
1

Developing a Real-Time Strategy game intended for
the Xbox 360 gamepad

Bachelor´s Thesis
Computer Science and Engineering Programme

Joakim Lind Hasselskog Mattias Majetic
Pouya Mobarrez Naghsh Jacob Rippe
Jonas Wickerström

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2011

2

Sammandrag
I denna rapport beskrivs i detalj utvecklingen av ett realtidsstrategispel (RTS) som
kontrolleras med Xbox 360-konsolens handkontroll. Det främsta syftet för utvecklingen av
spelet är att undersöka möjligheten att skapa ett strategispel spelbart på en konsol.
Dessutom kommer spelet förhoppningsvis släppas kommersiellt efter att detta
kandidatarbete är färdigt. Rapporten beskriver också aspekter av spelutveckling, till exempel
grafik, artificiell intelligens, och hur Scrum kan användas för spelutveckling. Spelet
utvecklades under en termin genom att använda ramverket Microsoft XNA Game Studio och
C♯. Microsoft XNA Game Studio är ett verktyg för att utveckla spel till Xbox 360, Windows
och Windows Phone. Även om spelet inte blev färdigt, visade arbetet på många utmaningar i
att utveckla spel, i synnerhet de tekniska, artistiska och designmässiga aspekterna. Dessa
lärdomar kommer att vara värdefulla för kandidatgruppen om de fortsätter att utveckla spelet
eller om de utvecklar andra spel.

3

Abstract
This report describes the details of developing a real-time strategy (RTS) game controlled
with the Xbox 360 console gamepad. The main purpose for developing the game was to
investigate the possibility of creating a strategy game playable on a console. In addition, the
game will hopefully be released commercially after this thesis project. The report also
describes aspects of game development such as graphics, artificial intelligence, and details
on using Scrum for game development. The game was developed over the course of one
semester using the Microsoft XNA Game Studio framework and the C♯ programming
language. Microsoft XNA Game Studio is a tool for developing games for the Xbox 360,
Windows, and Windows Phone. While the game was not finished, the process illustrated
many challenges in developing a game, especially managing the art, game design, and
technology aspects. These lessons will be valuable for the team as they continue to develop
the game or decide to work on other projects.

4

Acknowledgements
We would like to thank our supervisor Ulf Assarson, for helping us throughout the project. His
expertise on 3D graphics rendering was very useful. In addition, Ulf helped us improving this
report. We would also like to thank Sten Ludvigsson for helping us performing business
analysis to see how commercially viable our game could be.

5

List of abbreviations
AI - artificial intelligence
API - Application Programming Interface
Cg - C for Graphics
CPU - Central Processing Unit
D-pad - Directional pad
fps - frames per second
GLSL - OpenGL Shading Language
GPU - Graphics Processing Unit
HLSL - High Level Shader Language
RTS - Real-time strategy game
TBS - Turn based strategy game

6

Table of Contents

1. Introduction ..9

1.1 Background ... 9

1.2 Previous work ... 9

1.3 Purpose .. 9

1.4 Delimitations ... 9

1.5 Method .. 10

1.6 Gender statement ... 10

1.7 Report structure .. 10

2. Designing a real-time strategy game for a console ... 10

2.1 Concerning strategy on consoles .. 10

2.2 Design goals ... 13

2.3 Description of gameplay .. 14

2.4 Description of current prototype .. 16

2.5 The challenges of designing a good game .. 5

3. C♯ and the XNA framework ..1

3.1 About C♯ and XNA .. 2

3.2 Loading assets: XNA content pipeline ... 2

3.3 Our experience with C♯ and XNA .. 2

3.4 Evaluation of C♯ and XNA ... 2

4. Scrum and agile software development ...1

4.1 Scrum and agile: An introduction .. 2

4.2 Scrum in the software and game industry ... 2

4.3 Our implementation of Scrum .. 2

4.4 Results of using Scrum ... 2

4.5 Thoughts on Scrum and game development ... 2

5. Game engine ..1

5.1 About game engines ... 2

5.2 Our choice of game engine implementation .. 2

5.3 Evaluation of our game engine .. 2

5.4 Thoughts on our game engine .. 2

6. Artificial Intelligence ..1

6.1 Artificial Intelligence in games ... 2

6.2 Common AI techniques and algorithms ... 2

 6.2.1 Pathfinding .. 3

7

 6.2.2 Line of sight .. 3

 6.2.3 Scripting ... 3

 6.2.4 Flocking .. 3

 6.2.5 AI behavior selection .. 3

6.3 Our AI implementation .. 2

6.4 Evaluation of our AI implementation .. 2

6.5 Selecting the right kind of AI.. 2

7. Graphics Rendering ...1

7.1 Rendering games in real-time ... 2

7.2 Graphics pipeline .. 2

7.2.1 Application .. 3

7.2.2 Geometry .. 3

7.2.3 Rasterizer ... 3

 7.3 Shaders .. 2

 7.4 Lighting ... 2

7.4.1 Light sources .. 3

7.4.2 Types of lighting ... 3

7.4.3 Rendering techniques ... 3

 7.5 Particle effects .. 2

 7.6 Our graphical approach .. 2

 7.7 Visual results .. 2

 7.8 About the look of our game ... 2

8. Modeling and animating ...1

The creation of all objects ... 2

The movement of characters .. 2

Keyframed animation .. 3

Skeletal animation ... 3

Our approach for creating 3D models and animations .. 2

The outcome of our models and animations .. 2

Discussion of our models and animations ... 2

9. Collision detection and collision handling ..1

Problems of collision detection .. 2

The narrow problem .. 2

The broad problem .. 2

Broad problem research .. 2

8

Sweep and prune .. 3

Uniform grid partitioning .. 3

Narrow problem research .. 2

Collision response research .. 2

Our collision detection and response method .. 2

Results of our collision detection and response .. 2

Thoughts on our collision detection ... 2

9

Chapter 1

Introduction

The main goal of this project is to develop a real-time strategy (RTS) game controlled by a
standard console gamepad, namely the Xbox 360 gamepad. As a side goal, the game is
hopefully going to be playable on the Xbox 360 in the future. In addition, the other main
reason for this project is to explore the viability of the Microsoft XNA Game Studio framework
for developing more complex games.

1.1 Background
The gaming industry today has grown considerably since its humble beginnings in computer
labs in the middle of the 20th century. For the year 2010, retail revenue in the US for all
aspects of gaming (hardware, software, and accessories) reached approximately 18.5 billion
USD (Matthews, 2010). While the console market has grown, there has been a decreasing
focus on the PC market for more complex games. The PC platform has traditionally been
associated with complex strategy and simulation games such as Age of Empires (Ensemble
Studios, 1997), Civilization (Microprose, 1991), and Europa Universalis (Paradox Interactive,
2000). These kinds of games are therefore becoming much more of a niche. The problem
with RTS games is that they traditionally require a large number of keys and a mouse to
function properly. To develop such a game for a console is therefore a great challenge.

Developing games for a console has long been reserved for professional developers, but
when Microsoft released their game development framework Microsoft XNA Game Studio,
Xbox 360 development was opened for hobby developers as well as smaller development
studios.

1.2 Previous work
While the real-time strategy genre is not well represented on consoles today, Herzog Zwei
for the Sega Megadrive (Sega Genesis in the United States) is often considered the first RTS
game. Since then, the majority of real-time strategy games released for consoles have been
direct ports or adaptions of PC games. Some notable exceptions are Brütal Legend (Double
Fine, 2009) and Halo Wars (Ensemble Studios, 2009).

1.3 Purpose
The main purpose of this thesis work is to develop a game controlled by the Xbox 360-
gamepad. Hopefully, the game could also be run on the Xbox 360 console. The great
challenge consists of developing a real-time strategy game, a genre that is uncommon
outside the PC platform. Another goal is to learn how a game is developed, from
programming to asset creation to work process. The experiences acquired during the
development of this game is also compiled in this report. If the game is developed further, it
could be released through the digital distribution service of the Xbox 360.

The results of this project may also be of use to the gaming industry, as we can develop our
game without financial risk. However, it is more likely that this report can aid other students
when they develop a similar game, or when developing with the XNA framework.

1.4 Delimitations
The main design delimitation was decided early: the game should not try to emulate a
traditional PC-oriented real-time strategy control method. This means that a cursor should
not be present. The main principle was decided as: ‗The player should never wish that he or

10

she had a mouse or a keyboard‘

The development of an advanced AI playing according to the same rules as a human player
was decided to be too time-consuming for this project. Also, it was decided that the game
should not have a network component because of time constraints. The opposition should be
composed of either enemies with simple AI or another player.

1.5 Method
The game was developed over the course of one semester in the spring of 2011. This report
was written at the end of this period.

Because of the current state of game development, it is often hard to find scientific articles to
support certain claims. Often, it is more prestigious for a game developer or researcher to
share their knowledge on game industry sites, blogs, or exclusive conferences. Therefore,
scientific articles have been used as sources where applicable. Where an example from a
published game is discussed, a reference is provided to that game. The references to these
games are provided in a separate Game References Section.

The work was divided according to disciplines such as programming and modeling. Prior to
the start of the semester, all group members familiarized themselves with their respective
development tools. The tools used included Microsoft Visual Studio 2010 Professional, a
Subversion repository server hosted by assembla.net, 3ds Max, Maya, Paint.NET, Paint, and
Google docs.

1.6 Gender statement
In this report, most instances of genderless or gender ambiguous words such as ‗player‘ and
‗character‘ will use the masculine pronoun. This is simply to improve readability and avoid
awkward constructs such as ‗he or she‘ and ‗his or her‘.

1.7 Report structure
Because of the many different aspects of game development, this report is divided into many
subsections. These subsections are in many ways self-contained. After these subsections,
the results and discussion for the project as a whole is presented.

Chapter 2

Designing a real-time strategy game for a modern console

2.1 Concerning strategy on consoles
A strategy game is, much like the name implies, a game where the player‘s ability to apply
strategical thinking to his play-style is the most important factor that determines the outcome
of the game. A well known example would be the classic board game chess. One task many
strategy games have in common is the management of resources. The one who is the best
at handling the resources is usually the winner. Other common important elements of
strategy games are maneuvering armies and building structures .

Speaking in video game terms, chess would be classified as a turn-based strategy (TBS)
game, since players take turns and remain inactive during the other players turn. Strategy
games are usually categorizes as either turn-based or real-time strategy (RTS), which are
the two biggest sub-genres of strategy. Even though the main difference between the two
kinds is the way that time progresses, RTS and TBS games are usually very different both in
design and gameplay. Generally, the scope is larger in TBS games, such as commanding

11

nations or empires, while RTS games have a narrower scope, such as managing units in the
battlefield.

Evaluating some popular modern RTS games such as StarCraft II (Blizzard, 2010),
Command & Conquer: Red Alert 3 (EA Los Angeles, 2008), and Supreme Commander 2
(Gas Powered Games, 2010), certain trends in design can be observed, especially regarding
the control scheme.

A player usually controls a cursor with the mouse to select units or buildings, and to issue
orders. Many RTS games can be played using only a mouse, but they often make good use
of the keyboard. The large amount of keys helps simplify the performance of more complex
operations.

Since large-scale game development is expensive, it is understandable that big game
companies do not want to take large economical risks. As a result of this, many of the RTS
games available for consoles are re-released versions of PC strategy games. For the
developer, this is much cheaper than creating an entire new game. The consequences of this
is that even if the control scheme is reworked, it will still be centered around a cursor
interface unless changes are made to how the game plays, and this is almost never done.

As an example, a common feature in RTS games for the PC is the ability to select multiple
controllable units using the so called drag select technique. By clicking and dragging the
mouse, a rectangle is formed between the clicked position and the mouse position, as shown
in Figure 1. When releasing the mouse button, the units inside the rectangle are selected by
the player. This is a trivial task when a mouse is available, but has no natural counterpart
when using a gamepad.

Figure 1. Selecting multiple units in the RTS game StarCraft II (Blizzard, 2010)

Even though what could be considered one of the very first RTS games, Herzog Zwei
(Technosoft, 1989), was a console game, there are few successful RTS games that were
developed specifically for consoles. One of the reasons for this could arguably be that a
gamepad lacks the agility, precision and versatility that the combination of a mouse and a
keyboard provides the user.

12

Since the early 2000‘s, the standard components of a console gamepad are two analog
sticks, a directional-pad (D-pad), four buttons used by the thumbs, and up to four shoulder
buttons used by the index- and middle finger of each hand. See Figure 2 for a depiction of
the Xbox 360 gamepad.

Figure 2. Xbox 360 gamepad button layout (Wikipedia 2011f)

There are however a few rare cases of successful console RTS games, most notably Pikmin
(Nintendo, 2001), Halo Wars (Ensemble Studios, 2009), and Brütal Legend (Double Fine,
2009). These games are some of the most commercially successful console RTS games and
each has its own way of adapting the genre to the format and the gamepad. Zenko (2009)
describes Halo Wars as a great introduction to the RTS genre for console players. In an
interview, two of developers of Halo Wars describe a long process of prototyping and
playtesting in order to appeal to console players (Nutt, 2008).

It should be mentioned that before the release of the first Halo (Bungie, 2001) game, the first-
person shooter genre was in a similar situation. It was believed that first-person shooters
were a game genre that could only be controlled properly on a PC, similar to how nowadays
RTS games are thought to be best played on a PC. According to Gamespot (2005), people
would argue that the precision of a mouse was a must for in-game aiming, and so, there
were few critically successful console first-person shooter games. Halo is often mentioned for
having revolutionized the genre for consoles, setting a new standard for controls and design.
Halo also popularized the control scheme where the player makes use of both analog sticks,
one for character movement, and one for weapon aiming.

Nowadays first-person shooter games for consoles are very common. Call of Duty: Black
Ops (Treyarch, 2010) is one of the best selling video games ever released, and has sold
more than 23 million copies. 1.1 million of those copies were sold for the PC, while over 21
million of the remaining sales were for consoles, and the rest were for handheld
devices(VGChartz, 2011). During the two first months following the release of the game, the
game reached a collective combined playtime of 600 million hours, according to the publisher
Activision (Albanesius, 2010).

This would suggest that first-person shooter games for consoles are indeed popular, and that
a game with good design can be successful even if it belongs to a genre that previously was
seen as inappropriate for the platform. While we have no false hopes that our project will
have such an impact on the gaming market, we want to prove that with the right design

13

choices, even an RTS game can feel natural being played with a gamepad.

2.2 Design goals
One of the great problems with controlling a traditional RTS game with a console gamepad is
the cursor. A cursor is designed for a mouse, a device which position is relative to the
cursor‘s position on the screen. The analog stick on a gamepad, however, is different in that
it resets to its default center position when it is released. Therefore, the analog stick is better
suited for movement that is relative to the velocity of the controlled object, not its position.
With this in mind, it was decided that the game should be focused around an avatar, since
the analog stick on a gamepad is much more suited for controlling this kind of object. That
being the case, care had to be taken so that the avatar was not simply a cursor that looked
like an avatar. Therefore, the player avatar moves around the map, but can be hit with
projectiles, and has to deal with obstructing trees and changes in elevation. In this way, the
player avatar is a physical object in the game world, and not simply a cursor.

Since the game would serve as an introduction for console players to RTS gameplay, the
game has to be easy to control. Not requiring complex button combinations and moving the
thumbs and fingers excessively was also decided as important. In addition, context sensitive
actions were deemed important to minimize the amount of buttons needed. A context
sensitive action was defined as the way a button would correspond to a different action
depending on the context. For example, in a game that has an ‗use‘ button, it could open a
door if the player character is next to a door, or initiate conversation if the player is close to a
computer controlled character.

In order to avoid the problem of controlling a large number of units, the concept of minions
was introduced. Minions could be influenced by the player, such as making them follow his
avatar. However, minions also have a mind of their own. The amount of control the player
has over these minions was frequently debated. The reason for this limited control over
minions is to ensure that the player is not overwhelmed trying to micromanage a large
amount of units, while at the same time providing interesting emergent behavior from the
minions acting on their own.

Another aspect of the design that was decided was to keep a standard game match to a time
around 20 minutes. This is because console gamers are, as stated, not as used to RTS
gameplay, and keeping the matches short creates a lot more tension and action. That the
game should focus a fair bit of action was also decided, in order to make the console player
comfortable. Still, a player with a good strategy should have a distinct advantage over one
with good reflexes and hand-eye coordination.

14

2.3 Description of gameplay

Figure 3. Two players playing the game

The game we developed, with the working title ‗A wizard did it... with science!‘, tells the story
of two robotic wizards locked in eternal struggle for supremacy. The game is played split
screen (see Figure 3), and each player takes on the role of one of the two wizards. A wizard
can hover around the game environment: a mechanical forest populated by aggressive
monster robots. In addition, wizards have powerful spells such as the ability to cast fireballs.
Casting these spells depletes the player‘s energy. Two spells are shown in Figure 4 and
Figure 5. The forest also contains small deposits of metal that the wizard can pick up.
Objects that the player creates drop metal when they are destroyed, allowing for reuse of
these resources, but this metal may also be stolen by the other player.

Figure 4. The blue wizard firing a projectile into an innocent slope. To illustrate that the red

projectile is moving, a motion blur effect was added to the screenshot. This may be rendered
in-game in a later version

15

Figure 5. A wizard unleashes his special attack

The player can also use his wizard to construct buildings at designated building nodes.
These buildings have a wide variety of functions depending on their type, and all cost metal
to construct. The first type of building is the minion factory. The player can use the minion
factory to construct minions, which are robotic servants and warriors. Minions play an
important role, as they can follow their wizard around, or stay close to buildings in order to
increase the efficiency of that building. The minions are shown in Figure 6. Another kind of
building is the defensive tower. The tower fires projectiles at approaching enemies. The third
kind of building is the windmill, which generates energy for the player. The healing shrine is
the last building. The healing shrine restores health to all friendly units around it, at a cost of
energy for the player. The shrine can also be used by the wizard to teleport to another shrine
on the map, and will also rebuild the wizard, should he be destroyed. If all healing shrines are
destroyed, the wizard cannot be rebuilt and will lose the game. All buildings are displayed in

Figure 7.
Figure 6. The wizard followed by his loyal minions

16

Figure 7. The buildings in the game: Minion Factory (a), Windmill (b), Tower (c), and Healing

Shrine (d)

The player who braves the dangers of the forest and reaches the opposing player‘s base and
destroys it, thus denying the other player the ability to respawn, will be victorious.

2.4 Description of current prototype
In the end, the technical side of game development took a lot of time from the
implementation of the game design. While basic functionality such as constructing buildings,
controlling minions, and shooting projectiles exist, there was not enough time to try different
designs and conduct user tests. As such, the game is in a very rudimentary state. The role
the minion will play in the final game design is still vague. In the prototype, minions can fire
projectiles and boost the efficiency of the windmill as well as the tower by standing next to

17

them.

At the start of the project, an important goal was to evaluate different control methods. Since
the development time was short, we did not have the full time to perform focus tests.
However, a proposed control layout was put forth. It utilizes a function called the build menu,
which is opened by the press of a button. This build menu changes the functions of the four
face buttons. When the build menu is closed, the face buttons control buildings and minions.
The face buttons correspond to the four different buildings when the build menu is opened.

The player can use the controller to construct buildings, but also to control them as well as
minions. Minions can be added to or removed from a group which follows the wizard. The
formation the minions move in can also be changed by the press of a button. The wizard also
has two offensive abilities: firing projectiles and unleashing a special attack. Both cost energy
to perform, which can be charged by pressing and holding the trigger button for a longer
time. The entire proposed control layout is detailed in Figure 8.

Figure 8. Proposed control layout. A modified picture based on a controller image provided

by Wikipedia (2011f)

2.5 The challenges of designing a good game
Designing a game alone can be a tremendous challenge. Designing it in a group can be
significantly harder, especially if the group is inexperienced. Much time was spent discussing
the topic of game design, and every group member had a different opinion on many topics.
This lead to confusion and indecision which features that where really important. In this way,
a technical feature was easier to decide to develop compared to a new gameplay feature that
did not correspond with half of the opinions in the group. If the main focus of the project is
game design and not also learning how to create 3D games, it is important that the team can
decide on what features are important for the game.

One of the main discussion points was the focus on either action or strategy. Some team
members were perhaps surprised of the significant amount of action elements in the current
prototype. Since few RTS games developed for console exist, it was difficult to assess what
mixture of reflexes and logical thinking would be successful on a console. Some may point to
the success of linear first-person shooter games such as Call Of Duty: Black Ops (Treyarch
2010) success on consoles as an indication that console gamers do not wish for a more
cerebral experience. Others may see this as an excellent opportunity to introduce these
players to a fresh gameplay experience. By gathering facts, more knowledge about the
preferences of a potential audience could be gained. In the future, finding traditional console
players and letting them test the game would lead to more data on the subject. A study could
even be made using already existing games such as Herzog Zwei (Technosoft, 1989) or
Halo Wars (Ensemble Studios, 2009).

18

A common action in RTS games, selecting multiple units, is handled in the current prototype
by adding a minion to a group of followers. While there may exist a more elegant solution for
the player to control his units, this focus on the avatar creates interesting gameplay
dynamics. In contrast with tradition RTS games, the player cannot be omnipresent and near
omniscient. In the current prototype, the player knows remarkably little about the state of the
game world. This could very well lead to frustration, but as is well known, challenges and
restrictions are an integral part of game design. That the player must be physically present in
the areas of the map where the most important action takes place can create a sense of
urgency and empathy with the minions that is rare in traditional RTS games.

Good controller design is also a topic that will be explored should the development of the
game continue. The control layout in the prototype is simply a proposal. The possibility of
firing the projectiles with the right analog stick was discussed, but this option was rejected for
the prototype. The problem with this approach was that it could cause a lot of thumb
movement from the face buttons to the right analog stick, which would mean that the entire
control scheme would have to be reworked. Still, it is important to try all different approaches
to such a complicated problem as control design. In the future, tests with different control
methods will be made.

In conclusion, designing a game is very difficult, and to come as far as a prototype can be an
achievement in itself. According to our experience, in order to design a good game data
needs to be collected in order for all group decisions to be well informed, or to have a game
designer with great intuition. Since we were lacking game design experience, we would
probably have to rely on trial and error together with perseverance to create a great game.

Chapter 3

C♯ and the XNA framework

3.1 About C♯ and XNA
For developing our game, we used the Microsoft XNA Game Studio framework, often simply
called XNA. XNA is a framework developed by Microsoft to simplify game development on
their three main platforms: Windows computers, Xbox 360, and Windows Phone (Wikipedia,
2011d). According to Microsoft (2006), XNA is intended for smaller developers releasing
games through digital download, in contrast with bigger developers who supply their games
on physical copies on discs. XNA was built with ease of use in mind and the philosophy that
each line of code should do something in the game. In this way, much of the coding that is
not directly related to the game is eliminated. In addition, XNA should simplify game
development and provide a common ground for developers in order to improve software
quality (Microsoft, 2004).

Sound management and playback was also simplified by the Cross-platform Audio Creation
Tool (XACT), which has many useful features including 3D sound and sound modifications.
The main advantage of using XACT, as explained by the Microsoft Developers Network
(2011b), is that it separates the role of the programmer and the sound designer. The 3D
sound supported in XACT is not very advanced. XACT simply distributes the sound volume
to the speakers of the device depending on where in the game world the origin of the sound
is located. It also supports sound property modifications based on external variables such as

19

distance, illustrated in Figure 9. Most commonly, volume is decreased as distance increases.

Figure 9. One important part of XACT: The RPC (Runtime parameter control). The RPC

takes a runtime parameter (in this case distance) and modifies the sound that is played. In
this RPC, sound volume is decreased as distance is increased. As dB is a logarithmic scale,

the decrease in volume is logarithmic

XNA is most commonly programmed using the language C♯. C♯ (pronounced C Sharp) is an
object-oriented programming language, mainly used to code for the .NET platform. The .NET
platform is a common platform that makes it easy to distribute programs on all Windows
operating systems. The language syntax is very similar to Java, and also shares some
similarities with C and C++, on which it is based.

There are of course a multitude of alternatives to XNA and C♯ for making games, such as
C++, Adobe Flash, Unity, DirectX, and OpenGL. Yet, the main goal of the project was to
develop a game for a modern console, and for a small developer, XNA and C♯ is the easiest
option. The barrier of entry for developing games for the Nintendo Wii or the Playstation 3 is
higher. For the Playstation 3, a special development kit is required (Boyer, 2008), and for the
Nintendo Wii, the developer has to be licensed by Nintendo (Bozon, 2008). With XNA, it is
easy to develop for Xbox 360, though releasing a game commercially for the Xbox Live
Marketplace requires the developer to go through a validation process according to Perry
(2006). Xbox Live Indie Games is an alternative way to distribute the game on the Xbox 360,
with a lower price point and a peer review process (Hawkins, 2008)

3.2 Loading assets: XNA content pipeline
Klucher (2006) describes the content pipeline as "an extensible content processing
framework". When importing a 3D model as an asset, it needs to be exported as either the
.FBX file format or the .X file format, which are the only formats XNA supports for using 3D
files (Microsoft Developer Network, 2011d).

20

The purpose of the content pipeline is to process and prepare content in order to access it in
the game. All of the content is managed inside Visual Studio and after importing an asset, for
example a 3D model, an importer will take the file and normalize it. This means that it takes
care of, for instance, the direction in which the model is facing and finally it will import the
content into Visual Studio. The model in this example is then imported to the content DOM,
which is a term used to represent a collection of classes, where the model is saved as a
known format to the XNA pipeline processor. This means that the original file format of the
asset does not matter because they are all represented in the same way. Afterwards, the
processor takes the data from the content DOM and creates an object that can be used in
the game, according to Klucher (2006).

The main reason the XNA content pipeline exists is to make the game run fast. If it did not
exist, all the assets would have to be built in their original file format. When loading the
assets, the game would need to decide their format and convert them. This would make the
game slower compared to using a content pipeline (Microsoft Developer Network, 2011c).

Figure 10 shows the whole process of the XNA content pipeline. It also illustrates all the file
formats the pipeline supports, as well as which format is used when exporting.

Figure 10. XNA Content Pipeline

3.3 Our experience with C♯ and XNA
The XNA framework assisted greatly in developing our game. Using a framework sped up
the development of the game, especially the development of the graphics rendering. The
XNA framework also had ready-made modules for player input and matrix and vector
calculations that saved us much time. However, it is likely that similar modules are provided
for the majority of popular programming languages. Even so, XNA provided a good
framework that combined all these tools into one package. The possibility to release the
game for Xbox 360 was also a major advantage of using the XNA framework.

In addition, because all members of our group were familiar with Java, the step to C♯ was a
minor one, and the similarity in syntax sped up the process of learning a new programming
language. C♯ also has some rather useful functionality such as properties that were a

21

welcome addition to our programmers, who had previous experience with Java.

XACT was also a great feature of XNA. It made it possible to implement 3D sound without
much effort. It was also used to randomize the pitch of certain sounds. This way, the sound
of firing a projectile was not as monotonous as repeatedly playing the same sound at the
exact same pitch. Working with a graphical user interface to handle sound made it easy to
perform relatively complex sound modifications.

That is not to say that there were only advantages to developing using C♯ and XNA. The
major disadvantage we found using C♯ was that it enforces garbage collection. According to
Richard (1996), garbage collection means that the program will automatically scan all objects
created by the program, and remove those which there are no references to. In this way,
objects which are no longer used are deleted without the programmer having to manage the
memory of the application. Garbage collection can, however, be a problem for real-time
critical systems such as games. The scan can slow down the game, leading to a less
enjoyable experience for the player. Hargreaves, one of the XNA developers, describe two
ways to remedy this for the Xbox 360 (Hargreaves, 2007). The first way is to keep the
number of scans to a minimum by not creating more objects. This is because after allocating
a certain amount of memory, the garbage collection of Xbox 360 is triggered. By minimizing
the amount of objects created, garbage collection scans become more infrequent. The
second method is to have as few object references as possible, thus making the garbage
collection scans finish faster.

3.4 Evaluation of C♯ and XNA
Overall, working with XNA was the right decision for our project. Since development for a
console was one of our main project goals, we really did not have much of a choice.
However, if we look beyond this requirement, XNA still is an excellent way to develop games.
XNA is especially useful for small projects. At the time of writing, there are almost 1800
games approved for distribution on Xbox Live Indie games (Xbox Live Marketplace: Indie
games, 2011). The games are of course of varying quality, but it is apparent that the barrier
for entry is much lower than the more professional-oriented Xbox Live Arcade. It may be
argued that XNA does not give as much functionality or freedom compared to developing the
game from the bottom up. This is very true, yet the ease of use in XNA can really make the
team feel motivated and focus on the code that runs the game, and not the code that
manages windows or makes sure sound output works properly. In addition, many of the
features of XNA are optional.

As mentioned, the garbage collection inherent to C♯ can lead to performance issues. This
would however only be true for more complex games with a lot of objects, and as such is not
a concern for smaller projects. For our game, we did not run into any garbage collection
related issues on the PC, but the team members‘ PCs are much more powerful than the over
five years old Xbox 360.

Another problem for more complex games is that XNA lacks any native support for
animation. In our case, a modified animation example provided by Microsoft (Microsoft
Developer Network, 2007) was used for our animation system. However, it was a complex
task to implement the animation system properly, and something that would not be trivial for
an inexperienced game developer to program.

In conclusion, XNA is a good way to develop games, and an excellent way for smaller teams
to release their game on a commercial platform, as evidenced by the great number of titles
on Xbox Live Indie Games. In the future, the game developed in this project will hopefully be
released for Xbox Live Indie Games.

22

Chapter 4

Scrum and agile software development

4.1 Scrum and agile: An introduction
For our game project, the goal was to work according to Scrum, which is a framework for
project management. As a project management framework, Scrum gives guidelines on how a
project is planned and run. Scrum is usually used for agile software development projects.
Agile software development is a way of developing software iteratively and incrementally,
instead of following a large and detailed plan. However, agile is often described as more than
a technique to develop software, as it has some characteristics of a work philosophy. Agile is
based on four principles, presented in the Agile Manifesto (Beck et al., 2001):

 ―Individuals and interactions over processes and tools‖
 ―Working software over comprehensive documentation‖
 ―Customer collaboration over contract negotiation‖
 ―Responding to change over following a plan‖

It is necessary to understand that although working software is more important than
comprehensive documentation, it should not be ignored completely (AgileCollab, 2008). This
is analogous for all four principles.

Scrum is often used in an agile process, but it has some principles of its own. Keith (2010a)
explains five major principles of Scrum:

 Empiricism: Change conditions and work process in real-time according to actual
data.

 Emergence: Not everything can be known from the start. Do not prevent features
being developed up front to determine viability.

 Timeboxing: Meetings should be of a fixed length of time
 Prioritization: Develop what is most valuable for the consumer first
 Self-organization: Small teams from multiple disciplines are encouraged to manage

their process and create the best software the way they want.

Keith (2010a) goes on to state that these basic principles are reinforced by the three main
parts of Scrum: the product backlog, sprints, and releases. The product backlog is a list of all
features that could be implemented in the software project. The features in the product
backlog are prioritized according to their value to the consumer. The second part of Scrum,
the sprint, is a term for an iteration period where features are taken from the product backlog,
distributed to the members of the team, and worked on for the duration of the sprint. If a task
is deemed too time-consuming to finish in one sprint, it is split into sub-tasks and planned for
coming sprints. The tasks of the sprint constitute the sprint goal, which is not to be changed
while the sprint is being worked on. Each day, the team meets for a daily Scrum, where they
briefly discuss what is going to be done that day. Releases are the final part of Scrum. After
some sprints, releases are planned in. These can range all the way from basic functionality
implemented to finished product. The purpose of releases is to focus on delivering a product,
and not having half-finished features. The iterative process of Scrum is illustrated in Figure

23

11.

Figure 11. An illustration of the iterative nature of Scrum. Features are selected from a

product backlog and put into a smaller backlog, the sprint backlog. The team works on the
features outlined in the sprint backlog and delivers a game that ideally has no unfinished

features (Keith, 2010a)

Schwaber and Sutherland (2010), two of the co-creators of Scrum, describe the three roles
of Scrum as: the team, the product owner, and the Scrum master. The team are the group of
people who work full time on the project, while the two other roles are mostly managerial.
The product owner‘s role is to represent the view of the end customer, or the company that
hires the software company, and as such is not a full member of a team. Not being a full
member means that the product owner does not devote his entire work day to the project,
and perhaps is product owner for multiple projects. The product owner prioritizes the product
backlog so that features that are important to the consumer are always the ones that are
worked on.

Like the product owner, the Scrum master is not a full member of the team, and may be
Scrum master for multiple teams. The Scrum master‘s responsibility lies in making sure that
the team follows the principles of Scrum. In addition, the Scrum master makes sure that
impediments to progress are dealt with, that the team can meet deadlines, plans (but does
not control) meetings, and maintains communication between the team and the users of the
system. If the company is large, the entire development team is divided into Scrum teams of
approximately ten people. The composition of a typical game development team using

24

Scrum is shown in Figure 12.

Figure 12. A typical Scrum game development team. The product owner manages

communication with stakeholders and players. The actual team (in the circle) is multi-
disciplinary and inspected by the Scrum master (Keith, 2010a)

4.2 Scrum in the software and game industry
Scrum has seen increased adoption in the software industry since its introduction. According
to a survey made by the agile tool company VersionOne, Scrum and its variants are used by
78% of the software companies using agile processes (VersionOne, 2010). Increasing
productivity and becoming more able to manage changing priorities were given as the main
reasons for adopting Scrum. The situation in the game industry is more vague, and hard
numbers are hard to find. However, Brütal Legend, a mainstream console RTS for the Xbox
360, was developed using Scrum (Esmurdoc, 2010).

Keith (2010a) writes that Scrum can decrease risk in game development, as developing a
game incorporates a huge amount of risk-taking. In recent years, the cost and time for
developing mass-market video games has risen steeply, while the price of video games have
not risen much in comparison. As such, modern mass-market video games have to sell a
larger amount of copies in order to make a profit. Yet it is hard to guarantee that a game is
fun, says Keith. By developing iteratively, the game can reach a playable state faster, and as
such the developer can determine which parts work and which do not. By using Scrum,

25

features that are deemed valuable for the player are prioritized, minimizing risk.

However, it is not trivial to use Scrum and modifications to Scrum can often be detrimental to
efficiency. Keith advises against modifying Scrum before the team has a good understanding
of what ordinary, by-the-books Scrum means. On the other hand, forcing Scrum practices to
be used instead of established best practices creates problems, according to Miller (2008). If
the team is not careful, Scrum can lead to unorganized code and work not being done
because team members do not organize themselves. For larger teams, it is hard to combine
the idea of cross-disciplinary collaboration with the need for discussion between members of
the same discipline. If the team moves to Scrum from more traditional development methods,
it is easy to lock down many aspects of the planning, thus removing the positive iterative
aspect of Scrum. In contrast, Schwaber and Sutherland describe Scrum as a collection of
best practices evolved from software development. As such, it is ill-advised to ignore current
best practices just to follow Scrum.

4.3 Our implementation of Scrum
Scrum was chosen because of its previous use by familiar game developers, as well as its
iterative nature being a perfect fit for a more exploratory project, as our project was.

However, we did not follow Scrum strictly. Alterations had to be made because this project
was a school project, and as such exams, other courses and extracurricular activities made it
hard to realize all aspects of Scrum. Scrum also incorporates parts such as daily meetings
and a common room for discussion and planning. This was very hard to accomplish in a
school environment. Because of this, most of the communication had to be done through e-
mail. In addition, the exam periods and breaks made the sprint length variable and hard to
plan correctly.

One thing we changed that we thought was useful was that we prioritized not only according
to value for our consumer, but for the amount of information completing a feature would give.
For example, how the world was represented in code was important for many other features,
and as such was highly prioritized, even though this had no direct value for the consumer. A
further example would be how the animation system would work. If the way animations were
integrated into the game was not decided, it would be hard for our animators to know how to
export and work with their animations.

A major difference between Scrum and the way we worked was that we did not have a
Scrum master or a product owner. Having no product owner is perhaps not surprising since
we were not working directly towards a consumer. The role of the Scrum master was not
explicitly realized, but we did have a team leader who assumed most of the Scrum master‘s
responsibilities. In addition to this, we deviated from Scrum in that we had no releases. Even
so, we did set up vague goals for each sprint, although they were often too optimistic. A large
part of the development time was spent on fundamental work such as animation and game
engine design while only little time was left to work on the actual game design or control
method design.

4.4 Results of using Scrum
While we did work iteratively with the project, it is questionable how similar the end result
was Scrum. Because most of the communication was done via e-mail, there were some
communication problems. One member of the team could start working with a feature and
encounter a problem, only to find out later that another team member already had worked on
the feature and had the same problem. Also, sometimes code was worked on without the
original writer of the code being consulted, resulting in errors and reduced productivity.
These problems would all have been prevented with better communication.

26

In addition, the iterative nature of the development of the code led to poor documentation
and code comments, and sometimes features were added that were hard to expand on
because they were coded from the bottom-up. This is a risk in all iterative processes, and
time had to be spent going back and commenting and documenting code that had been
written weeks ago.

Another problem was that the time it took to complete a task was not recorded properly. As
such, it was hard to plan sprints since we did not know how much time it would take to
implement a feature. For most of the project, we had nothing similar to a product owner. This
turned into a problem when the game design had to be realized. Some game ideas needed
some features implemented, while other game ideas were based on wildly different
mechanics. In the end, we decided that one person should determine what gameplay
features and functionality are important, in a way acting as a product owner.

4.5 Thoughts on Scrum and game development
The adoption of an agile work process helped greatly in developing our game, especially as
the team had little experience with XNA, 3D rendering, and 3D game programming. The work
was however hindered by limited time for face-to-face communication, an important aspect of
agile software development. While the agile manifesto advocates working software over
comprehensive documentation, it became clear that at least some documentation would be
very useful, especially as new developers are brought in.

A very important lesson learned during the project was that while Scrum helps in deciding
what should be developed by prioritizing from the product backlog, it is the product owner (in
our case the team) that decides what features are important. If the team cannot decide which
gameplay feature is important, the risk is high that the technical features of game
development get more attention, since the value of these features are easier to demonstrate.
Scrum does encourage developing features with questionable value, but during a
constrained time period, teams often decide to play it safe. This can be seen in movie-
licensed games, where gameplay often mimics other popular games. A stern product owner
may alleviate this problem, but may on the other hand decrease the sense of ownership that
is often an important advantage of Scrum. Another solution which is planned to be introduced
if the development of the game continues is user tests, since they can show what gameplay
features are important.

One aspect that is worth highlighting is that different people on the team may have different
opinions on the ‗definition of done‘, i.e. when the implementation of a feature was finished.
Perhaps a module is fully implemented and tested, but is very poorly optimized. Some may
regard the module as done, while others may not. In game development this can be a
common problem, because of the difficulty to determine when a gameplay feature or art
asset is done.

Modifying Scrum is a risky prospect. However, we could not work strictly according to Scrum
as the game was developed in a school environment. Scrum is better suited if the team has
regular work-days and a reliable schedule, since daily meetings are possible and planning is
easier. Teams working on a school or hobby project should therefore be careful when using
Scrum. The elements of Scrum that were implemented, such as iterative development using
a product backlog and continual improvement of the process, were however very useful. The
designated team leader of the project acted as a Scrum master, even though Keith (2010a)
advises against this practice, since a Scrum master needs to be separate from the work in
order to monitor it without bias.

However, the largest problem with this was that the team leader was inexperienced in
Scrum, and as such, Scrum was not followed strictly. A small survey conducted by Keith in

27

2010 (Keith 2010b) shows that most failures with Scrum comes from inexperienced or
unwilling managers and teams, who did not implement Scrum correctly. One respondent
used the term ―ScrumBut‖, as in the phrase ‗it‘s Scrum, but...‘. Clearly, using Scrum simply
because it is a buzzword is very dangerous for large-scale game development. Also,
according to Keith‘s survey it took months for a team of three to find a Scrum-based process
that fit their needs.

Empiricism, the continual improvement of our process, was employed to a certain extent.
However, much more could have been done in the collection of data to make the decision
more informed. During the project, there was also discussion about splitting the project into
separate game ideas in order to experiment with many approaches to our main project goal.
This was never realized because of time constraints, but will hopefully become reality if the
game is further developed. If the game could be developed at a more leisurely pace or
without distractions from other school-related work, more time could be spent working
together, and perhaps a work process more faithful to Scrum could be adopted. It remains to
be seen whether this would help game development. In conclusion, Scrum is difficult to
implement, especially in a school environment, and therefore it is important that the team has
full understanding of the basic principles of agile and Scrum. This way, the team can adopt a
work process that suits their needs an variable schedule

Chapter 5

Game engine

5.1 About game engines
A game consists of many parts, and the game engine is responsible for all these parts to
work together. As the game engine is such an important part of the game, it is tightly
connected to the game design, graphics rendering, artificial intelligence system, and so forth.
The game engine is responsible for the updating and drawing of all objects in the game
world, such as characters, environments, and cameras. This is done by a ‗update-draw‘-loop
(Reed, 2008). Each iteration of this loop is often called a frame. In its most simple form, the
pseudo code could look as shown below:

...
List<GameObject> gameWorld;
...
while(gameIsRunning){
elapsedTime = 1000/frameRate; //Elapsed time in milliseconds
input.Update();

foreach(GameObject gameObject in gameWorld){
gameObject.Update(elapsedTime);
}
screen.Clear();
foreach(GameObject gameObject in gameWorld){
gameObject.Draw(elapsedTime);
}
wait(1000/frameRate);

}

For a simplistic game such as Pong (Atari 1972), this would be enough. The input state
would be updated, and then the position of the paddle would be updated according to what

28

buttons where pressed. The position of the ball would update regardless of player input, and
would change direction if it collided with a paddle. After the new positions are calculated, all
objects in the game world are drawn. The paddle would be drawn as a rectangle, and the ball
as a circle. To prevent the game from running extremely fast on more powerful computers,
the program is told to wait a certain amount of milliseconds at the end of the loop.

According to Bishop (1998), the game engine has high demands for performance, because
while the game loop itself does little work, it has to make sure that the methods are called
correctly for optimal performance. An example of this would be to not draw game objects
which are not seen from any active viewpoints in the game. Another way would be to only
update objects that are close to the player, essentially freezing the game world in parts that
are far away from the player. While Bishop admits that the speed of a game engine is
important, it also has to be easy to modify in order to bring development costs down. This is
especially true for smaller games that do not require the full performance capabilites of
modern hardware. Because of the high amount of reuse in game engines as well as their
complexity to program, there are many proprietary game engines available, such as the
Unreal Engine (Epic Games 2011) or Source (Valve 2007).

In XNA, the programmer is provided with the Game class. It has Update and Draw methods
that are called automatically a certain amount of times per second (usually 60). Draw, in
contrast with Update, is not called every iteration of the game loop. If the Update stage takes
too much time, which would result in the game loop taking more time than it is allotted, the
Draw call is entirely skipped. While this keeps the game from slowing down, it will make the
game stutter, as it skips drawing certain frames. In addition to this, XNA provides a
GameComponent class. If added to the game, its Draw and Update methods will be called
automatically. This can be used for game objects, but also other components that need
updating, such as sound engine or a collision manager (Reed, 2008)

However, having one Update method per game object to do everything is often too simplistic
for modern game engines. In order to optimize performance, batched updating is used.
Batched updating is the organizational style of making one kind of update for all objects at
once, instead of doing a full update of each object one at a time. Gregory (2009) explains
that it is more efficient to, for example, update all animations in a row rather than spread
them out. This is because data used for animating one object may be needed for another
object. Keeping this data close in the memory cache increases performance. Dividing the
Update functions into separate parts also has the advantage that the game can utilize
parallel processing. One thread or processor could calculate one animation while another
animation is calculated in another process. Alternatively, one thread could be responsible for
animation while another is responsible for artificial intelligence.

In the above example, all the game objects were stored in one list. Gregory (2009) does not
recommend this approach for more complex games. If some object depends on another
object to be fully updated, the game objects need to be organized in a tree-like structure in
order to update properly. Bishop (1998) also explains that rendering speed can be greatly
increased by organizing the game objects in a so called scene graph, a tree-like structure. If
a node in this graph is deemed unnecessary to draw or update, its child node will not be
drawn or updated.

5.2 Our choice of game engine implementation
Our game engine is rather simplistic compared to commercial ones, yet more complicated
than the one described in the very beginning of this Chapter. At the heart of the game engine
are two classes, the GameState and the DrawManager. The GameState is called to update
all game objects in the world by the Update method of the XNA Game class. Similarily, the
DrawManager is called by the Draw method in the Game class.

29

The GameState consists of a multitude of lists, each containing different kinds of game
objects. For example, if a game object is animated, it is placed in a separate list and its
animation is updated each frame. In this way, the GameState updates the game world in a
batched manner, increasing performance. The primary reason for batched updating was
however to ensure that utilizing parallel processing in a future version of the game. The
game state also updates the position of cameras, user interfaces, a sound manager, a
gamepad vibration manager, and the collision manager responsible for detecting and
resolving collisions between game objects.

The DrawManager also contains a collection of lists, such as a list for 3D models and a list
for 2D overlays such as game user interfaces. Since the game is played split screen, the
DrawManager has to draw two separate views of the game world.

5.3 Evaluation of our game engine
This reliance on flat lists means that the game engine that was implemented may be
inefficient compared to professional ones. However, it is worthwhile to note that no
performance issues were noticeable in the game, most probably because of the simplistic
graphics. Also, the game engine does update objects that are far away from the player
avatar, since in a strategy game the entire world should be updated at all times.

5.4 Thoughts on our game engine
Premature optimization can often lead to more problems than it solves. As this was first most
complex game anyone of the team members had developed, it was decided that an
extremely complex engine would only create problems with testing and design. In the future,
more optimizations could be made, such as not updating animations unless the game object
is visible. Also, the DrawManager and GameState are quite large classes and are hard to get
an overview of. Separating these to classes into smaller components would improve
modularity and understandability. While we did not use many complete libraries, it would
probably improved work speed but at the same time, we would not have learned as much. As
learning was a side goal for this project, creating game components such as animation and
particle systems was useful.

Chapter 6

Artificial Intelligence

6.1 Artificial Intelligence in games
Artificial intelligence (AI) is a large topic, and is used in a wide variety of areas, such as
robotics, natural language processing, speech recognition and video games. The term
artificial intelligence was first defined by John McCarthy (Wikipedia, 2011a), and later he
described AI as “...the science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using computers to
understand human intelligence, but AI does not have to confine itself to methods that are
biologically observable” (McCarthy, 2007). Even so, there are many definitions of AI,
especially in the game industry (Bourg and Seemann, 2004). An entity which is controlled by
AI is often called an agent.

In games, artificial intelligence is responsible for directing so called non-player characters, or
controlling an organized group of agents. Game AI can either stand in for a human, such as
playing the opposing side in chess, or play using completely different rules, e.g. controlling
the ghosts in Pac-Man (1980). As AI plays the opposition or aids the player in a game, the

30

design of how the AI behaves is an important part of the game design. According to Bourg
and Seemann(2004), there are two main challenges with game AI: appearing lifelike and not
being computationally expensive. The factors that determine if the opponents appear lifelike
include other aspects such as animation and sound.That being the case, lifelike AI can be
summed up in two rules: ‗appear smart‘ and ‗never appear stupid‘. Therefore, the
appearance of intelligence is important, not the actual presence of intelligence. This is
important — since while it may be possible to construct very advanced AI that can do a

multitude of things — the game engine must be able to execute the AI operations on a

restricted amount of time.

6.2 Common AI techniques and algorithms
Game AI is a highly varied field, but there are some common problems that need to be
solved fairly often.

6.2.1 Pathfinding
Pathfinding is perhaps one of the most common problems in the game AI field. The problem
consists of finding a path through an area with obstructions or rough terrain. By rough terrain,
it is meant that some areas of the map take more time to traverse. The calculated path would
ideally be the fastest, but often the path that is reasonably fast, but also quick to calculate
and easy to smooth out, is more desirable.

The most common path-finding technique is the A* search algorithm (where A* is
pronounced A star), a modified version of Dijkstra‘s algorithm (Higgins 2002, Dijkstra 1959).
Dijkstra‘s algorithm calculates the shortest path from all nodes in a graph to one starting
node. The A* algorithm is only concerned about the path from the start node to one other
node, the goal node. While Dijkstra‘s algorithm is fully functional, A* is faster because it takes
into consideration a heuristic. This heuristic is an approximation of the distance from the goal
to a node being considered for the path. A node that is closer to the goal is favoured, and as
such, only a small part of the graph is ever considered for the path. For an example of the A*
algorithm, see Figure 13. This means that the calculation time is shorter than that of
Dijkstra‘s algorithm.

The A* algorithm calculates the fastest path through a graph, which means that the playing
field of the game must be converted into graph form (Patel, n.d.). The simplest way of doing
this is to represent the game world as a grid, considering each square as a node, with edges
going to adjacent squares. Another way of representing the game world is a so called
navigation mesh, which is a mesh of edges where the nodes are located at the corners and
sides of the obstructions.

31

Figure 13. Pathfinding through a grid-based environment. Note that in order for this
pathfinding to work properly, the game environment has to be converted into grid form. The
red square is the starting point, while the blue is the end point. The dark gray squares are
impassable squares. The dashed line is the path found, and the other colored squares are
the squares the algorithm considered while calculating the path. The turquoise shade is used
to show which squares were determined by the heuristic to be more desirable because of
proximity to goal square

6.2.2 Line of sight
Another problem that needs solving is determining which other agents or objects an agent is
aware of. Simply including all objects in the game will often lead to unpredictable behaviour,
as agents will be omniscient. In addition, having to consider all other objects will likely
diminish performance. Filtering out objects within a certain area is often necessary. This area
could be a simple circle around the agent, or ray casting could be used. Ray casting
(sometimes called ray tracing) is the process of sending out an imaginary ray from one point
to another (Shirley and Morley, 2003). This ray could go from the agent‘s eyes to an object
that it could possibly see. If the ray reaches this object, the object can be seen by the agent.
However, ray casting is more computationally expensive than simply considering an area
around the agent.

6.2.3 Scripting
A very common technique to create the illusion of intelligence is scripting. Bourg and
Seemann (2004) describes this as writing a script for AI controlled characters to follow. As
the behaviour is written beforehand, scripting relies on certain events to have happened
before to trigger the scripted event. When a script is being followed, the agent is usually set
on its behaviour and will try to carry out its script regardless of other factors. This can make
the agent look unintelligent, but on the other hand, scripting allows for complex behaviour
that would be extremely complex to program any other way. Another kind of scripting is
allowing game designers to modify the AI of the game via a scripting language, to change
parameters and conditions for AI behaviour without having to edit the actual AI code.

6.2.4 Flocking
Flocking is another AI technique, pioneered by Craig Reynolds in 1986 with his ―Boids‖, a
program modeling real life flocks of birds (Reynolds 1986). Boids were the name given to the
simulated creature, which flew in flocks in a computer-generated environment. The program
imitates flock behaviour by following three simple rules:

32

 ―avoid collisions with nearby flock-mates‖ (in more advanced simulations, also avoid
obstacles in the environment)

 ―attempt to match velocity with nearby flock-mates‖
 ―attempt to stay close to nearby flock-mates‖

These simple rules are surprisingly effective, and the end result is more complex than would
be expected from the simple rules. Other rules were also used, such as maintaining the
same flying angle as surrounding boids. One notable early example of flocking in computer
animation is the short film Stella and Stanley, Breaking the Ice (Symbolics Graphics Division
2009)

6.2.5 AI behavior selection
There are many ways to structure AI. Yet, what the problem essentially comes down to is
picking one behavior or strategy from a collection of many, based on what the AI knows
about the game world. In order to pick this behavior, a wide array of techniques can be used.
According to Bourg and Seemann(2004), the most common are Finite State Machines, which
are well known in the field of computer science. The Finite State Machine approach basically
consists of agents being in a certain state or mood, such as ‗scared‘, ‗searching‘ or ‗resting‘.
Certain events would then make the agent transition between theses states. Other AI
behavior selection techniques include expert systems, Bayesian networks, behavior trees
and neural networks.

6.3 Our AI implementation
Our approach to AI was rather simplistic. The agents in our game each have a separate AI
manager. This manager is responsible for checking all objects within a certain radius around
the agent and selecting an appropriate behavior. A behavior can be anything from moving
towards a point to shooting at an enemy. The behaviors can also be very complex, and
greatly customized. The selection process consists of checking each behavior against all
objects in the surrounding area and selecting the one with the highest priority.

The AI system is very versatile because the programmer can define three different parts to a
behavior: a triggering condition, a priority function, and an action. These three behaviors are
illustrated in Figure 14. The triggering condition is a logical condition that must be met for the
behavior to even be considered. This could be that an agent cannot fire a weapon unless he
has enough bullets, or that an agent should not attack unless he has at least one friendly
agent close to him. The triggering condition functionality also means that the AI system can
be used with state machines. A condition could simply be that a behavior should only be
evaluated for certain states. The second part of the AI behavior is the priority function. This is
a separate object that is linked to the behavior that represent a certain mathematical
function. The priority function can be based on simple parameters like distance or more
complex criteria like amount of energy the agent has left. It could be that the priority given by
the function is equal to the square root of the distance to the other object in the game world.
After the AI manager has picked the highest priority behavior with a satisfied trigger
condition, that behavior is then executed. The execution of the behavior can manipulate both
the agent and the other object that is being considered. An example of an execution
implementation would be that the agent fires a bullet towards the other object, presumably an

33

enemy.

Figure 14. The components of a behavior

We did not implement any pathfinding algorithm, mostly because of time constraints. Even
so, the game map is divided into a large grid and also a smaller, fine-grade grid. This
approach was chosen to make the implementation of pathfinding easier.

6.4 Evaluation of our AI implementation
The AI that was implemented for the game is not very complex, yet it is very flexible. A more
complex AI was not developed for several reasons. The primary reason for keeping AI simple
was that agent behavior needed to be easily understood by the player. There was also a
desire to be able to handle a great amount of agents in the world, and so, complex AI was
avoided in order to not decrease performance. Finally, the team simply did not have much
experience programming AI, and therefore it was decided to write an AI system which was
easy to understand, but most importantly, one that was easy to test. The AI approach used is
mostly based on the idea of flocking: a few simple rules that create complex behavior.

One major advantage of the AI system is the loose coupling between agent and AI manager.
This fact could prove very useful if a different AI structure had been implemented, such as
finite state machines or behavior trees. Pathfinding was not implemented in our AI solution,
mostly because of time constraints. Even though pathfinding was not implemented, agents in
the world were made capable of sliding alongside obstacles on the way to their goal. Other
functionality, such as line of sight and scripting, was also not implemented, mainly because
their value was not deemed high enough to pursue in the limited time developing the game.
In a way, it was unnecessary to implement line of sight. This is because the player can see a
very large area, and it would be confusing for the player if one of his allied units could not
see an enemy that was clearly visible to the player.

Yet the simple AI system used in this project has at least one disadvantage: it can not handle
AI behavior spanning multiple frames. For instance, each time the agent fires a projectile a
firing animation is played. In order to ensure that this animation is played to completion, no

34

new behavior should be selected until the animation is finished. This problem could be
remedied by pausing the AI manager for the duration of the animation. However, this
functionality was not implemented.

6.5 Selecting the right kind of AI
A simple AI has advantages beyond being easier to implement. Since our game was an
RTS, the AI system must control a larger amount of agents compared to an action game. In a
game such as StarCraft (Blizzard 1997) or Age of Empires, hundreds of units are active.
These units are usually quite unintelligent. In the case of StarCraft, units will fire at enemies
within range, and move away from an attacking unit that it cannot fire back at. All other
actions are completely decided by the player. In contrast, in a modern first-person shooter
games such as Halo, agents can take cover, run away, and flank the player. Also, this AI is
hard for the player to predict, which is a great quality for an enemy in an action game, but
this unpredictability can actually be seen as a disadvantage for an allied unit in a strategy
game. Since the game design was not fully completed, it remains to be seen what kind of AI
will be deemed important. In conclusion, it is important to consider what kind of gameplay
that is required, as AI is an integral part of game design.

Chapter 7

Graphics rendering

7.1 Rendering 3D games in real-time
The problem with 3D games is that, unlike movies or video clips, they need to be rendered to
the screen in real-time, as the scene is constantly changing depending on user input. With
real-time means displaying a large enough number of images per second (frames per
second - abbrieviated fps) to make the media appear smooth. This display rate is intimately
tied to the framerate of the game engine. If the game engine runs slowly, the fps of the game
will decrease. Many display devices, such as LCD-screens, are set to 60 Hz. This means
they will output a maximum of 60 frames per seconds. Research conducted by Eurogamer
(2009) has shown that, not only is a high fps important for the eye, but it also reduces
response time from user input. While a computer monitor may be limited to displaying 60 fps,
a higher number than that will still benefit the response time, and therefore it is important for
the game to run as fast as possible (Akenine-Möller, Haines and Hoffman, 2008).

7.2 Graphics pipeline
The heart of real-time graphics is the graphics pipeline. It is responsible for taking a 3D
scene and render it as a 2D image to be displayed on the monitor. A scene is made up of
points, lines and triangles. Usually these drawing primitives are combined to create a model
or an object, such as terrain or a car. A virtual camera is used to define the scene, and the
appearance of an object is affected by its material, the scene lighting, textures, and any
provided special effects. Just like any pipeline, the graphics pipeline consists of multiple
stages which execute in parallel. Generally, the three different stages are: application,
geometry, and rasterizer, as shown in Figure 15. These stages could be (and normally are)
pipelines in themselves. Optimization is important because the render speed is not faster
than the slowest stage of the pipeline (Ashida, 2004). This stage is called the bottleneck.
When developing a game, finding and removing the bottleneck is a very important part of the

35

development process as the frame rate is starting to drop.

Figure 15. The Graphics Pipeline, showing the process of rendering a scene to the computer

monitor

7.2.1 Application
In the application stage, the developer has full control of the events happening. Everything in
this stage is executed on the CPU, which means that one of the biggest problems is to
spread the workload into multiple threads that run in parallel on the CPU cores. Usually,
when developing a game for multiple systems, heavy modifications have to be made to
optimize the workload for each system hardware, since many CPUs work differently.
Examples of tasks that traditionally execute in the application stage are: collision-detection,
animation, processing of input, and AI (Akenine-Möller, Haines and Hoffman, 2008, pp.14).
These tasks are managed by the game engine, as described in a previous Chapter. The
drawing primitives are stored in a data structure (i.e. vertex buffer) and are finally sent further
down the pipeline for rendering. From there on, all the operations are performed on the
graphics processing unit (GPU). This has been the case since 1999 when GeForce 256 was
released, which introduced full hardware transform and lighting (NVIDIA, 2011x)

7.2.2 Geometry
The geometry stage is responsible for transforming all the vertices into a common coordinate
system (also called space). For example, models formed in a modeling program are residing
in their own model space. By model space, it is meant that the model has its own coordinate
system and scaling. All models used in the scene need to use a common coordinate system
and be scaled appropriately. They are therefore transformed into world space, where all
objects reside together. Additional transforms are also made to be able to simulate the
camera view. Aside from transformations, the models are shaded according to their material
and lighting sources. This may be performed in either of the geometry (per-vertex lighting)
and rasterizer (per-pixel lighting) stages, or both. The vertices may store properties such as
position, color and normal to be used by the shading equation. A normal is simply a direction
orthogonal to the face it emerges from, used for various calculations including lighting. After
shading, the models are projected from 3D to 2D, where the z-coordinate is placed in a
special buffer. Next, clipping is performed, which means filtering the objects so that only
those that are visible to the viewer are rendered. Finally, the x- and y-coordinates are
transformed from 3D to screen coordinates (screen mapping) and passed on to the rasterizer
stage.

7.2.3 Rasterizer
The goal of the rasterizer is to simply compute and color each pixel on the screen. It does so
by first setting up the triangles consisting of three vertices each, finding which pixels are
located inside each triangle and computing the pixel properties (fragments) by interpolating
the data (like depth and shading values received from the geometry stage) from the three
triangle vertices. After that, any per-pixel shading computations are performed followed by
different tests to determine the final color of the pixel, which is then placed in a color buffer -

36

an array of pixels to be displayed on the screen. A test that is executed automatically is the
depth test, usually performed by the Z-buffer algorithm (Newman, Sproull, 1979). For each
pixel, the depth value of the currently closest primitive to the camera is stored in a depth
buffer, and any new depth value of the primitive is tested against this value. If the new value
is closer to the camera than the currently stored value, the depth value for this pixel is
updated in the depth buffer, as well as the color in the color buffer. To prevent the player
from seeing the whole rasterization progress on the screen as it happens, double buffering is
used. This means that the scene, which is currently stored in the color buffer, is rendered to
an off screen image called the back buffer. When rendering is finished, the back buffer is
swapped with the image that previously was displayed on the screen, called the front buffer.

7.3 Shaders
For a long time, the graphics pipeline was fixed, meaning there was no way for developers to
program their own graphics functionality. Instead, developers had to rely on the graphics API
and use its set of functions. However, the fixed-function pipeline has been replaced by a
more flexible one in modern days, although it is still used in the Nintendo Wii (Akenine-
Möller, Haines and Hoffman, 2008). The largest steps towards this flexible pipeline were the
introduction of programmable vertex and pixel shaders, which are executable programs. In
2001 the very first programmable vertex shader was introduced with the release of NVIDIA‘s
GeForce 3 (NVIDIA, 2011y) together with the DirectX 8 interface, but it was very
cumbersome to use; developers had to write their code in assembly and many features were
missing such as the ability to use conditional statements to control the execution flow
(Akenine-Möller, Haines and Hoffman, 2008, pp.34).

It was not until the following year with DirectX 9 and Shader Model 2.0 that both vertex and
pixel shaders became truly usable. A new high level programming language was included
with the updated API, HLSL, which was easier to program (Fosner, 2003). Today, HLSL is
still the shading language used in DirectX as well as in XNA. Other popular shading
languages include GLSL (OpenGL) and Cg (DirectX and OpenGL). New shader models have
emerged throughout the years, each containing additional functionality and increasing the
resource limits (such as the number of arithmetic instructions and constant registers), and
with Shader Model 4.0 even introducing a whole new shader called the geometry shader. As
of now, the latest shader model is Shader Model 5.0 included in DirectX 11 (Microsoft
Developer Network, 2010). Although surveys from Steam (2011) and Unity (2011) show that
most people who play games on the PC are using graphics cards that support Shader Model
4.0, the list of games using higher shader models than 3.0 is still very short (Wikipedia,
2011c). This is a result of the recent dominance of Xbox 360 and PlayStation 3, which both
are equipped with a Shader Model 3.0-level GPU (Akenine-Möller, Haines and Hoffman,
2008, pp.35).

7.4 Lighting
Lighting is a very important factor in determining the overall graphical quality of a scene.
Without proper lighting, it is easy for a game to become dull looking and uninteresting to the
player. In the real world, light is emitted from different light sources such as the sun, lamp
posts, fire or a flashlight. As light travels and hits objects, part of it scatters and part of it is
absorbed. Scattering means the light will change direction, for instance by being reflected or
refracted by the surface, while absorption means the light will be transformed to other types
of energy. The amount of light being scattered and absorbed depends on the surface
material. Of course, light is an extremely complex phenomenon, which has forced developers
to implement numerous approximation algorithms and optimizations to make it more suitable
for graphics rendering.

7.4.1 Light sources
Light sources often appear in three different forms: directional light, point light, and spot light
(Selman, 2002).

37

Directional light is the simplest type of light source, only being made up of one directional
vector that hits all the objects from the same direction. On Earth, such light is received from
the sun, since the sun is so far away that all light rays can be considered parallel.

A more complex light source is the point light (Selman, 2002), as shown in Figure 16. A point
light radiates light in all directions equally from a specific point in space, with a certain power.
Light bulbs, torch lights, and light emitted from explosions are all examples of point lights.
The light radiating from a point light has an attenuation property that defines how the
intensity diminishes with distance. In the real world, it is considered quadratic (Wikipedia,
2011b), but Daumann (2011) suggests adjusting the attenuation equation to better suit the
type of game developed. Although light never falls off completely in reality, it is simplified to
do so in computer graphics with a maximum range value.

Figure 16. Yellow and red point lights from explosions and the special attack lighting up the

trees

The third and most complex light source is the spot light (Selman, 2002). Similarly to a point
light, a spot light has a position and attenuation, but is instead directional with an angle to
determine the lit area. The light is cone shaped, divided into an inner and an outer cone to
distinguish the light intensity. Typical spot lights include flashlights, car headlights, and desk
lamps.

7.4.2 Types of lighting
In computer graphics, the three most important types of lights are ambient, diffuse, and
specular. Ambient light is everywhere; it is the result of the light rays scattering around the
world and thus lights objects which are not even directly lit. In computer graphics, ambient
lighting is simply a constant of intensity multiplied with color and applies to every object in the
scene (Fosner, 2003). It is important since without it, surfaces that are not lit by any light

38

sources would be completely black, as shown in Figure 17.

Figure 17. Difference between ambient lighting off (left) and on (right). Besides brighter

overall, non-lit areas are not completely dark with ambient lighting

Diffuse lighting defines how much a surface is lit up from a light source (Fosner, 2003).
Comparing the angle between the light direction and the normal of the surface gives the
amount of diffuse lighting for the specific surface. If both the light and the normal point in the
exact same direction, full lighting is applied, while if they are perpendicular to each other no
lighting is received at all. In the shader, this is calculated with the help of the dot product. The
dot product compares the angle between two vectors and returns a decimal value: 1.0 if the
angle is 0°, 0.0 if it is 90°, -1.0 if it is 180° and any value between 1.0 and -1.0 depending on
the angle. This only applies if the vectors are in unit lengths. Otherwise, the result of the dot
product will vary greatly and will not be intelligible. Thus, it is important to normalize the
vectors before using the dot product.

Specular lighting defines how reflective a material is (Neider, 1994). Smooth materials like
metal have a high specular reflection while rough materials like rock have very low. This is
because if the material has perfect reflection, such as in a mirror, all the normals of the
surface are pointing in the same direction, and the light rays striking the mirror bounces off at
the same angle as they hit with respect to the surface normal. Thus, the light rays are still
parallel to each other and the image will be intact as it is reflected to the eye. However, if the
surface is rough, the light will scatter in many directions as they reflect on the surface, and no
mirror image can be seen.

To simulate specular lighting in computer graphics, Fosner (2003) provides an
implementation where four components are needed: the direction of the light, the surface
normal, the camera view vector and the half angle. The camera view vector is easily found
by subtracting the camera location with the vertex position in world space. The half angle is
the vector splitting the light direction and the camera view vector in the middle, and it is
computed by adding these both vectors. To calculate the amount of specular reflection, a dot
product of the half angle and the normal is performed. The closer the result is to 1, the closer
the camera is located to the predicted reflected light direction and the higher the specular
reflection becomes. Finally, the value is raised to a shininess factor which is based on the
surface material – a lower factor means the material reflects more light. Figure 18 and Figure

39

19 shows examples of the different lighting.

Figure 18. A robot lit up with ambient, diffuse, and specular lighting

Figure 19. Showing ambient only lighting, textured with ambient, diffuse, and specular

lighting

7.4.3 Rendering techniques
There are a few common lighting techniques used in computer graphics that each has their
advantages and downsides.

In single pass lighting, all lights are applied to every object which is rendered (Hargreaves,
n.d.). It is a simple method that is easy to implement, and it is good for scenes with a small
number of lights. However, single pass rendering is difficult to organize if there are many
lights, and single pass rendering easily overflows shader resource limitations, since every
light has to be stored and calculated in the shader although not all of them may actually
affect objects.

Multipass lighting means splitting up the rendering into multiple passes, instead of doing

40

everything at once like in the single pass technique. For instance, the diffuse and specular
reflection from a directional light could be rendered in the first pass, followed by the lighting
reflections from a spot light in the next pass, and so on. The advantage is that the lighting
calculations only have to be evaluated for those lights that affect an object, and because this
approach is modular, the developer has better control over the rendering process (Akenine-
Möller, Haines and Hoffman, 2008, pp.278). However, an object needs to be processed
multiple times by the vertex shader, and the technique requires a lot of memory bandwidth.

The third and most recent rendering technique is deferred shading. Essentially, deferred
shading separates the lighting rendering from the geometry rendering. This means that all
geometry is rendered first and all information required from the geometry is saved in different
buffers (Filion, McNaughton, 2008). The lighting can then be rendered in a separate pass,
with all the required geometry information obtained from the buffers. Deferred shading is able
to render many lights without much performance impact, and it works well with post-process
effects. Some of the downsides of deferred shading include the difficulty to render
transparent objects, and high performance and memory requirements

7.5 Particle Effects
Particle effects is the term used for phenomena which are very hard to reproduce using
conventional rendering techniques. Fire, explosions, smoke, magic, rain, grass, and sparks
are all examples of particle effects, as shown in Figure 20. These are often simulated as
semi-transparent images which always face the camera, better known as billboards
(Wikipedia, 2011e). It is however not necessary for billboards to face the camera at all times,
grass should for instance only face the camera along the x- and z-axises. It is a cheap and
simple way of representing particle effects, and if done correctly, the player usually does not
notice that the effects are simple 2D images.

Figure 20. Large explosions generated as billboards

41

A particle system is normally responsible for updating and rendering particle effects. The
position of the particle system in 3D space is referred to as the emitter. This is where the
particles will emit from in this particular particle system, and it may have properties such as
particles spawned per second, initial and ending velocity, lifetime, color, and so on. It is
common to add a randomized value to these properties, in order to ensure that not every
visual effect is predictable and looks the same. The particles are then transformed, scaled,
and rotated according to the settings specified, until their duration has expired.

7.6 Our graphical approach
XNA includes a simple shader which provides basic functionality like ambient, diffuse, and
specular lighting, as well as three directional lights. However, the shader is fixed, and
therefore we decided to create a custom shader to be able to add any further shading
techniques as well as to have more control over the shading code. Even if we had to rewrite
the lighting calculations provided in the built-in shader, we gained theoretical experience in
doing so. All transforms were processed by the vertex shader, while lighting was handled by
the pixel shader. This is because per-pixel lighting is standard today, as modern graphics
cards are powerful enough to easily handle it, and it also results in better looking shading.

One directional light was implemented. Since our game was taking place outside, it was
acting as the sun. Because we used a fixed camera, the light was set to point in the same
direction as the camera (although tilted to the left), lighting up all objects facing the camera.
Aside from this directional light, several point lights were implemented. When adding a point
light to the game, the programmer can specify properties such as position, range, power,
color, and duration. Linear attenuation was used in the lighting calculation, since this is a
common attenuation used in games and the team decided it looked good in the game. The
maximum amounts of point lights used simultaneously was limited to three, because of
shader resource limitations in Shader Model 2.0. Therefore, point lights were only used in
explosions, acting as a quick, yellow flash, and for the special attack, as a longer lasting, red
light. This made it possible to still have point light flashes for every explosion, as it was
unlikely that four explosions would trigger at the same time.

Ambient, diffuse, and specular lighting were implemented. The ambient lighting was a single
intensity value specified in the application, affecting every object in the scene, and the color
was fixed to white. Diffuse lighting was calculated for all objects and every light affecting
them, while specular was only calculated for the sunlight. Although the shininess of the
object and the specular intensity could be specified in the application, only two models were
hard coded to use specular lighting: the wizard, and the mechanical walking robot. This was
because the specular lighting would not be visible for most objects, but also because
specular lighting was implemented very late in the development process, as it was never
really prioritized. However, since the wizard was always visible on the screen, and the
mechanical walking robot was huge compared to the other objects, they were given a bit of
specular lighting.

Textures were also used, although it was made optional in the shader, as not every model
had textures applied to them. Support for skeletal animations was implemented in the shader
using a separate shader technique because of the extra animation information required as
input to the shader. The rendering technique used was single pass lighting, with all the lights
summed in the shader to receive the final lighting color. Although deferred shading is
becoming more and more popular, we did not plan to use that many lights to make it worth
implementing. Also, by working with the most basic technique, we gained fundamental
theoretical knowledge, since the techniques are not that similar.

A particle system was implemented to handle all the particle effects. The particle effects were
crafted by hand, although it was possible to customize a few parameters in the application,

42

such as scale and velocity. To manage all these types of particle effects, a particle manager
was built, to handle the general additions, removals, and updates of any particle effects. For
one time effects, like an explosion, 30 particles were simply added at once at the specified
position, while for moving objects, such as a projectile, a particle emitter was bound that
output a certain amount of particles per second. As for the particle system itself, it was
implemented mostly in a dedicated shader. The application was responsible for adding new
particles, keeping track of active particles, and freeing particles not used anymore. A few
settings were specified for the particle effect, such as direction, rotation, velocity, texture,
start and ending sizes, and then any active particles were sent to the GPU. All the
transformation, rotation, and scaling calculations during the lifetime of the particles were
therefore handled by the GPU. Since our game was supposed to be an RTS game with
many units and AI potentially taking up a lot of CPU resources, we decided not to use a CPU
based particle system.

Basic shadows were used for all objects, including animated ones. The technique used was
shadow mapping, which is a simple and common technique used for shadows. It was done
by first rendering a depth map of the scene to a buffer, which was then used when rendering
the real geometry, to decide whether a pixel was in shadow or not. If so, its color was
darkened. Only the sunlight was used to cast shadows, as many dynamic lights would be
computationally expensive, and we thought that the shadows cast from point lights other than
the sun would not be noticeable.

7.7 Visual results
The overall result visual result looked good without many problems encountered. Developing
the graphical part of the game consisted mostly of theoretical reading and research, since
the team was completely new to 3D graphics. Although only well known methods and
techniques were used, a basic understanding was needed to put them all together. Most time
was spent on the shader because of the new language, new terms and math introduced.
One problem was that most sources and examples were based on XNA 3.0, since XNA 4.0
was fairly new when the development started.

Since not much effort was put into graphics compared to the rest of the game, there were not
many advanced graphics techniques used. No real textures were really made for the objects,
instead they were using solid colors, which rendered advanced texturing techniques
pointless. A few particle effects were created, including explosions, explosion smoke, factory
smoke, and special attack effects. However, it was hard to create additional ones since it
was not known what kind of effects would be useful and how they should look. The same
could be said about point lights; although they were implemented into the game, their
usefulness is doubtful. The positive side of the simple graphics is that the game runs very
smooth without any frame rate issues.

7.8 About the look of our game
Most of the problems explained above were caused by the lack of proper visual design; we
never seemed to come to an agreement on the visual style, plus there was not enough time
to build the game we wanted gameplay wise. Without a sound gameplay design it is also
very hard to create a good-looking visual style. Although the game ran well on a desktop PC,
we never tested the performance on the Xbox 360. The impact of running a game on
different graphical hardware was thus never seen, and any alternative graphical
implementations or attempts of hardware optimization were never made or tested.

Because we aimed for simple graphics and primitive models, graphics never got much focus.
Obviously, for a better visual result, more people would have had to be involved in the
graphical part, but it is hard to accomplish this within a small development group. After all, a
game needs to be made too, and a 3D RTS game requires a lot of effort put into fields like AI

43

and collision detection as well.

Chapter 8

Modeling and animating

8.1 The creation of all objects
Drawing an object, such as a monster, can be done in XNA, but it would be very difficult and
time-consuming. This is mainly because each single point (vertex) would have to be
specified in the code, and perhaps thousands of triangles would be needed to shape the
monster (Reed, 2008). The solution to this problem is to use a 3D model, and there are a lot
of different modeling tools available for creating and animating 3D models. Reed (2008)
mentions that some of the most common applications for developing 3D models and
animations for video games are: Autodesk Maya (Autodesk Maya, 2011), Autodesk 3ds Max
(Autodesk 3ds Max Products, 2011) and Blender (Blender, 2011).

Alexandre Lobão (2009) describes a 3D model as a hierarchy of meshes that can be
rendered independently. A mesh is a collection of points, edges and faces that specify how
an object in 3D computer graphics should look like. Models are, as mentioned earlier, often
created outside of XNA in a third-party modeling application and can also store extra
information such as textures, colors, and animations (Reed 2008). By using these third-party
applications, more advanced 3D models were able to be used than if the models were
created inside XNA (Lobão, 2009). Figure 21 shows a 3D model created in Maya by the
group members. The model is a character used in the game, and is called the minion.

Figure 21. The final version of the minion used in
this project

8.2 The movement of characters
There are several ways to make the objects in a game move, and one useful approach is to
animate them. Animations can be done inside XNA by, for example, rotating part of a mesh
over its axis. When it comes to more complex animations, such as moving a character and
making it jump, the process becomes more difficult (Lobão, 2009). For achieving these types
of animations, Maya was used.

An animation is composed of different frames, where each frame represents a specific pose

44

of the model. Each frame has a time offset that decides when the model changes its pose.
Two main types of animation techniques will be described, which are keyframed animation
and skeletal animation (Lobão, 2009).

Figure 22 illustrates a shooting animation of the main character in the game. The animation
sequence consists of several frames, where each frame has a different set of configurations.
The last frame has the same pose as the first one, which makes the character‘s animation
loop.

Figure 22. Main character with a shooting animation

8.2.1 Keyframed Animation
Keyframed animation is a technique where the animator changes the position of an object on
the screen and takes a keyframe, which resembles taking a snapshot, of every significant
moment. The software used for animating the object usually interpolates the frames between
these keyframes and creates an animation sequence.

According to Sean James (2010), one of the advantages of using keyframed animation is
that it is a fast way for creating complex animations because each frame does not need to be
animated.

The best way to demonstrate this technique is by showing an example. Figure 23 displays a
simple animation sequence where a ball bounces once while it changes its position. The ball
has three keyframes and each one is set on a different time and has a different position.

Figure 23. Ball animation with three keyframes

45

8.2.2 Skeletal Animation
In this technique, the 3D model is bound to a skeleton. The skeleton is a set of bones, one
bone for each movable part of the model, which are connected to a root bone (Lobão, 2009).

Skeletal animation usually uses keyframed animation for actually animating the model. This
is used by defining different positions and configurations of each bone at specific frames and
taking a snapshot of them. The skeleton of a model are generally built as a hierarchy of
pieces which means that when changes are made to one part they will also be reflected in its
child bones. For example, moving a characters arm will move its hand and fingers as well
(James, 2010).

Lobão, A.S (2009) states that skeletal animation has many advantages compared to
keyframed animation. According to Sean James (2010) skeletal animation is useful when
animating, for example, characters because it makes it easy to simulate movement of the
skin in a more smooth and flowing way.

An example of how this method is used is shown in Figure 24 which displays a robot created
for our game. The Figure shows the same robot in two different states. The first one
illustrates the robot without any skeleton, whereas the second one shows the model with its
skeleton included. As noticed, all the bones are connected to a root bone and has a
hierarchical structure.

Figure 24. Comparison of the robot with, and without bones

8.3 Our approach for creating 3D models and animations
We used third-party modeling applications to be able to display and animate much of the
graphical content in our game. There are, as mentioned earlier, various software products for
modeling and animation available on the market. We decided to use two of the most
common ones, which are Autodesk Maya and Autodesk 3ds Max. We chose these two
because they are the ones that appeared most popular according to different Internet forums.

46

Another important factor in our decision was that both Maya and 3ds Max did have a free
student edition available, which we used.
By choosing to create the models ourselves we faced some advantages as well as some
disadvantages. One advantage was that we had the flexibility to create the models as we
desired. We could also easily make changes to the models and add new features to them.
On the other hand, we had to spend a lot of time on learning how to use the software and
creating the models and animations. This was mostly done by reading and watching many
tutorials on different websites as well as doing a lot of trial and error while using the software.

It was decided in an early stage of development that the models and animations created
should be quite basic and primitive. This decision was made mainly for two reasons: the first
one was that no one in the group had previous experience in the field and the second reason
was that the team decided to have a more simplistic graphical style for the game. Once some
of the 3D models were created, such as characters, the animation process began. All
animations were created in Maya and we mostly used skeletal animation as our main
technique since we had an animation engine that could handle these types of animations.

8.4 The outcome of our models and animations
Most 3D models were created without any major problems, but this can not be said for the
animations. A lot of difficulties were encountered with the creation of the animations as well
as the implementation process into the game. This was mostly the animation engines fault
since it had some difficulties handling animated models.

XNA supports 3D models by default, but it does not support animated 3D models. This
meant that an animation engine had to be created. While the animated characters were
working as intended in the modeling software, they did not display and act correctly in the
game. This meant that the animator had to adapt the whole animation process to the
animation engine. By testing and altering the animation engine, the group managed to make
it work in an adequate way, although not optimal. This meant that many test objects had to
be created to see if the way the characters were animated would be shown correctly in the
game. One of these test objects is displayed in Figure 25.

47

Figure 25. An animated test object

The animating process in Maya was quite difficult as well, especially when trying create more
complex animations for more complicated models. An example of this is the robot in Figure
26, which was very difficult to animate since the model is more complex compared to other
models created for the game. It has a lot of bones, which makes the animation more flexible
but at the same time more complicated. Because of this, it is also more difficult to create a
good-looking and smooth animation sequence. The final result of the animation was deemed
adequate. More realistic movements would have been preferred, but this was too time-
consuming. On the other hand, the 3D model of the walking robot was considered satisfying.

48

The whole animation sequence of the robot is illustrated in Figure 26.

Figure 26. Animation sequence of our robot

Most models, such as the buildings shown in Figure 7, were created without any major
difficulties and, since a more simplistic design was desired, the group was very satisfied with
them.

The main character was hard to create because all group members had different opinions on
how he should behave and look like. This lead to many draft versions until the group found
one that suited their needs. Once the model was finished, the whole animation process
began. Creating many different animation sequences, and a few complex ones, was desired
but after a while it was realized that it would be too difficult and time-consuming. Finally, only
three animations were made. The first one is a shooting animation, as shown in Figure 22.
The second one is an animation where the main character does a special move in which he
spins around with his arms wide open as illustrated in Figure 27. The final animation created
is an animation where the wizard bounces up and down. This last animation sequence in this
report since it is very hard to notice the bouncing effect on a still image. In addition, several
other animations were made for the main character but they were not used because they
were either unnecessary for the game or there was not enough time to implement and make

49

use of them in a sensible way.

Figure 27. Main character doing his special move, which is spinning around in a circle with

his arms open

One of the characters created for the game was the minion. This character is shown earlier
in Figure 21 and the result of the model was very satisfying. Unfortunately, there was not
enough time to create any animations for this character.

Since none of the characters or objects were designed before the actual development
started, many 3D models were created in vain because they were not used in the game. A lot
of time was spent creating these models and animations which could instead have been
spent on other parts of the development.

Many of these points sound very negative, but the truth is that the group was pleased with
most of the results, and even though a lot of problems were encountered on the way, a great
deal was learned and the team now knows what works and what does not.

8.5 Discussion of our models and animations
The overall experience with modeling and animating was positive, even though many
difficulties were encountered. One problem that occurred during the entire project was that
the modelers and animators did not know how, for example, a particular character should
look like and behave. This made the modeling process quite problematic, since it is pretty
hard to create something in 3D if there are no reference images to base the model on. Figure
28 shows four examples of models that were created but not used in our game.

50

Figure 28. Example of models that were not used in the game

As mentioned earlier, the time it took to create these models could have been spent on other
parts of the game or on improving models and animations already used in the project.

One solution to this problem would be to have a concept artist in our team. A concept artist
would be responsible for drawing all the characters and objects, meaning that the modeler
would have an image reference. The concept artist would not necessarily be very artistically
gifted, as the purpose of the images created would be to create a holistic visual design. If the
design of all the main objects had been decided in an early stage of the development
process, the whole modeling procedure would have gone a lot smoother. This would have
given the group something to refer to and compare with while creating the models.

Spending more time on tutorials on how to animate in Maya would have been preferable
since this part was more difficult than creating the actual models. At the same time, this
would probably have been too time-consuming.

The overall conclusion of modeling and animating, although many difficulties were

51

encountered, was that the team gained a lot of knowledge and managed to develop their
skills in this new field. In a future project the group now knows that planning, designing and
communicating is an essential aspect of creating 3D content for a video game.

Chapter 9

Collision detection and collision handling

9.1 Problems of collision detection
Collision detection is the task of detecting when and where objects in a game are interacting
with each other. When the collision detector has discovered an intersection between objects,
the task of deciding what do with each object is called collision handling. Collision detection
and handling is executed by the game engine.

There are two core problems that have to be solved when designing a collision detection
system: first, there is the computational complexity of treating many objects. This will be
referred to as the broad problem, and generally this is solved by something called the broad
phase. Second, there is the task of making accurate detections. This will be referred to as
the narrow problem, and the algorithm that performs this calculation is generally called the
narrow phase (Hubbard, 1993).

9.2 The narrow problem
The basis of the narrow problem is to find out if two objects collide, and occasionally find
additional information about the collision. An example of additional information that may be of
interest would be the precise moment the collision occurred, another would be the exact
location in space where the objects first touch. Neither of these are usually retrieved naturally
from the detection test. This is because games operates on discrete time, with the
consequence that when collision is detected, the precise moment and location of the collision
has already happened (Bergen, 2004). Furthermore, game objects can be quite complicated
as a result of attempting to represent a physical object, and thus it is a complicated and
computionally heavy task of figuring out if they collide or not. Because of all of these
demands, the narrow problem of collision detection is a difficult and slow process with much
research dedicated to it (Mirtich, 1997).

9.3 The broad problem
An RTS game world usually contains a significant amount of objects. In order to know if
some of these objects collide, an intersection check must be performed. This is done by
comparing the objects in pairs. In the broad phase, potential collisions are identified and are
further evaluated in the narrow phase. Thus, to know if a given object can move freely
through game space, this object needs to be compared to every single other object in the
game. Since this is required for all objects, the complexity for calling the narrow phase lies in
O(n²) (Šinjur, 2001). The broad problem of collision detection is the task of reducing the
number of calls to the detection algorithm (i.e invoking the narrow phase).

9.4 Broad problem research

9.4.1 Sweep and prune
One solution to the broad problem is using a technique presented by Baraff (1992), called
sweep and prune. All objects are placed in a list. For each collision detection pass, sort all
the objects according to their in-game position along one axis. Then, the list is iterated, and
for the current object the closest neighbor is retrieved. If the two objects intersect on the
specified axis, they are passed on to the narrow phase. If they did not collide, then the next

52

closest neighbor is fetched. Once the current object finds objects on either side along the
axis that does not intersect on this axis, it does not need to check further as all other objects
will be farther away (Terdiman 2007). According to Bergen (2004), sweep and prune like
algorithms have a worst time complexity of O(n * log n).

9.4.2 Uniform grid partitioning
The idea behind grid partitioning is to divide the game space into a number of isolated
distinct areas. Then, each object in the game should reside in those areas that it overlaps
with. Optimally, the ratio between object size and area size is such that each object resides
in as few areas as possible, yet each area contains as few objects as possible. The benefit of
grid partitioning is that while the complexity within each area is O(n²), given n objects in that
area, the overall complexity will only grow linearly for each new such area added (Šinjur,
2001).

9.5 Narrow problem research
The straightforward method is to take all the triangles of the model of the object, and for each
triangle check for intersections against all the triangles in the model of the other object. This
method is accurate, but has a high complexity of essentially O(m×n), where m is the number
of triangles on one object and n is the number of triangles on the other object (Šinjur, 2001).

A simplified strategy is to define one or several invisible bounding volumes around the
model.
Then, these primitive bounding volumes provide faster, but less accurate, intersection checks
(Konečný, 1998). If better accuracy is desired, the collision test can continue with either more
detailed bounding volumes (Haverkort 2004), or doing the full model test.

9.6 Collision response research
Collision response is usually divided up into two distinct phases (Burns, Sheppard, n.d.). The
first phase consist of separating the overlapping objects from each other. Common solutions
to this are the projection method, the binary search method, or just using the position of the
objects before the collision.
The projection method can only work on very simple shapes. It separates the objects by the
same length as the intersection depth, which requires that this depth can be calculated. For
more complex shapes where no such calculation can easily be done, the binary search
method is usually preferred. It searches for the moment just before the collision, by using
increasingly smaller timesteps (Yan, Chen, Pa, 2005).

The second phase concerns giving the objects new velocities. Even if the collision response
is supposed to mimic physics as much as possible, the reaction still varies depending on
what kind of objects that are colliding. One extreme reaction is the fully elastic reaction. In
this case, no kinetic energy is intended to be lost, and the result is that the involved objects
will bounce off each other. The opposing extreme is the completely inelastic reaction, in
which all kinetic energy is lost, causing both objects to lose all velocity in the direction of the
collision (Baker, 2010).

9.7 Our collision detection and response method
Because the intent of our game design was that there should be many objects interacting
with the world at once, and because the camera was set far enough away from these objects
that it becomes difficult to see finer details or correct physics, our collision detection focus
was set almost exclusively on the broad problem. Since the world in which the game takes
place is a large flat land, we decided to use mostly two-dimensional collision detection. Thus,
we did not need to deal with such strange and unusual situations such as when one object is
resting atop of another object.

53

Our choice for the broad problem was uniform grid partitioning. Initially we considered using
sweep and prune, but decided against using it because of it's higher complexity. In his 2004
book, Bergen argues that the algorithm performs almost linearly when there are few moving
objects. However, since it was our intention to have a lot of moving objects, we did not feel
that this benefit would have helped us much.
For doodads, the decorations of the world such as trees, rocks, and other terrain
embellishments, a special function was implemented. Because doodads never move, and
are represented as a part of the static game world, it is easy to find which doodads that are
within range of any given location.

To tackle the narrow problem, we selected different approaches depending on what objects
that were being compared. For all objects except those which were flying, a simple 2D range
check was considered sufficient. For flying objects, such as projectiles, we used 3D bounding
volume comparisons.

For the first phase of collision response, we used only the pre-collision positions. The main
reason was simply that the camera distance was too great and the models so small that any
positional improvement would hardly be noticeable. The associated performance load with
Binary-Search made it an even more unfit solution.

As for the second phase of the collision response, we ignored trying to emulate regular
physics, and designed a customized response that we felt would fit better in the game.
Elastic behaviour did not seem natural to our game at all, and the inelastic calculations
become very complex when many objects cluster together tightly. Further, we wanted more
specific control over how objects would try to move around arbitrary obstacles, and thus, a
hand-tailored solution fit well. The strategy we took to handle this problem was to search for
a new possible movement using increasingly angled versions of the original movement.

To summarize, the collision manager was organized in the following way: every object has a
position and a destination. The destination is the position which this object has intended to
move to. The collision manager then moves one object at a time to its destination. If a
collision occurs at this new destination, the collision handler is called. The collision handler
moves the object to a new alternate destination, and the collision detector is called once
again. If this new destination also causes a collision, the collision handler is called once
again, and this kind of back and forth iteration goes on for a while. Eventually, either the
collision handler finds a suitable destination which does not cause a collision, or it gives up
and retracts the object back to its original position.

9.8 Results of our collision detection and response
Over the course of the development of the game, the design was continuously changed to
contain decreasing number of objects. This cut out a significant portion of the usefulness of
uniform grid partitioning over sweep and prune. Internal tests showed that uniform grid
partitioning still performed much better than not having any algorithm to tackle the broad
problem at all.

A problem that arose with uniform grid partitioning was that the memory required for each
square depends on how many game objects that currently reside within this square. This
caused most squares to be almost or completely empty, while a few squares needed to keep
references to a large number of objects. Still, to avoid making new allocations during runtime,
every square is required to have the same sufficient amount of memory. This meant that
uniform grid partitioning required more memory than desired. A solution to this problem was
theorized, but lack of time kept us from implementing it. This problem is not as severe on the
PC as it is on the Xbox 360, as PCs have much better support for garbage collection and
consequently memory allocations.

54

A mistake we did early in the process was that we planned on using the same collision
detection pass for both solid collisions and for game logical interactions. As we developed
the project further, it became clear that these two kinds of interactions were too different from
each other.
The fact that the collision handler may be called several times for a single object was a
reason that made merging with the logical interaction code unsuitable. The logical interaction
code should never fire more than once, and thus additional bookkeeping would be required.
Furthermore, the collision handler would have required the ability to distinguish solid objects
from logical objects and would also be required to dictate how the collision manager should
behave.

9.9 Thoughts on our collision detection
If we had stayed with a set gameplay design, the collision detection algorithms we would
have developed would not have lost effectiveness due to a changing specification. On the
other hand, uniform grid partitioning is a flexible algorithm that worked well with our
alternative gameplay design, and would also do so in case we wanted to go back to our
original design. It is also possible to extend and optimize the algorithm for future needs.

Chapter 10

Conclusion

10.1 Results
Sadly, the game was not implemented to a degree that was planned. This was mostly due to
time constraints, and to some extent to other events impeding progress. However, a lot of
theoretical and technical experience was gathered, as presented in this report.

Still, the game reached a playable prototype stage, with much of the basic functionality
implemented. It may be argued that the game is not feel much like an RTS game at this
point. C♯ and XNA assisted greatly in creating the game and made many parts of
development easier, such as managing sound with XACT. However, the garbage collection
in C♯ caused performance issues, and has restricted the prototype to be runnable on PC,
meaning that releasing the game for the Xbox 360 is a future goal. The built in game engine
features of XNA were not used extensively, as they were deemed to simplistic. The resulting
game engine was however not very advanced compared to commercial engines.

The components of the game were quite simple. The AI system was designed to be simple in
order to not take up a large amount of computer resources, but the AI system is also very
flexible. The rendering effects were also quite simple, but worked well, especially since the
models are pretty basic. Because of the difficulty of learning how to animate models and the
troubles with the implementation of an animation system, only a few animations were
finished. There were also a lot of time spent on a collision management system that changed
a lot throughout development. In the end, the collision management system was efficient and
robust.

Because of time constraints and other circumstances around the way we worked,
communication and documentation often suffered. Clear visual direction from a concept artist
would have simplified the process of creating models, and a clear game design could have
minimized the amount of discussions about details on the design. The ambiguity of the game
design also hindered the development of a control scheme.

55

10.2 Discussion
As the project is finished, we stand with a fairly stable game engine, and newly gained
experience in developing games in XNA. Due to time constraints we prioritized the
functionality of the game. The project as it is now is not as much of a game as it is a base for
continued development. Should we choose to continue working on the game there should
not be many problems in realising our visions of the final product that we originally intended.
The code for nearly all features and goals of the project exist, and has been tested, but not
everything is implemented as it would be in the final product. As an example, we have full
support for the Xbox 360 gamepad, but aside from the implementation of an avatar to adapt
the RTS genre, we have not yet included some of the RTS-centric features such as issuing
orders to minions.

As the group as a whole are both interested in and experienced with video games, we have a
number of interesting ideas regarding game elements, and opinions of good design that we
could try out in order to make a product that we are satisfied with, and hopefully release to
the public in the future.

One of our original intents was to release the game on Microsoft‘s Xbox Live Indie Games,
but since we focused more on functionality, and stability on PC, we did little work to port it to
the Xbox 360. Even though code written in XNA is supposed to work on both platforms, the
differences in hardware make it necessary to rework some parts of the code to better suit the
Xbox 360; the garbage collection is one of these parts.

With indie development getting more spotlight nowadays, as well as digital distribution
becoming more common, there is also an option to release the game for PC. This could
however lead to a redesign in control scheme, since all PC users do not necessarily own a
gamepad that works for the PC, which would defeat the purpose of the gamepad-centered
design.

Early in the project, when designing the game we worked very democratically, and discussed
every aspect that was to be implemented. Since we all had unique opinions of what was
important, most decisions took more time than anticipated. It was not until later that we
agreed to disagree and appointed a lead designer. This simplified matters, and put an end to
the time consuming design-meetings. Had we decided on this matter earlier it is possible that
we would have had more time to implement the features we were discussing on including. It
is now obvious to us why a designer is an important role in video game development teams.
In future work, we will assign a designer in a much earlier state of development.

10.3 Conclusion
It is a challenge to present a strategy game to a console audience in the right way. It is not
enough to have easy controls or a good balance of strategy and action. The overall
aesthetics such as sound and visual style must be of high quality. It might prove impossible
to achieve this for a small team. Even so, larger teams cannot take the financial risk, and
with XNA, new gameplay frontiers such as RTS games for the console may be explored by
hobby and student developers. However, developing a game is also a great challenge in
communication on topics of game design, programming, and artistic direction.

Game References

Atari (1972) PONG (Arcade game) http://www.atari.com/games/atari_arcade/pc-download

Blizzard (1997) StarCraft (Windows, Mac OS) http://eu.blizzard.com/en-gb/games/sc/

http://www.atari.com/games/atari_arcade/pc-download
http://eu.blizzard.com/en-gb/games/sc/

56

Blizzard (2010) StarCraft II (Windows, Mac OS) http://eu.blizzard.com/en-gb/games/sc2/

Bungie (2001) Halo: Combat Evolved (Xbox 360 game) http://www.bungie.net/Projects/Halo/

EA Los Angeles (2008) Command & Conquer : Red Alert 3 (Windows, Xbox 360,PlayStation
3, Mac OS) http://www.commandandconquer.com/en/games/bygameid/ra3

Ensemble Studios (1997) Age of Empires (Windows game)
http://www.microsoft.com/games/empires/

Ensemble Studios (2009) Halo Wars (Xbox 360 game) http://www.halowars.com/

Gas Powered Games (2010) Supreme Commander 2 (Windows, Xbox 360, Mac OS X)
http://www.supremecommander2.com/

Microprose (1991) Sid Meier’s Civilization (Windows game) http://www.civilization.com/

Namco (1980) Pac-man (Pakkuman) (Arcade game)
http://www.uk.namcobandaigames.eu/product/pac-man-championship-edition-dx/playstation-
3

Paradox Interactive (2000) Europa Universalis (Windows game)
http://www.paradoxplaza.com/

Technosoft (1989) Herzog Zwei (Sega Genesis/Megadrive game)

Treyarch (2010) Call of Duty: Black Ops (Xbox 360, Playstation 3, PC game)
http://www.callofduty.com/

References
AgileCollab (2008) Iterative and Incremental is not equal to Agile: Key Aspects of Agile.
http://www.agilecollab.com/iterative-and-incremental-is-not-equal-to-agile-key-aspects-of-
agile Retrieved 3 May 2011

Akenine-Möller, T., Haines, E., Hoffman, N. (2008) Real-Time Rendering 3rd edition. Third
edition Wellesley: A K Peters, Ltd.

Albanesius, C. (2010) 'Call of Duty: Black Ops' Gamers Log 600M Hours of Play Time.
PCMag http://www.pcmag.com/article2/0,2817,2374762,00.asp Retrieved 12 May 2011.

Ashida, K. (2004) Optimising the Graphics Pipeline.
http://www.nvidia.com/docs/IO/10878/ChinaJoy2004_OptimizationAndTools.pdf Retrieved 15
May 2011.

Autodesk 3ds Max Products (2011) http://usa.autodesk.com/3ds-max/ Retrieved 28 April
2011.

Autodesk Maya (2011) http://usa.autodesk.com/maya/ Retrieved 28 April 2011.

Baker M. J. (2010) Physics - Dynamics - Collision response
http://www.euclideanspace.com/physics/dynamics/collision/index.htm Retrieved 15 May
2011

http://eu.blizzard.com/en-gb/games/sc2/
http://www.bungie.net/Projects/Halo/
http://www.commandandconquer.com/en/games/bygameid/ra3
http://www.microsoft.com/games/empires/
http://www.halowars.com/
http://www.supremecommander2.com/
http://www.civilization.com/
http://www.uk.namcobandaigames.eu/product/pac-man-championship-edition-dx/playstation-3
http://www.uk.namcobandaigames.eu/product/pac-man-championship-edition-dx/playstation-3
http://www.paradoxplaza.com/
http://www.callofduty.com/
http://www.agilecollab.com/iterative-and-incremental-is-not-equal-to-agile-key-aspects-of-agile
http://www.agilecollab.com/iterative-and-incremental-is-not-equal-to-agile-key-aspects-of-agile
http://www.pcmag.com/article2/0,2817,2374762,00.asp
http://www.nvidia.com/docs/IO/10878/ChinaJoy2004_OptimizationAndTools.pdf
http://usa.autodesk.com/3ds-max/
http://usa.autodesk.com/maya/
http://www.euclideanspace.com/physics/dynamics/collision/index.htm

57

Baraff, D. and Witkin, A (1992) Dynamic simulation of non-penetrating flexible bodies. In
Computer Graphics 26, 2 July 1992, Chicago. pp 303-308.

Beck, K. et al. (2001) Manifesto for Agile Software Development: http://agilemanifesto.org/
Retrieved 2 May 2011.

Bergen, G.V.D. (2004) Collision detection in interactive 3D environments. San Francisco:
Morgan Kaufmann Publishers.

Bishop, L.M. et al (1998) Designing a PC game engine. Computer Graphics and
Applications, IEEE, Volume 18, Issue 1, pp 46-53

Blender (2011) http://www.blender.org/ Retrieved 28 April 2011.

Bourg, D. and Seemann, G (2004) AI for Game Developers. Sebastopol, CA: O‘Reilly Media.

Boyer, B (2008) Making Games For PlayStation Network - The Facts
http://www.gamasutra.com/php-bin/news_index.php?story=17707 Retrieved 5 May 2011.

Bozon, M (2008) GDC 2008: Wii Ware Interview
http://wii.ign.com/articles/853/853752p1.html Retrieved 5 May 2011.

Burns R, Sheppard M. (n.d.) Tutorial - Collision Detection and Response.
http://www.metanetsoftware.com/technique/tutorialA.html Retrieved 14 May 2011

Daumann, N (2011) Natural light attenuation
http://blog.slindev.com/2011/01/10/natural-light-attenuation/ Retrieved 15 May 2011

Dijkstra, E.W (1959) A Note on Two Problems in Connexion with Graphs. In Numerische
Mathematik, Volume 1, pp 269-271

Epic Games (2011) Unreal Tecnology http://www.unrealengine.com/ Retrieved 16 May 2011

Esmurdoc, C (2010) Postmortem: Double Fine's Brutal Legend:
http://www.gamasutra.com/view/feature/4308/postmortem_double_fines_brutal_.php?page=
2 Retrieved 3 May 2011.

Eurogamer (2009) Console Gaming: The Lag Factor
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article Retrieved 15 May 2011.

Filion, D., McNaughton, R. (2008) StarCraft II: Effects & Techniques
http://developer.amd.com/documentation/presentations/legacy/Chapter05-Filion-
StarCraftII.pdf Retrieved 15 May 2011.

Fosner, R. (2003) Real-time shader programming: covering DirectX 9.0 [Electronic] San
Francisco: Morgan Kaufmann Publishers

GameSpot (2005), Best Launch Titles http://www.gamespot.com/features/6134761/p-2.html
Retrieved 12 May 2011.

Gregory, J (2009) Game Engine Architecture Natick, MA: A K Peters

Hargreaves, S. (n.d.) Deferred Shading

http://agilemanifesto.org/
http://www.blender.org/
http://www.gamasutra.com/php-bin/news_index.php?story=17707
http://wii.ign.com/articles/853/853752p1.html
http://www.metanetsoftware.com/technique/tutorialA.html
http://blog.slindev.com/2011/01/10/natural-light-attenuation/
http://www.unrealengine.com/
http://www.gamasutra.com/view/feature/4308/postmortem_double_fines_brutal_.php?page=2
http://www.gamasutra.com/view/feature/4308/postmortem_double_fines_brutal_.php?page=2
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article
http://developer.amd.com/documentation/presentations/legacy/Chapter05-Filion-StarCraftII.pdf
http://developer.amd.com/documentation/presentations/legacy/Chapter05-Filion-StarCraftII.pdf
http://www.gamespot.com/features/6134761/p-2.html

58

http://www.talula.demon.co.uk/DeferredShading.pdf Retrieved 15 May 2011

Hargreaves, S (2007) Twin paths to garbage collector nirvana
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-
nirvana.aspx. Retrieved 5 May 2011.

Haverkort H.J. (2004) Introduction to bounding volume hierarchies. Utrecht: Utrecht
University (PhD thesis, introduction to publications about bounding volume hierarchies)

Hawkins, D (2008) Sponsored Feature: Democratizing Game Distribution: The Next Step
http://www.gamasutra.com/view/feature/3545/sponsored_feature_democratizing_.php
Retrieved 5 May 2011.

Higgins, D (2002) Generic A* Pathfinding. AI Game Programming Wisdom, ed. S. Rabin, pp.
114-121. Hingham: Charles River Media

Hubbard, P.M. (1993) Interactive Collision Detection. In Proceedings of 1993 IEEE Research
Properties in Virtual Reality Symposium. 25-26 Oct. 1993, San Jose. pp 24-31.

James, S. (2010) 3D Graphics with XNA Game Studio 4.0 [Electronic] Birmingham, UK:
Packt Publishing.

Keith, C (2010a) Agile Game Development with Scrum. United States: Addison-Wesley

Keith, C (2010b) State of Agile in the Game Industry
http://www.gamasutra.com/view/feature/4295/the_state_of_agile_in_the_game_.php
Retrieved 3 May 2011.

Klucher, M. (2006) The XNA framework Content Pipeline
http://blogs.msdn.com/b/xna/archive/2006/08/29/730168.aspx Retrieved 12 May 2011.

Konečný, P. (1998) Bounding Volumes in Computer Graphics [Master thesis]
Masaryk University, Brno Czech

Lobão, A.L. et al. (2009) Beginning XNA 3.0 Game Programming From Novice to
Professional. [Electronic] New York: APRESS

Matthews, M (2010) NPD: Behind the Numbers, December 2010
http://www.gamasutra.com/view/feature/6258/npd_behind_the_numbers_december_.php
Retrieved 11 May 2011.

McCarthy, J (2007) WHAT IS ARTIFICIAL INTELLIGENCE? http://www-
formal.stanford.edu/jmc/whatisai/whatisai.html Retrieved 5 May 2011

Miller, P (2008) Top 10 Pitfalls Using Scrum Methodology for Video Game Development.
http://www.gamasutra.com/view/feature/3724/top_10_pitfalls_using_scrum_.php Retrieved 3
May 2011.

Microsoft (2006) Microsoft Invites the World to Create Its Own Xbox 360 Console Games for
the First Time (press release)
http://www.microsoft.com/presspass/press/2006/aug06/08-13XNAGameStudioPR.mspx
Retrieved 5 May 2011.

http://www.talula.demon.co.uk/DeferredShading.pdf
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://www.gamasutra.com/view/feature/3545/sponsored_feature_democratizing_.php
http://www.gamasutra.com/view/feature/4295/the_state_of_agile_in_the_game_.php
http://blogs.msdn.com/b/xna/archive/2006/08/29/730168.aspx
http://ezinearticles.com/?3D-Game-Development-Tools&id=6063077
http://www.gamasutra.com/view/feature/6258/npd_behind_the_numbers_december_.php
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www.gamasutra.com/view/feature/3724/top_10_pitfalls_using_scrum_.php
http://www.microsoft.com/presspass/press/2006/aug06/08-13XNAGameStudioPR.mspx

59

Microsoft (2004) Microsoft: Next Generation of Games Starts With XNA (press release)
https://www.microsoft.com/presspass/press/2004/mar04/03-24xnalaunchpr.mspx Retrieved 5
May 2011.

Microsoft (2011) Xbox Marketplace: Indie Games
http://marketplace.Xbox.com/en-US/Games/XboxIndieGames Retrieved 5 May 2011.

Microsoft Developer Network (2010) Direct3D 11 Features
http://msdn.microsoft.com/en-us/library/ff476342%28VS.85%29.aspx Retrieved 15 May
2011.

Microsoft Developer Network (2011b) Microsoft Cross-Platform Audio Creation Tool (XACT)
http://msdn.microsoft.com/en-us/library/bb174772.aspx Retrieved 5 May 2011.

Microsoft Developer Network (2007) Skinned Model (code sample)
http://create.msdn.com/en-US/education/catalog/sample/skinned_model Retrieved 5 May
2011.

Microsoft Developer Network (2011c) Standard Importers and Processors
http://msdn.microsoft.com/en-us/library/bb447762.aspx Retrieved 12 May 2011

Microsoft Developer Network (2011d) What is Content? http://msdn.microsoft.com/en-
us/library/bb447756.aspx Retrieved 12 May 2011.

Mirtich, B. (1997) Efficient Algorithms for Two-Phase Collision Detection.
Mitsubishi Electric Research Laboratory

Neider, J., Davis, T., Woo, M. (1994) OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Release 1 Reading: Addison-Wesley Publishing Company
http://glprogramming.com/red/Chapter05.html Retrieved 15 May 2011

Newman, W. M., Sproull, R.F. (1979) Principles of interactive computer graphics. New York:
McGraw-Hill

Nutt, C (2008) Q&A: How Ensemble Gets Halo Fans To Appreciate Halo Wars. Gamasutra
http://www.gamasutra.com/php-bin/news_index.php?story=20835 Retrieved 12 May 2011.

NVIDIA (2011x) GeForce 256.
http://www.nvidia.com/page/geforce256.html Retrieved 15 May 2011.

NVIDIA (2011y) GeForce 3
http://www.nvidia.com/page/geforce3.html Retrieved 15 May 2011.

Patel, A (n.d.) Amit’s A* pages. http://theory.stanford.edu/~amitp/GameProgramming/
Retrieved 5 May 2011.

Perry, D (2006) XBLA: How to Make an Xbox Live Arcade Game
http://Xboxlive.ign.com/articles/721/721843p1.html Retrieved 5 May 2011.

Reed, A. (2008) Learning XNA 3.0 [Electronic] Sebastopol, CA: O‘Reilly Media.

Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model, in
Computer Graphics, 21 (SIGGRAPH '87 Conference Proceedings) pp 25-34.

https://www.microsoft.com/presspass/press/2004/mar04/03-24xnalaunchpr.mspx
http://marketplace.xbox.com/en-US/Games/XboxIndieGames
http://msdn.microsoft.com/en-us/library/ff476342%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb174772.aspx
http://create.msdn.com/en-US/education/catalog/sample/skinned_model
http://msdn.microsoft.com/en-us/library/bb447762.aspx
http://msdn.microsoft.com/en-us/library/bb447756.aspx
http://msdn.microsoft.com/en-us/library/bb447756.aspx
http://glprogramming.com/red/chapter05.html
http://www.gamasutra.com/php-bin/news_index.php?story=20835
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/page/geforce3.html
http://theory.stanford.edu/~amitp/GameProgramming/
http://xboxlive.ign.com/articles/721/721843p1.html

60

Richard, J. and Lins, R. (1996) Garbage Collection: algorithms for automatic dynamic
memory management. Chichester, Wiley

Selman, D. (2002) Java 3D Programming [Electronic] Greenwich: Manning Publications

Šinjur S. (2001) Collision detection between moving objects using uniform space subdivision.
Paper from the CESCG conference [No conference publication] 23-25 April 2001,
Budmerice.

Schwaber, K. and Sutherland, J. (2010) The Scrum Guide:
http://www.scrum.org/scrumguides/ Retrieved 2 May 2011.

Shirley, P and Morley, R (2003) Realistic Ray Tracing. Second Edition. Natick,
Massachusetts : AK Peters

Steam (2011) Steam Hardware & Software Survey
http://store.steampowered.com/hwsurvey/ Retrieved 15 May 2011

Symbolics Graphics Division (2009) Stella & Stanley: Breaking the Ice (1987) [youtube]
http://www.youtube.com/watch?v=3bTqWsVqyzE Retrieved 12 May 2011.

Terdiman, P (2007) Sweep and Prune http://www.codercorner.com/ Retrieved 14 May 2011

Unity (2011) Web Player Hardware Statistics - 2011 Q1
http://unity3d.com/webplayer/hwstats/pages/web-2011Q1-shadergen.html Retrieved 15 May
2011.

Valve (2007) SOURCE ENGINE http://source.valvesoftware.com/ Retrieved 16 May 2011

VersionOne (2010) State of Agile Survey 2010.
http://www.versionone.com/pdf/2010_State_of_Agile_Development_Survey_Results.pdf
Retrieved 3 May 2011.

VGChartz (2011) Call of Duty: Black Ops Sales (Xbox360). VGChartz
http://gamrreview.vgchartz.com/sales/44952/call-of-duty-black-ops/ Retrieved 12 May 2011.

Wikipedia (2011a) Artificial Intelligence
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=427360101 Retrieved 5
May 2011.

Wikipedia (2011b) Inverse-square law
http://en.wikipedia.org/w/index.php?title=Inverse-square_law&oldid=425552301 Retrieved 15
May 2011

Wikipedia (2011c) List of games with DirectX 10 support
http://en.wikipedia.org/w/index.php?title=List_of_games_with_DirectX_10_support&oldid=42
9099971 Retrieved 15 May 2011

Wikipedia (2011d) Microsoft XNA
http://en.wikipedia.org/w/index.php?title=Microsoft_XNA&oldid=426037575 Retrieved 5 May
2011.

http://www.scrum.org/scrumguides/
http://store.steampowered.com/hwsurvey/
http://www.youtube.com/watch?v=3bTqWsVqyzE
http://www.codercorner.com/
http://unity3d.com/webplayer/hwstats/pages/web-2011Q1-shadergen.html
http://source.valvesoftware.com/
http://www.versionone.com/pdf/2010_State_of_Agile_Development_Survey_Results.pdf
http://gamrreview.vgchartz.com/sales/44952/call-of-duty-black-ops/
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=427360101
http://en.wikipedia.org/w/index.php?title=Inverse-square_law&oldid=425552301
http://en.wikipedia.org/w/index.php?title=List_of_games_with_DirectX_10_support&oldid=429099971
http://en.wikipedia.org/w/index.php?title=List_of_games_with_DirectX_10_support&oldid=429099971
http://en.wikipedia.org/w/index.php?title=Microsoft_XNA&oldid=426037575

61

Wikipedia (2011e) Particle system
http://en.wikipedia.org/w/index.php?title=Particle_system&oldid=424915663 Retrieved 15
May 2011.

Wikipedia (2011f) Xbox 360 Controller.
http://en.wikipedia.org/w/index.php?title=Xbox_360_Controller&oldid=428577191 Retrieved
12 May 2011.

Yang B, Cheng X, Pan Z. (2005) A Real-time Collision Detection Algorithm for Mobile
Billiards Game. In Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, 15-17 June 2005, Valencia. pp. 294 - 297.

Zenko, D (2009) Halo's smart design lures you in. Toronto Star, March 14

Appendix A

Ansvarsuppdelning

 Ansvarsområden

o Planering

Jonas ledde planering, men gruppmedlemmar planerade i stor del själva på
sina egna arbetsuppgift

o Informationsinhämtning/inläsningsdel

Varje gruppmedlem hämtade själv in information om sitt ämne och delade
även med sig av information som var intressant för flera gruppmedlemmar

o Metoder -- val/utveckling

Alla arbetade gemensamt enligt Scrum. Vilken mjukvara som valdes var upp
till varje ansvarig för ett område

o Genomförande

Joakim: Kollisionsdetektion och hantering. Terräng och världgenerering.
Grundgrafikuppritning.

http://en.wikipedia.org/w/index.php?title=Particle_system&oldid=424915663
http://en.wikipedia.org/w/index.php?title=Xbox_360_Controller&oldid=428577191

62

Pouya: Modellering, animering och texturering.
Mattias: Shader-programmering, partikelsystem.
Jonas: Planering, AI, animationsmotor.
Jacob: AI, spelsessionshantering, övrig programmering.

 Bidrag till problemlösning, syntes och analys

o Problemlösning

Alla gruppmedlemmar medverkade till att problem löstes

o Kreativitet, idérikedom

Alla gruppmedlemmar medverkade med idéer, lite för många kanske.

o Skapande av modell
o Analys av projektrelaterat material
o Diskussionsbidrag

Alla gruppmedlemmar diskuterade mycket tillsammans.

o Slutsatser

Varje medlem i gruppen gav sina synpunkter på slutsatser

 Huvudansvarig författare av avsnitt
o Avsnitten anges

Introduction: Jonas

Designing an RTS for a console: Jacob och Jonas

C# and the XNA framework: Jonas

Scrum and agile: Jonas

Game Engine: Jonas
AI: Jonas

Rendering: Mattias

Modeling and animating, Loading assets-XNA content pipeline: Pouya

Collision Detection: Joakim

Results, Discussion and Conclusion: Alla

o Eventuell redaktionell ansvarsfördelning bör anges

Jonas och Mattias hade det största redaktionella ansvaret, men alla i gruppen
bidrog med kommentarer och korrekturläsningar

