
 Rapid Game Development   

 

Page | 1 

 

 

 

 

 

 

 

 

 

 

A Case Study in Rapid Game Development using XNA 

Game Studio 

Bachelor’s  Thesis  

Computer Science and Engineering Programme 

 

 

FREDRIK BERGGREN      ANDERS JOSEFSSON 

ELIAS HOLMLID       STEFAN MIKAELSSON 

 

 

Department of Computer Science and Engineering 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2008  



 Rapid Game Development   

 

Page | 2 

 

 

 

 

 

 

 

 

 

A Case Study in Rapid Game Development using XNA Game Studio 

 

 

© FREDRIK BERGGREN, ELIAS HOLMLID, ANDERS JOSEFSSON, STEFAN 

MIKAELSSON, May 2008 

 

Department of Computer Science and Engineering 

Chalmers University of Technology 

SE-412 96 Göteborg 

Sweden 

 

 

 

 

 

 

  



 Rapid Game Development   

 

Page | 3 

1 ABSTRACT 
This thesis presents a case study on how a complete game can be developed during a limited 

timeframe. The game development is done using modern programming languages and 

frameworks, which deviates from the current industry standard. Specific agile software 

engineering development models, such as rapid iterative prototyping, are also incorporated into 

the development process. 

 

It is shown how these above-mentioned factors aid and contribute to a complete, playable and 

enjoyable game within the specified timeframe. There has also been emphasis on constructing a 

visually compelling game. Thus, also a large portion of this study is dedicated to graphical 

effects, game physics and game logic. 

  



 Rapid Game Development   

 

Page | 4 

1 Abstract .................................................................................................................................... 3 

2 Introduction ............................................................................................................................. 6 

2.1 Background ...................................................................................................................... 6 

3 Problem .................................................................................................................................... 6 

4 Purpose .................................................................................................................................... 7 

5 Delimitation ............................................................................................................................. 7 

6 Method ..................................................................................................................................... 7 

7 The Game Megachile Pluto ..................................................................................................... 8 

7.1 Introduction ...................................................................................................................... 8 

8 Software Engineering .............................................................................................................. 8 

8.1 Key Construction Decisions ............................................................................................. 8 

8.1.1 Programming Tools .................................................................................................. 8 

8.2 Development Method ....................................................................................................... 9 

8.2.1 Background ............................................................................................................... 9 

8.2.2 Development approach ............................................................................................. 9 

8.2.3 Agile Development Aspects Used .......................................................................... 10 

8.2.4 Component-Based Software Engineering ............................................................... 10 

9 Computer Graphics ................................................................................................................ 11 

9.1 Lighting .......................................................................................................................... 11 

9.1.1 Using the sun as light source .................................................................................. 11 

9.1.2 Point lights .............................................................................................................. 11 

9.1.3 The lighting model .................................................................................................. 11 

9.2 Normal Mapping ............................................................................................................ 12 

9.3 Particle Systems ............................................................................................................. 13 

9.3.1 Particle system framework ...................................................................................... 13 

9.3.2 Results ..................................................................................................................... 14 

9.4 Shadows ......................................................................................................................... 14 

9.4.1 Shadow Mapping .................................................................................................... 14 

9.4.2 Results ..................................................................................................................... 15 

9.5 Post Processing ............................................................................................................... 16 

9.5.1 Bloom and Lens flare .............................................................................................. 16 



 Rapid Game Development   

 

Page | 5 

9.5.2 Heat Haze ................................................................................................................ 17 

10 Physics ............................................................................................................................... 19 

10.1 Background .................................................................................................................... 19 

10.2 Techniques ..................................................................................................................... 21 

10.2.1 Integration ............................................................................................................... 21 

10.2.2 Collision Detection ................................................................................................. 22 

10.3 Results ............................................................................................................................ 22 

10.3.1 Performance ............................................................................................................ 22 

10.3.2 Believability ............................................................................................................ 22 

11 Game Engine Design ......................................................................................................... 23 

11.1 Techniques ..................................................................................................................... 23 

11.1.1 Events ...................................................................................................................... 23 

11.1.2 Scene ....................................................................................................................... 24 

11.2 Results ............................................................................................................................ 25 

12 Game design....................................................................................................................... 25 

12.1 Background .................................................................................................................... 25 

12.2 Basic game idea .............................................................................................................. 26 

12.3 Concept development ..................................................................................................... 26 

12.3.1 Gameplay ................................................................................................................ 26 

12.4 Music and Sound ............................................................................................................ 27 

12.4.1 Background ............................................................................................................. 27 

12.4.2 XACT ...................................................................................................................... 27 

12.4.3 Results ..................................................................................................................... 28 

13 Discussion and Conclusions .............................................................................................. 29 

13.1 Programming Language ................................................................................................. 29 

13.2 XNA ............................................................................................................................... 29 

13.3 XACT ............................................................................................................................. 30 

13.4 Software Engineering ..................................................................................................... 30 

14 Bibliography ...................................................................................................................... 31 

  



 Rapid Game Development   

 

Page | 6 

2 INTRODUCTION 

2.1 BACKGROUND 

The video games industry is today a very 

successful one. A report entitled Global 

Entertainment and Media Outlook: 2007-

2011 (Scanlon, 2007) anticipates that the 

market will grow at a compound annual rate 

of 9.1% over the next five years. This makes 

the games industry the third fastest growing 

segment of the entertainment and media 

market after TV distribution and Internet 

advertising (Scanlon, 2007). 

 

It all begun in 1962 when the game 

Spacewar! was created by a group of 

students at MIT, becoming the first widely 

available video game. Spacewar! is often 

credited as the first true video game and it 

has influenced games ever since. During the 

1970’s the commercial industry was born 

and the market expanded until 1983, when it 

collapsed, mainly because of a hyper-

saturation of the market. A few years later, 

the industry revitalized, mostly due to the 

success of the Nintendo Entertainment 

System (History of video games, 2008). 

 

During these early years of computer games, 

many of the released games were crafted by 

just a single person who did all the 

programming, graphics and sound. Today 

games are huge productions, often involving 

hundreds of people. This has made it 

necessary to employ sound software 

engineering methods and more detailed 

planning of the projects (Finley, 2007). 

 

Computer science is a relatively new 

discipline, and even if many methods have 

been developed in order to assure the quality 

of software and to decrease development 

times, released software often contain bugs 

and deadlines are not kept.  

 

To avoid reinventing the wheel for each 

project, companies often license ready-to-

use engines which they can modify to suit 

their particular games. On a lower level, 

several frameworks exist for graphics, for 

example OpenGL and Direct3D. These APIs 

are intended to make it easier for the 

programmer to interact with the graphics 

hardware without having to target a specific 

graphics card. They are not suitable for 

games only, but are intended to be used for 

all types of applications relying on graphics 

for their presentation. 

 

In this thesis we use a relatively new 

framework from Microsoft which goes by 

the name XNA. XNA is by no means a 

ready-to-use 3D game engine, but the 

abstraction level is somewhat higher than 

APIs like Direct3D and OpenGL (Microsoft 

XNA, 2008). 

3 PROBLEM 
The task of implementing an entertaining 

game is an interdisciplinary one. It poses a 

vast number of questions and challenges 

ranging from questions such as “What is a 

game?” and “What is entertaining?”, at one 

end, to “What are the benefits of Microsoft’s 

game developing framework XNA?” at the 

other. Between philosophy and practicalities 

we encounter difficulties of physics 

simulation-, computer graphics- and 

software engineering. 



 Rapid Game Development   

 

Page | 7 

 

Using the technical advances in game 

design, real-time rendering and modern 

game development frameworks we 

investigate what can be achieved in terms of 

a limited, but complete, functioning game 

with high quality graphics and performance 

within the limits of a bachelor thesis. 

4 PURPOSE 
The main purpose of this study is to develop 

a complete and visually appealing game 

during the timeframe of four months. As 

such, the following aspects of development, 

design and software engineering will be 

taken into consideration: 

 

• Establish what impact modern 

programming languages, frameworks 

and development environments have 

on a final product. This study will try 

to demonstrate the contribution these 

factors present in terms of quality 

and progress. 

 

• Evaluate current software and game 

design pattern's efficiency on a basis 

of team development. Also, a 

presentation of how agile software 

engineering methods aid product 

completion according to established 

requirements while remaining on 

schedule will be included. 

 

• Make use of well documented 

methods for physics and graphical 

effects in order to quickly evaluate if 

they fit our needs, and then modify 

them to suit our particular 

requirements. 

 

• Incorporate ideas and concepts from 

game enjoyment studies to create a 

fun and challenging game while 

maintaining playability. 

5 DELIMITATION 
Game Development is often a lengthy 

process with schedules ranging from six 

months to two years. Few games are 

developed in less than six months (Bates, 

2004). Due to our limited time frame, this 

thesis will take the form of a case study.  

This means that development will only be 

evaluated in a single modern language and 

accompanying framework; methods that are 

implemented will be evaluated exclusively 

and methods not used will not be as 

thoroughly examined. 

 

Emphasis will be on game engine design, 

game mechanics and graphics. Thus, we will 

not engage too deeply into game concept 

design. 

6 METHOD 
We use an iterative process where a single 

iteration can be split into the following 

stages: 

 

1. Team brainstorming 

We usually set up limits for what is allowed 

to be brought up. For example, when 

discussing a new level design, we might 

only permit a limited number of planets.  

 



 Rapid Game Development   

 

Page | 8 

2. Research 

The time put into research is very subject 

dependent. Research is sometimes done 

before Team brainstorming, but usually very 

draft, as we will go back to brainstorming 

after the first iteration has been completed. 

 

3. Implementation 

Each implementation task is split between 

team members, and a deadline is set. A new 

iteration on another subject will sometimes 

start here, as all team members might not be 

needed to implement smaller tasks. 

 

4. Testing 

Testing is to be done by all members of the 

team after a deadline has been reached. 

There are multiple iterations of 

Implementation and Testing within an 

overall iteration cycle. 

 

5. Documentation 

Document arguments of choices, interface 

implemented, how it was done and what 

problems were encountered. 

7 THE GAME MEGACHILE 

PLUTO 

7.1 INTRODUCTION 

In the game developed, entitled Megachile 

Pluto, the player controls the rabbit Chow 

(see Figure 1), who is viewed from behind 

in a 3D solar system. The aim of the game is 

to save a dying planet from extinction by 

bringing them the items they need to 

survive.  In each solar system, a multitude of 

planets orbit a burning and hostile sun which 

the player needs to avoid. The player will 

need to visit the different planets by jumping 

to them since they contain the items the 

dying planet need. Some of the items sought 

after are not to be found in the solar system, 

but the player can combine items at certain 

planting spots. If blended together correctly, 

new forms of life will appear. For instance, 

on the example level developed for this 

bachelor thesis, a red flower combined with 

a mushroom spawns a melon. The dying 

planet’s life force diminishes constantly and 

the player will need to act quickly and 

wisely if he intends to succeed in his task of 

saving the planet. 

 

Figure 1. The title screen for Megachile Pluto, with 

Chow in the lower right corner. 

8 SOFTWARE ENGINEERING 

8.1 KEY CONSTRUCTION DECISIONS 

8.1.1 PROGRAMMING TOOLS 

Instead of the two more commonly used 

APIs, OpenGL and Microsoft Direct3D; we 

choose to use XNA Game Studio, which is a 

new game development framework 

produced by Microsoft. XNA was first 

introduced to developers at the Game 

Developer’s Conference in 2004, and is thus 



 Rapid Game Development   

 

Page | 9 

a more recent addition to graphical software 

development than OpenGL, which was 

introduced in 1992 (Silicon Graphics Inc., 

2008) and Microsoft Direct3D, which was 

introduced in 1994. 

XNA might be the future game development 

standard for PC and Xbox. It was conceived 

to integrate a development environment 

across all Microsoft platforms, and also free 

developers from doing repetitive mundane 

implementations (Microsoft Corporation, 

2004). XNA includes the latest version of 

DirectX 9, in addition to various Xbox 

Tools. The more prominent of these tools 

being the Cross Platform Audio Creation 

Tool (XACT) (Irish, 2005, pp. 173-174) 

While features such as portability between 

PC and Xbox was appealing, the main 

reason for using the XNA Game Studio is 

that it supports C#. Working with a high-

level language, like C#, improves 

productivity, reliability, simplicity and 

quality (Jones, 1998), (Boehm, et al., 2000). 

8.2 DEVELOPMENT METHOD 

8.2.1 BACKGROUND 

In the 1980s and early 1990s, the most 

common software engineering model was 

the waterfall model. This model consisted of 

a single development cycle, where every 

aspect of the development was completed in 

a sequential order and only a single time. 

Approaches of this kind involve a significant 

overhead in planning. Moreover, 

documentation is costly and final 

deployment of the product may take several 

years (Sommerville, 2007, p. 396). 

 

Sommerville concludes that while this 

development model works well for systems 

that are large, long-lived and critical, the 

overhead in planning and documenting such 

systems is too large when applied to small 

and medium-sized business systems. This 

led to new development models known as 

agile or rapid development methods, which 

all revolve around iterative approaches. One 

of the most common agile methods is 

extreme programming (Beck, 2000). It has 

been suggested that this type of development 

is ideal for game development: 

 

“Rapid iterative prototyping is the best 

development model for most new games.” 

(Bates, 2004, s. 226) 

8.2.2 DEVELOPMENT APPROACH 

A software engineering model with an 

iterative approach was chosen. Guidelines 

for choosing between sequential and 

iterative design approaches (McConnel, 

2004, ss. 35-36), were used, as well as 

principles defined by (Beck, o.a.). These 

principles are essential in all agile methods. 

The reasons for choosing an agile 

development method were the following 

characteristics: 

 

• Requirements are loosely defined, 

not well understood and have a high 

probability to change in the future. 

• The development team has limited 

experience with this type of 

development.  

• The product’s long-term 

predictability is not important. 

• Early and frequent delivery of 

working software has high priority. 

 



 Rapid Game Development   

 

Page | 10 

All these points advocate the use of an 

iterative approach, and as such, an agile 

development model was chosen. However, 

we decided to maintain a flexible approach 

to agile development and no specific method 

was chosen. Instead, elements of several 

methods that integrate well into the study 

have been used. 

8.2.3 AGILE DEVELOPMENT ASPECTS 

USED 

8.2.3.1 Incremental delivery 

A working version of the game was 

delivered every two to three weeks, after 

which the development cycle began anew. 

In the beginning of each increment, we 

specified the requirements to be included in 

the next increment, after which construction, 

design and testing followed. This is a 

characteristic of agile development that is 

common to most variations of it 

(Sommerville, 2007, p. 391), (McConnel, 

2004, pp. 58-59). This process was chosen 

because it guarantees a working final 

product.  Figure 2 below depicts the release 

cycle used for this study. 

 

 
Figure 2. The release cycle used in this study. 

8.2.3.2 Tickets 

In order to make problems less complex, the 

requirements can be divided into smaller, 

more manageable tasks. These are called 

tickets, which are distributed among the 

developers (Bates, 2004). 

 

8.2.3.3 Software Prototyping 

Prototyping is an approach that can be used 

when creating a software system, such as a 

game engine (Sommerville, 2007). In our 

case, the throw-away prototype that was 

created was an implementation of the game 

engine itself, and both continued to be 

developed in parallel for continued use 

throughout the course of development. This 

prototype was used to evaluate the new 

requirements needed, experimenting with 

various solutions as well as testing other 

aspects of the engine during its 

development. 

8.2.4 COMPONENT-BASED SOFTWARE 

ENGINEERING 

8.2.4.1 Background 

In addition to the rapid and evolutionary 

development model previously outlined, 

component-based software engineering 

(CBSE) has been used. The following 

summarizes the essence of component based 

software engineering: 

“The primary role of component-based 

software engineering is to address the 

development of systems as an assembly of 

parts, the development of parts as reusable 

entities, and the maintenance and upgrading 

of such systems by customizing and 

replacing such parts.” (Crnkovic, 2003). 

  



 Rapid Game Development   

 

Page | 11 

8.2.4.2 Method 

The methods used are drawn from ideas 

outlined by the CBSE project, which is 

being researched at Andersen Consulting. 

The CBSE project aims to combine ideas 

from research and prominent methods 

currently used in industry that support 

component-based development (Ning, 

1997). Here follows some of the methods 

presented by Ning. 

8.2.4.2.1 Interfaces 

Interfaces or abstract classes are created to 

define functionality of certain components 

before they are implemented. The parts in 

our implementation that show this most 

clearly are the BasicObject and BasicSystem 

abstract classes, which define the 

functionality of all other objects and systems 

within the game engine. 

8.2.4.2.2 Wrappers and Integration 

We did not acquire any third-party 

components, and all components were 

developed internally by the development 

team. Because of this, no integration or 

wrapper problems were encountered. 

9 COMPUTER GRAPHICS 

9.1 LIGHTING 

9.1.1 USING THE SUN AS LIGHT SOURCE 

In the game, each level is built with a sun 

positioned in the middle of the solar system. 

We decided that we would also use it as the 

primary light source in our lighting model. 

Nevertheless, there is one drawback here, 

being that the planets will only be exposed 

to the lighting on the parts facing the sun. 

Essentially, two different alternatives were 

discussed: 

• Use up to six different light sources 

in order to properly light up all parts 

of the world objects at the same time. 

• Bind a light to the player which will 

always light up the area where the 

player is located. 

 

The main reasons for finally choosing a 

single light source were that we felt it would 

be more convincing to use the sun as a light 

source, and also because using multiple 

lights would be rather costly in terms of 

performance. In our minds, a light following 

the player would also appear awkward. 

Given the tight schedule, we had no time to 

test and evaluate all the different 

approaches. 

9.1.2 POINT LIGHTS 

In real time computer graphics, three types 

of lights are mainly used – point lights, 

spotlights and directional lights. A point 

light spreads light in all directions, and a 

spotlight spreads light only within the cone 

of the light. A directional light approximates 

all incoming light rays as parallel, and is 

often used in outdoor scenes, where the rays 

from the sun are approximately parallel (due 

to that it is so far away it could be 

considered infinitely far away). The sun we 

are using in our game is modeled as a point 

light since it is near the player and the player 

can be on any side of it. 

9.1.3 THE LIGHTING MODEL 

We utilize a somewhat simplified version of 

the Phong lighting model. This model is 

widely used in games, and gives convincing 

results while being well suited for the 



 Rapid Game Development   

 

Page | 12 

parallel nature of modern graphics 

processors. It has been sufficiently explored 

elsewhere, so we will not treat it here. A 

good and complete explanation can be found 

in (Akenine-Möller & Haines, 2002, ss. 67-

84). The difference in our model is that we 

use a constant factor for all ambient light 

instead of calculating it from the ambient 

components of the light and material. We 

did this because we were using about the 

same ambient component for all materials 

throughout the scene. Due to the fact that we 

only have one light source, we could then 

get rid of some parameter passing to the 

shaders.  

9.2 NORMAL MAPPING 

We make use of normal mapping to a great 

extent in the game. Normal mapping is a 

technique to fake surface depth, like a brick 

wall for example, without having to add 

extra geometry. It would require a 

significant amount of additional polygons if 

this fine detail should be modeled 

geometrically. Since the extra detail is small, 

it mostly affects how the object is lit. 

Therefore, for each texture applied to the 

objects, an additional texture is passed to the 

shader with information about how the 

normals are pointing on the surface. So, 

instead of interpolating the normals across 

the faces of the triangles and thus getting a 

normal corresponding to each pixel, a 

lookup is done in the normal map instead 

(St-Laurent S. , 2005, ss. 60-62). 

Constructing the normal map from a texture 

could be done using a tool, like for example 

the NVIDIA Normal Map Filter (NVIDIA, 

2007). Then, for each vertex a tangent space 

has to be created, which is used to construct 

the matrix necessary for transforming all 

components involved in the lighting 

calculations into the coordinate system the 

normals reside in. This base can be 

constructed automatically for us in XNA, 

and we will not treat its derivation here. A 

thorough explanation of the tangent space 

derivation can be found in (Gath & Dreijer, 

2006). Since the components of the normals 

also need be in the [-1, 1] interval and the 

components of the textures are in the [0, 1] 

interval, a simple transformation also have 

to be computed at each lookup (Luna, 2006, 

s. 542). 

 

Figure 3. The upper image is without normal 

mapping. The lower image illustrates the same planet 

with normal mapping applied. Especially note, on the 

volcano in the bottom image, how the cracks appear 

to have more varied depth than in the top image.  

  



 Rapid Game Development   

 

Page | 13 

9.3 PARTICLE SYSTEMS 

Particle systems are often used in games to 

simulate small objects which move in a 

similar, yet slightly random, way. Once the 

particles are emitted, they are pretty much 

independent, and can be affected by forces 

like wind and gravity. Their color and 

opacity may also change over time, for 

example.  Some particle systems take into 

account collision between other world 

objects, but collisions between particles are 

not very common (Hall, 2008, ss. 507-511). 

Examples of phenomena suitable for 

simulation by particle systems include 

smoke, rain and explosions. 

9.3.1 PARTICLE SYSTEM FRAMEWORK 

In order to get a flexible particle system 

framework, we constructed an abstract base 

class which all particle systems should 

implement. We also implemented a custom 

vertex format used by all particles. This 

vertex format includes the start position of 

the particle, its velocity, its initial size and 

other variables. At each frame, this 

information is passed to the shader that the 

particle system is configured to use. Since 

most particle systems involve the motion of 

particles, the new position is calculated in 

the shader using the starting position, the 

velocity and the time passed since the 

particle was created. 

9.3.1.1 Point sprites 

We use point sprites for the particles. Unlike 

an ordinary point primitive, a point sprite 

can have an associated texture and can vary 

in size. Point sprites were introduced in 

Direct3D 8.0. Before that, billboards were 

often used for particle systems. A billboard 

is a quad which is oriented so that it is 

always facing the camera. This requires four 

vertices instead of only one, so using point 

sprites is clearly preferable (Luna, 2006, ss. 

483-484). 

9.3.1.2 Pooled resource 

Since new particles are frequently created, 

using a pooled resource is useful. This 

means that a maximum number of particles 

is set for the system and that a list is created 

that hold these particles. Two additional lists 

are also created, which index into this list. In 

this way, we need not allocate new memory 

at any time during the lifetime of the particle 

systems (Hall, 2008, s. 511). 

A new particle is created only if the 

following criteria are fulfilled: that a 

specified time has passed, and the maximum 

number of particles has not been reached. 

During each update of the particle systems, 

the following is executed on the CPU side: 

1) Increment the age of the particle 

system. 

2) Fill the two arrays indexing into the 

particle pool, one with the indices of 

dead particles, and one with the 

indices of the alive particles 

3) Emit new particles if the criteria 

stated above are fulfilled. Every time 

a new particle is created, it is not 

truly created, but is initialized at a 

position in the pool pointed to by one 

of the indices in the array of dead 

particles 

4) Render the particles by passing them 

with a single draw call into the 

preferred shader. 

  



 Rapid Game Development   

 

Page | 14 

9.3.2 RESULTS 

In Megachile Pluto, we use particles for 

several different effects, for instance the fire 

burning at the sun surface, the stars marking 

out the planting spots and the smoke rising 

from the volcanoes. All of them use some 

kind of transparency blending, which have 

some on performance. A drop in frame rate 

can in this context mostly be observed when 

looking at the sun or volcano smoke up 

close, since the particles will then be large 

and overlap to a great extent (Latta, 2004). 

 

Figure 4. The fire surrounding the sun and volcano 

smoke particle systems 

 

9.4 SHADOWS 

Shadows help the viewer of a 3D-scene to 

convey the relative positions of objects 

(Luna, 2006, s. 567). We decided early on 

that we would utilize shadows in our game. 

Given that we have a world with no up and 

down which initially might be hard for the 

player with respect to orientation, using 

shadows seemed even more important. As 

described earlier, our only light source is the 

sun which is positioned at the center of the 

world coordinate system. Our first approach 

was to cast shadows realistically in all 

directions from this light source, but in the 

end we settled for a simpler solution. A 

description of the basic techniques used 

follows below, thereafter followed by a 

discussion about our experiences with the 

techniques, what decisions we took and 

why. 

9.4.1 SHADOW MAPPING 

There are basically two major techniques 

used in modern computer graphics to render 

a scene with shadows – shadow mapping 

and shadow volumes. We use shadow 

mapping, an image based technique invented 

by Lance Williams in 1978 (Williams, 

1978). 

 

Another technique worth mentioning is 

projected planar shadows, but this method 

has the limitation the name implies; it can 

only cast shadows onto planes. We tried 

several different approaches for how to use 

shadow maps in our engine. However, all of 

these were rooted in the most basic shadow 

mapping technique. 

 

Shadows are created in the areas occluded 

by objects when viewing a scene from the 



 Rapid Game Development   

 

Page | 15 

position of the light. This fact is used in the 

shadow mapping algorithm. First, an off-

screen buffer is rendered, which afterwards 

will contain the depth values inside the 

viewing frustum of the light source. This is 

accomplished by transforming each vertex 

from world space into the view space of the 

light. From there, the vertex is transformed 

with the light’s projection matrix, and the 

depth value is stored. By taking advantage 

of the Z-buffer algorithm, when finished 

rendering, the buffer will contain the z-value 

closest to the light.  

 

When rendering the scene, each pixels z-

value (in light space), is compared to the z-

value written into the shadow map. If the 

value in the shadow map is less than this 

value, the pixel is in shadow. Since the map 

is sampled, the technique can result in 

aliasing artifacts. This is mostly because 

objects shadow themselves, a problem called 

self-shadow-aliasing. As the name implies, 

the depth comparison results in that an 

object incorrectly shadows itself. One 

common solution is to add a little offset to 

the comparison, a bias factor (Akenine-

Möller & Haines, 2002, ss. 271-272). 

 

9.4.1.1 Shadow mapping for omni-

directional light sources 

Shadow mapping is not particularly well 

suited for point lights. This is because of the 

limited field-of-view when generating a 

shadow map for the point light source. This 

has been one argument for using shadow 

volumes instead. Using multiple shadow 

maps is one solution to the problem. In order 

to capture completely the surroundings, up 

to 6 different shadow maps might have to be 

used. There are other methods also, like 

Paraboloid Shadow Maps (Brabec, Annen, 

& Seidel, 2002). 

 

9.4.1.2 Soft shadows 

The shadow cast by an object can be split 

into two parts, the umbra and the penumbra. 

The umbra is the region which is in full 

shadow, and the penumbra region is 

partially in shadow. A realistic soft shadow 

is sharper near the occluding object. 

However, the more advanced techniques for 

generating realistic soft shadows are often 

computationally expensive, and therefore 

simpler techniques are frequently used 

(Shastry, 2005). 

 

PCF 

One basic technique for achieving soft 

shadows is percentage closer filtering. Here, 

several samples of the shadow map are 

fetched, and the current pixel depth is 

compared to each one of them. After that, an 

average of the result is calculated. This 

results in that some pixels will be only 

partially in shadow (Luna, 2006, ss. 573-

575). 

9.4.2 RESULTS 

Our initial approach was to use the sun as 

the shadow casting light and to use 6 

shadow maps written into a cube texture. 

The reason we choose not to look into more 

advanced techniques was simply that we 

wanted to get the shadows up and running as 

soon as possible so that we could begin to 

focus on the actual gameplay.  

 

Our first approach was to use a cube texture 

to capture the occluders in all directions. It 

is worth noting that the texture lookups in 



 Rapid Game Development   

 

Page | 16 

HLSL uses a left-handed coordinate system 

(like in Direct3D), while XNA uses a right-

handed coordinate system by default. 

(Scharl, 2007). Unexpected results can be 

produced if the implementer is not aware of 

this. 

 

We experienced some performance 

problems after the full implementation of the 

cube map technique and resorted to a less 

complicated solution which required only 

one shadow map. Since the player in the 

game will mostly concentrate on the planet 

he is currently visiting, we enable shadows 

only for this planet. The switch occurs when 

the player lands on a planet and when he 

leaves a planet. At each frame the matrices 

of the shadow map are updated, so that they 

always encapsulate the current planet. 

 

For the soft shadows, we first implemented a 

technique described in (Shastry, 2005). This 

technique uses the shadow map to first 

render the shadowed parts of the scene into a 

texture. The texture is then blurred. 

Thereafter, the whole scene is rendered, and 

the blurred shadow texture is projected onto 

the scene. This resulted in very smooth 

(although uniformly soft) shadows, but the 

impact on the frame rate was too severe for 

us at that point, so in the end we resorted to 

only using a percentage closer filtering with 

a kernel of 9 samples.  

 

Figure 5. The shadow cast by the main character. 

9.5 POST PROCESSING 

Post processing, or screen effects, refers to 

the technique of performing per pixel 

manipulations on a complete rendered scene. 

Examples of applications range from simple 

color manipulations, such as 

saturation/desaturation, to blurring, image 

perturbation and advanced lighting (St-

Laurent S. , 2004). 

9.5.1 BLOOM AND LENS FLARE 

The light intensity range of the computer 

monitor does not mimic very well the 

intensity range between full shadow and 

direct sunlight found in a real environment. 

A number of methods can however be 

applied to give the impression of brightness 

and thus increase the level of realism in a 

rendered scene. One common strategy is to 

focus on image artifacts which the human 

eye and cameras cause when exposed to 

bright light. By exploiting the fact that these 

artifacts are associated with brightness the 

impression there of can be achieved 

(Akenine-Möller & Haines, 2002). 

 

When looking towards a window from a 

dark room, the bright light from the window 

often produces a glow around it. The light 

appears to “bleed” outside the window 



 Rapid Game Development   

 

Page | 17 

frame and contrast is perceived as dimmed. 

This occurs because the light coming from 

the window is scattered in the eye on its way 

to the retina. The specific image artifacts are 

commonly referred to as blooming. As 

previously mentioned, the computer monitor 

does not allow setting an intensity level 

where this bleeding occurs naturally. 

Explicitly rendering the artifacts is, 

however, possible and can be carried out in 

a number of ways (St-Laurent S. , 2004).  

 

9.5.1.1 Bloom 

The implementation used in the game to 

simulate bloom consists of four passes. First, 

the bright colors of the original scene are 

extracted by rendering them to a texture.  

The texture is then blurred horizontally and 

vertically using Gaussian blur. Finally, the 

original scene texture and the blurred texture 

are combined while adjusting the saturation 

level. 

 
Figure 6. Upper image with bloom, bottom without. 

9.5.2 HEAT HAZE 

The air rising above a hot surface or an open 

flame sometimes makes the image of objects 

above it seem distorted. The phenomenon is 

known as heat haze, or heat shimmer, and 

can often been noticed when looking above 

an asphalt road on a hot summer day (St-

Laurent S. , 2004). 

Two main physical properties of air are 

accountable for this effect (St-Laurent S. , 

2004). The first important property is that 



 

 

light seems to go faster through hot air than 

through cold air, and the second 

density of air decreases with temperature

The degree with which the velocity

or other waves, decreases when leaving one 

medium for another is known as refractive

index (Refractive index). 

The fact that air density decreases with 

temperature makes the heated air above t

flame or surface rise and small pockets of 

varying density and refraction index form

Because the light refracts non-uniformly 

above the heat emitter, the image seem hazy

(St-Laurent S. , 2004).  

 

Figure 7. Light travelling through air above a hot 

surface.  

9.5.2.1 Optimal Implementation

Whenever light from an object travels 

through regions of turbulence before it

reaches the viewer, the rendered image 

representation of vertices needs to be 

distorted. In our simulated environment

means that if we imagine a sphere around 

the sun where there is intense heat

to distort an object whenever light passes 

Rapid Game Development  

hrough hot air than 

and the second is that the 

of air decreases with temperature.  

velocity of light, 

when leaving one 

is known as refractive 

fact that air density decreases with 

makes the heated air above the 

and small pockets of 

density and refraction index form. 

uniformly 

the image seem hazy 

 

Light travelling through air above a hot 

Optimal Implementation 

Whenever light from an object travels 

through regions of turbulence before it 

the rendered image 

representation of vertices needs to be 

distorted. In our simulated environment, this 

means that if we imagine a sphere around 

where there is intense heat, we need 

an object whenever light passes 

through the surface of this sphere on its way 

between an object and the viewer

9.5.2.2 Actual Implementation

The algorithm used for the simulation of 

heat haze can be described as follows;

 

1. Render a distortion amount for each 

pixel to a texture, hereby referred to

as heat texture, taking into account 

the position of rendered vertices, the 

position of the heat source and the 

position of the viewer. 

a complete description

2. In a second pass, use a noise texture 

to look up an offset vector for each 

pixel. 

3. Sample the heat texture using an 

expandable Poisson disc expanding 

the radius by distortion amount.

4. Calculate the average 

distortion amount samples and add to 

the offset vector. 

5. Use the resulting offset vector for 

lookup in the original scene textu

 

9.5.2.2.1 Determining the pixels to be 

distorted and the degree of 

distortion 

The pixel shader used for rendering the heat 

texture has two branches. If the object being 

rendered is behind the plane positioned at 

the center of the sun parallel to the 

projection plane, then the distort amount is 

based on the distance from the sun in the 

described plane. To give an appropriate 

distortion amount, the distance is scaled 

with the distance between the viewer and the 

sun and damped. The amounts rendered can 

be seen as the filled glowing circle in figure 

8. 

 

Page | 18 

rough the surface of this sphere on its way 

between an object and the viewer.  

Actual Implementation 

The algorithm used for the simulation of 

heat haze can be described as follows; 

Render a distortion amount for each 

pixel to a texture, hereby referred to 

taking into account 

the position of rendered vertices, the 

position of the heat source and the 

position of the viewer. See below for 

a complete description. 

In a second pass, use a noise texture 

up an offset vector for each 

Sample the heat texture using an 

expandable Poisson disc expanding 

the radius by distortion amount. 

verage of the 

distortion amount samples and add to 

Use the resulting offset vector for 

lookup in the original scene texture. 

Determining the pixels to be 

distorted and the degree of 

The pixel shader used for rendering the heat 

texture has two branches. If the object being 

rendered is behind the plane positioned at 

the center of the sun parallel to the 

plane, then the distort amount is 

based on the distance from the sun in the 

described plane. To give an appropriate 

the distance is scaled 

with the distance between the viewer and the 

sun and damped. The amounts rendered can 

ng circle in figure 



 Rapid Game Development   

 

Page | 19 

If the object being rendered is not behind the 

sun, the distortion amount is zero if the 

vertex is outside a sphere defined by a 

maximum heat range, and between zero and 

one depending on the three dimensional 

distance from the surface of the sun.  

 

 
Figure 8. Heat texture 

 

9.5.2.3 Results 

The purpose of adding post processing to the 

game was to make the environment vivid, 

colorful and appear less artificial. The result 

is fairly pleasing but certainly does not come 

for free in terms of performance. The game 

is clearly fill rate bound and tradeoffs 

between quality and speed have to be made 

even when using quite powerful graphic 

accelerators. Luckily, there are a multiple of 

ways to trade in quality for frame rate in the 

context of post processing, for example by 

disabling multi-sampling for intermediate 

buffers, lower the resolution of buffers or 

rendering buffers less frequently. 

Not surprisingly, the heat haze has the same 

influence on fill rate as bloom even though 

to a lower degree.   

The purpose of implementing a heat haze 

effect was for it to act as a visual cue for the 

hazard of getting too close to the sun. It is in 

fact lethal, in real life as well as in the solar 

systems of our game. Whether the 

implementation serves its purpose or not is 

hard to anticipate but the effect behaves in 

an expected way, with some exceptions; 

• Steep differences in distortion 

amount between adjacent regions in 

the heat texture cause unnatural 

glitches in the final image.  

• When part of an object is rendered in 

the first branch, in the heat haze 

implementation, and another part of 

the same object is rendered via the 

second branch the object can be 

partly distorted even though all parts 

of the object is located at the same 

distance from the sun. 

10 PHYSICS 

10.1 BACKGROUND 

For a game to be interactive and dynamic, 

objects need to have some kind of motion. 

One way to accomplish this is by manually 

animate all objects in a modeling program 

and then play them back in the game engine. 

Animating every object in a game world 

containing hundreds or thousands of 

different objects is not often a feasible 

option, and it is rarely the best solution for a 

fully dynamic object. In our case, imagine 

animating every curve the character or the 

camera follows for a single game instance. 

Modern PC and console games usually have 

some kind of physics simulation to make the 

game world more realistic and believable. 



 Rapid Game Development   

 

Page | 20 

One of the top selling games of 2007, Portal 

(developed by Valve), makes heavy use of 

physics and is using physics in a new and 

creative way. Eight of ten latest reviewed 

games at (Gamespot, 2008) are clearly using 

some kind of physics simulation. At a quick 

glance, the only two that does not use 

physics are both puzzle games. 

There are plenty of third party physics 

engines available. Two of the most common 

ones are PhysX and Havok. A 

manager/wrapper can be created around 

both PhysX and Havok, but doing so will 

break the compatibility with the Xbox 360 

due to the fact that the Common Language 

Runtime (CLR) on the Xbox 360 does not 

allow execution of native code. For C# and 

XNA, the third party physics engines for 3D 

simulation of physics are limited. There is a 

fully managed version of Bullet named 

BulletX in the works, but it is in alpha stage 

and may contain errors which render it 

unusable for use in a game that needs to be 

stable. 

Due to the nature of our game, we needed a 

physics engine that could simulate rigid 

bodies in real-time with dynamic directional 

gravity.  

  



 Rapid Game Development   

 

Page | 21 

10.2 TECHNIQUES

 

Figure 9. UML diagram of the physics implementation.

The above UML-diagram is the public 

interface, where the private functions and 

properties are excluded. The physics system 

inherits from BasicSystem, which gives it all 

the needed basic functionalities, such as for 

example the possibility to use an 

accumulated constant time step. It will also 

be easy to plug in and out of the engine and 

will be easy to access from Core. 

IPhysicProperty is used to give a 

PhysicBody different properties. Planet, for 

example, uses the GravitySender (inside ref) 

property, which adds a gravitational force 

acting on all PhysicBodies with the 

GravityReciver property. 

10.2.1 INTEGRATION 

A fundamental difficulty with physics 

simulation is that computers use discrete 

time steps. Therefore, we need to do a 

numerical integration. The most basic 

implementation of numerical integration is 

Euler integration (Krantz, 2004), which is a 

first order procedure of solving ordinary 

differential equations. There are, however, 

limitations to this technique which are 

illustrated by the following example;  

We have a scalar time step, t, which in our 

case is 0.02s (50Hz), a velocity vector that 

changes over time, v, and a position vector, 

s. To step the simulation one step, one can 

calculate the following equation to get the 

new position:  

� �  �0 �  � �  � 

This simple approach works fine for this 

rather simple equation, if t is small enough, 

but it can generate huge errors if t is too big 

and the velocity changes over time 

(acceleration, a). Consider this: 

(The following example is in one dimension for 

simplicity) 



 Rapid Game Development   

 

Page | 22 

First test:  
s0 = 0 m, v = 10 m/s, a = 100m/s2, 

dt = 1s 

t = 1s: s = 0 + 10 * dt = 10,  

   v = 10 + 100 * dt 

t = 2s: s = 10 + 110 * dt = 120m 

Second test:  
s0 = 0 m, v = 10 m/s, a = 100m/s, 

dt = 0.5s 

t = 0.5s: s = 0 + 10 * dt = 5,  

     v = 10 + 100 * 0.5 = 60 

t = 1s:   s = 5 + 60 * 0.5 = 35,  

     v = 60 + 100 * 0.5 = 110 

t = 1.5s: s = 35 + 110 * 0.5 = 90,      

     v = 110 + 100 * 0.5 = 160 

t = 2s:   s = 90 + 160 * 0.5 = 170m 

Changing the time step from one second to 

the half of a second generates a difference of 

50m for a time interval of two seconds!  

10.2.1.1 Runge-Kutta 

More sophisticated algorithms have been 

developed which minimizes the problem 

described above. One of those is an 

integration procedure called Runge Kutta 4
th

 

order. Runge Kutta 4
th

 order can detect the 

difference in the curvature of a function, 

thus making it more stable than Euler 

Integration. It takes four samples within the 

integration time-step frame and takes a 

weighted average of those samples.  

When implementing Runge Kutta 4
th

 order it 

is important to step the whole simulation 

simultaneously for each of the four samples. 

Otherwise, an object acting on a second 

object will have a difference of one to four 

internal Runge-Kutta 4
th

 order step. Thus, 

the simulation will be less accurate (Krantz, 

2004, s. 210). 

10.2.2 COLLISION DETECTION 

Our collision detection algorithm is rather 

primitive, but works well and gives 

sufficient performance for the needs of this 

project. Collision is detected for planets vs 

planets and player vs planets. For planets vs 

planets, we only use bounding spheres. For 

player vs planets, however, we use a 

combinition of a bounding sphere test and a 

ray-to-triangle test. First, a test to verify if 

the player can collide with the planet is 

executed using bounding spheres. If so, a 

ray is shot from the player into the center of 

the planet to find out if a collision occurs. 

For the ray-to-triangle test, an algorithm 

described by Tomas Möller and Ben 

Trumbore was implemented (Akenine-

Möller & Haines, 2002). 

10.3 RESULTS 

10.3.1 PERFORMANCE 

The collision detection implementation has 

not been optimized, but it uses less than 2% 

of the CPU in a given update cycle on our 

test level. Decreases in overall game 

performance have therefore not been an 

issue for these simulations. There are, 

however, optimizations that could have been 

done. Collision tests between planets are 

now done for every planet. This could easily 

have been optimized using an Octree 

(Akenine-Möller & Haines, 2002). 

10.3.2 BELIEVABILITY 

Due to the nature of a computer, physics is 

hard to simulate in a mathematically correct 

way, but also in a way consistent with the 

physical reality. We do not use real-world 



 Rapid Game Development   

 

Page | 23 

values for mass and gravity and the player 

character has a damping force that acts on its 

body if velocity is too high. Orientation has 

also been tweaked to match the gameplay 

better. We found that a player playing the 

game can foresee what is going to happen, 

and that was our main concern when 

implementing the physics simulation. 

11 GAME ENGINE DESIGN 

11.1 TECHNIQUES

 

 

Figure 10. The core of the engine.

The core of our engine is the Core class 

which implements the Singleton pattern, 

thus making the Core interface reachable 

across the engine. Core takes care of 

updating all systems that have been added to 

it. A System has some basic functionality of 

its own; all systems can use a static time-

step, and a profiler is applied to them which 

make it easy to measure CPU time in their 

update method. The ISystem interface is 

based on Julian Gold’s (Gold, 2004) module 

design and makes it possible to add, remove, 

pause and fetch different system at runtime, 

thus making the testing of a system easy by 

just removing or adding the system. 

11.1.1 EVENTS 

The EventManager can be accessed through 

a property in Core, making it accessible 



 

 

throughout the engine. The main idea behind 

the EventManager is to decouple systems 

from each other. If, for example, a System 

should execute a function when a key is 

pressed, it is enough for the system

subscribe to the KeyPressed event in the 

EventManager, without knowing anything 

about the functionality of the InputSystem. 

One important aspect of the EventManager 

is that the InputSystem does not need to be 

present when a System subscribes to the 

KeyPressed event. It is therefore 

remove the InputSystem if such a need 

should arise. 

11.1.2 SCENE 

11.1.2.1 Method 

A scene is handled by the SceneManager

which keeps track of all scene objects in the 

engine, and can be thought of as the game 

world. It can be, as the EventManager, 

accessed through a property in Core. All 

objects in the SceneManager inherit

BasicObject abstract class, which has basic 

functionality for orientation, position, and 

scale.  

The physics simulation is updated at a speed 

of 60Hz and accumulates time to be ab

guarantee a time-step of 60Hz. The main 

update loop, which also draws the objects, is 

updated at a variable speed. Here follows a 

demonstration of the problem: 

A sphere at the center of the screen at 

position [0, 0] that is moving at a speed of 

one unit per second in the X-axis and the 

update speed of the game 

somewhere near 40Hz. The physics 

simulation is using a static time

60Hz. Delta time will be zero f

frame and the sphere will be drawn at 

Rapid Game Development  

throughout the engine. The main idea behind 

the EventManager is to decouple systems 

from each other. If, for example, a System 

function when a key is 

the system to 

subscribe to the KeyPressed event in the 

EventManager, without knowing anything 

about the functionality of the InputSystem. 

of the EventManager 

not need to be 

present when a System subscribes to the 

. It is therefore easy to 

remove the InputSystem if such a need 

SceneManager, 

keeps track of all scene objects in the 

and can be thought of as the game 

world. It can be, as the EventManager, 

accessed through a property in Core. All 

cts in the SceneManager inherit the 

BasicObject abstract class, which has basic 

functionality for orientation, position, and 

is updated at a speed 

0Hz and accumulates time to be able to 

0Hz. The main 

update loop, which also draws the objects, is 

Here follows a 

the center of the screen at 

that is moving at a speed of 

axis and the 

game engine is 

The physics 

is using a static time-step of 

Delta time will be zero for the first 

frame and the sphere will be drawn at 

position [0, 0]. The next frame, the sphere 

will be moved 1s / 60 * 1 units on the X

axis, and the accumulated time for the 

physics simulation will be 

~8ms. The third frame, the sphere wil

moving 1s / 60 * 2 units, due to the 

accumulated time adding up to 1s / 60

which will make it move double the length 

of the last update even though the time 

between the frames are the same.

Clarification is shown in Figure 11.

Figure 11. The fixed time step physics update

To overcome the above problem

SceneManager interpolates between the 

previous and the current world matrix for all 

the objects. This is done using the following 

code:  

float alpha =  AccamulatedTime / 
FixedTimeStep 

object.WorldMatrix = 

object.PreviousWorldMatrix * (1.0 

alpha) + object.CurrentWorldMatrix * 

alpha 

Threading 

To thread a game engine is not a trivial task, 

but is nevertheless an important 

the recent year’s development of CPUs. 

Xbox 360 (Microsoft Corporation, 2006)

Playstation 3 (Gorder, 2007)

newer CPUs by Intel (Intel Corporation, 

 

Page | 24 

. The next frame, the sphere 

* 1 units on the X-

axis, and the accumulated time for the 

physics simulation will be 1s/40 - 1s / 60= 

frame, the sphere will be 

* 2 units, due to the 

adding up to 1s / 60, 

which will make it move double the length 

of the last update even though the time 

between the frames are the same. 

igure 11.  

 

time step physics update 

overcome the above problem, the 

SceneManager interpolates between the 

previous and the current world matrix for all 

the objects. This is done using the following 

AccamulatedTime / 

object.PreviousWorldMatrix * (1.0 – 

object.CurrentWorldMatrix * 

a game engine is not a trivial task, 

important one due to 

the recent year’s development of CPUs. The 

(Microsoft Corporation, 2006), 

(Gorder, 2007) as well as the 

(Intel Corporation, 



 Rapid Game Development   

 

Page | 25 

2008) and AMD (Advanced Micro Devices, 

Inc., 2008) all use a multi core architecture. 

The two most CPU intensive tasks in our 

engine are drawing calls and physics 

simulation, so letting them run in separate 

threads is a natural solution. 

The most basic approach to data 

synchronization between threads is by using 

locks. However, it is difficult to thread a 

game engine that is not initially designed for 

it. Modules may share data on different 

levels, all of which must be considered when 

threading the engine. It is possible to thread 

at a later stage of development if all data 

bindings are well documented, but a 

complete redesign may be needed otherwise. 

If performance is critical, threading may be 

a solution. It is not always the case that it 

will increase performance, so it is important 

to determine if threading is needed. If the 

bottleneck is the GPU, threading will most 

likely decrease the performance due to the 

overhead data synchronization creates. If the 

bottleneck is CPU, however, threading the 

engine will most likely increase 

performance if data synchronization is 

limited (Intel Corporation, 2003), (Intel 

Corporation, 2005), (Intel Corporation, 

2005). 

11.2 RESULTS 

The design of the engine works well for the 

problem at hand, but for a more complex 

game where decoupling of Systems is 

important, a less coupled design would be 

better. One solution would be to remove the 

Singleton pattern from Core, thus making it 

impossible for Systems to get access to other 

Systems without explicitly allowing them. 

Decoupling data and classes would make the 

engine easier to multi-thread but also easier 

to maintain (McConnel, 2004, ss. 100-102, 

142-143). 

12 GAME DESIGN 

12.1 BACKGROUND 

Within the scope of this project lies not only 

the challenge of implementing an able game 

engine but also the task of putting that 

engine to work by using it to create a new 

game. There are a few characteristics of this 

task which are fundamentally different from 

software engineering, computer graphics 

and physics simulation. 

There are multiple definitions of what a 

game is and in addition to that there exist 

many definitions of gameplay (Rouse, 

2004). This implies that defining what is a 

good game or even what good gameplay is 

not trivial. 

It has also been suggested that computer 

game design is an art form (Crawford, 1984) 

and if games are art it is effortless to 

imagine the difficulties inherent in game 

design.  

If considered an art form, taking an 

algorithmic approach from the basis of firm 

definitions in order to create an exciting 

game is analogous to taking an algorithmic 

approach to creating a piece of music. It 

may produce an adequate result, but it is 

debatable whether this procedure would 

bring a new Beethoven's Fifth Symphony. 

Nevertheless, game design have been 

decomposed and analyzed and guidance for 



 Rapid Game Development   

 

Page | 26 

computer game designers does exist (Björk 

& Holopainen, 2005). 

12.2 BASIC GAME IDEA 

A single idea is often the basis of a game 

and this idea is developed into a game 

concept. The idea may be of various kinds 

such as style and art, characters, new 

technology or gameplay (Bates, 2004).  

Rather than focusing on theoretical aspects 

of games and entertainment we have taken. 

Instead of delving into definitions, and from 

them derive an optimal game idea, we 

narrowed the scope to a few handpicked 

games and briefly analyzed them. Common 

to these games were that they were either 

critically acclaimed or personally favored, or 

a combination of the two.  We tried to 

analyze what makes them superior rather 

than trying to define what makes an 

arbitrary game stand out in the scope of all 

possible games. 

Richard Rouse III supports this approach in 

the book Game Design Theory and Practice 

and argues that being able to recognize 

which characteristic is the foundation for a 

games success is an important skill of a 

game designer. Rouse also points out that 

such an analysis brings a more complete 

understanding of game design. 

12.3 CONCEPT DEVELOPMENT 

The high concept of a game, as described by 

Bob Bates (Bates, 2004) , is the one or two 

sentence summary of a game that is the 

realization of the basic idea. Bates states that 

many publishers believe that if a game 

cannot be translated into such a description 

the game cannot be successful, and he 

supplements that publishers do have a point 

in believing this. It needs however be added 

that this is expressed from a marketer’s 

point of view.  

12.3.1 GAMEPLAY 

As mentioned above, gameplay is a 

commonly used term but comes with many 

definitions. Richard Rouse III describes 

gameplay simply as game interactivity 

(Rouse, 2004). That is, the way the player 

gives input to the game and the way the 

game world responds to these input. In line 

with the definition of gameplay he defines 

game design as determining the form of 

gameplay. 

The primary goal of the game design of 

Megachile Pluto was to create a conflict, a 

balanced challenge for the player to 

overcome.  

The developed high concept was the 

following: An action/puzzle game where the 

player collects and delivers a certain types 

of items or combinations of items to a dying 

planet. This is logically linked to the 

environmental imbalance and depletion of 

resources on the planet Earth, and the 

player’s motivation is to save planets from 

this fate. The player is presented with all 

information needed to solve the puzzles in 

the game. This is to retain a sense of 

fairness. The challenge lies rather in the 

player’s dexterity and ability to plan ahead. 

This was designed using guidelines defined 

by (Bates, 2004, pp. 107-134), for creating 

balanced game levels and puzzles. 

We wanted to present a unique feel to our 

game by designing the physics around the 

fact that every interplanetary body within a 

solar system has its own gravity. This means 



 Rapid Game Development   

 

Page | 27 

that player orientation is more loosely 

defined than in a game that is designed using 

a 2D plane. Some practical changes had to 

be done to sustain playability, such as 

modifying the gravitational pull from 

different bodies. Whilst doing this we 

prioritized not making any inconsistent 

changes, as well as keeping the world 

generally consistent with reality in order to 

not distract the player. 

“Consistency is crucial for keeping players 

immerse in game environments; it’s okay to 

be able to run 100 miles per hour and jump 

20 feet—as long as the rest of the world 

reacts appropriately.” (Hecker, 2000) 

Our guide mark during the game design 

sessions was simplicity. If an idea was too 

complicated for the other team members to 

grasp immediately, the idea was discarded. 

Furthermore, an idea which introduced extra 

buttons or an additional graphical user 

interface item was considered less favorable. 

However, simplifying the user interface led 

to a non-intuitive interaction and more 

buttons were added later.  

12.4 MUSIC AND SOUND 

12.4.1 BACKGROUND 

When LucasFilm Ltd was evaluating the 

new THX sound standard, it became 

apparent that good sound can actually fool 

the brain into thinking that the quality of the 

picture is better. When a group of people 

who previously watched a movie was shown 

the same movie a second time with 

improved sound  quality, they 

commented that the picture seemed sharper. 

This implies that good sound not just is able 

to enhance the overall experience, but can 

also make other components of a game seem 

more polished (Simpson, 2000). 

12.4.2 XACT 

XACT is a tool which ships with the XNA 

and DirectX SDK:s which is used for 

integrating audio resources into games. The 

first step is to load the wave files into the 

editor. These can then be assigned as Cues, 

which means that they can be accessed 

through a unique name from the application. 

A Cue can either be played back as it is, or 

can be attached to an Emitter. If a Listener is 

also specified, XACT automatically uses 

this information to apply 3D-effects to the 

Cue. In the XACT tool, information about 

how XACT should apply 3D effects can be 

specified.  

12.4.2.1 Earcons and Auditory Icons 

An earcon is a synthetic sound, which often 

consists of notes arranged in different 

structures to symbolize objects and actions. 

Studies suggest that users can learn to 

recognize earcons even if their musical 

ability is not well developed (Dix, Finlay, 

Abowd, & Beale, 2004).  Earcons should 

generally be short in order to be memorable 

and are constructed from basic building 

blocks called motives. Different motives can 

be combined to represent new actions. The 

most important characteristics of motives 

are rhythm, pitch, timbre, register and 

dynamics. As an example, an earcon for 

opening a file can be a three note ascending 

sequence. When destroying a file, the 

sequence can be played backwards, so that 

the notes are descending instead (Brewster, 

2008). 



 Rapid Game Development   

 

Page | 28 

An auditory icon is also linked to an object 

or action, but its purpose is to resemble 

something that the user can relate to from 

everyday life. A standard example is the 

waste basket sound when emptying the trash 

can in Microsoft Windows. An earcon for 

the same action could for example be a 

descending note sequence, more underlining 

the sense of drop or throw rather than 

emptying.  

One of argument for using earcons instead 

of auditory icons is that there are many 

computer related actions that has no or little 

resemblance to actions in real life, thus 

making it hard to design auditory icons that 

are suiting that particular action. The 

arguments against earcons are of course that 

they are quite abstract, and will not be as 

intuitive to understand for the user. 

12.4.3 RESULTS 

12.4.3.1 Music 

The music was created using Logic Platinum 

for PC and mastering was done in WaveLab. 

Mostly software samplers and software 

synthesizers were used, but some hardware 

synthesizers were also utilized. Some own 

audio recording were also executed, like for 

example the choirs in one of the songs. 

The beginning of the main title music 

exposes also the main musical theme of the 

game. This twelve note long sequence 

appears in various musical cues in the game, 

although in different disguises. When the 

player dies, the theme appears in a slower 

tempo. The first eight notes are identical, 

although the harmonization is different. The 

remaining notes of the theme are played in a 

downward motion instead, although the note 

value remains intact, thus still being quite 

similar to the original theme. Being played 

on a church organ instead of brass, the mood 

is quite far from that in the main titles. 

When a level is completed, the theme 

appears in a higher tempo, but lands on a 

major chord after a quick upward 

movement, emphasizing the player’s 

triumph. 

The music for the game levels have been 

composed so that they can be looped easily. 

The music in the first level of the game 

starts out with only drums, then builds up, 

and after that gradually minimize to drums-

only again. This makes for a seamless 

looping, without any explicit cue about 

exactly where the music is played back from 

the beginning. 

12.4.3.2 Sound Effects 

The sounds were mainly put together in 

Logic Platinum. The trimming down of the 

wave files and the setup of loop-points were 

also here done in WaveLab.  In order to 

make unique and interesting sounds, layers 

of samples were often tweaked and played 

back together with different effects applied. 

Some samples were recorded, like for 

instance the knocking sound when the player 

character feels that the player has been idle 

for too long. 

We have used a combination of earcons and 

auditory icons in Megachile Pluto. Although 

we do not use earcons in their developed 

sense (i.e. we do not combine basic earcons 

to represent other actions), we have used 

some of the basic ideas. For example, we are 

using ascending sequences for creating 

items, and descending for destroying and 

dropping items respectively. Another 

example of how earcons are used is the 



 Rapid Game Development   

 

Page | 29 

planting sound, which is a looping sound in 

a certain pitch. When the player plants a 

second time, the same sound is played, 

although in a higher pitch. 

Since many parts of the game are not related 

to activities in everyday life, much thought 

were spent on the sound effects which 

should give the player the impression that 

the sounds actually are emitted in the game 

world. 

13 DISCUSSION AND 

CONCLUSIONS 

13.1 PROGRAMMING LANGUAGE  

The language used for the game was C#. 

Due to the fact that C++ is the most 

common language for developing games at 

the time this thesis is written, a comparison 

with C++ is unavoidable.  

C# is a managed language that is executed 

within a virtual machine, named Common 

Language Runtime (CLR), which, among 

other things, takes care of memory 

management. Based on earlier experience, 

we found that fewer bugs were encountered 

when using C# than using C or C++.  

Most of the time, the managed runtime is a 

blessing, but we did encounter problems 

which showed that in some cases a managed 

environment is not always ideal. For 

example, the garbage collector on Xbox 

360’s version of the CLR works differently 

than on the PC and often creates a stall when 

executed. This forced us to re-design some 

parts of the engine to work better with the 

CLR on the Xbox 360. In C++, for example, 

you can put classes on the stack, which is 

much faster than allocating memory on the 

heap. In C#, on the other hand, a struct that 

is initialized within a local scope is put on 

the stack, while classes are always stored on 

the heap. Instantiating a new class in C# is 

very fast, but the garbage collector will get 

slower the more classes that are allocated, 

especially so on the Xbox 360. This is 

comparable to the defragmentation of the 

heap that C++ suffers from. 

Some of the positive things about C# is due 

to Microsoft Visual Studio and the 

functionally it provides; auto completing 

properties and functions (IntelliSense), fast 

compile times, and a good debugger. 

13.2 XNA 

The use of the XNA framework proved to be 

very successful, especially for getting a 

quick start on the project. One major part of 

game development is the handling of 

content, and the content pipeline integrated 

in the XNA framework proved its value 

here. The pipeline has support for most 

common texture formats and two model 

formats (.X and .FBX). They can be treated 

in the same way by the application 

programmer, regardless of format. 

It is also relatively simple to extend the 

content pipeline by inheriting the classes 

processing the files. When we included 

normal maps into the engine for instance, we 

did a simple extension which calculated the 

tangent-space basis for all vertices on the 

models using this pipeline extension. 

In essence, XNA is a wrapper around 

Direct3D, but some of the time consuming 

parts of Direct3D has been removed. For 



 Rapid Game Development   

 

Page | 30 

example, one needs to worry less about 

releasing and reallocating memory for 

assets, when a reset on the graphics device 

happens. Every game also needs to have 

loop which takes care of messages 

happening in the operating system. This is 

readily implemented in XNA, similar to the 

game loop in glut for OpenGL. While 

implementing a game loop is not very 

difficult, having it built-in definitely makes 

for a more efficient start.  

13.3 XACT 

Using XACT for the sound integration 

worked very well. There were some minor 

problems with it, being mostly that new 

wave files had to be deleted and reloaded 

into the tool when external changes had 

been made to them. Not a major issue of 

course, but sometimes small changes were 

made to the audio files outside XACT which 

could be hard to notice. Using the “Rescan 

Wave Bank Files” should accomplish this 

(Corporation, 2008), but often it seemed like 

the operation did not make any changes. 

This issue might have been solved in a later 

release of XACT. 

13.4 SOFTWARE ENGINEERING 

The most desirable consequence in regards 

of software engineering came from the rapid 

software development’s iterative approach. 

During early development, we could 

continuously release working builds of the 

game. This added a sense of readiness to 

deliver the product at anytime as the 

possibility to regress to the last working 

release was always possible. This enabled us 

to continue to polish and add new features 

without worrying about integrating all 

different parts successfully at the end, which 

obviously could have caused problems 

unless properly planned, had another method 

been used. 

Due to the lack of a software testing group 

during development, it was not possible to 

emphasize quality reassurance at the end of 

product development, which would be based 

on testing feedback. Because of this, it has 

been of great importance to evaluate and 

specify new requirements and prerequisites 

throughout the process in order to ensure 

software quality, as specified by the iterative 

cycle that was used. 

During the course of the construction of this 

game, many requirements changed, removed 

or reworked. We believe this has led to a 

higher-quality product, compared to what it 

would have been if the specification had 

been frozen at the beginning of 

development. Testing is a very important 

and widely used quality-assurance strategy, 

while prerequisites are often neglected. This 

case-study shows that desirable results can 

be achieved when a greater emphasis is 

placed upon prerequisites. 

Another aspect of software engineering, 

more specifically component-based software 

engineering was prominent in increasing 

productivity. The ability to detach and attach 

specific components during development, 

and also in the final product, aided the joint 

team development effort. Incomplete or 

erroneous parts of the project could be 

detached by members working on other 

parts of the project.



 Rapid Game Development   

 

Page | 31 

14 BIBLIOGRAPHY 
(2008). Retrieved April 27, 2008, from Gamespot: http://www.gamespot.com 

(2008). Retrieved April 27, 2008, from Intel: http://www.intel.com/multi-core/index.htm 

(2008). Retrieved April 27, 2008, from MSDN: http://msdn2.microsoft.com/en-

us/library/bb204834(VS.85).aspx 

(2008). Retrieved April 27, 2008, from AMD: http://multicore.amd.com 

Advanced Micro Devices, Inc. (2008, May 21). AMD. Retrieved May 21, 2008, from AMD: 

http://multicore.amd.com 

Akenine-Möller, T., & Haines, E. (2002). Real-Time Rendering. Wellesley: A K Peters, Ltd. 

Bates, B. (2004). Game Design, Second Edition. Course Technology. 

Beck, K. (2000). Extreme Programming Explained. Addison-Wesley. 

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al. 

(n.d.). Retrieved April 26, 2008, from Manifesto for Agile Software Development: 

http://www.agilemanifesto.org/ 

Björk, S., & Holopainen, J. (2005). Patterns in game design. Hingham: Charles River Media. 

Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., et al. (2000). 

Software Cost Estimation with Cocomo II. Addison-Wesley. 

Bouvier, D. J. (2002). From pixels to scene graphs in introductory computer. Elsevier Science 

Ltd. 

Brabec, S., Annen, T., & Seidel, H.-P. (2002). Shadow Mapping for Hemispherical and 

Omnidirectional Light Sources. Retrieved May 13, 2008, from Max-Planck-Institut für 

Informatik: http://www.mpi-inf.mpg.de/~tannen/papers/cgi_02.pdf 

Brewster, S. (2008, March 31). Earcon Experiments. Retrieved May 20, 2008, from The 

Glasgow Multimodel Interaction Group: 

http://www.dcs.gla.ac.uk/~stephen/earconexperiment1/earcon_expts_1.shtml 

Corporation, M. (2008, March). Building an XACT Wave Bank. Retrieved May 17, 2008, from 

MSDN: http://msdn.microsoft.com/en-us/library/bb172313(VS.85).aspx 

Crawford, C. (1984). The Art of Computer Game Design. Berkeley: McGraw-Hill/Osborne 

Media. 



 Rapid Game Development   

 

Page | 32 

Crnkovic, I. (2003). Component-based Software Engineering - New Challenges in Software. 

Univ. Zagreb. 

Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-Computer Interaction. Essex: 

Pearson Education Limited. 

Euler Integration. (2008). Retrieved April 27, 2008, from Wikipedia: 

http://en.wikipedia.org/wiki/Euler_integration 

Feynman, R. P. (2006). QED the strange theory of light and matter. Princeton: Princeton 

University Press. 

Finley, A. (2007, December). Sk Games' Bioshock. Game Developer , pp. 20-26. 

Gamespot. (2008). Gamespot. Retrieved May 14, 2008, from Gamespot: 

http://www.gamespot.com 

Gath, J., & Dreijer, S. (2006). Derivation of the Tangent Space Matrix. Retrieved May 14, 2008, 

from Blacksmith Studios: http://www.blacksmith-

studios.dk/projects/downloads/tangent_matrix_derivation.php 

Gold, J. (2004). Object-Oriented Game Development. Addison Wesley. 

Gorder, P. (2007). Multicore processors for science and engineering. IEEE Comput. Soc. 

Haines, E. (2002). Real-Time Rendering. A K Peters, Limited. 

Hall, J. (2008). XNA Game Studio Express: Developing Games for Windows and The XBox 360. 

Boston: Thomson Course Technology PTR. 

Hecker, C. (2000). Physics in computer games. ACM. 

Heidrich, W. (2002). Shadow Mapping and Shadow Volumes: Recent Developments in Real-

Time. Retrieved April 27, 2008, from http://www.nealen.com/projects/ibr/shadows.pdf 

History of video games. (2008). Retrieved February 11, 2008, from Wikipedia: 

http://en.wikipedia.org/wiki/History_of_video_games 

Intel Corporation. (2005). Developing Multithreaded Applications: A Platform Consistent 

Approach. Intel Corporation. 

Intel Corporation. (2008, May 21). Intel. Retrieved May 21, 2008, from Intel: 

http://www.intel.com/multi-core/index.htm 

Intel Corporation. (2008, May 21). Intel. Retrieved May 21, 2008, from Intel: 

http://www.intel.com/multi-core/index.htm 



 Rapid Game Development   

 

Page | 33 

Intel Corporation. (2005). Multi-threaded Rendering and Physics Simulation. Intel Corporation. 

Intel Corporation. (2003). Threading Methodology: Principles and Practices. Intel Corporation. 

Irish, D. (2005). Game Producer's Handbook. Course Technology, Incorporated. 

Joll, A. (2008). Shadow Mapping. Retrieved May 14, 2008, from Ziggyware: 

http://ziggyware.com/readarticle.php?article_id=161 

Jones, C. (1998). Estimating Software Costs. McGraw-Hill. 

Krantz, S. G. (2004). Differential Equations Demystified. MacGraw-Hill Professional 

Publishing. 

Latta, L. (2004, July 28). Building a Million-Particle System. Retrieved May 14, 2008, from 

Gamasutra: 

http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php 

Luna, F. D. (2006). Introduction to 3D Game Programming with DirectX 9.0c: A Shader 

Approach. Plano, Texas: Wordware Publishing, Inc. 

McConnel, S. (2004). Code Complete, Second Edition. Microsoft Press. 

Microsoft Corporation. (2006, August). Coding For Multiple Cores on Xbox 360 and Microsoft 

Windows. Retrieved May 21, 2008, from MSDN: http://msdn.microsoft.com/en-

us/library/bb204834(VS.85).aspx 

Microsoft Corporation. (2004, March). Next Generation of Games Starts With XNA. Retrieved 

May 14, 2008, from Microsoft Corporation: 

https://www.microsoft.com/presspass/press/2004/mar04/03-24xnalaunchpr.mspx 

Microsoft XNA. (2008). Retrieved February 11, 2008, from Wikipedia: 

http://en.wikipedia.org/wiki/Microsoft_XNA 

Möller, T., & Trumbore, B. (2000). Fast, Minimum Storage Ray/Triangle Intersection. Chalmers 

University of Technology & Cornell University. 

Newton's laws of motion. (2008). Retrieved April 27, 2008, from Wikipedia: 

http://en.wikipedia.org/wiki/Newton's_laws_of_motion 

Ning, J. Q. (1997). Component-Based Software Engineering (CBSE). IEEE Comput. Soc. Press. 

NVIDIA. (2007, 11 02). Adobe Photoshop Plug-ins. Retrieved May 14, 2008, from NVIDIA 

Developer Zone: http://developer.nvidia.com/object/photoshop_dds_plugins.html 



 Rapid Game Development   

 

Page | 34 

Playstation 3. (2008). Retrieved April 27, 2008, from Wikipedia: 

http://en.wikipedia.org/wiki/PlayStation_3 

Refractive index. (n.d.). Retrieved May 20, 2008, from Encyclopædia Britannica: 

http://search.eb.com.proxy.lib.chalmers.se/eb/article-9063034 

Rouse, R. (2004). Game design: theory & practice, second edition. Plano: Wordware Pub. 

Runge-Kutta Method. (2008). Retrieved April 27, 2008, from Wolfram Mathworld: 

http://mathworld.wolfram.com/Runge-KuttaMethod.html 

Scanlon, J. (2007). The Video Game Industry Outlook: $31.6 Billion and Growing. Retrieved 

February 11, 2008, from 

http://www.businessweek.com/innovate/content/aug2007/id20070813_120384.htm 

Scharl, J. (2007, 07 28). Solution for cubemap handedness problem? Retrieved May 14, 2008, 

from XNA Creators Club Online: http://forums.xna.com/thread/18309.aspx 

Shastry, A. S. (2005, January 18). Soft-Edged Shadows. Retrieved May 13, 2008, from 

GameDev.net: http://www.gamedev.net/reference/articles/article2193.asp 

Silicon Graphics Inc. (2008). OpenGL Overview. Retrieved May 14, 2008, from Silicon 

Graphics Inc.: http://www.sgi.com/products/software/opengl/overview.html 

Simpson, J. (2000, July 17). 3D Sound in Games. Retrieved May 15, 2008, from GameDev.net: 

http://www.gamedev.net/reference/articles/article1130.asp 

Sommerville, I. (2007). Software Engineering, Eighth Edition. Pearson Education Limited. 

St-Laurent, S. (2004). Shaders for game programmers and artists. Boston: Thomson Course 

Technology PTR. 

St-Laurent, S. (2005). The COMPLETE Effect And HLSL Guide. Redmond, United States of 

America: Paradoxal Press. 

Williams, L. (1978). Casting curved shadows on curved surfaces. Computer Graphics 

(Proceedings of SIGGRAPH 78),vol. 12 , pp. 270–274. 

 


