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Sammanfattning 

Det här är ett kandidatarbete som beskriver en studie där ett spel utvecklas med begränsade 

resurser och moderna tekniker. Fokus ligger på att utforska de olika stegen och de olika 

tillvägagångssätten som man stöter på under utvecklingen av ett spel ur ett perspektiv där 

spelutvecklaren har begränsade resurser. För att kunna undersöka dessa olika steg noggrant så 

har ett spel, vid namn Road Kill, utvecklats vid sidan av de teoretiska studierna under 

vårterminen 2011.  

 

Trots att vi siktade högre än vad vi först var bekväma med så är vi väldigt nöjda med 

slutresultatet. Vi har i detalj utforskat flera av spelutvecklings olika steg, så som utveckling 

och implementering av fysik-, med tekniker som bounding volumes och spatial data 

structures; och grafiklösningar, med tekniker som shadow volumes, culling och particle 

systems; spellogik, flerspelarläge över nätverk och modellering. Dessa steg har utvärderats 

och presenterats så att det ska vara lätt för utvecklare med begränsad erfarenhet ska kunna få 

en snabb inblick i vanliga tekniker som kan användas för spelutveckling. 



 

 

Abstract 

This bachelor thesis presents a case study, where the development of a game is done with 

limited resources and modern techniques. The focus lies in examining the different steps and 

the many small choices that are continually made during the development of a game, from the 

perspective of a game developer that is limited in resources. To be able to study these 

different steps in detail, a game, Road Kill, has been developed in parallel with the theoretical 

studies during the spring semester 2011. 

 

Even though we aimed higher then we, at first, were comfortable with, we are very happy 

with the end result of this thesis. We have studied, in detail, several of the different steps of 

game development, such as, development and implementation of physics-, with techniques 

such as bounding volumes and spatial data structures; and graphics solutions, with techniques 

as shadows volumes, culling and particle systems; game mechanics, multiplayer over 

network, and modeling. These steps have been evaluated and presented in a way that it should 

be easy for a developer with limited experience to get gain insight quickly, in to the usual 

techniques that can be used for game development. 
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1 Introduction 
 

Large game development studios have the 

resources to develop new games with the 

best techniques and, because of this, the 

potential to produce the highest quality 

games. Smaller game studios have a harder 

time to compete in the same market due to 

their more limited resources, such as 

development time, funds, personnel and 

experience. It is crucial, due to their 

limited resources, that small game studios 

develop their games as efficiently as 

possible. Arguably, it is even more critical 

for smaller than larger game studios, as 

they have a larger capacity to correct errors 

in the development process without 

compromising the final product. 

 

This thesis will be particularly interesting 

for small game developers, who are 

starting a new project where the goal is to 

produce a modern game that can compete 

with games in the same market, produced 

by larger game studios. Furthermore, large 

game studios should be able to use this 

thesis to enhance their knowledge about 

game development, smaller game projects, 

or how to do a fast prototype for a game. 

Even corporations other than game 

developers should have use for our study, 

as graphics- and physics engines can be 

used in many different situations, such as 

movie making or vehicle collision testing. 

 

1.1 Purpose 

 

The purpose of this thesis is to test the 

different techniques game developers are 

able to use and to find simple solutions for 

the problems that occur during game 

development. Developers should be able to 

use our study to learn more about all the 

stages in game development, and different 

solutions for programming a game of high 

quality in short time. 

 

This thesis examines some of the main 

parts of the game development process, to 

make the process easier for a small 

development studios and developers with 

less experience. Sections of this process 

that are of higher significance are 

examined more extensively, and this might 

provide value, not only to beginners but 

also, to experienced developers. The thesis 

brings up pros and cons for different 

development methods, analyzes which 

techniques are suitable for which game 

type, and also considers how difficult and 

time consuming different algorithms are to 

implement in a game. 

 

In parallel with the theoretical research 

made during the writing of this thesis, a car 

racing game has been developed to enable 

the testing and evaluation of different 

techniques in a real time graphics 

environment. This game was named Road 

Kill, and was mainly inspired by Death 

Rally (Remedy Entertainment, 1996). 

 

Road Kill was developed by six students 

with programming experience from 2.5 

years of computer science studies, but no 

prior experience in game development. 

Each person contributed with 

approximately 200 hours of programming 

time. C++ was chosen as the programming 

language for the development of Road 

Kill, as it is used by many game titles with 

modern graphics. Road Kill was targeted 

for the Windows platform, but uses the 

graphics library OpenGL instead of 

Direct3D and DirectX, which keeps the 

option to port Road Kill to other platforms 

than Windows in the future. All software 
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used in this project was free of charge, 

with the exception of the modeling tool 3D 

Studio Max and the sound library FMOD. 

 

1.2 Problem 

 

This thesis describes the possible solutions 

to the following subset of problems:  

 Implementing an efficient and 

precise physics simulation, with 

many objects, in real time. That is 

able to make the objects behave 

lifelike and interact in a realistic 

way. 

 Choosing and developing a 

multiplayer solution with good 

flow and satisfying game play over 

the local area network and the 

World Wide Web.  

 Creating a complete set of objects, 

to fill the game world and make it 

look realistic.  

 Developing a complete racing game 

with limited resources, such as 

money and time. The game should 

contain features such as full 

multiplayer support and four 

different cars to choose from, each 

with a different set of physical 

features. Players should be able to 

destroy other players’ cars with 

weapons mounted on their own 

cars. 

 

1.3 Delimitations 

 

This thesis focuses on game development 

with limited resources, such as 

development time, personnel, experience 

and funds. Therefore, delimitations have 

been made to focus on the study of the 

most fundamental parts of the game 

development process. 

 

The marketing aspect is of large 

importance when it comes to creating a 

successful game, as Braben claims 

(Braben, 2011) that a typical $50 million 

dollar title spends about 30% of its budget 

on marketing. Due to the technical nature 

of this thesis and due to the limitations of 

the thesis budget, the marketing aspect was 

not included, which allowed for more 

focus on creating a more advanced game 

and investigating its development 

techniques in more detail. 

 

During the development of Road Kill, it 

was discovered that the development of a 

physics engine, with a pleasing enough 

result, would be too time consuming. 

Therefore, an existing physics engine, that 

supplies the features that was required, was 

implemented with the rest of Road Kill’s 

components. 

 

Because of financial and time limitations, 

this thesis has more focus on producing a 

general answer to our problem, as 

described in Section 1.2, than creating the 

best game engine components or 

describing all possible techniques with the 

greatest possible depth. Due to this focus, 

each section has been limited in its extent. 

 

To simplify the modeling process of Road 

Kill, this study does not feature any of the 

other modeling software other than 3D 

Studio Max. 

 

For a game developer, there are many 

choices when it comes to choosing 

programming language, hardware and 

software platforms. This thesis describes 

only a limited selection of external 

libraries, all of which are compatible with 

the C++ language. Although Road Kill was 



  
     3 

 

  

developed exclusively in C++, and targeted 

only for the Windows platform, most of the 

techniques and algorithms described in this 

thesis are general enough to be used for 

other programming languages and 

platforms. 

 

1.4 Method 

 

In this thesis, each step of the game 

development process is divided into 

different chapters. Chapters 2-7 each has a 

background, followed by a study of 

different techniques or algorithms that can 

be used in the corresponding step of the 

game development process. Each chapter 

describes problems for the current step in 

the process and presents different 

approaches to reach a solution, with focus 

on both time and resource efficiency. 

Result and Discussion sections at the end 

of each chapter further evaluate some 

techniques that have been tested and used 

in Road Kill. 

 

While chapters 2-7 describe specific 

details about different parts of game 

development, Chapter 8 describes the 

game Road Kill, which is a result of game 

development with some of the techniques 

and algorithms described in the other 

chapters, and with the limitations described 

previously in this chapter. Section 8.2 

evaluates the development process of Road 

Kill on an abstract level. A reader of this 

thesis is therefore advised to see chapters 

2-7 for details about and evaluations of 

different techniques and algorithms, and to 

see chapter 8 for an abstract summary of 

Road Kill, its features, and its development 

process. 

1.4.1 Development 

 

There are several different types of 

development processes that, step by step, 

describe how a small or big project should 

be managed. There is the Waterfall model, 

Incremental delivery, and Reuse-software 

model (Royce, 1970). The Waterfall model 

concept is to plan and build up a structure 

of the project before the development 

process is started. Early in the process, the 

project goals are established: prepare a 

time schedule, and deadlines for each step. 

To move forward in the project, each phase 

has to be signed off before the next phase 

can commence. With this approach, it is 

hard to deal with changes and problems 

that are discovered during the process and 

there is a good possibility that a large 

amount of code has to be rewritten to suit 

the new criteria. 

 

Choosing the Reuse-software method, 

which focuses on the reuse of old code 

from previous projects, is a good way to 

save time and to avoid reinventing the 

wheel. This method, however, is only 

useful if there is any relevant code already 

available. 

 

Incremental delivery is a good choice for a 

beginner developer because the project is 

broken down into small wieldy versions, 

and the most important parts are the first to 

be developed, to get the product going. 

After that, new features are applied in each 

new version of the product. Using this 

method, a new version should be ready in 

2-4 weeks and this will lead to a flow that 

is tightly correlated to specification, and 

even possible changes to it, during the 

progression of the project. One major 

downside with this process model is that 

building a new version on top of the old 
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one, tends to increase the complexity of the 

product, making the structure and 

maintainability more difficult. 

 

For Road Kill, the incremental delivery 

technique was used, where basic 

specifications are decided in the beginning 

of the study. All features that the finished 

product should have decided early and 

where new features are implemented in 

each sprint.   

 

In the beginning of each sprint, a short 

meeting was held where all of the group 

members emphasize problems and 

exchanged thoughts, so that all the 

members of the group were kept up to date 

with the progress. After that, a jointly 

decision was made on how to proceed in 

the next sprint.  

 

A group leader was elected to book 

meetings, tracks the function list, write 

down decisions, and supervise the progress 

in the development. 

 

The Waterfall-model requires experience 

of the process before hand, to plan each 

part of the game development process, and 

this was why this model was not chosen 

for Road Kill.  

 



  
     5 

 

  

2 Program structure 

 

A game is a very large software 

engineering project, which can contain 

several thousands of rows of programming 

code. Therefore, it is important for a 

developer to keep the code structured and 

modular. A part of the modularity is 

keeping the abstraction of the game engine 

as simple as possible, as illustrated in Fig 

1. 

 

 
Figure 1: The game engine used in Road 

Kill. 

 

2.1 Game initialization 

 
The first step in the game engine is to 

initialize the game and this is done in the 

following steps that are illustrated in 

Figure 2: 

 

 Create the track. 

 Prepare for multiplayer. 

 Add physics. 

 Build the cars. 

 

 
Figure 2: The game engine, with expanded 

initialization-section. 

 

After the track has been created, Road Kill 

prompts the players to choose their cars. 

When the players are ready, Road Kill 

connects to the server and establishes the 

multiplayer communication. Now that 

Road Kill has a set number players, the 

physics engine and the players’ cars are 

initialized. When the initialization is 

finished Road Kill enters the main game 
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loop, which begins with the input loop. 

 

2.2 Input loop 

 
When input loop has begun, Road Kill 

looks for inputs, such as keyboard events 

and window changes. All these events are 

processed before the game state is updated 

and the input loop is exited.  

 

 
Figure 3: An illustration of the loop that 

handles the different inputs. 

 

2.3 Game updates 

 
When inputs have been handled, Road Kill 

is updated in five different steps, as shown 

in Fig. 4. Each step updates the players’ 

game states variables, such as location, 

velocity, and position in the race. 

 

Transfer data to and from the server 

This step updates the multiplayer state by 

sending the client’s information and 

receiving new information from the 

opponents, if any. This step might be 

limited to only sending data, since Road 

Kill can receive data packets at a lower 

rate than the frequency of which the game 

state is updated. The information being 

sent and received ranges from car positions 

to lap times. 

 

Step physics 

Whether or not there was any new 

information in the data transfer step, the 

physics simulation can now be updated by 

updating all the players’ physical states. 

 

Apply game logic 

After Road Kill has updated all of the 

players’ physical states, the logic step 

checks all new game state variables for 

new information. This step takes the new 

information and applies appropriate game 

mechanics, like the car losing health points 

when a car is hit by a missile or if the 

player finished the race.   

 

Render with effects 

The new game state, with effects like fire 

and explosions, is now drawn on the 

client’s screen. 

 

Sounds 

New sounds are added where it is needed 

and old ones are removed, depending on 

the game state. 
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Figure 4: Game update steps in Road Kill. 
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3 Modeling 
 

When developing a computer game, the 

visual style depends a lot on the objects 

that are contained in the game. There 

would be no point in having good-looking 

reflections, shadows and other effects if the 

objects cannot convey them in a way that 

has high visual appeal. Modeling is the 

process where objects are created and in 

this chapter we will explain, in detail, 

some techniques that are useful. To be able 

to give more concrete examples these 

following sections have used 3D Studio 

Max (Autodesk Inc., 2011a) as the 

modeling software, this is presented in the 

delimitation Section 1.3. The techniques 

can be used in other modeling software but 

some details may differ. 

 

 

With modeling, the goal is to create an 

object using something called vertices, 

which is a point in the x,y,z space. These 

vertices can be connected and form all 

sorts of different objects. 

 

 

 
Figure 5: Vertices (the red dots) that are 

connected by edges to form a box. 

 

Most 3D modeling software has an option 

to create predefined standard geometric 

forms such as cylinders, cones and spheres 

automatically.  These can be modified and 

combined to create objects, making this the 

easiest way for beginners to start 

modeling. 

 

3.1 Blueprints 

 

To start modeling objects, a convenient 

approach is to use something called 

blueprints. A blueprint consists of an image 

file including a view of the chosen object 

from the sides, top, front and back. 

 

 
Figure 6:  Example blueprint of a car. 

 

When a blueprint has been acquired, an 

image editing program can be used to cut 

out the different viewpoints and put them 

in separate files. These images can then be 

loaded onto planes in the 3D modeling 

software, and should be setup like figure 3. 

 

 
Figure 7: Example of how the blueprint 

should look in the 3D modeling software. 
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As seen, it is now a lot easier to make sure 

that everything is aligned the way it should 

be and that everything is in the correct 

scale compared to the real object. 

 

3.2 Modeling a car 

 

When modeling a car from scratch there 

are several different approaches that can be 

considered. One of them is to start with a 

box that consists of many vertices. A 

vertex is one of the three corners in the 

triangles, which build up the box. The 

whole box is built up by small triangles so 

the graphics card can draw them to the 

screen. For example, a plane with four 

vertices is usually divided into two 

triangles. The surface of objects in 3D 

Studio Max is called polygons, and the 

surface is bounded by edges, which have 

two vertices in each end. Another 

technique that one can use to model a car 

is to manually place every polygon so they 

build up a car. One fast manner is to begin 

with a box and extrude the polygons. For 

beginners this is a good way to learn 3D 

modeling fast. Common for all techniques 

is that all of them have a trick to get the car 

to look the same on right and left side. 

First, one half of the car is modelled, either 

the right or left side. Then, there is a 

modifier called symmetry that can take a 

half car and mirror it to the other side to 

make it complete. 

 

The box-technique 

A technique that can be used is to start off 

with a box that has many vertices. It is 

important to keep all vertices organized 

because when there are as many as 20000 

vertices, such as one of the cars in Road 

kill, it becomes too difficult to move 

around the vertices one by one. An easy 

way to keep them organized is to keep the 

vertices aligned in rows so that an entire 

row can be selected and the vertices can be 

moved all at the same time. It is important 

to think about that the box should have the 

same amount of vertices from the 

beginning as the finished car. If one vertex 

is moved at a time, it is hard to get the 

vertices in a level, and the finished car 

would get uneven and dented.  

 

 

 

 
Figure 8: Organized vertices in rows with 

edges aligned straight seen from the Front 

view in 3D Studio Max. 

 

To start sculpting the car, one view in 3D 

Studio Max is selected (front, left or top), 

and then all the vertices are arranged along 

the blueprints outline region. After this the 

car should look such as a car from the 

selected view but still have the shape of a 

box in the other two views. The next step 

in this technique is to do this method once 

for each view in 3D Studio Max.  
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Figure 9: Picture that shows the 4 different 

viewports: top, front, left and perspective. 

 

The polygon-procedure 

A more tactful technique is to position 

every polygon, one at a time. Usually the 

start point is at a corner of the object and 

one side of the object is modeled. The 

polygons are placed directly where they 

should be, contrary to the Box technique, 

and they do not have to move afterwards. 

This is a good way to make a nice looking 

car because much time is spent on every 

part of the vehicle and the focus is only at 

a small part of the vertices at a time. For 

this reason the complexity is often reduced 

and if the vertices are under control it will 

be easier and faster to get good results 

(Gahan, 2010). 

 

The extrude-method  

Working on a box with fewer vertices can 

be a good way to model an object fast. 

Then new vertices are placed where they 

should be and extrude the polygons to 

form new parts. Even if the box is simple 

at the beginning, complexity is added per 

introduced vertex. Hence, the final result is 

rather simple and does not look like a real 

car. Because of the complexity it is 

difficult to get a lifelike result and the 

disorder of vertices prevent from continued 

adding of new parts to the model. 

 

3.3 Painting a model  

 

To make a model look realistic, the parts of 

the model need to be painted in different 

colors. In 3D Studio Max, there is a 

material editor that helps the user choose 

color, select reflection, or decide on a 

texture for the model. The fastest and 

easiest way is to paint a part in only one 

color but this can make the object look too 

clean. For example, a car only looks 

perfect directly after it has been produced.  

 

 

 
Figure 10: First the barrel has only one 

color and some shadow. 

 

The best painting technique is to use a 

texture to cover the whole model. 

Texturing is like painting a picture on a 

paper and then wrapping it around the car 

(Heckbert, 1986). But when a model is 

wrapped, the paper gets all wrinkled, 

which does not look nice. An example of 

this can be seen in Fig. 12, where the top 

of the barrel is stretched, and the texture 

from Fig. 11 is distorted. Therefore, much 

time is spent on cutting this paper to fit 

nicely on the model; this is called texture 

mapping (Heckbert, 1986). To do this in 

3D Studio Max, the tool modifier Unwrap 

UVW can be used. With this tool, the 

various parts of the object can be spread 

out on the texture and then resized, moved 

or transformed so that 3D Studio Max is 

able to cut the texture along the green 

wires in Figure 13. 
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Figure 11: Barrel texture (CGTextures, 

2011). 
 

 
Figure 12: Barrel before the unwrapping, 

stretched and distorted texture.  

 

 
Figure 13: Unwrapping the surfaces of the 

barrel on to the texture. Here the barrel is 

represented as green and pink wires.  

 

 
Figure 14: The barrel after the 

unwrapping. 

 

This helps explaining to 3D Studio Max 

how to take a part on the texture and fit it 

on the car so it does not get stretched out 

or wrinkly. Something that gets stretched 

out easily when modeling for a racing 

game is the race track, because it has to be 

very large. Graphics cards have a limit on 

how large a texture can be, and even the 

largest texture allowed would not be 

enough to cover the landscape without 
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being stretched out. 

 

3.4 Modeling the world 

 

A big part of modeling is the tracks to 

drive on, and it is one of the most 

important parts in a game. There are 

several challenges when it comes to 

modeling a landscape, one of them is to 

simplify the real world to fit in a model 

and still keep the realistic appearance. As a 

game developer, the simplicity and the 

realism has to be balanced to keep the 

simulation look realistic and still avoid a 

low frame rate. 

 

There are two common ways to create a 

landscape, for instance, by using a height 

map (Finney, 2004). A height map is a 2 

dimensional grayscale picture that maps 

directly to the surface of the landscape 

where the brightness of each pixel 

represents the height of that area in the 

landscape. Downside with this technique is 

the resolution on the height map. For 

example, if a game developer wants to 

create a landscape that is 1 square 

kilometer and the developer wants to 

represent every square meter with one 

pixel, then a height map with 1000 x 1000 

pixels is needed. With 8 bits per pixel the 

result is a height map at 1 MB, which is 

large for a small landscape.  

 

 
 

Figure 15: An example height map used 

for creating the alley in Road Kill 

 

Another way to proceed is to use 3D 

Studio Max to create the landscape with 

much flexibility to do changes. With this 

approach, all the modifiers in 3D Studio 

Max will be available for the developer’s 

advantage and the height map technique 

can even be used as one of the tools. While 

this is a much more fine tuning way to go 

by, it is inefficient and complex and, when 

it comes to large landscapes, too heavy for 

3D Studio Max because the number of 

vertices is too many for the program to 

handle and modify.  

 

 
Figure 16: Example track in 3D Studio 

Max. 

 



  
     13 

 

  

3.5 Results 

 

For Road Kill, a large set of models were 

created. These included: cars with 

weapons, plant and a landscape. The 

different techniques, discussed earlier in 

Section 3.2, were all used in the modeling 

of Road Kills different objects. 

 

 
Figure 17: The rendered go-kart car. 

Modeled with the extrude technique. 

 

Figure 18: The rendered monster truck. 

Modeled with the box technique 

 

Figure 19: The rendered truck modeled 

with the box technique 

 
Figure 20: The rendered speedster car. 

Modeled with the polygon technique 

 

3.6 Discussion 

 

One decision that was made early in the 

study was that we wanted to make all of 

the objects ourselves, to make sure that 

Road Kill was so solely owned by the 

members of the thesis group to make a 

possible commercialization of Road Kill 

easier. This made modeling a time-

consuming part of the study. Initially we 

did not plan for the modeling group to 

model the whole duration of the study. Due 

to the amount of time needed to create as 

many unique objects that are in Road Kill, 

a decision was made to continue modeling. 

The original plan was deviated from to 

solve the main thesis problems, as 

discussed in Section 1.2. 

 

The modeling group decided to use 3D 

Studio Max to create the objects in Road 

Kill, Other alternatives that were taken into 

consideration were Blender (Blender 

Foundation, 2011) and Maya (Autodesk 

Inc., 2011b). Due to the fact that none of 

the members had any previous experience 

of modeling, we wanted to use the most 

beginner-friendly software. Based on our 

first impressions, 3D Studio Max was the 

best alternative for this purpose. As we 

were limited in time we were unable to 

study different modeling software 
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extensively. Therefore, there is a good 

possibility that we did not spend enough 

time using the other alternatives to fully 

appreciate their characteristics. One thing 

that has to be taken into consideration here 

is that as students, we had access to a 

student license of 3D Studio Max. If we 

had not been able to, we would have 

chosen Blender as it is open source, and 

therefore free to use, 

 

The 3D Studio Max community is strong 

enough, with over 20 000 topics in the 

discussion groups (Autodesk Inc., 2011c), 

to answer any problems a beginner could 

have. Because of this, finding help on the 

internet was easy and it was a good help. 

Having beginner-friendly software was 

important for the development of Road 

Kill, because it was significant that we 

started with the modeling process as early 

as possible. The plan was to learn to use 

the software during the first two weeks of 

the study and then start modeling objects 

for Road Kill. As we found out, there are 

many things to learn about modeling and it 

would take far more than two weeks to get 

a grasp of everything. Instead we learned 

most of the more advanced features, for 

instance adding textures using UVW-

unwrapping, as discussed in section 3.3, 

during Road Kill’s development process. 

The process of modeling for Road Kill was 

not a linear one, since the modeling group 

found themselves returning to old models 

and improving them with new proficiency. 

 

One of the problems we faced during the 

first weeks of the study was when 

we loaded our objects into Road Kill, as 

there had not been much consideration 

about the scale of the objects in 3D Studio 

Max, and this led to a problem. The scale 

problem was made obvious in the Road 

Kill environment, by objects not behaving 

as expected. To illustrate the scale 

problem, a car that is 20 meters tall will 

appear to be falling in unnaturally slow, 

compared to a normal sized car, with 

earth’s normal gravitational pull of 9.82 

m/s
2
. In order to compensate for this, we 

could calculate our own values of these 

types of physical constants to fit the scale 

of our objects, which would take 

unnecessary time. Instead this was handled 

by trial and error rescaling of the models in 

3D Studio Max until we found a size that 

worked correctly with our physics-library. 
 

 

We also had some trouble with applying 

textures to our models at first. Later on we 

found out about the UVW-unwrapping 

feature in 3D Studio Max, which made it 

easier to scale, move and resize the 

textures to fit the objects. 
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4 Graphics 
 

The role of graphics in games grows more 

and more important as the quality of 

computers' graphics hardware and players' 

demands increase. Better graphical effects 

in games can give players a better gaming 

experience and a stronger illusion of 

reality. This chapter will describe some 

basic properties of modern graphics 

hardware and some algorithms that can be 

utilized to create graphical effects in 

games. 

 

4.1 Graphics Pipeline 

 

Fixed and Programmable Graphics 

Pipelines 

One of the most important features of 

graphics cards today is that they have a 

pipeline, the so called graphics pipeline, 

which consists of mainly three different 

steps: application, geometry and rasterizer. 

 

The Application step is executed on the 

CPU and is responsible for creating 

graphical objects. This means that, in both 

fixed and programmable pipelines, the 

application step is programmable for the 

developer. 

 

The Geometry step is responsible for, 

among other things, moving objects in the 

world, some lighting computations on 

triangles and projecting the world from 3D 

to 2D. 

 

The rasterizer step finds out which pixels 

are inside each triangle and applies 

textures and colors among other things to 

the pixels. 

 

A couple of years ago, graphics cards used 

a fixed graphics pipeline for rendering 

graphical scenes, which basically meant 

that programmers were very limited in the 

ways they could implement different 

graphical effects. The fixed graphics 

pipeline is not used almost at all in modern 

games and consoles, and Nintendo’s Wii 

console that came in late 2006 almost 

certainly is the last console that is not 

using a programmable pipeline (Akenine-

Möller, 2008). 

A Programmable Graphics Pipeline differs 

from its fixed counterpart in the way that 

in addition to a programmable application 

stage, some parts of the geometry and 

rasterizer stages are also programmable for 

the developer. The programs written for 

these two stages are called vertex shaders 

and pixel shaders. A vertex shader handles 

parts of the geometry stage while the pixel 

shader handles parts of the rasterizer stage 

of the programmable graphics pipeline. A 

vertex shader program executes for every 

vertex that is rendered by the graphics card 

and a pixel shader for every pixel. This 

means that operations for every pixel or 

vertex are pretty simple to add. 

 

Matrix operations 

The main task of graphics cards is to 

perform matrix operations, and the shaders 

of modern graphics cards are so efficient 

and optimized for doing this that some 

matrix operations have turned into single 

instructions. Because it has been shown 

that graphics cards today are better suited 

for executing matrix operations than CPUs 

(Fan Wu, 2010), overall system 

performance can be improved by letting 

graphics cards handle those operations. 

This can be done by using, for example, 

NVIDIA's parallel computing architecture, 

CUDA (NVIDIA Corporation., 2011). 
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4.1 Lighting 

 

Lighting in a scene is a crucial part of the 

visual experience and the absence of light 

in a 3D game makes a dramatic difference, 

as illustrated in Fig. 21 and 22.  

 

 
Figure 21: A scene rendered in a world 

without light sources. Each object is 

rendered with its original textures and 

colors, without the influence of lighting. 

 

 
Figure 22: A scene similar to Fig. 1, but 

this time with a light source. 

 

Shading 

Shading is the process of using an equation 

to compute the lighting of an object based 

on the properties of surrounding light 

sources and material properties of the 

object's surface. There are three different 

shading models that are used for 

computing light in games: flat shading, 

Gouraud shading and Phong shading. In 

flat shading, the lighting is calculated per 

triangle, which might give objects an 

angular and artificial appearance. Gouraud 

shading (Gouraud, 1971) instead calculates 

light per vertex, which gives a better result 

than flat shading but still very unrealistic. 

Phong shading (Phong, 1975) calculates 

light per pixel, which is computationally 

expensive but will give a better end result 

than Gouraud shading.  

There are numerous different kinds of 

equations used for shading calculations. 

Some of them consist of four different 

parts, which are called ambient, diffuse, 

specular and emission, where each part has 

its own color. 

 
Figure 23: The car in the upper left corner 

has only the ambient part of the light The 

one in the upper right corner has only the 

diffuse part. The one in the lower left has 

only the specular part, and finally, the one 

in the lower right has all three of them. 

There is no emission part, since the car is 

not self-luminous. 

 

The ambient part represents the light that is 

not coming directly from the light source 

but is reflected from other objects in the 

world. The diffuse part comes directly 

from the light source and is not reflected or 

highlighted but spread out evenly on the 

surface. An example of a very diffuse 
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material is a blackboard. The specular part 

represents highlights on reflective surfaces, 

and the emissive part represents the light 

coming from self-luminous objects. Fig. 23 

shows a graphically rendered car with all 

lighting parts except emission. The color of 

the ambient light is usually a weighted sum 

of the diffuse and specular colors, but in 

some cases the ambient and diffuse colors 

are the same (Cook & Torrance, 1981) 

(Cook & Torrance, 1982). 

 

Types of light sources 

The light sources that surround us in the 

real world illuminate objects in different 

ways. The sun, for example, is very far 

away, and illuminates our world uniformly. 

The light from a burning candle, on the 

other hand, spreads out evenly in all 

directions, and grows weaker when the 

distance to illuminated objects increases. 

Because real light sources behave in such 

different ways, realistic lighting in 

computer graphics applications is not 

efficiently approximated by a single 

algorithm. Instead, light sources are 

divided into categories, such as directional 

lights, omni lights, and spotlights; and 

implemented separately. 

 

A directional light source does not have a 

position from where it emits light, but only 

a direction. An example of a directional 

light source from the real world is the sun: 

it is so far away that its rays can be 

considered parallel, and in local scale it 

illuminates the world uniformly. An 

illustration of directional light can be seen 

in Fig. 24. 

 

Omni lights emit light equally in every 

direction, from a certain point in the world. 

The light's intensity also fades with greater 

distance from the light source. A real world 

example of an omni light source is a light 

bulb that is small enough to be considered 

a point source. Fig. 25 shows an example 

of how omni light is spread evenly in every 

direction. 

 

A spotlight is a light source that unlike 

omni lights is not emitting light equally in 

every direction. Instead, it emits light in a 

cone-shaped fashion, where the light 

intensity is greatest near the cone's axis. 

An example of a spotlight could be a car 

lamp. One way to implement a spotlight is 

to assign it a source point P, direction 

vector L and maximum angle θ, as shown 

in Fig. 26. The light intensity will decrease 

the larger the angle is between the vector L 

and the illuminated point, and when the 

angle exceeds the maximum angle θ; the 

point will be in complete darkness. 

Figure 24: A scene lit by a directional light 

source. 
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Figure 25: The top picture shows how an 

Omni light works. The light is faded out 

according to the distance from the source. 

 

Figure 26: An illustration of a spotlight. 

 

A mathematical formula for a more 

advanced algorithm for spotlights is shown 

in Fig. 27. This algorithm has two angles: 

θu and θp, which define two areas: an 

umbra and a penumbra. While inside the 

umbra, a point is lit by the maximum 

possible amount of light. When outside the 

umbra, the point becomes less lit 

depending on the angle θs between the 

point and the spotlight's direction vector. 

When the point is outside the penumbra, it 

is not lit at all by the spotlight. This 

algorithm gives a smoother transition from 

maximum light to complete darkness. An 

illustration of the algorithm is shown in 

Fig. 28. 

 

 
Figure 27: Spotlight algorithm with umbra 

and penumbra. L is final light intensity and 

L Max is provided with the spotlight and 

the other values are illustrated in Fig. 11. 

 

Although all of the previously described 

algorithms are useful for graphics 

applications, they are still poor 

approximations of real light sources. 

Verbeck and Greenberg’s article describes 

different measures of real light intensities 

and how to apply them to real-time 

rendering (Praun, 2001) 

 

 
Figure 28: Spotlight algorithm with a 

penumbra. This algorithm gives a 

smoother transition between light and 

darkness than the one illustrated in Fig. 
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26. The three angles in the figure are the 

same as in Fig. 27. 

 

Figure 29: A picture from Road Kill where 

the fire has an omni light source and the 

car lamp has a spotlight with an umbra, 

but no penumbra. The umbra is the area 

where the light is, as illustrated inside the 

white lines. 

 

4.1.1 Results 

 

For the lighting in Road Kill, we used the 

Phong shading model together with omni 

lights and spotlights with only an umbra 

(see Fig. 26). Omni lights were used for 

the moon, fires and explosions; and 

spotlights were used for the streetlights and 

car lamps (see Fig. 29). The ambient light 

has the same color as the diffuse light for 

all light sources in Road Kill. 

 

4.1.2 Discussion 

 

We chose Phong as the shading model to 

use for Road Kill, with the reason that it 

should provide a better visual result than 

flat shading or Gouraud shading. Graphics 

cards today give developers the ability to 

program some parts of the graphics 

pipeline themselves (as mentioned in 

Section 4.1), and implementing Phong 

shading in the fragment shader proved to 

be fairly simple. The flat and Gouraud 

algorithms should be as easy to use, but the 

code must be written in the application 

layer for flat shading, and in the vertex 

shader for Gouraud shading. 

 

The main disadvantage of having the 

shading calculations in the application or 

vertex shader, instead of in the fragment 

shader, is that the resulting rendered scenes 

would be of a lesser visual quality. Flat 

shading and Gouraud shading can still be 

good options, however. This is particularly 

true if a large amount of light sources are 

needed, since shading can be done many 

times faster with these methods than with 

Phong shading. 

 

Despite the relatively high number of 

calculations done by Phong, we noticed 

that the graphics cards in our development 

computers could handle shading for all our 

light sources in a satisfactory way. 

Therefore, we decided to keep using Phong 

through the whole development process. 

 

As mentioned in the results, we decided to 

approximate the moon as an omni light 

instead of a spotlight or directional light. 

The reason for this is that we wanted the 

moon to cast shadows, and therefore 

needed a position for the light source, as 

will be explained in Section 4.2. We did 

not use any fading for the moonlight since 

we wanted to illuminate the whole world 

uniformly. Since the distance between the 

moon and the Earth in Road Kill is so 

great, using a directional moonlight instead 

of an omni light would have made little 

visual difference in local areas, and would 

have been less computationally expensive. 

Therefore, it might have been more 

efficient to use a directional light source 

for the moonlight and add a specific 

additional point where the moon is and 

from where shadows should be calculated. 
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We decided to use omni lights for the fires 

and explosions in Road Kill, since they 

tend to spread light evenly in all directions 

and fade out according to distance. Some 

results can be seen in Fig. 12. 

 

 
Figure 30: Omni light from fire 

 

For the streetlights and car lights, we used 

spotlights with only an umbra (see Fig. 

26). An in-game picture of the spotlight 

algorithm depicted in Fig. 26 is shown in 

Fig. 31. 

 
Figure 31: Car lamp approximated as a 

spotlight with only an umbra, as illustrated 

in Fig. 26. The white lines roughly show 

where the light has faded out completely. 

 

4.2 Shadows 

 

While lighting does improve the visual 

appearance of a scene, without shadows 

the scene will still seem unrealistic. Fig. 32 

and 33 show the difference between a 

scene rendered with and without shadows. 

 
Figure 32: A car from Road Kill on the 

ground without any shadows. 

 

 
Figure 33: The same car on the same place 

as in Fig. 32, but this time with shadows. 

 

The purpose of a shadow algorithm is to 

decide for every pixel if it is in shadow or 

not. There are mainly two different shadow 

algorithms for real-time rendering: shadow 

maps and shadow volumes. 

 

4.2.1 Shadow Maps  

 

In 1978 Williams introduced the Shadow 

Map technique (Williams, 1978). The 

algorithm works by rendering the scene 

with the camera's position equal to the 

position of the light source. Every pixel 

that can be seen by the camera should then 

be illuminated by the light source, and all 

other pixels should be in shadow. 

 

Before the scene is rendered, the position 

of each pixel seen by the light source is 

transformed into a coordinate system 
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where the light source lies in the origin. 

The scene is the rendered from the 

perspective of this coordinate system, and 

the depth of each rendered pixel (i.e. the 

distance between pixel and light source of 

each pixel that can be seen by that light 

source) is stored in a so called depth buffer. 

The elements of a depth buffer that is used 

for shadow calculations are called shadow 

map samples. 

 

When shadows are calculated in the world, 

a comparison is made between every 

pixel’s depth–as seen through the light 

source’s coordinate system–and the 

corresponding shadow map sample’s depth 

in the depth buffer. If the depth of the pixel 

is the same as the depth of the sample, the 

pixel is seen by the light source and should 

be lighted. If the depth of the pixel is 

greater than the depth of the sample, 

however, another object must have 

obstructed the pixel, and therefore, the 

pixel should be in shadow (see Fig.  34).  

 

 
Figure 34: Shadows are calculated for a 

pixel below the car tire. The depth of the 

pixel is first compared against the depth of 

the corresponding shadow map sample in 

the depth buffer. Since the depth of the 

pixel is less, the pixel cannot be seen from 

the light source, and is therefore rendered 

in shadow. 

 

The shadow map technique is a relatively 

efficient method. Using shadow maps will 

reduce the overall performance of 

rendering a scene by a constant factor 

equal to the number of shadow casting 

light sources. This is because a scene will 

always be rendered at least once per frame, 

and the creation of one shadow map for 

each light source leads to the scene being 

rendered one additional time per light 

source. There are, however, two problems 

with shadow maps that need to be 

considered during their implementation. 

Both of these problems originate from the 

fact that the sizes, or resolutions, of depth 

buffers are limited. Because of this, a 

shadow map sample may correspond to 

multiple pixels in the world. 

 

Perspective Aliasing problem 

Because more than one pixel are 

represented by the same shadow map 

sample, either all of those pixels will be 

shadowed, or none of them. Because 

shadows are cast on pixel groups, instead 

of individual pixels, the shadow image will 

be aliased and pixelated. This phenomenon 

is called Perspective Aliasing (Scherzer & 

Drettakis, 2005) (Stamminger & Drettakis, 

2002). There is no clear solution to this 

problem except to limit the view of the 

shadow map (King, 2004), but doing so 

will decrease the size of the area where 

shadows are cast. 

 

Bias problem 

Because of the way nearby pixels are 

grouped together before their depths are 

stored in the depth buffer, the depth of a 

pixel might be slightly different than the 

depth of its corresponding shadow map 

sample, even if the pixel is actually seen 

by the light source, i.e. not obstructed. The 

effect of this is that some pixels that should 
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be lighted are instead cast in shadow (see 

Fig. 35). This problem is called the bias 

problem, or self-shadowing. An example 

of self-shadowing in a scene can be seen in 

Fig. 36. 

 

 
Figure 35: All the pixels above or under 

the red line will have the same depth value 

in the depth-buffer. The pixel in the blue 

sphere will be self-shadowed because its 

depth is greater than the corresponding 

shadow map sample in the depth-buffer.  

 

 
Figure 36: all the small black dots and 

lines are results of self-shadowing. 

 

A solution to the self-shadowing problem 

is to add a so called bias (Shüler, 2005). A 

bias is a constant value (Lengyel, 2000) 

that determines a region where shadowing 

is prohibited. Having a bias stops pixels 

from casting shadows on nearby pixels that 

are within this region. 

 

4.2.2 Shadow Volumes 

Shadow Volumes was introduced by 

Heidmann in 1991 (Heidmann, 1991). In 

one version of the Shadow Volume 

technique, a volume is created for every 

triangle. The volume is defined as the 

region that is obscured from the light 

source by the triangle. Fig. 37 illustrates 

such a volume. 

 

 
Figure 37: A Shadow Volume created for a 

purple triangle. 

 

A pixel that is inside one or more shadow 

volumes will be rendered in shadow. 

 

Shadow volumes from multiple triangles 

can be merged into so called silhouette 

edges. Doing this reduces the total number 

of shadow volumes, and therefore, the 

number of calculations made when 

shadowing objects. 

 

The main advantage of shadow volumes is 

the sharpness of the resulting shadows. 

Disadvantages include having to create the 

numerous volumes and testing whether 

objects are located inside them or not. 
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4.2.3 Results and discussion 

 

We have chosen to use the Shadow Map 

technique as the shadow algorithm for 

Road Kill. Because we had some previous 

experience with shadow maps, we knew 

that the technique would be relatively easy 

for us to implement quickly. By 

implementing a shadow algorithm as 

quickly as possible, we could save 

development time for other kinds of game 

features. Another reason for using shadow 

maps was that we wanted a way to render 

shadows as quickly and efficiently as 

possible. 

 

In Road Kill, the moon is the only light 

source that casts shadows. We have 

reduced the effects of the resolution 

problem by only rendering shadows within 

a constant distance from the player's own 

car, but we still need a small bias to 

prevent self-shadowing. 

 
Figure 38: Scene in Road Kill with 

shadows and enough bias to prevent self-

shadowing. 

 
Figure 39: The same scene as in Fig. 38, 

but this time with a lower bias, which leads 

to self-shadowing artifacts. 

 

Finding the right balance between how 

much of the world should be affected by 

shadows, how high the bias should be, and 

which resolution the depth buffer should 

have, proved to be a delicate task. 

 

Shadowing a greater part of the world, 

while keeping the bias and depth buffer 

resolution constant, would lead to an 

increase in size of all shadow map 

samples, which means that more pixels 

would be mapped to the same sample. This 

would lead to a greater amount of self-

shadowing (see Fig. 39). 

 

By having a too high bias, some pixels that 

should be in shadow may not be shadowed. 

If, for example, an object was obstructed 

by another object, but the distance between 

them was less than the minimum distance 

indicated by the bias, the obstructed object 

would not appear in shadow. 

 

While increasing the depth buffer 

resolution would reduce the effects of self-

shadowing, it would also reduce 

performance, since a higher number of 

shadow map samples would have to be 
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processed. 

 

4.3 Particle Systems 

 

Some objects are more dynamic than 

objects with rigid bodies (which are 

discussed in Section 3.2), and are therefore 

ill-suited for modeling. To create these 

graphical effects, like fire, smoke, and 

explosions, a particle system can be, and 

generally is, used (Reeves, 1983). To 

create a more compelling game, it is 

important to have these graphical effects 

due to the added liveliness. 

 

There are some characteristics of particle 

systems that limit how well real world 

phenomena can be simulated, e.g. a dust 

cloud. The main problem is simply that it 

is not possible to imitate a real dust cloud 

with real-time graphics due to the complex 

physical dynamics and the huge number of 

particles. However, with the right 

techniques it is possible to still produce a 

visually pleasing result. 

 

With two-dimensional particles, a 

developer is able to use a larger number of 

particles at the same time, improving the 

look of the graphical effect. This increase 

in particles is due to the much reduced 

complexity of drawing a two-dimensional 

object compared to a complex three-

dimensional one. This leads to the problem 

of having two-dimensional particles in 

three-dimensional space – rotating around 

them would ruin the imitation of the real 

world phenomena.  

 

 
Figure 40: A collection of particles that do 

not stay perpendicular to the camera. 

 

Using two-dimensional particles is 

preferable in real-time graphics, and to 

solve the rotation problem, a technique 

called billboarding is used. 

 

4.3.1 Billboards 

 

When a textured polygon is rotated based 

on the view direction, a technique called 

billboarding (McReynolds, T., Blythe, D., 

2005) is used. To solve the rotation 

problem, which is discussed in Section 3.5, 

each object is always drawn perpendicular, 

by rotating them around their own axis, to 

the screen to hide the fact that they are 

two-dimensional. 

 

Flattening of complex objects in to two-

dimensions has been used extensively in 

real-time graphics, and the results are 

generally quite good as long as a distance 

is kept between the camera and the 

flattened object. As soon as the object is 

approached, it becomes obvious that it is 

not a real three-dimension object, 

especially if the object is only rotated 

around a single axis, like trees. 
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Billboards in particle engines  

All particles in particle engines generally 

each have some properties, e.g. velocity, 

position, and whether or not they are alive 

and should be rendered. At a distance, this 

technique produces a good looking result 

as seen in Fig. 41. 

 

 
Figure 41: A torch fire consisting of three 

different particle systems (each spawning a 

different particle color) and a total of 

17000 particles. 

 

With billboarding, the number of particles 

that are available can be increased by not 

using three-dimensional objects, and 

maximizing the number of particles that 

are available is critical when it comes to 

creating realistic fuzzy objects. 

 

4.3.2 Soft particles 

 

When a billboarded particle intersects a 

surface, a common artifact appears where 

the half intersected particle has an 

unnaturally sharp edge against the surface. 

These sharp edges are unwanted, because 

they ruin the graphical effect by acting in 

an unnatural way. 

 

By implementing soft particles (T. Lorach, 

2007), this artefact is avoided by fading the 

pixels, of the particle, near the intersection. 

As shown in Fig 42, the level of fading is 

correlated to the distance to the nearest 

object behind the 

particle.

 
 

Fig 42: Here, the particle is faded 

depending on the distance to the nearest 

object behind the particle. The intersecting 

part, near d1, is under the ground and is 

therefore never drawn at all. 

 

Even though this technique can improve 

the look of particle systems, especially if 

the particles of the system are quite large, 

it requires reading of the depth buffer, to 

get the distance between the particle and 

the object behind it. The reading operation 

can be quite costly if the buffer is large, 

depending on the resolution of the screen. 

 

4.3.3 Results and discussion 

 

Due to the limitation of memory access on 

the graphics card it is important to limit the 

number of particles in each effect. An 

example of the significance of this is that 

the torch shown in Fig. N was not included 

in Road Kill due to its high number of 

particles, despite its good look. So there 

was a large part in the development of the 

effects that was merely optimization. 

 

Road Kill has 13 particle engines that 
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supply effects such as missile explosions, 

muzzle flashes from miniguns, gravel 

spray from the tires, and exhaust fumes. 

Fig. 43 and Fig. 44 illustrate a number of 

them. 

 

 
Figure 43: An illustration of the in-game 

explosion and torch particle effects of 

Road Kill. 

 

 
Figure 44: An illustration of exhaust and 

gravel spray effects of Road Kill. 

 

Because of the added memory accesses 

and the lowered frame rate due to soft 

particles, we decided not to use this 

technique because we felt that the artifact, 

which is discussed in Section 3.5.2, was 

never really that prominent. We also felt 

that we would benefit more from being 

able to use a higher amount particles 

compared to having fewer that were soft. 

4.4 Culling 

 

(Cohen-Or, 2003) Even today, with 

graphics cards that can draw incredible 

amounts of triangles very fast, rendering 

entire 3D worlds will still result in a 

bottleneck if the worlds are large enough. 

By only rendering the objects that will 

actually appear on the computer screen, a 

graphics card can avoid doing unnecessary 

calculations. 

 

Culling is a method for filtering out objects 

in the world that will not be seen on the 

computer screen at a particular time. There 

are many different culling techniques that 

can be used, and which will be explained 

in this section. 

 

4.4.1 View frustum culling 

 

In 3D graphics, the view frustum is a 

volume that defines a camera's field of 

view. Only primitives that are inside the 

view frustum can be seen by the camera. 

The view frustum consists of six planes, as 

illustrated by Fig. 45. 

 

 
Figure 45: A view frustum defined by the 

six planes called Near, Far, Top, Bottom, 

Left and Right. 

 

Since the primitives that are outside the 

view frustum will end up not being 
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displayed on the screen, it is unnecessary 

to send them to the graphics card at all. 

Therefore, they can be culled. 

 

4.4.2 Backface culling 

 

Another, very simple culling technique is 

called backface culling. It can be turned on 

in OpenGL with one command, and then, 

triangles that are facing the camera with 

their back side will not be sent to the 

graphics card for rendering. Fig. 46 

illustrates two primitives which are back 

face culled. 

 

 
Figure 46: A view frustum with two 

primitives inside. The primitives are drawn 

after view frustum culling has been 

applied. The red lines mark the triangles 

that will be back face culled because they 

are facing the camera with their back side. 

 

4.4.3 Occlusion culling 

 

Even with both view frustum culling and 

backface culling enabled, objects that are 

hidden behind other objects would be 

drawn unnecessarily. For example, all the 

three spheres in Fig. 47 would be drawn, 

but only the leftmost one would be seen by 

the camera.  

 
Figure 47: The two red spheres are hidden 

behind the white one, and will be 

unnecessary to draw. 

 

Occlusion culling deals with this problem 

by filtering out primitives that are fully 

hidden behind other primitives. 

Nevertheless, most techniques for 

occlusion culling are inefficient, and the 

time taken to cull an occluded primitive is 

in most cases greater than the time saved 

by not rendering it. 

 

4.4.4 Portal culling 

 

The portal culling technique can be 

described as a mixture between occlusion 

culling and view frustum culling. When the 

camera is positioned inside a building or 

similar structure (such as the one in Fig. 

48), it is possible to create multiple view 

frustums that perfectly fit door openings 

and similar gaps in the walls. The 

primitives that are located inside any of 

those view frustums can be seen by the 

camera, and are rendered as normal. The 

primitives that are outside all of the view 

frustums are completely hidden behind the 

building's walls, and can be culled by 

using the relatively efficient view frustum 

culling technique. 
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Figure 48: A view frustum has been 

created for each door opening. The red 

spheres are hidden behind the building's 

walls, and have been portal culled. The 

white spheres are visible by the camera, 

and will be drawn. 

 

An algorithm for portal culling was first 

introduced by John M. Airey in 1990 

(Airey et. al., 1990) (Airey, 1990). Since 

then, Teller and Sequin (Teller & Sequin, 

1991) (Teller, 1992) and Teller and 

Hanrahan (Teller & Hanrahan, 1994) have 

created more efficient algorithms for portal 

culling. 

 

4.4.5 Level of Detail 

 

Just like in the real world, objects far away 

from the observer of a scene will appear 

smaller than objects that are close. When 

an object is far away enough, the viewer 

cannot tell whether the object consists of 

many vertices, or just a few. Rendering 

objects with their full amount of vertices is 

therefore unnecessary when the objects are 

sufficiently far away. Level of detail is a 

technique that utilizes this fact to reduce 

the number of vertices rendered in a scene. 

 

To be compatible with the level of detail 

technique, a program must contain 

multiple versions of the same model. Each 

version of a model should be made up of a 

different number of vertices. When an 

object is about to be rendered to the screen, 

a suitable model version is picked based on 

the object's distance to the camera. For 

example, when the object is very close, the 

version with the highest number of vertices 

is rendered. Fig. 49 illustrates a situation 

where different versions of a cylinder are 

drawn depending on its distance to the 

camera. 

 

 
Figure 49: A cylinder is approximated by 

models with fewer vertices when the 

distance to the camera increases. 

 

Some versions of the level of detail 

technique increase system performance 

even further. Objects that are sufficiently 

far away can be rendered as 2D images, 

also called imposters, instead of real 3D 

models (Maciel, 1995). If they are small 

enough, and also far away, some models 

may not be drawn at all. Memory can also 

be saved by using textures of lower quality 

for models that are further away 

(Cebenoyan, 2004). 

 

4.4.6 Results and Discussion 

 

Road Kill uses the relatively simple 

backface culling and view frustum culling 

techniques to increase performance during 

the rendering of scenes. Since these two 

techniques are both simple to implement 

and efficient to use, we recommend all 3D 
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game developers to use one or both of 

them in their games. The only reason for 

not using these two methods is the time 

needed to implement them. If, for example, 

a game is developed, where the number of 

objects rendered in the world is low, no 

performance increasing algorithms may be 

needed at all. In such a case, development 

time may be better spent implementing 

other features. 

 

Occlusion culling was not implemented in 

Road Kill, because we decided that the 

time needed to find and implement an 

efficient algorithm was better spent on 

other game features and effects. The 

benefit of having occlusion culling would 

also be marginal, since, at the time of 

writing of this report, Road Kill consists 

mainly of open landscape, where few 

objects obstruct each other. 

 

There are no indoor environments in Road 

Kill, but portal culling may still have been 

useful if applied to the road valley that 

makes up most of the race track (see Fig. 

50). However, once again we decided that 

the development time required for 

implementing portal culling was better 

saved for other, more important features. 

 

 
Figure 50: This picture illustrates that by 

treating cliffs as building walls, and the 

valley as a door opening, portal culling 

could have been implemented and used 

successfully in Road Kill. 

 

Level of detail was not used in Road Kill, 

mainly because of the additional time 

needed to model different versions of 

objects. Even though we made only one 

version of each object in Road Kill, we 

still consider the amount of time that was 

spent modeling to be significant. This is 

further discussed in Chapter 10. 

 

4.6 Reflections 

 

Most models in a 3D world are made to 

approximate real-world objects. Some of 

those objects, such as mirrors, water pools, 

and flat, shiny metal sheets, are highly 

reflective. To render those objects in a 

realistic way (compare Fig. 51 and 52), a 

developer needs to implement a way to 

approximate and cast reflections. 

 

 
Figure 51: A car without reflections looks 

too clean and unrealistic. 

 

 
Figure 52: The same car as in Fig. 51, but 

with reflections added. This car does not 

look realistic either, but heavy reflections 

have been added to illustrate the 

difference. 
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Cube maps 

To cast reflections in a satisfactory way, a 

reflection algorithm must be able to map 

an image of the surrounding world onto the 

surface of a reflective object. Such maps 

were introduced by Blinn and Newel 

(Blinn, 1977), and are called environment 

maps. 

 

In real-time rendering, the cube map 

technique is the most widely used 

environment mapping technique today 

(Akenine-Möller, 2008). The technique 

was introduced by Greene in 1986 

(Greene, 1986), and, as the name implies, 

it uses a cube as an environment map. The 

cube is first created around the reflective 

object. Images of the surrounding world 

are then projected and stored in each of the 

cube’s six sides 

 

To calculate the color of reflections in a 

pixel, a reflection vector is calculated from 

the pixel’s normal vector and the eye 

vector, i.e. the distance vector from the 

camera to the pixel, according to the laws 

of optics. The reflection vector will point 

to a pixel in one of the cube’s sides. The 

color of the reflection will be determined 

by the color of this pixel. 

 
Figure 53: Reflections for a certain pixel 

in a teapot is calculated using cube maps. 

A reflection vector is calculated from the 

eye vector and the pixel’s normal vector. 

The color of the reflection is determined by 

the pixel pointed to by the reflection vector. 

 

Incorrect Reflections 

Due to performance and memory 

limitations, a unique cube map cannot be 

created for every pixel. Since the 

reflections in multiple pixels are calculated 

from the same cube map, this method does 

not provide completely realistic shadows.  

 

When the environment is projected onto 

the cube map, a 3D world is reduced to six 

2D images. During this transformation, 

information about the depth of different 

parts of the world is lost. An improvement 

that can be made to cube maps and 

environment maps in general, is to add a 

depth value to each pixel stored in the map 

(Szirmay-Kalos et al, 2008). These depths 

can be used to create reflections of 

increased realism. 

 

4.7 Texture Blending 

 

When creating models in modeling 

software, such as 3D Studio Max, it is 

possible to apply several textures together 

on the same object. Directly placing 

different textures next to each other will, 

however, result in ugly transitions, as 

illustrated in Fig. 54.  
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Figure 54: Several textures are used 

without texture blending. A particularly 

ugly transition can be seen between the 

grass and mud textures. 

 

One solution to this problem is to simply 

use only one texture. Doing this will 

introduce another problem: texture 

repeating. This results in a very unrealistic 

world, such as the one depicted in Fig. 55. 

Another solution is to blend textures 

together in the programmable graphics 

pipeline, as has been done in Fig. 56. 

 

When blending two textures together, a 

grey scale map is used to determine how 

much of each original texture should cover 

each point of the resulting texture. A bright 

area of a grey scale map could, for 

example, correspond to a grassy texture, 

while darker areas correspond to a rocky 

texture. A grey area would then correspond 

to a texture which is both fairly grassy and 

fairly rocky. 

 

 
Figure 55: A small part of a world with 

only one texture. This results in an 

artificial visual appearance due to tile 

repeating. 

 
Figure 56: The same part of the world as 

in Fig. 55, but this time with texture 

blending between four textures. 

 

4.7.1 Results and discussion 

 

The world of Road Kill consists of a valley 

located in a desert landscape. Inside the 

valley lies the race track. The ground is 

covered by a combination of four textures: 

grass, dirt, sand, and cracked rock. The 

race track is mostly covered by the cracked 

rock texture. The open desert parts of the 

landscape and the walls of the valley are 

cover by the sand texture. Patches of grass 

and dirt are also scattered around the game 

world. 

 

Texture blending is performed to create a 

more realistic and visually pleasing terrain. 

Since we have four different ground 

textures, we need an additional three grey 

scale textures for the blending. Because 

texture blending of this amount of textures 

takes a lot of time, we initially performed 

the blending only once, during Road Kill’s 

loading phase. We did this by blending all 

textures onto a plane. This plane would in 

turn be used as one large texture tile to 

cover the whole game world. We soon 

discovered that a texture tile of that size 

would require a very large resolution in 
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order to provide a visually pleasing result. 

Such a high resolution proved to be 

impossible to use due to memory 

constraints. Therefore, we changed our 

program to perform blending each frame, 

which means that we no longer have to 

store any resulting textures between 

frames. 

 

Some results of our final texture blending 

method are shown in Fig. 56. 

 

4.8 Camera 

 

The control of cameras in a game is just as 

important as the control of cameras in 

movies. The movement of the camera can 

influence how we think of the content in a 

game and enhance the game experience. 

Therefore it is important to implement a 

well-functioning and realistic camera. 

There are several different alternatives 

when it comes to observing a game. The 

two most common classifications are the 

first person perspective and the third 

person perspective.  

 

 
Figure 57: (a) Third person camera 

position and view. (b) First person camera 

position and view. 

 

The first person perspective is 

implemented by setting the position and 

rotation for the camera to the position and 

rotation of the character. Ideally the 

camera position should be the same as for 

the player’s character’s eyes, but there can 

be a problem that the own character 

concealing the view of the player. To avoid 

this problem the character can be excluded 

from the rendering loop. 

 

In the third person perspective, there are 

several options how the camera will move. 

The camera can be moved by the player 

regardless of the position of the character, 

which is usually used in strategy games, or 

the camera can move and rotate depending 

on the characters. The third person 

perspective is more expensive for the 

performance because of the need to check 

if the camera collides with other objects 

each frame. This collision detection is 

needed to avoid that the camera, for 

example, ends up on the wrong side of a 

wall, i.e. not the same side as the character. 

If the camera shall follow the characters 

movement and rotation even more 

calculations are needed calculate the 

position and rotation of the camera. 

One way to achieve the effect that the 

camera is following the character is to get 

the position and rotation for the character. 

Then an offset is added to the position of 

the character in a direction depending on 

the rotation of the character and then make 

the camera to look at the character. This 

seems to work in theory, but in practice the 

camera becomes unsteady and unrealistic. 

A better way is to simulate that the camera 

is following the player attached to a spring 

with dampening. This will lead to 

smoother movement for the camera, much 

like a real camera in cinema productions 

with accelerating movement, but it is still 
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possible for the camera to end up inside 

other objects, and consequently there is a 

risk not being able to see the character at 

all times. A solution for that problem is to 

make the camera a part of the physics 

world but without rendering it so that it 

would stay invisible for all players. Now 

another problem arises, the camera can 

influence the other objects in the world and 

if an object comes in the way of the 

camera and prevents it from moving 

forward then, because of the spring 

attached to the character, the character will 

not be able to move forward either. 

 

Another way to implement a camera, 

which follows the character with a smooth 

movement, is to calculate the distance to 

the desired new position but only move the 

camera a fraction of the total distance. This 

will make the camera move smoother and 

much like a damped spring.  

 

A more sophisticated way to follow the 

player is to use an interactive camera that, 

like in cinema, focuses on important parts 

in the story and makes sure that the player 

does not miss anything by looking in the 

wrong direction. When an interactive 

camera is used, there are one or more 

preset routes that it will follow, depending 

on the area that the character is located in. 

In this way, there is more assurance that 

the camera will behave satisfactory. In this 

method, some colorful effects like 

zooming and rotating the camera can be 

used with good results. 

 

4.8.1 Results 

 

Road Kill uses a third person perspective 

camera that follows the car with the 

method of calculating the distance of the 

desired new position, but moving it a 

fraction of the distance for smoother 

movement.  

 

To save some time, we decided to use the 

existing spring constraints in the Bullet 

physics engine to attach a slim cylinder 

reaching from the car and diagonally 

backwards. The camera was then 

positioned in the end of the cylinder 

looking at a point a little bit ahead the car. 

We used a cylinder to avoid getting stuck 

with the camera behind an object. 
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5 Physics engine 
 

The physics engine handles the simulation 

of all physics for example collisions and 

applying forces to the objects. 

 

 
Figure 58: The blue truck is driving right 

through the lamp post when the lamp post 

is not a part of the physics engine. 

 

A physics engines tasks are to calculate if, 

where and when objects collide with each 

other and then respond to the collisions 

according to the laws of physics. To be 

able to achieve this, generally physics 

engines include two main parts, collision 

detection/collision response and dynamic 

simulation. 

 

For each frame there are many tasks that 

need to be done and therefore each task 

needs to be done as fast as possible for a 

game to run smoothly. Because of the 

many complex calculations in the physics 

engine much time can be saved by 

applying various simplifications and 

speed-up techniques. 

5.1 Detecting collisions between 

objects 

 

As the name indicates, collision detection 

is responsible for detecting the collisions 

between different objects. The most 

difficult part with collision detection is not 

to calculate the actual collisions but to do 

this really fast. Collision response uses the 

collisions detected earlier and applies the 

corresponding forces to the objects 

involved. 

 

As mentioned in the beginning of Section 

5, the problem is not to detect the 

collisions but to do this within a very small 

time limit. The frame rate to strive for is 

roughly 60 frames per second (Watson & 

Luebke, 2005). This means that every 

frame has to be calculated in less than 

seventeen milliseconds. 

 

As described in Section 3.2, every object 

consists of a collection of triangles. For 

example, one of the cars in Road Kill 

consists of 20 000 triangles as shown is 

Fig. 59.   

 

 
Figure 59: Illustration of how many 

triangles one of the cars in Road Kill 

contains. 

 

With unlimited time it would be possible to 

actually calculate intersections between 
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every single triangle but in real time 

graphics this is not possible due to the time 

constraint, mentioned earlier, and the large 

amount of triangles in the objects that need 

collision detection. The solution to this 

problem there are lots of speed-up 

techniques. 

 

5.1.1 Bounding volumes 

 
Since it is not possible to check every pair 

of triangles for intersections every frame, 

the triangles need to be divided into 

geometric shapes, surrounding the 

triangles of an object. These shapes are 

called bounding volumes (BV) (Akenine-

Möller, 2008). There are a few common 

BVs: bounding sphere, axis-aligned 

bounding box (AABB) oriented bounding 

box (OBB) and k-discrete oriented 

polytope (k-dop). 

 

 
Figure 60: Examples of bounding volumes: 

Sphere, AABB, OBB and 8-dop. 

 

There is no right or wrong when it comes 

to choosing BV because all of them have 

different trade-offs. Either the BV is tight 

around the triangles of the object, which 

demands a complex geometric shape, or a 

larger fit with a common geometric shape 

according to Fig. 60. If a BV has a small fit 

then fewer triangles will need to be tested 

for intersections since fewer BVs would 

intersect. On the other hand the complex 

geometric shape of the BV will cause the 

computation of the intersections to take 

longer time. If the BV is a simple 

geometric shape the complexities are 

reversed with a higher amount of 

intersections and faster computations 

instead.  

 

Bounding Sphere 

 
Figure 61: Car approximated with 

bounding sphere; the easiest BV to rotate 

and translate. 

 

A bounding sphere is a bounding volume 

that surrounds all the triangles of an object. 

The advantages with bounding spheres are 

that they are easy to create (Ritter, 1990), 

translate, rotate and scale. These properties 

fit nicely for objects that are moved 

frequently. The drawback is that the 

volume inside the sphere is much larger 

than the encased object as illustrated in 

Fig. 61. 

 

Axis-aligned bounding box 

 

AABB is box that always stays aligned 

with the x-, y- and z-axis. This is an even 

easier BV to create than a bounding 

sphere.  
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Figure 62: An AABB containing the vehicle 

object. 

 

The drawback with an AABB is that it has 

to be recreated when rotated since it needs 

to stay axis-aligned. Although this is not 

that much of a problem since it is a very 

easy BV to create. The volume for AABB 

is less than the volume for a sphere so 

there are fewer intersections between the 

BVs. However the more complex shape for 

AABB requires more calculations when 

the intersection occurs. 

 

Oriented bounding box 

 

An OBB is a box that is rotated to best fit 

the objects within as seen in Fig.31. It is 

hard to create and to manage but do have a 

tight fit around the object. An OBB needs 

much memory to be stored and have rather 

expensive collision testing but because the 

tight fit there are not many OBB-

intersections without actual triangle 

intersection. Because of the free rotation of 

the OBB there is no need to recalculate, 

just rotate it as the object. 

 
Figure 63: An OBB containing the vehicle 

object. 

 

K-discrete oriented polytope 

 

A k-dop is defined by the tightest set of k/2 

slabs. A slab is the volume between one 

pair of parallel planes as illustrated in Fig. 

64 (Ericson, 2005). In Fig. 64 the black 

lines represent the planes that limit slab 1 

and slab 2. If a third dimension were to be 

added, two additional slabs that are parallel 

to this paper are needed. In this three 

dimensional case it would be a 6-dop and 

if the slabs are axis-aligned it would be an 

AABB.  

 
Figure 64: A box in two dimensions 

defined by two slabs. The black lines 

represent the planes that limit the two 

slabs.  
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Figure 65: A 10-dop containing the vehicle 

object. The number 10 in 10-dop means 

that there are 10 planes that limit the 

object. The last two planes are parallel to 

this paper and are not shown. 

 

Convex hull 

In mathematics, a convex hull shape is the 

shape that contains the points with a 

minimal convex set. A good metaphor to 

illustrate the convex hull in two 

dimensions is a large rubber band 

tightening around the object (see Fig. 66). 

In three dimensions, the object is inside an 

inflated balloon and the hull is minimized 

by letting the air out of the balloon 

(Barber, 1996). 

 

 
Figure 66: A metaphor for how a convex 

hull contains an object. 

 

A convex hull is a complex shape that is 

hard to create and rotate but the big 

advantage with it is that the shape can 

enclose a generic convex object. Therefore 

it is very useful when, for example, the 

objects are created at run-time. If the 

object is not convex the enclosed area will 

be larger than wanted. A solution to this 

problem is to test whether it is convex or 

not and if it is the object can be 

decomposed into convex objects. 

 

Triangle mesh 

When all triangles of an object are stored 

one by one a translation needs to change 

three vertices for every triangle. If instead 

a mesh is used to store the triangles the 

common vertices that connect the triangles 

only need to be changed once (see Fig. 67).  

 
Figure 67: A triangle mesh where the red 

dot highlights a vertex that six triangles 

have in common. If the triangles where to 

be moved one by one instead of as a mesh 

then this vertex would be changed seven 

times instead of one. 

 

If a triangle mesh is to be moved there are 

nevertheless many vertices needed to be 

calculated for a new position and therefore 

a triangle mesh is best suited for static 

objects. 

 

An interesting feature for triangle meshes 

is that it can be deformed by changing the 

position of some vertices relatively the 

other vertices. Picture a fishing-net 

hanging in the air. If the net is pushed at 

one point the net surrounding that point 

will also be moved but not that much as 

the point itself. This will simulate 
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deformable objects very well if there are 

enough vertexes to make the dent look 

smooth. If the net has very few vertexes it 

will be as if the meshes are very large and 

the deformation will look angular and non-

realistic.  

 

Compound of BVs 

Sometimes it is natural to group several 

objects into one big object, for example, a 

car has a chassis and four wheels. A 

compound is also useful when an object 

cannot be represented with an easy 

geometrical shape or is concave. The 

object can then be decomposed into several 

easy geometrical shapes or convex objects 

and bound together in a compound. 

 

A decomposition of an object gives the 

opportunity to bind them with constraints. 

For example, the four wheels and the 

chassis are all different shapes. The wheels 

can now be attached to the chassis with 

constraints so the wheels are allowed to 

rotate around one axis. 

 

5.1.2 Spatial data structures 

 
Even with perfect bounding volumes it still 

takes too much time to calculate the 

intersection between all pairs of BVs every 

frame. A solution to this problem is to 

create data structures for the BVs. 

 

According to Fig. 9 the structure divides 

the world in volumes, each containing 

BVs. By doing this we do not need to 

check collisions between every pair of 

BVs, only the ones that are in the same 

area of the spatial data structure. 

 

Bounding volume hierarchy  

The most common spatial data structure is 

bounding volume hierarchy (BVH) and is 

built like a tree data structure (Sweeney, 

1999). The root of the tree is a BV that 

contains all other BVs. The children of a 

BV in the tree contain smaller BVs which 

was included in the parent. Therefore it is a 

hierarchy of BVs as illustrated in Fig. 9 

(Cormen, 1990).  

 

If all collisions between a BV A and the 

rest of the world are wanted, see Fig. 68 

and 69, the first intersection test is 

computed between BV A and BV 1. Since 

they intersect intersection testing continues 

by testing A against BV 2 and 3. Here BV 

A only intersects BV 3 so all testing 

against the BVs in BV 2 can be discarded. 

The procedure is then continued by 

intersection testing BV A against BV 7 and 

8. BV A intersects both 7 and 8 and 

therefore all BVs inside 7 and 8 needs to 

be checked. Further, BV A intersects BVs 

9 and 11 and since they are leaf nodes in 

the hierarchy BV A needs to be tested 

against all primitives inside them. Finally 

the result is that A intersects the primitive 

inside BV 9. 

 

 

 
Figure 68: A world that is surrounded by 

BV 1 and the BV A that moves towards the 

world. 
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Figure 69: Same as Fig. 68 except that BV 

A now intersects the world. 

 

When using BHV, the time complexity will 

be O(log n) (Akenine-Möller, 2008), where 

n is the number of BVs, tests instead of 

O(n) as it would have been without the 

BVH. 

 

A BVH is either built top-down or bottom-

up. If it is built top-down, first a BV that 

contains all other BVs is created and then 

split by a plane on the axis where the 

bounding volume is longest. The two new 

BV are then minimized so that they fit 

their BV children as tightly as possible. 

The procedure is then continued again until 

a stop criterion is fulfilled, for example 

two splits as shown in Fig. 70. 

 

A tree built bottom-up starts with 

containing all objects in BVs and making 

them the leaf-nodes in the tree. The BVs 

will then be paired together, two or more, 

by some merging criterion and be enclosed 

in new BVs. The new BVs will be the 

parent nodes, to those BVs paired, in the 

tree. Those steps will be repeated until all 

objects are enclosed in one BV. The 

bottom-up build takes more time to create 

and is harder to implement, but usually 

produce better trees than the top-down 

build (Omohundro, 1989). 

 

 
Figure 70: Example of creating a BVH 

using AABBs as bounding volumes. First 

an AABB is created to contain all objects. 

Then it is split by the red-dotted line on the 

x-axis because that side was the longest on 

the AABB. The new AABBs are minimized 

and then split again. 

 

Binary space partitioning tree and Kd-

tree 

A Binary space partitioning tree (BSP-tree) 

(Samet, 1989b) is a binary tree where the 

parent node a box is split by a plane and 

which child they end up in depend upon 

which side they are of the plane. This is 

continued recursively until the stop criterion 

is reached, for example, two BVs in each 

child.  
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Figure 71: The picture illustrates how to 

make a BSP-tree by splitting the box with a 

plane recursively. Pay attention to the 

triangle ending up in both C and E 

because it is on both sides of the splitting-

plane. 

 

One problem that can occur when the 

splitting plane is poorly chosen is that all 

geometry is intersecting the plane and all 

geometry will be placed in both children, 

this is illustrated with the triangle that 

exists in both the C and E child in Fig. 10. 

This problem can lead to an infinite loop if 

the geometry continues to end up in both 

children and the end criterion never is met. 

 

A nice feature of BVHs is that only one 

vector and one point for each plane needs 

to be saved in the graphics-memory and 

very little memory is therefore occupied. 

 

The Kd-tree is very similar but has an 

advantage that it has fixed order of the 

splitting planes (Samet, 1989a). With the 

Kd-tree the only thing needed to be saved 

in the graphics-memory is a point. Usually 

BVHs are used for static scenes but may be 

used for dynamic as well. 

 

Octree 

An octree is similar to a BSP-tree. A box is 

split along all three axes by three planes 

that intersect each other at the center of the 

box. This creates eight new boxes, hence 

the name octree. 

 

 

 
Figure 72: Example of an octree 

 

The splitting is then recursively repeated 

until a stop criterion is fulfilled for 

example a maximum depth of the tree is 

reached or maximum amount of objects in 

the box (Samet, 1989a) (Samet, 1989b). A 

negative property of octrees is that objects 

often intersect several splitting planes and 

end up in several child boxes. A solution 

for this problem is called loose octrees 

(Ulrich, 2000). With loose octrees the risk 

for objects to end up in more than one box 

is decreased. 

 

5.1.3 Intersection test 

 
To this point no real collision detection has 

been discussed, only speed up techniques 

that will make it possible to detect 

intersections in real-time in a large scene. 

There are many ways to determine the 

intersections in a scene. There are mainly 

four different techniques: analytical, 
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geometrical, separating axis theorem and 

dynamic tests. 

 

Analytical testing 

Analytical testing calculates the 

intersection between two objects by 

inserting the mathematical representation, 

an equation, of one object into the other 

objects equation and then tries to solve the 

new equation. If there is a solution then the 

objects intersect in that point. Calculating 

these intersections in real-time is not an 

easy task because many intersection 

algorithms are very ineffective and they 

need to be improved significantly to meet 

the timing requirements of a real time 

game. 

 

Geometrical testing 

Geometrical testing is suitable for testing 

intersections between boxes and rays. To 

test intersections geometrically between a 

box and a ray, three slabs are needed. As 

mentioned earlier, a slab is defined as the 

volume between two parallel planes 

illustrated in Fig 73.  

 

 

 
Figure 73: A ray intersecting the box in 

two dimensions. 

 

The picture in Fig. 14 describes the 

algorithm. t
x

min
 denotes the time when the 

ray enters the vertical slab and t
x

max

 is the 

time when the ray exits the same slab. 

Similarly, t
y

min
 and t

y

max
 represent the 

same timing but with the horizontal slab 

instead of the vertical slab. If the later min 

value is less than the first max value an 

intersection has occurred, otherwise there 

is no intersection. The point for 

intersection is not given by this algorithm 

although it is rather simple to expand the 

algorithm to give the exact point. The point 

is given by inserting the time of 

intersection into the ray equation. In three 

dimensions three slabs are used instead of 

two. The reasoning stays the same.  

 

Separating axis theorem 

The separating axis theorem (SAT) is a 

very important tool for intersection testing 

(Gottschalk, 1996) (Greene, 1994). The 

SAT is built upon the fact that there can be 

no intersection between two convex 

primitives if there is a plane where the 

orthogonal projections of the primitives do 

not overlap. The only planes that really 

need to be tested against are the planes that 

are orthogonal any face of the two objects 

and the cross product between one edge 

from each primitive. 

 

 
Figure 74: Two boxes projected to a plane 

where they overlap. 
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Figure 75: The same two boxes projected 

on to a plane where they do not overlap. 

Therefore the primitives do not intersect 

with each other. 

 

Dynamic testing 

All the intersection testing methods 

mentioned earlier have been static which 

means that the intersection testing is done 

on objects that do not move during testing. 

The problem with static testing is that if 

the object move to fast between two 

frames intersection can be missed. 

Dynamic testing is designed to solve this 

problem. Dynamic testing takes more time 

than static testing and is therefore seldom 

used in real time collision detection 

systems. 

 

 
Figure 76: The sphere is going right 

through the wall. This is possible when 

static testing is used instead of dynamic 

testing. 

 

5.2 Existing physics engines 

 

If a game developer has limited resources, 

using an existing physics engine should be 

carefully considered. There are a few 

stable and capable open source 

alternatives, which can be a good 

alternative to proprietary physics engines 

when resources are limited. Even though 

the open source physics engines do not 

come with any guarantee or support, as 

with commercial physics engines usually 

do, they generally have a high standard and 

a big helpful community so it can be a 

satisfactory option even for projects with 

large budgets. 

 

Bullet Physics Library 

Bullet (Game Physics Simulation, 2011) is 

an open source 3D game multiphysics 

library, available under the ZLib license 

(Roelofs et al, 2005), which provides 

collision detection, soft body and rigid 

body dynamics. It is possible to use only 

the collision detection library and apply 

other dynamics for custom fit. Both 

discrete and continuous collision detection 

are supported in Bullet which suit software 

with both precision and high speed body 

requirements. 

 

The BVs that are included in Bullet are 

several simple geometrical objects as 

boxes and cones. Bullet also supplies 

generic convex hull and triangle mesh. 

Additionally Bullet has limited constraints 

for rigid bodies, such as ball-socket and 

hinge constraint, and deformation of non-

convex triangle meshes. 

 

Open Dynamic Engine (ODE) 

ODE (Smith, 2006) is an engine designed 

for stability, robustness and to be fast 
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rather than supplying perfect physical 

accuracy in a simulation. Therefore ODE is 

best suited for real-time simulations and it 

is good for simulating articulated rigid 

bodies such as vehicles and legged 

creatures.  

 

ODE uses hard contacts instead of virtual 

springs to respond to contacts. This means 

that there will be no penetration between 

objects and the error-prone virtual spring 

alternative is not needed. A virtual spring 

system is simply explained a 

representation of objects as a set of point 

masses connected with weightless springs. 

This method is popular when handling 

deformable objects. 

 

Built-in collision detection is included in 

ODE but it can be replaced by external 

collision detection libraries. The collision 

primitives included in ODE are sphere, 

box, cylinder, capsule, plane, ray, triangle 

mesh and convex hull. 

 

ODE is released as free software and can 

be redistributed or modified according to 

either GNU Lesser General Public License 

(Free Software Foundation, Inc., 2010) or 

BSD-style license (Open Source Initiative, 

2011). 

 

5.3 Results 
 

We decided to use Bullet as the physics engine 

in Road Kill and to use the built-in vehicle 

class. The BVs we use for the dynamic 

objects are primarily convex hull. All static 

objects are a part of the world and are 

represented as a static triangle mesh.  

5.4 Discussion 

 

When we first started the project one goal 

was to create our own physics engine. We 

started to use sphere as BVs and used a 

BSP-tree as spatial data structure. At first 

all objects only had one BV but the 

performance was too poor, mainly because 

the many triangle-triangle intersection tests 

needed, so we decided to use BSP-tree as 

an inner spatial data structure too. 

 

We realized after a few weeks that the 

physics engine would take a long time to 

implement and very hard to get the 

precision and performance wanted so we 

decided to use an existing physics engine 

instead. We wanted to have the possibility 

to commercialize Road Kill and because 

we were doing research on game 

development with limited resources we 

decided to use an open source physics 

engine with no restrictions on 

commercializing.  

 

The two physics engines we found that 

fulfilled our demands and had been used in 

successful game-projects before were 

Bullet and ODE.  

 

We decided to use Bullet because it has 

more features and also a pretty good built-

in vehicle class. Overall we were satisfied 

with Bullet and it performs very well. One 

negative aspect of Bullet was the lacking 

documentation which caused some trouble 

a number of times during the process of 

Road Kill development. 
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6 Network and 

Multiplayer 
 

When it comes to supplying challenging 

opponents in a game, there are only two 

real choices, either a computer controlled 

opponent with artificial intelligence (AI) is 

developed or communication over a 

network is implemented so that multiple 

players can interact in one game session. 

Multiplayer has a number of advantages 

over developing an artificial intelligence, 

mainly the two following; it is easier to 

implement and gives players more varied 

and unpredictable opponents. According to 

Ookla (Ookla, 2011) and Internet World 

Stats (Miniwatts, 2010), bandwidth and 

coverage of the internet has kept increasing 

all over the world, enabling game 

developers to focus more on multiplayer 

aspects in their games. One important 

question that game developers should ask 

themselves early during the design of a 

game is if and how to support multiplayer. 

 

This section will, using a bottom-up 

approach, examine some key points when 

it comes to implementing network 

communication and multiplayer support. 

Some of the examination’s results are 

general to any type of application, but the 

majority is game development specific. 

 

6.1 Choosing the right Network 

Model 

 

A key point to realize is that, different 

types of games have different network 

demands. Fast paced real-time games like 

first person shooters and racing games 

require data to be delivered between 

players with minimal time delay, also 

known as latency, to give the most realistic 

and enjoyable experience. While large 

scale turn-based, or slow paced real-time 

games have no such problems, they often 

need to transfer greater amounts of game 

data, and thus require a higher bandwidth 

instead. 

 

To choose the right network model for 

their games, developers need to consider, 

among other things: the desired number of 

supported players, minimum tolerable 

response time between user input and 

action, the amount of data needed to be 

sent between players to update the game 

state and how often such updates need to 

occur. 

 

This chapter will present a comparison of 

the two main transport layer protocols, in 

Section 6.1.1, and an examination of the 

different network topologies that can be 

used for network communication. 

 

6.1.1 Transport Layer Protocols 

 

One of the main influences on how a 

multiplayer game behaves is the choice of 

protocol and, as mentioned before, 

different games have different demands.  

 

Transmission Control Protocol (TCP) is 

a connection-based protocol that is used 

when it is important that all data is not 

only delivered but also received in order 

and without any duplicate data. E-mail, file 

transfers and the World Wide Web rely on 

TCP since it supplies the features that these 

applications require. All TCP features have 

resulted in a large header, 20 bytes. 
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bits 0-15 16-31 

0 Source Port Number 
Destination Port 
Number 

32 Sequence number 

64 Acknowledgement number 

96 

Data Offset 
and reserved 
bits Flags Window Size 

128 Checksum Urgent pointer 

160 Options 

Figure 77: A table of the TCP-header. 

Field in blue is optional. (Postel, 1981b) 

 

User Datagram Protocol (UDP) has no 

focus on any of the aforementioned 

features and it is connection less. If there is 

any need for any of TCP-supplied features, 

developers have to implement them 

themselves. The upside to this is that UDP 

has less overhead as its header is only 8 

bytes.  

 

bits 0-15 16-31 

0 
Source Port 

Number 
Destination Port 
Number 

32 Length Checksum 

Figure 78: A table of the UDP-header 

(Postel, 1980). 

 

For some developers, the choice might 

seem obvious. TCP is easier to implement 

and it supplies a number of useful features, 

but there are several drawbacks (Fiedler, G, 

2006) to using TCP. Whenever a packet is 

lost, it is resent by TCP, and this incurs a 

delay in the game. When a packet is lost, 

there is no real need to resend the packet 

since a more current packet will have 

arrived, before the old packet is 

successfully resent, causing the first packet 

to become old and irrelevant. This is, 

however, only relevant to fast paced games 

where data is sent continually. In for 

example turn-based games, it would be 

easier to use TCP and the game would not 

suffer noticeably.  

 

Critical data that is not sent continually 

will need a guarantee that it has been 

received successfully, and it might seem 

like TCP is the better choice again. But it is 

actually better to implement an custom 

own packet delivery guarantee on top of 

UDP, instead of mixing the two, as it has 

been shown that TCP can induce packet 

loss in UDP (Hori, 1998). As long as all of 

TCP’s extra features are not needed, the 

extra overhead is best avoided. 

 

6.1.2 Network topology 

 

Beyond protocols, it is also important to 

consider how the flow of traffic should be 

shaped. Since a great deal of focus in real-

time games lies in minimizing latency the 

next two sections will explore, among 

other things, the different latency impacts 

of the two most common network 

topologies used in game networking. 

 

 
Figure 79: An illustration of the peer-to-

peer and client-server topologies where 

each green node is a user and the yellow 

node is a server. 

 

6.1.2.1 Peer-to-Peer 

 

When it comes to reducing latency, using 

the peer-to-peer technique of connecting 

each client directly to every other client is 
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the best solution, since all data takes the 

most direct route to its goal. This topology 

was used early in online gaming in action 

games such as Duke Nukem and Doom 

(Sweeney, 1999), and even though it has 

been largely abandoned today, it is still a 

valid option when it comes to choosing the 

right topology.  

 

However, this solution enables each client 

to be authoritative over the own game state 

while simply informing all the other clients 

continually about the changes in it. This 

leads to a couple of problems; first, it is 

difficult to handle conflicts in game state 

between clients in a fair way, since all 

clients are equal. Second, since each player 

is authoritative over the own game state, 

cheating will become trivial by reverse 

engineering and changing the client 

application or the network packets. 

 

6.1.2.2 Client-Server 

 

In the client-server topology, every client 

is connected to a server and all data traffic 

flows between the clients through the 

server. Having an authoritative server 

running its own version of the game based 

on all of the client data, will enable the 

game session to have a tie breaker when 

game states from different player create 

conflicts, which solves the problem of 

cheating. The price for solving the problem 

is increased latency, compared to peer-to-

peer, due to the fact that the data needs to 

first travel to the server, secondly be 

processed by the server, and finally travel 

to the clients. Another drawback is the 

single point of failure that this topology 

creates. If the server is disconnected or if it 

cannot perform its duties in a fast enough 

pace, the clients will suffer without any 

means to solve the situation. 

6.2 Limitations in network traffic 

– Bandwidth and Latency 

 

To simulate a real-time world accurately in 

a multiplayer environment, with physics, 

interactive objects and multiple 

controllable characters such as cars or 

soldiers, the players need to regularly 

synchronize their game states. The 

question is how much and how often game 

state data should be sent. 

 

In general, the more information a game 

client can get about an object, the more 

accurately it can simulate physics for that 

object. For example, the physics 

simulation in a car racing game can be 

improved significantly when the cars' 

velocities are sent in addition to their 

positions. Also, the more often players 

send data to update each other's game state, 

and the faster that data travels between 

them, the more coherent their game states 

will be. 

 

Bandwidth 

A multiplayer game works better if it is 

allowed to send more data between 

players. However, too much traffic over 

any network causes dropped packets and 

flooded buffers in network devices, which 

can ruin game play (Savage, 2009). 

Therefore, to get the best results, the 

amount of data being sent must not exceed 

the bandwidth of the players’ network 

connection. 

 

According to Frank Savage, a study made 

by Bungie Studios in 2007 shows that the 

median bandwidth available to their 

players was 352 kbit/s (Savage, 2009). 

Glenn Fiedler has another take on the 

median bandwidth available, as he claims 
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that a study by Sony in 2010 showed a 

higher median bandwidth of 1024 kbit/s 

(Fiedler, 2010a). Such median values are 

bad guidelines for how much data to send, 

however, since such a bandwidth 

requirement would make half of the game's 

potential players unable to play. Instead, 

developers are recommended to send no 

more than 8 kbit/s (Savage, 2009) in their 

games, which according to the studies by 

Bungie Studios and Sony would make 99% 

of the potential players able to play over 

the internet. 

 

Some methods for optimizing a game to 

use bandwidth more efficiently are 

discussed in Section 6.2.2. 

 

Latency 

Action games should let players 

experience and influence the game world 

in real time, but this can be tricky to 

achieve in a multiplayer environment. 

Since data packets always take some 

minimum amount of time, τ, to travel from 

one player's computer to another, an action 

performed by player A at time T will never 

be noticed by player B before time T + τ. 

An illustration of this can be seen in fig. 

80. 

 
Figure 80: An example of network latency. 

At time T, the blue race car is at the 

position of the red wireframe. At time T + 

τ, the race car has moved slightly forward. 

Due to latency, the player that is driving 

the yellow truck still believes that the race 

car is at the position of the wireframe. 

 

While a perfect solution to real time 

network communication is not possible, 

since there is no way to completely remove 

latency in network traffic, it is possible to 

create an illusion of real time 

communication in games. One way of 

doing this is by using a technique called 

Client-Side Prediction (Fiedler, 2010b), 

which is discussed further in Section 6.2.1. 

 

6.2.1 Solving Latency Problems – 

Client-Side Prediction 

 

As was explained in Section 6.1.2.2, a 

server should have full authority over 

every player's game state, which means 

that all effects of actions performed by a 

client will be decided by the server. In a 

real time game, we want players to see the 

effects of their actions immediately, but 

due to latency, clients must wait some time 

before the server acknowledges their 

actions and tells them what has really 

happened. 

 

Client-Side Prediction, also known as 

Dead Reckoning (Aronson, 1997), lets a 

client predict the server's response and the 

actions of other players. These predictions 

are then used to calculate the client's next 

game state, which can be displayed to the 

local player's screen in real-time. When an 

updated state arrives from the server, the 

client replaces its current, predicted state 

with the one received. Thus, erroneous 

predictions are quickly corrected, and the 

coherence between the client's and server's 

states is maintained. 
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Figure 81: An illustration of Client-Side 

Prediction. At time 0, the client uses the 

last known user input, velocity and 

position of the car to predict its future 

movement according to the blue dotted 

line, prediction 1. At times 0.3 and 0.5 new 

data arrives from the server, so the client 

updates its game state and new predictions 

are made according to the green and 

orange dotted lines, prediction 2 and 3.  

 

Interpolation 

Although basic client side prediction is 

effective at hiding latency from players, it 

also introduces a stuttering effect when a 

client abruptly switches, "snaps", to the 

server's state (Fiedler, 2006). This 

phenomenon can be easily observed in 

multiplayer games, for example when a 

player controlled character suddenly jumps 

back in time or instantly moves to a 

different position in first person shooters or 

role playing games. A smooth transition 

between the old and new states would be 

preferable, and can be achieved by using 

interpolation. 

 

Instead of directly switching to the state 

received from the server, a client can 

compare its own predicted and simulated 

state to the one received. If the difference 

is less than some value δ, a new game state 

is calculated by interpolating the two 

states. By using this interpolation 

technique, the clients can slowly adjust to 

the server's state, and unnecessary 

snapping can be avoided. If the difference 

between the states is greater than δ, 

however, the client has gone too far astray 

in its predictions, and snapping is 

performed to keep the client's and server's 

game worlds similar and to preserve the 

authority of the server (Fiedler, 2006). 

 

6.2.2 Solving bandwidth problems 

 

Games, such as the real time strategy game 

Rome: Total War (The Creative Assembly, 

2004), can contain thousands of interactive 

objects, each with its own game state 

variables such as health, position, velocity, 

owner and current orders. Sending a whole 

game state over a network every frame, 

while keeping the bandwidth limit of 8 

kbit/s, discussed in Section 6.2, would be 

impossible in such games. Even game 

states in other kinds of games, such as first 

person shooters, grow increasingly more 

complex with a greater number of players 

and more interactive environments, for 

example destructible buildings and 

drivable vehicles. Luckily, there exist 

special techniques for conserving 

bandwidth, compressing game data and 

updating game states without sending a 

whole new state over the network. 

 

Trading bandwidth for latency 

Bandwidth is a hard limit in the sense that 

it causes packets to be dropped if 

exceeded, which can ruin game play as 

important state updates are lost. While low 

latency is desirable in most games, a 

slightly longer delay between data being 

produced by one player and delivered to 

another might not ruin the game 

experience completely. A simple method 
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for conserving bandwidth is therefore to 

send game state updates less often 

(Savage, 2009). 

 

For example, instead of sending position 

and velocity updates for an object every 

frame, send updates every 10th frame to 

reduce the amount of data sent by 90%. 

This will delay a physics state update by at 

most 9 frames, which corresponds to 

1000/60*9=150 ms if the frame rate is 60 FPS. 

Latency hiding techniques such as Client 

Side Prediction, which was explained in 

Section 6.2.1, can then be used to deal with 

the increased delay. 

 

Reduce network overhead by sending 

larger but fewer packets 

Because the header size of a UDP 

datagram is 8 bytes (Postel, 1980) and the 

header of the encapsulating IP packet is at 

least 20 bytes (Postel, 1981a), the total 

overhead of the network will increase with 

the number of packets sent. By grouping 

many smaller messages together into one 

package, the number of UDP datagrams 

sent can be reduced, and the network 

overhead will shrink accordingly (Savage, 

2009). 

 

6.3 Results 

 

For Road Kill, we implemented a client-

server solution using UDP only. Instead of 

implementing an authoritative server with 

real client-side prediction we ended up 

with a server that simply echoes the 

messages that are sent to it by the clients 

that has a current session with the server. 

In addition to ignoring packets from 

players that do not have a current session 

with the server, it also ignores packets that 

have an incorrect header, and these two 

features make the server more robust and 

stable. 

 

6.4 Discussion 

 

We originally had a peer-to-peer solution 

which we experimented with before ending 

up with our current client-server solution. 

The decision to leave the peer-to-peer 

solution was made because we had plans to 

implement features, e.g. client side 

prediction presented in Section 6.2.1, that 

demanded an authoritative server. 

 

For our critical non-game state data, we 

opted to use UDP exclusively instead of 

TCP or any mix of them both simply 

because we did not feel that we benefited 

from using TCP when taking into to 

account all of the pros and cons, as 

discussed in Section 6.1.1, related to it. We 

decided to implement our own 

supplements to UDP to get the features we 

wanted. However, features like delivery 

guarantee were down prioritized in favor 

of graphical effects and game logic. 

 

The next step with our network solution 

would have been expanding the Road Kill 

game state data to include not only 

position and current speed of cars but also 

current user input. This would have 

allowed us to send even fewer packets per 

second, 10 being a good minimum number 

with our current implementation, and after 

that, adding a delivery guarantee on our 

non-game state messages, such as session 

initialization, and then focusing on real 

client-side prediction. 
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7 Sound 
 

To create a compelling gaming experience, 

graphical effects alone might not be 

enough to arouse the player. However, 

graphical effects in combination with 

music and audio effects can create a more 

enjoyable gaming experience for the user. 

A study done by S. Wolfson (Wolfson, 

2000) has shown that loud sounds with a 

red background intensify the aura of a 

game which leads to a more enjoyable 

game session. 

 

The easiest way to add sound effects to a 

game is to use a library that is able to play 

interactive audio. There are several 

different libraries with this function, and 

every library has its own features to offer. 

These libraries are usually able to play the 

common sound formats, like MP3 and 

WAV and more extensive libraries also 

offer a toolbox of equipment to manage 

sounds, for example 3D sounds, multi-

channel streaming, multiple outputs, 

recording, and effects. Libraries that 

support these features are OpenAL, 

DirectX Audio and FMOD. DirectX Audio 

has a wide market because this library is 

included in DirectX SDK (Seddon, 2005)  

 

The difference between a high- and low-

level Application Programming Interface 

(API) is that a low-leveled API manages 

chunks of sampled audio data that it stores 

in a secondary buffer and also the transfer 

from the small buffer to a master buffer for 

hardware mixing.  

 

 
Figure 82: Combining many secondary 

buffers to one master buffer. 

 

A high-leveled API controls the audio 

further away from the buffers than a low 

leveled API and has therefore less control 

over the audio but has more complex 

features to offer such as playback of MP3 

or WAV. The high leveled API reduces the 

amount of code a programmer has to write 

and makes it easier to play simple sounds 

or music in a game. These features are 

possible to create with a low leveled API 

but require a bigger effort from the 

programmer.  

 

In the next sections, the previously 

mentioned audio libraries will be presented 

and compared from the viewpoint of a 

developer with limited resources. 

 

7.1 OpenAL 

 

OpenAL is a cross platform 3D audio 

library made especially for sounds moving 

around in a 3D space, which suits a 3D 

game well (Creative Labs, 2010). This 

library has objects such as a listener, a 

source, and a buffer. With this library, all 

sound rendering is made from the location 

of the listener. The downside with this 

library is that it is narrow and does not 

include many features beside the 3D 
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Sounds (James, 2003). 

 

7.2 DirectX Audio  

 

DirectX Audio is a Windows based sound 

library and is a combined version of a low 

level API called Direct Sound and a high 

level API, Direct Music. As claimed by 

James (James, 2003), the DirectX Audio 

API is confusing for programmers to read. 

The upside with this combination is that 

DirectX Audio becomes one large API that 

can handle audio in many different ways. 

However, DirectX Audio is restricted to 

Microsoft-only products such as Windows 

and Xbox 360 (Microsoft, 2010). Some of 

the features are 3D sound effects, playback 

from multiple sources simultaneous and 

schedule the timing of music events with 

high precision (Hawkins, 2002). 

 

7.3 FMOD 

 

The world-leading sound API is called 

FMOD and it is widely used by the game 

industry (Firelight Technologies Pty. Ltd, 

2011). FMOD has become widely popular 

due to of its simplicity and cross-platform 

support. For example, developers only 

need to include one header file to get 

access to all of FMODs features. FMOD 

has features like floating point 

calculations, output to mono, stereo, 5.1 

and 7.1, advances compression algorithms 

and 3D sound effects. The downside with 

FMOD is that for commercial use, the 

library is very expensive (Firelight 

Technologies Pty, Ltd, 2011). 

 

7.4 Results 

 

Testing with the library FMOD was done 

for Road Kill with satisfying results. All 

that was needed was a header file and a 

DLL file from FMOD in Road Kill’s 

directory. Initializing a FMOD system and 

loading a sound, for example music, 

required four function calls in C++. After 

these calls, the ability to choose from a list 

of effects was supplied, enabling the 

modification of sounds, such as echoing, 

pitching and 3D position. 

 

To add a 3D effect to the sound, in order to 

hear where the sound came from, a sound 

source- and listener position, which usually 

is the camera, needs to be supplied. 

 

7.5 Discussion  

 

The only real downside with FMOD is the 

price for a commercial license, and since 

Road Kill is a game with potential for 

commercializing, we do not want use a 

library as expensive as FMOD when there 

are alternatives that are free to use. FMOD 

is expensive because it supplies so many 

built-in features, many of which are 

superfluous in a game. Therefore, it would 

be an unneeded expense to purchase a 

license for FMOD and all of these features. 

However, the convenience with the cross-

platform support should not be 

underestimated when it comes to creating a 

game for many different platforms. FMOD 

is the only library in this study that features 

an active support to contact if problems 

occur. 

 

The best library in our opinion, for a game, 

is OpenAL. This is true, especially if you 

develop the graphics part using OpenGL. 

Since these two libraries are siblings and 

built up with the same structure, it is easy 

to use either if you are familiar with the 

other. OpenAL is free software with a 

supportive forum for users to search, if 
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they are in need of help. 3D effects are 

supported by OpenAL and this enhances 

the gaming experience. 

 

If you use DirectX for the graphics, then 

DirectX Audio is probably a better choice 

than OpenAL. This is because it is already 

in the same package as DirectX Graphics, 

and they have the same platform 

boundaries. 
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8 Development of Road 

Kill 
 

This chapter describes the racing game 

Road Kill, which was developed by the 

authors of this thesis during a four-month 

period. While the previous chapters of this 

thesis describes and evaluates techniques 
for game development, the purpose of this 

chapter is to give concrete examples of 

some results that can be achieved during 

the development of a computer game with 

limited resources and short time frame. 

 

During the development of Road Kill, the 

authors faced many problems related to 

game development and software 

development in general. Section 8.2 

describes some of those problems that have 

not been mentioned previously in this 

thesis. 

 

8.1 Results 

 

Road Kill is in a playable state, where up 

to four players, a higher amount of players 

have not been tested, can compete against 

each other on one race track. The players 

must drive their cars through a sequence of 

checkpoint in order to complete laps, and, 

ultimately, beat their opponents by 

finishing first, by either driving the fastest 

or being the only player left with a 

working car. To gain an edge over the 

opposition during the race, players can 

utilize two kinds of weapons to destroy 

their opponents’ cars: miniguns and rocket 

launchers. 

 

8.1.1 Game Setting 

 

Road Kill’s setting is a moonlit desert 

landscape, lighting is added to by 

streetlights, car lights and torches. The 

ground is mostly covered by sand, rocks, 

and dirt, but also by small patches of grass. 

During the race and in the menu, the metal 

music soundtrack is played in the 

background. According to numerous test 

players, the combination of the above 

features and missile explosions, minigun 

fire and racing at high speeds; creates an 

action packed atmosphere. 

 

8.1.2 Main features 

 

Some of Road Kill’s features are a HUD 

with race timing, a mini-map with real 

time position indication of the client and 

the opponents; a speedometer, a 

countdown to the start of the race, physics 

simulated in real time, graphical effects, 

such as explosions, reflections and fires; 

and full multiplayer support. 

 

8.2 Discussion 

 

A larger than expected part of the 

development process has been spent on 

cleaning up and structuring the code. Some 

examples of functions that have been 

restructured are the reading of car data 

from binary files and the importing of 3D 

Studio Max objects, light sources and 

different items needed for the physics 

engine; such as pre-calculated bounding 

spheres. This has reduced the size of class 

files and simplified both the modifications 

of the cars’ attributes and adding new 

objects to the game world, simplifying the 

further development of Road Kill.  

 

We benefited greatly from partitioning our 

code into smaller modules. Programming 

in a modular way makes development and 

debugging faster and easier. By creating 
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more testing modules, instead of the three 

we have now: network, modeling, and 

everything else, we could have simplified 

the development even more. 

 

SVN was used for software versioning and 

revision control by the group. SVN keeps 

track of updates to the code base and also 

eased the synchronizing between the group 

members. SVN proved hard to get used to 

for some group members and since none of 

the group members had any experience 

with versioning control it was hard at times 

to find the solutions to our problems. 

However, we cannot imagine doing a 

project of equal size without revision 

control since it is very important that all 

group members have access to up-to-date 

files, documents and folders. 

 

During the development of Road Kill, 

frame rate was the largest bottleneck, 

which limited the addition of extra effects, 

such as motion blur. We also learned the 

importance of developing on your target 

machine as higher frame rate was achieved 

on our personal computers then at the 

University. The feature that demanded the 

highest amount of optimization was the 

particle systems. In the end, the resulting 

particle effects for Road Kill were very 

appreciated by test players. Some effects, 

like exhausts and gravel spray from the 

tires, had a less significant impact on the 

general appearance of Road Kill than we 

initially thought, and we feel that there was 

a bit too much time spent on them. 

 

After half the time, we started using our 

project room. This led to better group 

coordination and communication when 

working in the same room. It was much 

easier to make requests and demonstrate 

new functions and we feel that we should 

have started using the project room earlier. 

 

Even though this thesis is about explaining 

which methods are suitable for 

inexperienced game developers, we have 

found that a better way of learning about 

game development is not through reading, 

but trying different methods and seeing 

their effects, pros and cons in practice. 

 

Initially we felt that the goals we set for 

this project might be too high, but we 

consider the end result to be far above our 

expectations. The parts that seemed 

particularly difficult for us in the 

beginning, such as graphics engines, 

physics engines and network support, 

proved to be easier to implement than we 

initially thought. This was mainly due to 

our collective experience ranging from our 

different fields of interest. The really time 

consuming part of the project was not 

implementing basic versions of game 

components, but fine tuning them to 

provide an enjoyable and realistic car 

racing game. 
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Appendix A  
 

Contributions 

 

A report of the individual contributions is included in this appendix, containing the 

contributions to this thesis and to the development of Road Kill. 

 

A.1 Development 

 

The project was planned and executed by all members of the group as a whole. The different 

responsibilities were divided to the subgroups that were formed and reformed, as features 

were completed and development of new features was started. The following list contains the 

contributions to features from each individual. 

 

Viktor Arvidsson 

 

Modeling – Creating models, loading screen 

Game logic – Checkpoints 

 

Jonathan Gustafsson 

 

Graphics – Particle effects design 

Network – Framework and peer-to-peer solution 

 

Per Jamot Johansson 

 

Game engine 

Graphics engine 

Physics engine – Our own, Bullet 

Game mechanics – Checkpoints, missiles, Game GUI  

Network 

Graphics – Shadows, light, culling, texture blending, reflections, sprites 

Particle system engine 

Optimization and testing 

Game restart – Restarting clients 

Physics – balancing car parameters 

Game menu 

 

Christoffer Nilsson 

 

Modeling – Creating models, textures, bounding volumes 

Level editor 
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Sound – Creating sounds 

Game mechanics – Checkpoints 

Optimization 

Graphics – Texture blending 

Physics – Balancing car parameters 

 

Adam Sällergård 

 

Physics engine – Our own, Bullet 

Game mechanics – Checkpoints, weapons, Game GUI, race synchronization 

Network – Peer to Peer solution 

Graphics – Camera, sprites 

Optimization and testing 

Physics – Balancing car parameters 

 

Robin Ytterlid 

Network – Implementation, sending of game state variables, synchronization, handling of 

different message types, partially reliable data transfer 

Game mechanics – Placements, timekeeping, Game GUI 

Game restart – Self restarting server 

Physics – Balancing car parameters 

 

A.2 Thesis writing 

 

Editorial work was shared between all members of the group during the project. During the 

end of the project the majority of the editorial work was moved to Jonathan Gustafsson and 

Robin Ytterlid, while other members focused more on the formalities. The following list 

contains the main sections that each member has contributed to. 

 

Viktor Arvidsson 

Writer: 

Modeling  

References 

 

Jonathan Gustafsson 

Writer: 

Network 

Graphics – Particle systems 

Corrector: 

Introduction 

Program structure 

Appendix 

Modeling 

Development of Road Kill 
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Per Jamot Johansson 

Writer: 

Graphics – all sections except particle systems and camera 

Physics 

Program structure 

Development of Road Kill 

Appendix 

 

Christoffer Nilsson 

Writer: 

Modeling 

Introduction 

Program structure 

The majority of the figures in this thesis 

 

Adam Sällergård 

Writer: 

Physics 

Graphics – Camera 

Development of Road Kill – Results 

 

Robin Ytterlid 

Writer: 

Network – section 6.2 with sub sections. 

Development of Road Kill 

Corrector: 

Introduction 

Graphics – all sections except particle systems and camera 

 

A.3 Other 

 

Per and Jonathan shared the role of group leader. Per was the leader up until the second half 

of the project when Jonathan assumed the role. 


