullet

physics engine to attach a slim cylinder

reaching from the car and diagonally

backwards. The camera was then

positioned in the end of the cylinder

looking at a point a little bit ahead the car.

We used a cylinder to avoid getting stuck

with the camera behind an object.

 34

5 Physics engine

The physics engine handles the simulation

of all physics for example collisions and

applying forces to the objects.

Figure 58: The blue truck is driving right

through the lamp post when the lamp post

is not a part of the physics engine.

A physics engines tasks are to calculate if,

where and when objects collide with each

other and then respond to the collisions

according to the laws of physics. To be

able to achieve this, generally physics

engines include two main parts, collision

detection/collision response and dynamic

simulation.

For each frame there are many tasks that

need to be done and therefore each task

needs to be done as fast as possible for a

game to run smoothly. Because of the

many complex calculations in the physics

engine much time can be saved by

applying various simplifications and

speed-up techniques.

5.1 Detecting collisions between

objects

As the name indicates, collision detection

is responsible for detecting the collisions

between different objects. The most

difficult part with collision detection is not

to calculate the actual collisions but to do

this really fast. Collision response uses the

collisions detected earlier and applies the

corresponding forces to the objects

involved.

As mentioned in the beginning of Section

5, the problem is not to detect the

collisions but to do this within a very small

time limit. The frame rate to strive for is

roughly 60 frames per second (Watson &

Luebke, 2005). This means that every

frame has to be calculated in less than

seventeen milliseconds.

As described in Section 3.2, every object

consists of a collection of triangles. For

example, one of the cars in Road Kill

consists of 20 000 triangles as shown is

Fig. 59.

Figure 59: Illustration of how many

triangles one of the cars in Road Kill

contains.

With unlimited time it would be possible to

actually calculate intersections between

 35

every single triangle but in real time

graphics this is not possible due to the time

constraint, mentioned earlier, and the large

amount of triangles in the objects that need

collision detection. The solution to this

problem there are lots of speed-up

techniques.

5.1.1 Bounding volumes

Since it is not possible to check every pair

of triangles for intersections every frame,

the triangles need to be divided into

geometric shapes, surrounding the

triangles of an object. These shapes are

called bounding volumes (BV) (Akenine-

Möller, 2008). There are a few common

BVs: bounding sphere, axis-aligned

bounding box (AABB) oriented bounding

box (OBB) and k-discrete oriented

polytope (k-dop).

Figure 60: Examples of bounding volumes:

Sphere, AABB, OBB and 8-dop.

There is no right or wrong when it comes

to choosing BV because all of them have

different trade-offs. Either the BV is tight

around the triangles of the object, which

demands a complex geometric shape, or a

larger fit with a common geometric shape

according to Fig. 60. If a BV has a small fit

then fewer triangles will need to be tested

for intersections since fewer BVs would

intersect. On the other hand the complex

geometric shape of the BV will cause the

computation of the intersections to take

longer time. If the BV is a simple

geometric shape the complexities are

reversed with a higher amount of

intersections and faster computations

instead.

Bounding Sphere

Figure 61: Car approximated with

bounding sphere; the easiest BV to rotate

and translate.

A bounding sphere is a bounding volume

that surrounds all the triangles of an object.

The advantages with bounding spheres are

that they are easy to create (Ritter, 1990),

translate, rotate and scale. These properties

fit nicely for objects that are moved

frequently. The drawback is that the

volume inside the sphere is much larger

than the encased object as illustrated in

Fig. 61.

Axis-aligned bounding box

AABB is box that always stays aligned

with the x-, y- and z-axis. This is an even

easier BV to create than a bounding

sphere.

 36

Figure 62: An AABB containing the vehicle

object.

The drawback with an AABB is that it has

to be recreated when rotated since it needs

to stay axis-aligned. Although this is not

that much of a problem since it is a very

easy BV to create. The volume for AABB

is less than the volume for a sphere so

there are fewer intersections between the

BVs. However the more complex shape for

AABB requires more calculations when

the intersection occurs.

Oriented bounding box

An OBB is a box that is rotated to best fit

the objects within as seen in Fig.31. It is

hard to create and to manage but do have a

tight fit around the object. An OBB needs

much memory to be stored and have rather

expensive collision testing but because the

tight fit there are not many OBB-

intersections without actual triangle

intersection. Because of the free rotation of

the OBB there is no need to recalculate,

just rotate it as the object.

Figure 63: An OBB containing the vehicle

object.

K-discrete oriented polytope

A k-dop is defined by the tightest set of k/2

slabs. A slab is the volume between one

pair of parallel planes as illustrated in Fig.

64 (Ericson, 2005). In Fig. 64 the black

lines represent the planes that limit slab 1

and slab 2. If a third dimension were to be

added, two additional slabs that are parallel

to this paper are needed. In this three

dimensional case it would be a 6-dop and

if the slabs are axis-aligned it would be an

AABB.

Figure 64: A box in two dimensions

defined by two slabs. The black lines

represent the planes that limit the two

slabs.

 37

Figure 65: A 10-dop containing the vehicle

object. The number 10 in 10-dop means

that there are 10 planes that limit the

object. The last two planes are parallel to

this paper and are not shown.

Convex hull

In mathematics, a convex hull shape is the

shape that contains the points with a

minimal convex set. A good metaphor to

illustrate the convex hull in two

dimensions is a large rubber band

tightening around the object (see Fig. 66).

In three dimensions, the object is inside an

inflated balloon and the hull is minimized

by letting the air out of the balloon

(Barber, 1996).

Figure 66: A metaphor for how a convex

hull contains an object.

A convex hull is a complex shape that is

hard to create and rotate but the big

advantage with it is that the shape can

enclose a generic convex object. Therefore

it is very useful when, for example, the

objects are created at run-time. If the

object is not convex the enclosed area will

be larger than wanted. A solution to this

problem is to test whether it is convex or

not and if it is the object can be

decomposed into convex objects.

Triangle mesh

When all triangles of an object are stored

one by one a translation needs to change

three vertices for every triangle. If instead

a mesh is used to store the triangles the

common vertices that connect the triangles

only need to be changed once (see Fig. 67).

Figure 67: A triangle mesh where the red

dot highlights a vertex that six triangles

have in common. If the triangles where to

be moved one by one instead of as a mesh

then this vertex would be changed seven

times instead of one.

If a triangle mesh is to be moved there are

nevertheless many vertices needed to be

calculated for a new position and therefore

a triangle mesh is best suited for static

objects.

An interesting feature for triangle meshes

is that it can be deformed by changing the

position of some vertices relatively the

other vertices. Picture a fishing-net

hanging in the air. If the net is pushed at

one point the net surrounding that point

will also be moved but not that much as

the point itself. This will simulate

 38

deformable objects very well if there are

enough vertexes to make the dent look

smooth. If the net has very few vertexes it

will be as if the meshes are very large and

the deformation will look angular and non-

realistic.

Compound of BVs

Sometimes it is natural to group several

objects into one big object, for example, a

car has a chassis and four wheels. A

compound is also useful when an object

cannot be represented with an easy

geometrical shape or is concave. The

object can then be decomposed into several

easy geometrical shapes or convex objects

and bound together in a compound.

A decomposition of an object gives the

opportunity to bind them with constraints.

For example, the four wheels and the

chassis are all different shapes. The wheels

can now be attached to the chassis with

constraints so the wheels are allowed to

rotate around one axis.

5.1.2 Spatial data structures

Even with perfect bounding volumes it still

takes too much time to calculate the

intersection between all pairs of BVs every

frame. A solution to this problem is to

create data structures for the BVs.

According to Fig. 9 the structure divides

the world in volumes, each containing

BVs. By doing this we do not need to

check collisions between every pair of

BVs, only the ones that are in the same

area of the spatial data structure.

Bounding volume hierarchy

The most common spatial data structure is

bounding volume hierarchy (BVH) and is

built like a tree data structure (Sweeney,

1999). The root of the tree is a BV that

contains all other BVs. The children of a

BV in the tree contain smaller BVs which

was included in the parent. Therefore it is a

hierarchy of BVs as illustrated in Fig. 9

(Cormen, 1990).

If all collisions between a BV A and the

rest of the world are wanted, see Fig. 68

and 69, the first intersection test is

computed between BV A and BV 1. Since

they intersect intersection testing continues

by testing A against BV 2 and 3. Here BV

A only intersects BV 3 so all testing

against the BVs in BV 2 can be discarded.

The procedure is then continued by

intersection testing BV A against BV 7 and

8. BV A intersects both 7 and 8 and

therefore all BVs inside 7 and 8 needs to

be checked. Further, BV A intersects BVs

9 and 11 and since they are leaf nodes in

the hierarchy BV A needs to be tested

against all primitives inside them. Finally

the result is that A intersects the primitive

inside BV 9.

Figure 68: A world that is surrounded by

BV 1 and the BV A that moves towards the

world.

 39

Figure 69: Same as Fig. 68 except that BV

A now intersects the world.

When using BHV, the time complexity will

be O(log n) (Akenine-Möller, 2008), where

n is the number of BVs, tests instead of

O(n) as it would have been without the

BVH.

A BVH is either built top-down or bottom-

up. If it is built top-down, first a BV that

contains all other BVs is created and then

split by a plane on the axis where the

bounding volume is longest. The two new

BV are then minimized so that they fit

their BV children as tightly as possible.

The procedure is then continued again until

a stop criterion is fulfilled, for example

two splits as shown in Fig. 70.

A tree built bottom-up starts with

containing all objects in BVs and making

them the leaf-nodes in the tree. The BVs

will then be paired together, two or more,

by some merging criterion and be enclosed

in new BVs. The new BVs will be the

parent nodes, to those BVs paired, in the

tree. Those steps will be repeated until all

objects are enclosed in one BV. The

bottom-up build takes more time to create

and is harder to implement, but usually

produce better trees than the top-down

build (Omohundro, 1989).

Figure 70: Example of creating a BVH

using AABBs as bounding volumes. First

an AABB is created to contain all objects.

Then it is split by the red-dotted line on the

x-axis because that side was the longest on

the AABB. The new AABBs are minimized

and then split again.

Binary space partitioning tree and Kd-

tree

A Binary space partitioning tree (BSP-tree)

(Samet, 1989b) is a binary tree where the

parent node a box is split by a plane and

which child they end up in depend upon

which side they are of the plane. This is

continued recursively until the stop criterion

is reached, for example, two BVs in each

child.

 40

Figure 71: The picture illustrates how to

make a BSP-tree by splitting the box with a

plane recursively. Pay attention to the

triangle ending up in both C and E

because it is on both sides of the splitting-

plane.

One problem that can occur when the

splitting plane is poorly chosen is that all

geometry is intersecting the plane and all

geometry will be placed in both children,

this is illustrated with the triangle that

exists in both the C and E child in Fig. 10.

This problem can lead to an infinite loop if

the geometry continues to end up in both

children and the end criterion never is met.

A nice feature of BVHs is that only one

vector and one point for each plane needs

to be saved in the graphics-memory and

very little memory is therefore occupied.

The Kd-tree is very similar but has an

advantage that it has fixed order of the

splitting planes (Samet, 1989a). With the

Kd-tree the only thing needed to be saved

in the graphics-memory is a point. Usually

BVHs are used for static scenes but may be

used for dynamic as well.

Octree

An octree is similar to a BSP-tree. A box is

split along all three axes by three planes

that intersect each other at the center of the

box. This creates eight new boxes, hence

the name octree.

Figure 72: Example of an octree

The splitting is then recursively repeated

until a stop criterion is fulfilled for

example a maximum depth of the tree is

reached or maximum amount of objects in

the box (Samet, 1989a) (Samet, 1989b). A

negative property of octrees is that objects

often intersect several splitting planes and

end up in several child boxes. A solution

for this problem is called loose octrees

(Ulrich, 2000). With loose octrees the risk

for objects to end up in more than one box

is decreased.

5.1.3 Intersection test

To this point no real collision detection has

been discussed, only speed up techniques

that will make it possible to detect

intersections in real-time in a large scene.

There are many ways to determine the

intersections in a scene. There are mainly

four different techniques: analytical,

 41

geometrical, separating axis theorem and

dynamic tests.

Analytical testing

Analytical testing calculates the

intersection between two objects by

inserting the mathematical representation,

an equation, of one object into the other

objects equation and then tries to solve the

new equation. If there is a solution then the

objects intersect in that point. Calculating

these intersections in real-time is not an

easy task because many intersection

algorithms are very ineffective and they

need to be improved significantly to meet

the timing requirements of a real time

game.

Geometrical testing

Geometrical testing is suitable for testing

intersections between boxes and rays. To

test intersections geometrically between a

box and a ray, three slabs are needed. As

mentioned earlier, a slab is defined as the

volume between two parallel planes

illustrated in Fig 73.

Figure 73: A ray intersecting the box in

two dimensions.

The picture in Fig. 14 describes the

algorithm. t
x

min
 denotes the time when the

ray enters the vertical slab and t
x

max

 is the

time when the ray exits the same slab.

Similarly, t
y

min
 and t

y

max
 represent the

same timing but with the horizontal slab

instead of the vertical slab. If the later min

value is less than the first max value an

intersection has occurred, otherwise there

is no intersection. The point for

intersection is not given by this algorithm

although it is rather simple to expand the

algorithm to give the exact point. The point

is given by inserting the time of

intersection into the ray equation. In three

dimensions three slabs are used instead of

two. The reasoning stays the same.

Separating axis theorem

The separating axis theorem (SAT) is a

very important tool for intersection testing

(Gottschalk, 1996) (Greene, 1994). The

SAT is built upon the fact that there can be

no intersection between two convex

primitives if there is a plane where the

orthogonal projections of the primitives do

not overlap. The only planes that really

need to be tested against are the planes that

are orthogonal any face of the two objects

and the cross product between one edge

from each primitive.

Figure 74: Two boxes projected to a plane

where they overlap.

 42

Figure 75: The same two boxes projected

on to a plane where they do not overlap.

Therefore the primitives do not intersect

with each other.

Dynamic testing

All the intersection testing methods

mentioned earlier have been static which

means that the intersection testing is done

on objects that do not move during testing.

The problem with static testing is that if

the object move to fast between two

frames intersection can be missed.

Dynamic testing is designed to solve this

problem. Dynamic testing takes more time

than static testing and is therefore seldom

used in real time collision detection

systems.

Figure 76: The sphere is going right

through the wall. This is possible when

static testing is used instead of dynamic

testing.

5.2 Existing physics engines

If a game developer has limited resources,

using an existing physics engine should be

carefully considered. There are a few

stable and capable open source

alternatives, which can be a good

alternative to proprietary physics engines

when resources are limited. Even though

the open source physics engines do not

come with any guarantee or support, as

with commercial physics engines usually

do, they generally have a high standard and

a big helpful community so it can be a

satisfactory option even for projects with

large budgets.

Bullet Physics Library

Bullet (Game Physics Simulation, 2011) is

an open source 3D game multiphysics

library, available under the ZLib license

(Roelofs et al, 2005), which provides

collision detection, soft body and rigid

body dynamics. It is possible to use only

the collision detection library and apply

other dynamics for custom fit. Both

discrete and continuous collision detection

are supported in Bullet which suit software

with both precision and high speed body

requirements.

The BVs that are included in Bullet are

several simple geometrical objects as

boxes and cones. Bullet also supplies

generic convex hull and triangle mesh.

Additionally Bullet has limited constraints

for rigid bodies, such as ball-socket and

hinge constraint, and deformation of non-

convex triangle meshes.

Open Dynamic Engine (ODE)

ODE (Smith, 2006) is an engine designed

for stability, robustness and to be fast

 43

rather than supplying perfect physical

accuracy in a simulation. Therefore ODE is

best suited for real-time simulations and it

is good for simulating articulated rigid

bodies such as vehicles and legged

creatures.

ODE uses hard contacts instead of virtual

springs to respond to contacts. This means

that there will be no penetration between

objects and the error-prone virtual spring

alternative is not needed. A virtual spring

system is simply explained a

representation of objects as a set of point

masses connected with weightless springs.

This method is popular when handling

deformable objects.

Built-in collision detection is included in

ODE but it can be replaced by external

collision detection libraries. The collision

primitives included in ODE are sphere,

box, cylinder, capsule, plane, ray, triangle

mesh and convex hull.

ODE is released as free software and can

be redistributed or modified according to

either GNU Lesser General Public License

(Free Software Foundation, Inc., 2010) or

BSD-style license (Open Source Initiative,

2011).

5.3 Results

We decided to use Bullet as the physics engine

in Road Kill and to use the built-in vehicle

class. The BVs we use for the dynamic

objects are primarily convex hull. All static

objects are a part of the world and are

represented as a static triangle mesh.

5.4 Discussion

When we first started the project one goal

was to create our own physics engine. We

started to use sphere as BVs and used a

BSP-tree as spatial data structure. At first

all objects only had one BV but the

performance was too poor, mainly because

the many triangle-triangle intersection tests

needed, so we decided to use BSP-tree as

an inner spatial data structure too.

We realized after a few weeks that the

physics engine would take a long time to

implement and very hard to get the

precision and performance wanted so we

decided to use an existing physics engine

instead. We wanted to have the possibility

to commercialize Road Kill and because

we were doing research on game

development with limited resources we

decided to use an open source physics

engine with no restrictions on

commercializing.

The two physics engines we found that

fulfilled our demands and had been used in

successful game-projects before were

Bullet and ODE.

We decided to use Bullet because it has

more features and also a pretty good built-

in vehicle class. Overall we were satisfied

with Bullet and it performs very well. One

negative aspect of Bullet was the lacking

documentation which caused some trouble

a number of times during the process of

Road Kill development.

 44

6 Network and

Multiplayer

When it comes to supplying challenging

opponents in a game, there are only two

real choices, either a computer controlled

opponent with artificial intelligence (AI) is

developed or communication over a

network is implemented so that multiple

players can interact in one game session.

Multiplayer has a number of advantages

over developing an artificial intelligence,

mainly the two following; it is easier to

implement and gives players more varied

and unpredictable opponents. According to

Ookla (Ookla, 2011) and Internet World

Stats (Miniwatts, 2010), bandwidth and

coverage of the internet has kept increasing

all over the world, enabling game

developers to focus more on multiplayer

aspects in their games. One important

question that game developers should ask

themselves early during the design of a

game is if and how to support multiplayer.

This section will, using a bottom-up

approach, examine some key points when

it comes to implementing network

communication and multiplayer support.

Some of the examination’s results are

general to any type of application, but the

majority is game development specific.

6.1 Choosing the right Network

Model

A key point to realize is that, different

types of games have different network

demands. Fast paced real-time games like

first person shooters and racing games

require data to be delivered between

players with minimal time delay, also

known as latency, to give the most realistic

and enjoyable experience. While large

scale turn-based, or slow paced real-time

games have no such problems, they often

need to transfer greater amounts of game

data, and thus require a higher bandwidth

instead.

To choose the right network model for

their games, developers need to consider,

among other things: the desired number of

supported players, minimum tolerable

response time between user input and

action, the amount of data needed to be

sent between players to update the game

state and how often such updates need to

occur.

This chapter will present a comparison of

the two main transport layer protocols, in

Section 6.1.1, and an examination of the

different network topologies that can be

used for network communication.

6.1.1 Transport Layer Protocols

One of the main influences on how a

multiplayer game behaves is the choice of

protocol and, as mentioned before,

different games have different demands.

Transmission Control Protocol (TCP) is

a connection-based protocol that is used

when it is important that all data is not

only delivered but also received in order

and without any duplicate data. E-mail, file

transfers and the World Wide Web rely on

TCP since it supplies the features that these

applications require. All TCP features have

resulted in a large header, 20 bytes.

 45

bits 0-15 16-31

0 Source Port Number
Destination Port
Number

32 Sequence number

64 Acknowledgement number

96

Data Offset
and reserved
bits Flags Window Size

128 Checksum Urgent pointer

160 Options

Figure 77: A table of the TCP-header.

Field in blue is optional. (Postel, 1981b)

User Datagram Protocol (UDP) has no

focus on any of the aforementioned

features and it is connection less. If there is

any need for any of TCP-supplied features,

developers have to implement them

themselves. The upside to this is that UDP

has less overhead as its header is only 8

bytes.

bits 0-15 16-31

0
Source Port

Number
Destination Port
Number

32 Length Checksum

Figure 78: A table of the UDP-header

(Postel, 1980).

For some developers, the choice might

seem obvious. TCP is easier to implement

and it supplies a number of useful features,

but there are several drawbacks (Fiedler, G,

2006) to using TCP. Whenever a packet is

lost, it is resent by TCP, and this incurs a

delay in the game. When a packet is lost,

there is no real need to resend the packet

since a more current packet will have

arrived, before the old packet is

successfully resent, causing the first packet

to become old and irrelevant. This is,

however, only relevant to fast paced games

where data is sent continually. In for

example turn-based games, it would be

easier to use TCP and the game would not

suffer noticeably.

Critical data that is not sent continually

will need a guarantee that it has been

received successfully, and it might seem

like TCP is the better choice again. But it is

actually better to implement an custom

own packet delivery guarantee on top of

UDP, instead of mixing the two, as it has

been shown that TCP can induce packet

loss in UDP (Hori, 1998). As long as all of

TCP’s extra features are not needed, the

extra overhead is best avoided.

6.1.2 Network topology

Beyond protocols, it is also important to

consider how the flow of traffic should be

shaped. Since a great deal of focus in real-

time games lies in minimizing latency the

next two sections will explore, among

other things, the different latency impacts

of the two most common network

topologies used in game networking.

Figure 79: An illustration of the peer-to-

peer and client-server topologies where

each green node is a user and the yellow

node is a server.

6.1.2.1 Peer-to-Peer

When it comes to reducing latency, using

the peer-to-peer technique of connecting

each client directly to every other client is

 46

the best solution, since all data takes the

most direct route to its goal. This topology

was used early in online gaming in action

games such as Duke Nukem and Doom

(Sweeney, 1999), and even though it has

been largely abandoned today, it is still a

valid option when it comes to choosing the

right topology.

However, this solution enables each client

to be authoritative over the own game state

while simply informing all the other clients

continually about the changes in it. This

leads to a couple of problems; first, it is

difficult to handle conflicts in game state

between clients in a fair way, since all

clients are equal. Second, since each player

is authoritative over the own game state,

cheating will become trivial by reverse

engineering and changing the client

application or the network packets.

6.1.2.2 Client-Server

In the client-server topology, every client

is connected to a server and all data traffic

flows between the clients through the

server. Having an authoritative server

running its own version of the game based

on all of the client data, will enable the

game session to have a tie breaker when

game states from different player create

conflicts, which solves the problem of

cheating. The price for solving the problem

is increased latency, compared to peer-to-

peer, due to the fact that the data needs to

first travel to the server, secondly be

processed by the server, and finally travel

to the clients. Another drawback is the

single point of failure that this topology

creates. If the server is disconnected or if it

cannot perform its duties in a fast enough

pace, the clients will suffer without any

means to solve the situation.

6.2 Limitations in network traffic

– Bandwidth and Latency

To simulate a real-time world accurately in

a multiplayer environment, with physics,

interactive objects and multiple

controllable characters such as cars or

soldiers, the players need to regularly

synchronize their game states. The

question is how much and how often game

state data should be sent.

In general, the more information a game

client can get about an object, the more

accurately it can simulate physics for that

object. For example, the physics

simulation in a car racing game can be

improved significantly when the cars'

velocities are sent in addition to their

positions. Also, the more often players

send data to update each other's game state,

and the faster that data travels between

them, the more coherent their game states

will be.

Bandwidth

A multiplayer game works better if it is

allowed to send more data between

players. However, too much traffic over

any network causes dropped packets and

flooded buffers in network devices, which

can ruin game play (Savage, 2009).

Therefore, to get the best results, the

amount of data being sent must not exceed

the bandwidth of the players’ network

connection.

According to Frank Savage, a study made

by Bungie Studios in 2007 shows that the

median bandwidth available to their

players was 352 kbit/s (Savage, 2009).

Glenn Fiedler has another take on the

median bandwidth available, as he claims

 47

that a study by Sony in 2010 showed a

higher median bandwidth of 1024 kbit/s

(Fiedler, 2010a). Such median values are

bad guidelines for how much data to send,

however, since such a bandwidth

requirement would make half of the game's

potential players unable to play. Instead,

developers are recommended to send no

more than 8 kbit/s (Savage, 2009) in their

games, which according to the studies by

Bungie Studios and Sony would make 99%

of the potential players able to play over

the internet.

Some methods for optimizing a game to

use bandwidth more efficiently are

discussed in Section 6.2.2.

Latency

Action games should let players

experience and influence the game world

in real time, but this can be tricky to

achieve in a multiplayer environment.

Since data packets always take some

minimum amount of time, τ, to travel from

one player's computer to another, an action

performed by player A at time T will never

be noticed by player B before time T + τ.

An illustration of this can be seen in fig.

80.

Figure 80: An example of network latency.

At time T, the blue race car is at the

position of the red wireframe. At time T +

τ, the race car has moved slightly forward.

Due to latency, the player that is driving

the yellow truck still believes that the race

car is at the position of the wireframe.

While a perfect solution to real time

network communication is not possible,

since there is no way to completely remove

latency in network traffic, it is possible to

create an illusion of real time

communication in games. One way of

doing this is by using a technique called

Client-Side Prediction (Fiedler, 2010b),

which is discussed further in Section 6.2.1.

6.2.1 Solving Latency Problems –

Client-Side Prediction

As was explained in Section 6.1.2.2, a

server should have full authority over

every player's game state, which means

that all effects of actions performed by a

client will be decided by the server. In a

real time game, we want players to see the

effects of their actions immediately, but

due to latency, clients must wait some time

before the server acknowledges their

actions and tells them what has really

happened.

Client-Side Prediction, also known as

Dead Reckoning (Aronson, 1997), lets a

client predict the server's response and the

actions of other players. These predictions

are then used to calculate the client's next

game state, which can be displayed to the

local player's screen in real-time. When an

updated state arrives from the server, the

client replaces its current, predicted state

with the one received. Thus, erroneous

predictions are quickly corrected, and the

coherence between the client's and server's

states is maintained.

 48

Figure 81: An illustration of Client-Side

Prediction. At time 0, the client uses the

last known user input, velocity and

position of the car to predict its future

movement according to the blue dotted

line, prediction 1. At times 0.3 and 0.5 new

data arrives from the server, so the client

updates its game state and new predictions

are made according to the green and

orange dotted lines, prediction 2 and 3.

Interpolation

Although basic client side prediction is

effective at hiding latency from players, it

also introduces a stuttering effect when a

client abruptly switches, "snaps", to the

server's state (Fiedler, 2006). This

phenomenon can be easily observed in

multiplayer games, for example when a

player controlled character suddenly jumps

back in time or instantly moves to a

different position in first person shooters or

role playing games. A smooth transition

between the old and new states would be

preferable, and can be achieved by using

interpolation.

Instead of directly switching to the state

received from the server, a client can

compare its own predicted and simulated

state to the one received. If the difference

is less than some value δ, a new game state

is calculated by interpolating the two

states. By using this interpolation

technique, the clients can slowly adjust to

the server's state, and unnecessary

snapping can be avoided. If the difference

between the states is greater than δ,

however, the client has gone too far astray

in its predictions, and snapping is

performed to keep the client's and server's

game worlds similar and to preserve the

authority of the server (Fiedler, 2006).

6.2.2 Solving bandwidth problems

Games, such as the real time strategy game

Rome: Total War (The Creative Assembly,

2004), can contain thousands of interactive

objects, each with its own game state

variables such as health, position, velocity,

owner and current orders. Sending a whole

game state over a network every frame,

while keeping the bandwidth limit of 8

kbit/s, discussed in Section 6.2, would be

impossible in such games. Even game

states in other kinds of games, such as first

person shooters, grow increasingly more

complex with a greater number of players

and more interactive environments, for

example destructible buildings and

drivable vehicles. Luckily, there exist

special techniques for conserving

bandwidth, compressing game data and

updating game states without sending a

whole new state over the network.

Trading bandwidth for latency

Bandwidth is a hard limit in the sense that

it causes packets to be dropped if

exceeded, which can ruin game play as

important state updates are lost. While low

latency is desirable in most games, a

slightly longer delay between data being

produced by one player and delivered to

another might not ruin the game

experience completely. A simple method

 49

for conserving bandwidth is therefore to

send game state updates less often

(Savage, 2009).

For example, instead of sending position

and velocity updates for an object every

frame, send updates every 10th frame to

reduce the amount of data sent by 90%.

This will delay a physics state update by at

most 9 frames, which corresponds to

1000/60*9=150 ms if the frame rate is 60 FPS.

Latency hiding techniques such as Client

Side Prediction, which was explained in

Section 6.2.1, can then be used to deal with

the increased delay.

Reduce network overhead by sending

larger but fewer packets

Because the header size of a UDP

datagram is 8 bytes (Postel, 1980) and the

header of the encapsulating IP packet is at

least 20 bytes (Postel, 1981a), the total

overhead of the network will increase with

the number of packets sent. By grouping

many smaller messages together into one

package, the number of UDP datagrams

sent can be reduced, and the network

overhead will shrink accordingly (Savage,

2009).

6.3 Results

For Road Kill, we implemented a client-

server solution using UDP only. Instead of

implementing an authoritative server with

real client-side prediction we ended up

with a server that simply echoes the

messages that are sent to it by the clients

that has a current session with the server.

In addition to ignoring packets from

players that do not have a current session

with the server, it also ignores packets that

have an incorrect header, and these two

features make the server more robust and

stable.

6.4 Discussion

We originally had a peer-to-peer solution

which we experimented with before ending

up with our current client-server solution.

The decision to leave the peer-to-peer

solution was made because we had plans to

implement features, e.g. client side

prediction presented in Section 6.2.1, that

demanded an authoritative server.

For our critical non-game state data, we

opted to use UDP exclusively instead of

TCP or any mix of them both simply

because we did not feel that we benefited

from using TCP when taking into to

account all of the pros and cons, as

discussed in Section 6.1.1, related to it. We

decided to implement our own

supplements to UDP to get the features we

wanted. However, features like delivery

guarantee were down prioritized in favor

of graphical effects and game logic.

The next step with our network solution

would have been expanding the Road Kill

game state data to include not only

position and current speed of cars but also

current user input. This would have

allowed us to send even fewer packets per

second, 10 being a good minimum number

with our current implementation, and after

that, adding a delivery guarantee on our

non-game state messages, such as session

initialization, and then focusing on real

client-side prediction.

 50

7 Sound

To create a compelling gaming experience,

graphical effects alone might not be

enough to arouse the player. However,

graphical effects in combination with

music and audio effects can create a more

enjoyable gaming experience for the user.

A study done by S. Wolfson (Wolfson,

2000) has shown that loud sounds with a

red background intensify the aura of a

game which leads to a more enjoyable

game session.

The easiest way to add sound effects to a

game is to use a library that is able to play

interactive audio. There are several

different libraries with this function, and

every library has its own features to offer.

These libraries are usually able to play the

common sound formats, like MP3 and

WAV and more extensive libraries also

offer a toolbox of equipment to manage

sounds, for example 3D sounds, multi-

channel streaming, multiple outputs,

recording, and effects. Libraries that

support these features are OpenAL,

DirectX Audio and FMOD. DirectX Audio

has a wide market because this library is

included in DirectX SDK (Seddon, 2005)

The difference between a high- and low-

level Application Programming Interface

(API) is that a low-leveled API manages

chunks of sampled audio data that it stores

in a secondary buffer and also the transfer

from the small buffer to a master buffer for

hardware mixing.

Figure 82: Combining many secondary

buffers to one master buffer.

A high-leveled API controls the audio

further away from the buffers than a low

leveled API and has therefore less control

over the audio but has more complex

features to offer such as playback of MP3

or WAV. The high leveled API reduces the

amount of code a programmer has to write

and makes it easier to play simple sounds

or music in a game. These features are

possible to create with a low leveled API

but require a bigger effort from the

programmer.

In the next sections, the previously

mentioned audio libraries will be presented

and compared from the viewpoint of a

developer with limited resources.

7.1 OpenAL

OpenAL is a cross platform 3D audio

library made especially for sounds moving

around in a 3D space, which suits a 3D

game well (Creative Labs, 2010). This

library has objects such as a listener, a

source, and a buffer. With this library, all

sound rendering is made from the location

of the listener. The downside with this

library is that it is narrow and does not

include many features beside the 3D

 51

Sounds (James, 2003).

7.2 DirectX Audio

DirectX Audio is a Windows based sound

library and is a combined version of a low

level API called Direct Sound and a high

level API, Direct Music. As claimed by

James (James, 2003), the DirectX Audio

API is confusing for programmers to read.

The upside with this combination is that

DirectX Audio becomes one large API that

can handle audio in many different ways.

However, DirectX Audio is restricted to

Microsoft-only products such as Windows

and Xbox 360 (Microsoft, 2010). Some of

the features are 3D sound effects, playback

from multiple sources simultaneous and

schedule the timing of music events with

high precision (Hawkins, 2002).

7.3 FMOD

The world-leading sound API is called

FMOD and it is widely used by the game

industry (Firelight Technologies Pty. Ltd,

2011). FMOD has become widely popular

due to of its simplicity and cross-platform

support. For example, developers only

need to include one header file to get

access to all of FMODs features. FMOD

has features like floating point

calculations, output to mono, stereo, 5.1

and 7.1, advances compression algorithms

and 3D sound effects. The downside with

FMOD is that for commercial use, the

library is very expensive (Firelight

Technologies Pty, Ltd, 2011).

7.4 Results

Testing with the library FMOD was done

for Road Kill with satisfying results. All

that was needed was a header file and a

DLL file from FMOD in Road Kill’s

directory. Initializing a FMOD system and

loading a sound, for example music,

required four function calls in C++. After

these calls, the ability to choose from a list

of effects was supplied, enabling the

modification of sounds, such as echoing,

pitching and 3D position.

To add a 3D effect to the sound, in order to

hear where the sound came from, a sound

source- and listener position, which usually

is the camera, needs to be supplied.

7.5 Discussion

The only real downside with FMOD is the

price for a commercial license, and since

Road Kill is a game with potential for

commercializing, we do not want use a

library as expensive as FMOD when there

are alternatives that are free to use. FMOD

is expensive because it supplies so many

built-in features, many of which are

superfluous in a game. Therefore, it would

be an unneeded expense to purchase a

license for FMOD and all of these features.

However, the convenience with the cross-

platform support should not be

underestimated when it comes to creating a

game for many different platforms. FMOD

is the only library in this study that features

an active support to contact if problems

occur.

The best library in our opinion, for a game,

is OpenAL. This is true, especially if you

develop the graphics part using OpenGL.

Since these two libraries are siblings and

built up with the same structure, it is easy

to use either if you are familiar with the

other. OpenAL is free software with a

supportive forum for users to search, if

 52

they are in need of help. 3D effects are

supported by OpenAL and this enhances

the gaming experience.

If you use DirectX for the graphics, then

DirectX Audio is probably a better choice

than OpenAL. This is because it is already

in the same package as DirectX Graphics,

and they have the same platform

boundaries.

 53

8 Development of Road

Kill

This chapter describes the racing game

Road Kill, which was developed by the

authors of this thesis during a four-month

period. While the previous chapters of this

thesis describes and evaluates techniques
for game development, the purpose of this

chapter is to give concrete examples of

some results that can be achieved during

the development of a computer game with

limited resources and short time frame.

During the development of Road Kill, the

authors faced many problems related to

game development and software

development in general. Section 8.2

describes some of those problems that have

not been mentioned previously in this

thesis.

8.1 Results

Road Kill is in a playable state, where up

to four players, a higher amount of players

have not been tested, can compete against

each other on one race track. The players

must drive their cars through a sequence of

checkpoint in order to complete laps, and,

ultimately, beat their opponents by

finishing first, by either driving the fastest

or being the only player left with a

working car. To gain an edge over the

opposition during the race, players can

utilize two kinds of weapons to destroy

their opponents’ cars: miniguns and rocket

launchers.

8.1.1 Game Setting

Road Kill’s setting is a moonlit desert

landscape, lighting is added to by

streetlights, car lights and torches. The

ground is mostly covered by sand, rocks,

and dirt, but also by small patches of grass.

During the race and in the menu, the metal

music soundtrack is played in the

background. According to numerous test

players, the combination of the above

features and missile explosions, minigun

fire and racing at high speeds; creates an

action packed atmosphere.

8.1.2 Main features

Some of Road Kill’s features are a HUD

with race timing, a mini-map with real

time position indication of the client and

the opponents; a speedometer, a

countdown to the start of the race, physics

simulated in real time, graphical effects,

such as explosions, reflections and fires;

and full multiplayer support.

8.2 Discussion

A larger than expected part of the

development process has been spent on

cleaning up and structuring the code. Some

examples of functions that have been

restructured are the reading of car data

from binary files and the importing of 3D

Studio Max objects, light sources and

different items needed for the physics

engine; such as pre-calculated bounding

spheres. This has reduced the size of class

files and simplified both the modifications

of the cars’ attributes and adding new

objects to the game world, simplifying the

further development of Road Kill.

We benefited greatly from partitioning our

code into smaller modules. Programming

in a modular way makes development and

debugging faster and easier. By creating

 54

more testing modules, instead of the three

we have now: network, modeling, and

everything else, we could have simplified

the development even more.

SVN was used for software versioning and

revision control by the group. SVN keeps

track of updates to the code base and also

eased the synchronizing between the group

members. SVN proved hard to get used to

for some group members and since none of

the group members had any experience

with versioning control it was hard at times

to find the solutions to our problems.

However, we cannot imagine doing a

project of equal size without revision

control since it is very important that all

group members have access to up-to-date

files, documents and folders.

During the development of Road Kill,

frame rate was the largest bottleneck,

which limited the addition of extra effects,

such as motion blur. We also learned the

importance of developing on your target

machine as higher frame rate was achieved

on our personal computers then at the

University. The feature that demanded the

highest amount of optimization was the

particle systems. In the end, the resulting

particle effects for Road Kill were very

appreciated by test players. Some effects,

like exhausts and gravel spray from the

tires, had a less significant impact on the

general appearance of Road Kill than we

initially thought, and we feel that there was

a bit too much time spent on them.

After half the time, we started using our

project room. This led to better group

coordination and communication when

working in the same room. It was much

easier to make requests and demonstrate

new functions and we feel that we should

have started using the project room earlier.

Even though this thesis is about explaining

which methods are suitable for

inexperienced game developers, we have

found that a better way of learning about

game development is not through reading,

but trying different methods and seeing

their effects, pros and cons in practice.

Initially we felt that the goals we set for

this project might be too high, but we

consider the end result to be far above our

expectations. The parts that seemed

particularly difficult for us in the

beginning, such as graphics engines,

physics engines and network support,

proved to be easier to implement than we

initially thought. This was mainly due to

our collective experience ranging from our

different fields of interest. The really time

consuming part of the project was not

implementing basic versions of game

components, but fine tuning them to

provide an enjoyable and realistic car

racing game.

 55

References

W. T. Reeves (1983) A Technique for Modeling a Class of Fuzzy Objects. ACM Transactions

on Graphics. Vol. 2, Iss 2. pp. 91-108.

Airey, J. M. & Rohlf, J. H.& Brooks, F. P. (1990) Towards image realism with interactive

update rates in complex virtual building environments. Computer graphics vol. 24 no. 2 pp.

41-50

Airey, J. (1990) Increasing update rates in the building walkthrough system with automatic

mode-space subdivision and potentially visible set calculations. University of North Carolina

(department of computer science)

Akenine-Möller, T., Haines E., and Hoffman N., (2008) Real-Time Rendering Third Edition,

Wellesley, Massachusetts

Aronson, J. (1997) Dead Reckoning: Latency Hiding for Networked Games. Gamasutra.

http://www.gamasutra.com (17 Apr 2011)

Autodesk Inc. (2011a) 3ds Max – 3D Modeling, Animation, and Rendering

http://usa.autodesk.com/3ds-max/

Autodesk Inc. (2011b) Maya – 3D Animation, Visual Effects & Compositing Software

http://usa.autodesk.com/maya/

Autodesk Inc. (2011c) Area :: Discussion

http://area.autodesk.com/forum/autodesk-3ds-max/

Braben, D (2011) Death of the £50m game?

http://www.develop-online.net/blog/178/Death-of-the-50m-game (12 May 2011)

Remedy Entertainment (1996). Death Rally. [CD-ROM]. Garland, Texas, USA: Apogee

Software.

Barber, C. B. & Dobkin, D. & Huhdanpaa, H. (1996) The Quickhull Algorithm for Convex

Hulls. ACM Transactions on Mathematical Software, vol. 22, no. 4, pp. 469-483

Blender Foundation (2011) Blender.org Home http://www.blender.org/features-

gallery/features/

Blinn, J. F. (1977) models of light reflection for computer synthesized pictures. Acm

Computer Graphics, Vol. 11 no. 2 ss. 192-198

 56

Bruno M. (2002) Game Programming All in One. [Electronic] Muska & Lipman/Premier-

Trade.

Cebenoyan, C. (2004) Graphics pipeline performance. In: Randina Fernando, ed., Gpu gems,

Addison-Wesley ss. 473-486

CGTextures, (2011) http://cgtextures.com/ (2011-05-17)

Cohen-Or, D et al. (2003) A Survey of Visibility for Walkthrough Applications. IEEE

Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 412-431.

Cook, R. L. & Torrance, K. E (1981) A Reflectance Model for Computer Graphics. Computer

Graphics (SIGGRAPH '81 Proceedings).

Cook, R. L. & Torrance, K. E. (1982) A Reflectance Model for Computer Graphics. ACM

Transactions on Graphics, vol. 1, no. 1, pp. 7-24.

Cormen, T.H., C.E. Leiserson, and R. Rivest, (1990) Introduction to Algorithms, MIT Press,

Inc., Cambridge, Massachusetts,

Creative Labs (2010) http://connect.creativelabs.com/openal/default.aspx (2011-04-15)

DeLoura M. (2000) Game programming gems, [Electronic] Cengage Learning

Ericson, C., (2005) Real-Time Collision Detection, Morgan Kaufmann

Fan Wu. Cabral, M. Brazelton, J. (2010). High Performance Matrix Multiplication on General

Purpose Graphics Processing Units. 2010 International Conference on Computational

Intelligence and Software Engineering (CiSE 2010). Dec 10-12, 2010, Wuhan, China.

Fiedler, G (2010a) Networking for Physics Programmers. Game Developers Conference.

March 9-13, 2010, San Francisco. [pdf] http://www.gafferongames.com (31 March 2011)

Fiedler, G (2010b) What every programmer should know about game networking.

gafferongames.com. http://gafferongames.com/networking-for-game-programmers/what-

every-programmer-needs-to-know-about-game-networking (17 Apr. 2011)

Fiedler, G (2011) Networking for Game Programmers. gafferongames.com.

http://www.gafferongames.com/networking-for-game-programmers/udp-vs-tcp (31 Mar.

2011)

Fiedler, G (2006) Networked Physics. gafferongames.com. http://gafferongames.com/game-

 57

physics/networked-physics (2 may 2011)

Finney K. (2004) 3D Game Programming All in One, [Electronic] Course Technology PTR

FMOD Features, Firelight Technologies Pty, Ltd.

http://www.fmod.org/index.php/products/fmodex (2011-04-15)

FMOD Licenses, Firelight Technologies Pty, Ltd. http://www.fmod.org/index.php/sales

(2011-04-19)

Free Software Foundation, Inc. (2010) GNU Lesser General Public License.

http://www.gnu.org/copyleft/lesser.html (13 May. 2011).

Gahan, A. (2010) 3D Automotive Modeling, [Electronic] Science Direct

Game Physics Simulation (2011) Game Physics Simulation. http://bulletphysics.org (13 May.

2011).

Gottschalk, S. & Lin, M.C. & D. Manocha (1996) OBBTree: A Hierarchical Structure for

Rapid Interference Detection. Computer Graphics (SIGGRAPH 96 Proceedings) pp. 171-180

Gouraud, H. (1971) Continuous Shading of Curved Surfaces. IEEE Transactions on

Computers, vol. 20, no. 6, pp. 623-629

Greene, N. (1986) Environment mapping and other applications of world projections. IEEE

Computer Graphics and Applications. vol. 6, no. 11, ss. 21-29

Greene, N. (1994) Detecting Intersection of a Rectangular Solid and a Convex Polyhedron.

In: Heckbert P. S., ed., Graphics Gems IV, Academic Press.

Haigh-Hutchinson, M., (2009) Real Time Cameras: A Guide for Game Designers and

Developers, Morgan Kaufmann

Hawkins K., Astle D. (2002) OpenGL Game Programming. [Electronic] Course Technology

PTR.

Heckbert, P. PIXAR (1986) Survey of texture mapping. IEEE computer graphics and

applications. Vol: 6 Iss: 11 pp: 56

Heidmann, T. (1991) Real Shadows, Real Time. Iris universe. no. 18, pp. 23-31

Hori et al. (1998) Performance evaluation of UDP traffic affected by TCP flows. Special Issue

on Multimedia Communications in Heterogeneous Network Environments. IEICE

Transactions on Communications, Vol. E81-B, No. 8, pp. 1616–1623, August 1998.

 58

Internet World Stats (2010) Internet Usage Statistics, The Internet Big Picture.

http://www.internetworldstats.com/stats.htm (17 Apr 2011)

James R. (2003) Game Audio Programming. [Electronic] Cengage Learning.

King, G. (2004) Shadow Mapping Algorithms. Gpu jackpot presentation, oct.

Lengyel, E (2000) Tweaking a vertex's projected depth value. In: Deloura, M. (ed). Game

programming gems 3. Charles River media.

Lorach, T. (2007) NVIDIA White Paper, 2007

http://developer.download.nvidia.com/whitepapers/2007/SDK10/SoftParticles_hi.pdf

Maciel, P. & Shirley, P. (1995) Visual navigation of large environments using textured

clusters. Proceedings symposium on interactive 3d graphics, Monterey, CA, USA — April 09

- 12, 1995 pp. 96-102

McReynolds, T., Blythe, D (2005) Advanced graphics programming using OpenGL. San

Francisco, CA: Elsevier Morgan Kaufmann Publishers.

Microsoft. (2011) Core Audio Overview. http://msdn.microsoft.com/en-

us/library/ee415698(v=VS.85).aspx (19 Apr 2011)

NVIDIA Corporation. (2011). What is CUDA?. http://www.nvidia.com (14 May 2011)

Omohundro, S. (1989) Five Balltree Construction Algorithms. Berkley: International

Computer Science Institute.

Ookla (2011) Net Index. http://www.netindex.com (17 Apr 2011)

Open Source Initiative (2011) Open Source Initiative OSI - The BSD License: Licensing Open

Source Initiative. http://www.opensource.org/ (13 May. 2011).

Phong, B. T. (1975) Illumination for Computer Generated Pictures. Communications of the

ACM, vol. 18, no. 6, pp. 311-317

Postel, J. (ed.) (1980) User Datagram Protocol. RFC 768. USC - Information Sciences

Institute. http://www.ietf.org (18 Apr 2011)

Postel, J. (ed.) (1981a) Internet Protocol. RFC 791. USC - Information Sciences Institute.

http://www.ietf.org (18 Apr 2011)

Postel, J. (ed.) (1981b) Transmission Control Protocol. RFC 793. USC - Information Sciences

 59

Institute. http://www.ietf.org (18 Apr 2011)

Praun, E. et al. (2001) Real-time Hatching. Computer Graphics (SIGGRAPH 2001

Proceedings).

Reeves, W. T. (1983) Particle Systems—a Technique for Modeling a Class of Fuzzy Objects.

Ritter, J. (1990) An Efficient Bounding Sphere. In: Glassner, A. S., ed., Graphics Gems,

Academic Press.

Roelofs, G., Gailly, J., and Adler, M., (2005) zlib License.

http://www.gzip.org/zlib/zlib_license.html (13 May. 2011).

Royce, W. W. (1970) Managing the Development of Large Software Systems, Concepts and

Techniques. IEE WESTCON, Los Angeles CA: 1-9.

Samet, Hanan, (1989a) The Design and Analysis of Spatial Data Structures, Addison-Wesley.

Samet, Hanan, (1989b) Applications of Spatial Data Structures: Computer Graphics, Image

Processing and GIS, Addison-Wesley.

Savage, F. (2009) Networking, Traffic Jams and Schrödinger’s Cat. Game Developers

Conference. March 23-27, 2009, San Francisco. [ppt and wma] http://microsoft.com. (31

March 2011)

Scherzer, D., Drettakis, G. (2005) Robust Shadow Maps for Large Environments.

Central European Seminar on Computer Graphics. May 9-11, 2005, Budmerice castle,

Slovakia, pp. 15-22.

Seddon, C. (2005) OpenGL Game Development. [Electronic] Jones & Bartlett Publishers

Shüler. C. (2005). Eliminating Surface Acne with Gradient Shadow Mapping. In:

 Engel , W. ed. ShaderX^4. Charles River media.

Smith, R. (2006) Open Dynamics Engine. http://www.ode.org (13 May. 2011).

Stamminger, M. & Drettakis, G. (2002) Perspective Shadow Mapping. ACM Transactions on

Graphics (SIGGRAPH 2002), vol. 21, no. 3, pp. 557-562.

Sweeney, T. (1999) Unreal Networking Architecture.

http://unreal.epicgames.com/Network.htm (1 apr. 2011)

 60

Szirmay-Kalos, L. & Aszodi, B. & Lazanyi, I. (2008) Ray tracing effects without tracing rays.

In: Engel, W. ed., shaderX^4, Charles River Media.

Teller, S. J. & Sequin, C. H. (1991) Visibility Preprocessing for Interactive Walkthroughs,

Computer Graphics Vol. 25, No. 4, ss. 61-69

Teller, S. J (1992) visibility computations in densely occluded polyhedral environments

University of Berkeley. (Department of Computer Science).

Teller, S. J, & Hanrahan, P. (1994) Global Visibility Algorithms for Illumination

Computations. Computer graphics, ss. 443-450

The Creative Assembly. (2004). Rome: Total War. [CD-ROM]. San Francisco: SEGA

Ulrich, T., (2000) Game Programming Gems, Charles River Media pp. 444-453

Watson, B. & Luebke, D. (2005) The Ultimate Display: Where Will All the Pixels Come

From? Computer, vol. 38 no. 8 pp. 54-61.

Williams, L. (1978) Casting Curved Shadows on Curved Surfaces. Computer Graphics

(SIGGRAPH '78 Proceeding). pp. 270-274

Wolfson S. (2000) The Effects of Sound and Colour on Responses to a Computer Game.

Interacting with Computers Vol. 13, Iss 2, Dec 2000, Pages 183-192

 61

Appendix A

Contributions

A report of the individual contributions is included in this appendix, containing the

contributions to this thesis and to the development of Road Kill.

A.1 Development

The project was planned and executed by all members of the group as a whole. The different

responsibilities were divided to the subgroups that were formed and reformed, as features

were completed and development of new features was started. The following list contains the

contributions to features from each individual.

Viktor Arvidsson

Modeling – Creating models, loading screen

Game logic – Checkpoints

Jonathan Gustafsson

Graphics – Particle effects design

Network – Framework and peer-to-peer solution

Per Jamot Johansson

Game engine

Graphics engine

Physics engine – Our own, Bullet

Game mechanics – Checkpoints, missiles, Game GUI

Network

Graphics – Shadows, light, culling, texture blending, reflections, sprites

Particle system engine

Optimization and testing

Game restart – Restarting clients

Physics – balancing car parameters

Game menu

Christoffer Nilsson

Modeling – Creating models, textures, bounding volumes

Level editor

 62

Sound – Creating sounds

Game mechanics – Checkpoints

Optimization

Graphics – Texture blending

Physics – Balancing car parameters

Adam Sällergård

Physics engine – Our own, Bullet

Game mechanics – Checkpoints, weapons, Game GUI, race synchronization

Network – Peer to Peer solution

Graphics – Camera, sprites

Optimization and testing

Physics – Balancing car parameters

Robin Ytterlid

Network – Implementation, sending of game state variables, synchronization, handling of

different message types, partially reliable data transfer

Game mechanics – Placements, timekeeping, Game GUI

Game restart – Self restarting server

Physics – Balancing car parameters

A.2 Thesis writing

Editorial work was shared between all members of the group during the project. During the

end of the project the majority of the editorial work was moved to Jonathan Gustafsson and

Robin Ytterlid, while other members focused more on the formalities. The following list

contains the main sections that each member has contributed to.

Viktor Arvidsson

Writer:

Modeling

References

Jonathan Gustafsson

Writer:

Network

Graphics – Particle systems

Corrector:

Introduction

Program structure

Appendix

Modeling

Development of Road Kill

 63

Per Jamot Johansson

Writer:

Graphics – all sections except particle systems and camera

Physics

Program structure

Development of Road Kill

Appendix

Christoffer Nilsson

Writer:

Modeling

Introduction

Program structure

The majority of the figures in this thesis

Adam Sällergård

Writer:

Physics

Graphics – Camera

Development of Road Kill – Results

Robin Ytterlid

Writer:

Network – section 6.2 with sub sections.

Development of Road Kill

Corrector:

Introduction

Graphics – all sections except particle systems and camera

A.3 Other

Per and Jonathan shared the role of group leader. Per was the leader up until the second half

of the project when Jonathan assumed the role.

