
Crankshaft
A 3D Racing Game with Network Support

Jonas Gustafsson
Lin Loi

Fredrik Norén
Michael Sandén

Patrik Sjölin

Bachelor thesis
Department of Computer Science

Chalmers Univeristy of Technology
Gothenburg, Sweden 2008

Abstract

This bachelor thesis describes the development of a 3D computer game. While one of our more impor-
tant goals was to produce a graphically attractive game a lot of effort also was put into network, physics
and general game design. Different techniques that we use are described together with other possible
solutions implemented in commercial games and described in scientific papers.

1

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Purpose 3
1.2 Background 3
1.3 History 3

2 Method 4
2.1 Mapeditor 4
2.2 Tools 4

3 Program 5
3.1 Crankshaft 5
3.2 Server 5
3.3 Client 5
3.4 Results and Discussion 6

4 Graphics 7
4.1 Design 7

4.1.1 Structures 7
4.1.2 Discussion 7

4.2 Lighting 7
4.2.1 Background 7
4.2.2 Techniques 8
4.2.3 Result 9
4.2.4 Discussion 10

4.3 Shadows 10
4.3.1 Background 10
4.3.2 Techniques 10
4.3.3 Result 11
4.3.4 Discussion 12

4.4 Particle system 12
4.4.1 Introduction 12
4.4.2 Available techniques 13
4.4.3 Chosen techniques 13
4.4.4 Results 13

4.4.5 Discussion 13
4.5 Ground 13

4.5.1 Techniques 13
4.5.2 Result and Discussion 14

4.6 Bumpmapping 14
4.6.1 Techniques 14
4.6.2 Result and Discussion 15

4.7 Culling 16
4.7.1 Techniques 16
4.7.2 View frustum culling 16
4.7.3 Quadtrees 17
4.7.4 Result and Discussion 18

4.8 Optimizations 18
4.8.1 Background 18
4.8.2 Techniques 18
4.8.3 Result 18
4.8.4 Discussion 19

5 Physics 20
5.1 Introduction 20
5.2 Integration 20
5.3 Rigid Body Dynamics 22
5.4 Collision Detection 22
5.5 Collision Response 23
5.6 Discussion 24

6 Network 25
6.1 UDP and TCP 25
6.2 Game state 25
6.3 Quake 3 networking 26
6.4 Crankshaft 26
6.5 Results 27
6.6 Discussion 27

7 Discussion 28

2

1 INTRODUCTION

1 Introduction

Crankshaft is a 3D computer car racing game.
In this thesis we will describe the essential parts of
what knowledge we have gained during this project.

We have divided this report into five main chap-
ters which each describe an essential part.

Method This chapter describes one of the major is-
sues while developing a game, namely the method
that we used during the project.

Program The core of the program is also an impor-
tant part of the project. Without a functional core
the rest of the game will never reach its highest po-
tential. The main structure of the game as a whole
is described and explained. Our choice of program-
ming language is also discussed.

Graphics A very essential part of a computer- or
console game of today is the visual appearance. In
this chapter we first describe the structure and de-
sign of the graphics. Different techniques when it
comes to lighting and shadows are also discussed.
This is followed by explanation of our particle sys-
tem which is used to simulate fuzzy objects such as
smoke and explosions. We also use a technique to
render the ground in the game which is explained.
Then the bumpmapping, culling and choice of opti-
mizations are discussed.

Physics Physic systems are becoming more and
more frequently used in modern games today. The
system is used to simulate the behaviour of objects
which exists in the game. In our game this mostly af-
fects the cars. We describe how different techniques
work and how we have implemented this system.

Network One of our goals where to be able to let
players on different locations compete against each
other. This meant that we needed to implement net-
work support for the game. This is presented in this
chapter.

1.1 Purpose

The purpose of this bachelor assignment is to learn
how to efficiently develop a functional computer
game within a tight timeframe. Our goal with the
project was to develop a relative graphically ad-
vanced game. Requirements include a game that is
visual attractive and supports multiplayer using net-
work connection.

1.2 Background

The computer- and console games industry is grow-
ing larger for each year that passes. The Swedish
market increased impressively 31.5 percentages dur-
ing 2007 [1]. While the business is growing it re-
ceives increasingly more attention from corporations
and researchers. Both hardware and software are
rapidly developed which makes this a very interest-
ing industry.

1.3 History

Racing games are often divided into racing simu-
lators and arcade racers. The simulators are as the
name implies trying to be realistic when it comes to
how the car handles and interact with other objects.
The arcade games on the other hand try to attract
players by high speed, indestructible cars and such.

Our choice was to implement the arcade style of
game, using checkpoints on the maps which gives
the map makers the possibility to build maps with
alternative roads.

3

2 METHOD

2 Method

We decided early that we wanted to run the
project in an iterative manner. To put up new goals
and to check that old tasks were completed weekly
meetings were held. To avoid problems with merg-
ing our code during meetings we put up an SVN
where we could easily update and commit our piece
of code. When proceeding with our project we all
applied ourselves to eXtreme programming. The ad-
vantages of this would be that we wouldn’t have to
spend time on structuring the program in a way that
later would be considered bad. Instead of that one
will realize over time what is needed to be changed
and/or rewritten.

2.1 Mapeditor

The mapeditor was developed by us using windows
forms. This was done simply because we needed
to store a lot of information concerning the map.
This can be things like the cars’ starting positions,
checkpoints and props etc. To do this work man-
ually would be too time consuming and probably
even close to impossible since the world consists of
around half a million objects. Our mapeditor loads

the heightmap into a picturebox. Then one can se-
lect what type of object to add, and simply click the
picturebox and a dot will appear representing that
object. To store this information we are using the
xml-format since it’s very easy to operate with.

2.2 Tools

The console helped out when needing to dump in-
formation for finding out whether some certain code
did what it was supposed to do. It also helped out
a lot when trying to isolate what parts of a certain
section of code that was causing a bug. To extend
the debugging even further we used debugview that
can display bugs detected by directx not visible to
visual studio.

To find out about where the bottleneck was we
used many different profilers.

Crazybump is an application, that was used for
creating normalmaps. This application simply takes
a picture and calculates its normals depending on
the colors. We decided to grey-scale our textures and
feed crazybump with that. Those normalmaps we
then used in the shader to perform bump mapping.

4

3 PROGRAM

3 Program

Producing quality software has always been
a central problem to programmers. As time
progresses higher level programming languages
evolved which reduced bugs and simplified struc-
turing. The introduction of Microsoft’s C# and .NET
has been a great step towards the next generation
of languages, and provides many advantages over
older languages such as C++, Java and C. As lan-
guages evolve so does the code and many design
patterns[2] become obsolete as they are incorporated
in the languages.

An article series that describes many of the old
concepts of software design for games is the "Engi-
nuity" series[3].

A brief introduction to game engine design (and
ideas to extend it into a multi-threaded environ-
ment) can be read in "Multi-threaded Game Engine
Design"[4].

3.1 Crankshaft

Crankshaft consists of two largely separated parts,
the server and the client. The server is a threaded
subsystem which runs on the hosting players ma-
chine in a network game. It is responsible for han-
dling the game state and physics, as well as com-
municating this with the clients and handling their
input. The client on the other hand is responsible for
displaying the game on the screen and interacting
with the server, as well as handling things that is not
shared with other players (such as menus).

3.2 Server

The server is state based with three states, Lobby,
Sync and Race, each implementing a common state
interface, IServerState. The main server loop reads
data from it is socket and lets the current state han-
dle the input. 30 times per second it invokes a
Update method on the current state as well, which
sends data to the client.

The Lobby state is the only state in which play-
ers can connect. The state’s purpose is to wait until
everyone that wishes has connected and they have
all sent a Ready message, indicating the connected
players have loaded the game on their local ma-
chines.

Once all players are ready the states advances
into the Sync state, which sends the initial game

state to all the players. The clients respond with a
Synched message when they have received the mes-
sage. The game then advances into the Race state.

The Race state simply reads input from the users
and uses it to update it is game state, and sends the
updated game state to the clients. This is covered in
greater detail in the Network section, see 6. In this
state the physics simulation runs, see 5.

3.3 Client

The client is state based as well, but the number
of states is greater than in the server. The client
has several states for different menus and states for
starting, running and waiting for player to finish a
race. They all implement the same abstract inter-
face, IClientState, and everything happens within
the states (see Figure 1). All menus derives the ab-
stract class ClientStateMenu, which contains meth-
ods and structures to easily create menus.� �
n e x t s t a t e = s t a t e . Update ()
i f (n e x t s t a t e != n u l l)
{

s t a t e . Release ()
n e x t s t a t e . I n i t ()
s t a t e = n e x t s t a t e

}
s t a t e . Draw ()� �
Figure 1: Crankshaft main loop, same principle in both
client and server

The first state the program enters is the Main-
Menu state, which eventually leads to the player se-
lecting whether to host or join a game. If the player
chooses to host a game a server is started locally.

After this the player loads all content (such as
models, textures, shaders, sound, the map, etc.) in
a Loading state. Models are the objects which gets
drawn on the screen, such as the car and trees. Part
of the models are loaded from files, and assigned
certain attributes describing how they should be
drawn, such as textures and shaders (more on this
in ??). All these models is loaded and assigned their
attributes in the Models class, which also contains
methods for retrieving them again later. Sound is
handled by XNA’s Audio Engine and sound banks.

5

3.4 Results and Discussion 3 PROGRAM

The map with the game state is then loaded in
our GameState object. Maps are simple xml files
with information on where and what is in them,
such as trees and checkpoints, and it also contains
information on what height map to use and where
to place the cars when the race starts. When loading
the map it starts with creating the ground (see ??).
It then builds a quadtree (see 4.7) with the loaded
width and height of the map. The next step is to
load all the entities in the game, the trees, bushes and
checkpoints etc. These are stored inside the game
state, and their graphical representation (model) is
inserted in the quadtree.� �
Update network
Read input
Update audio
Update display
Update gui
Update gamestate
Send input to server
Draw gamestate
Draw gui� �

Figure 2: Crankshaft game loop

When this is done, the game then first enters the
InitRace state which is a countdown to the start of
the race, then the Race state launches. The Race state
is the main game loop state, in which all the interest-
ing things happen. The game loop is quite simple,
it starts with handling input from the user and the
network, then it updates its game state and finally
draws everything to the screen (see Figure 2). The
game state update is equally simple, advancing the
cars and checking if anyone passed a checkpoint.

3.4 Results and Discussion

Although the design is extremely simple, it does
work very well with the task at hand, we had
little trouble adding new subsystems. The main
drawback with this approach is the user modability,
which is basically non-existent.

The physics simulation on the server takes it
game state from the client. This means the game
only has to load the game state once, and in one
place, which saves both runtime resources and time,
and development time. The downside is that it cou-
ples the code unnecessarily, which in the long turn
makes it more complex and harder to maintain.

6

4 GRAPHICS

4 Graphics

Computer graphics have always been a impor-
tant part of games to strengthen the interaction be-
tween the player and the game, but it can also im-
prove the gaming experience. For example games
like Doom 3 (a first person shooter game developed
by Id software), where the graphics is a very impor-
tant part to give a really intense atmosphere. Graph-
ics in games are for the most used to show visuals
like: shadows, reflections, lighting etc. and the algo-
rithms used to implement these are often mathemat-
ical models.

Visuals in computer graphics have developed
from simple hardware with a few pixels like in the
game Spacewar (assumed by many to be the first
computer game) to today modern games with mil-
lions of polygons like in the game Crysis (a first per-
son shooter game developed by Crytek).

4.1 Design

The design for the computer graphics part in
Crankshaft consist of how to structure the meshes in
a appropriate way. With appropriate means taking
the consideration of factors like: which type of game
you are making, how complex the software will be,
time limitations, how easy the software should be to
modify and how reusable the software should be.

A good way of structuring meshes in a bache-
lor project as in Crankshaft is to implement a tree
structure with parent children relationship, where
changes in a parent node propagates to the children
nodes. By implementing such a structure changes
can easily be made without rewriting a lot of code.

4.1.1 Structures

XNA’s Model structure The XNA Framework
have a built in Model class [5] for the structuring of
meshes. the meshes is separate objects and can be
transformed independently. Each mesh consist of a
ModelMeshPart which descibes the material proper-
ties of the mesh (for example: which effect the mesh
is using).

The structuring of meshes in the XNA’s Model
class resembles of the one in Crankshaft, Where the
structure is a tree with parent children relationship.

The advantage of using the XNA Model class is
that the class is easy to use and has support for the
most common features of a Model class. Another ad-
vantage is that by using XNA’s Model class one will

not have to implement a content loader to the vertex
data.

Crankshaft’s Structure The Crankshaft implemn-
tation of the structure for models and its meshes is
similar to that in XNA’s Model class. We also had,
as in XNA’s Model class, a tree with parent children
relationship beetwen models.

The Crankshaft structure used the ASE (ASCII
Scene Export) format for holding the necessary data
for a model. The reason to why we chose the ASE
format was because the format is easy to use and un-
derstand with decent functionality. The disadvan-
tage is that in the implementation a content loader
have to be written, compared to XNA which had one
built-in one in the framework.

The structure in Crankshaft is such that when
changes occurs in a parent node, the changes will
propagates to the children nodes. The implementa-
tion also supported cloning of models which will fa-
ciliate the loading of models. Instead of loading a
new instance of a model which will require reading
from a file and therefore take many cycles, the in-
terested model could just be cloned (which will save
many expensive cycles).

4.1.2 Discussion

The reason why the Crankshaft team did not choose
XNA’s Model class and made our own was that
in the Crankshaft project we wanted to understand
how the structure of meshes in a model could be
done.

4.2 Lighting

4.2.1 Background

Adding lighting to a game can drastically improve
the atmosphere and realism in games. Implement-
ing lighting in the past has been done in the appli-
cation (for example: lightmapping). Today the hard-
ware is more advanced which makes it possible to
program shaders that runs on the GPU and hence
doing the ligthing in the GPU, which is faster.

With the powerful hardware today, it is possible
to implement advanced Lighting techniques like per
pixel lighting and reflections without burden of the
GPU to much.

7

4.2 Lighting 4 GRAPHICS

4.2.2 Techniques

Light mapping Lightmapping[6] is an old tech-
nique used in games like Quake to shade the scene.
The concept behind lightmapping is that you have
a texture of your model and blend it with another
"‘lightmap"’ texture (the shading texture) by using
multitexturing, which gives the result of the object
beeing shaded. lightmapping has been widely used
in games in the past, but are now used less and
less in modern games because of the support for dy-
namic lighting is hard to implement. Modern GPUs
now has the capacity to do per pixel lighting dynam-
ically.

Lighting by using lightmapping can also be done
dynamically as in [7]. The advantage are as in static
lightmapping, that you won’t need the GPU to do
the mathematics. the disadvantage is the precision
of the lighting, and making shadows are consid-
ered really hard (ref). because of the limitations of
making lighting dynamically this techniques is not
the primary technique to use when having dynamic
scenes.

Gouraud shading The idea behind Gouraud shad-
ing [8] is to give smooth shading to objects with-
out heavy computations as in per pixel lighting.The
principle behind Gouraud shading is that surface
normals for each vertex is calculated and then using
Phong reflection model to computate color intensi-
ties at vertices. Then screen pixel intesities can be
calculated by interpolating the calcualted color in-
tensities.

The advantages with gouraud shading is that it
does not require heavy computations. the problem
with Gouraud shading is when applying specular
highlighting to a low polygon model, and the model
is rotating, the model’s specular lighting will give
the illusion of blinking, which is due to the highlight
passing over a neighbouring vertex.

Phong illumination Is an empirical model by Bui
Thong Phong in [9]. A model that gives very real-
istic lighting, but requires heavier computation than
in the Blinn Phong shading model.

The basic principle of this model is that the shad-
ing of a object consist of adding up light compo-
nents: Ambient lighting, diffuse lighting and spec-
ular highlighting, which together will give the final
image of the object. See figure 3 for clarification.

One major problem with this model is that it

does not take to account that there can be occlusions
from other object (see figure 4). So implementing a
shadow algorithm will make the shading more cred-
ible.

Figure 3: Light components for Phong illumination. Pic-
ture is taken from [10]

Figure 4: The left picture shows the correct shading (the
yellow color means a lit surface) where a occlusion does
not give a lit part below the occluder. The right picture
instead is a implemented Phong shading where the part
that should not be shaded are shaded. This shows the fail-
ure of the empirical model. To get rid of this problem a
shadow algorithm must be implemented. See section 4.3
for futher details on shadow algorithms.

Blinn Phong shading The Blinn Phong model is
a simpler model than the original model and is in-
vented by James F. Blinn and described in [11]. The
basic principle is the same as in Phong illumination.
The model does not give as good result as Phong il-
lumination but the result are very close.

The model is a modified model of Phong’s model
but it is more computing friendly. It is more friendly
in the sense of: When there are a directional light in
your scene and the light and viewer is infinitly far
away then the halfvector in the Blinn Phong model
can be calculated just once and used on the entire
frame

As in Phong illumination, this model does not
take to account occlusions from other models when
calculating the shading, which makes it preferable to
implement a shadow algorithm for a correct result.

8

4.2 Lighting 4 GRAPHICS

Environment Mapped Reflection The environ-
ment mapped reflection gives a nice feeling to a
model of reflecting the environment and gives a bet-
ter visual impression. Especially in racing games
where the car paint gives a nice reflection of the
world. The problem with this simple model is that
there is no reflections other than the skysphere. The
technique works so that you have a texture map to
the car (in our case) and then calculates the dot prod-
uct between the normal and the eye direction.

To get a physically correct reflection of the scene
where one way is to use ray tracing (referens), but
due to the cost of doing it is to expensive (referens),
environment mapped reflections seem to be the best
solution for our needs. Figure 5 shows only when
the environment mapped reflection of the skysphere
is implemented.

Figure 5: Figure showing the added effect of reflection
from the skysphere. Notice the brown and blue parts
which is the reflection of the skysphere.

4.2.3 Result

In Crankshaft we used Blinn Phong shading which
gave us realistic lighting. We also implemented re-
flections on the car and together with the ligthing
the result was very satisfying. The reason of using
Blinn Phong shading instead of Phong illumination
is that the Blinn Phong shading gives really good re-
sult but also is more computation friendly than the
Phong illumination. And the reason why we chose
Blinn Phong shading instead of lightmapping and
Gouraud shading was that per pixel lighting can
be done in GPU easily and lessen the workload for

CPU.

The use of environment mapped reflection was
obvious because reflection of the skysphere gives a
better visual impression of that it is a car which is
made of metal. We limited the number of light-
sources to one and the type of light source to a di-
rectional light. We found that this is enough because
of rally games is limited to outdoor environments
where the sun is the only light source. To see the
final result of the lighting in Crankshaft see figure 6.

Figure 6: The upper image is the final result of the light-
ing in Crankshaft where ambient lighting, diffuse light-
ing, specular highlighting and environment mapped re-
flection was added. Notice the difference with the lower
image where no lighting at all was implemented. The re-
sult shows that implementing lighting will give a realistic
look to the game.

9

4.3 Shadows 4 GRAPHICS

4.2.4 Discussion

Implementing Blinn Phong shading and environ-
ment mapped reflection did not give us any seri-
ous problems. The implementation of the techniques
was not hard. Everything went on well.

4.3 Shadows

4.3.1 Background

In modern games implementing shadows is almost
an essential to give realism to your scene. Calulat-
ing shadows is expensive and much research on op-
timizing shadow algorithms and research in improv-
ing the quality of generated shadows has been done.
For a futher description and survey of shadows see
the excellent paper in [12] and the more up to date
article [13] about shadow algorithms and their vari-
ants.

The most widely used shadow algorithms today
are Shadow volumes and Shadow mapping.

4.3.2 Techniques

Shadow volumes The basic principle behind
shadow volumes [14] is, that sillouette edges is cre-
ated which is the boundary between the front facing
polygons (lightsource to polygon) and the back fac-
ing polygons (Polygons facing away from the light-
source). Then the silouette is extended in the direc-
tion of the lightsource. The extended sillouettte is
then capped to form a shadow volume.

The advantage of using shadow volumes instead
of shadow mapping is that the accuraacy is to pixel
level. but the disadvantage of shadow volumes is
that the technique can be CPU intensive when the
complexity of the geometry increases.

For a futher clarification of the technique see fig-
ure 7

Figure 7: clarification picture for the shadow volume al-
gorithm. Picture is from [15]

Shadow mapping In shadow mapping (SM) [16]
the scene is rendered through the view of the light
source to a depth texture every frame. To determine
if a pixel should be shadowed or not one have to
compare the depth from the pixel to the lightsource
with the depth texture and see if the pixel has a
greater depth than the value in the depth texture. If
so is the case then the pixel should be shadowed.

Below is the pseudocode for the basic shadow
mapping algorithm:� �
shadow (depth , depthTexture)
{

get the corresponding c o l o r c
from depthTexture given depth

i f depth < c then
return not shadowed

e lse
return shadowed

}� �
Figure 8: Pseudocode for the basic shadow mapping al-
gorithm

The use of shadow mapping reqiures a texture to
compare the depths, and therefore the quality of the
generated shadows are determined by the resolution
of the texture. Another disadvantage of the algo-
rithm is the aliasing problem caused by using float-
ing points for comparison. Yet another disadvantage
is that this technique doesn’t give as good precision
as the shadow volume algorithm. The advantages
compared to shadow volumes is that it is mostly

10

4.3 Shadows 4 GRAPHICS

faster than the shadow volume algorithm and fairly
easy to implement.

Implementing the basic shadow mapping algo-
rithm alone won’t give a good visual impression
because of the aliasing problem. Although one can
increase the texture resolution to reduce the aliasing
problem, but this is not a preferable solution because
the texture will be to big and writing the rendertar-
get to a texture will take many cycles, so the solution
of only implementing the basic shadow mapping
algorithm will not yield a satisfacting visual impres-
sion due to aliasing.

One way to tackle the problem of aliasing is to im-
plement variants to the shadow mapping algorithm
which will give a better visual impression.

below we will only discuss some of the vari-
ants to the shadow mapping algorithm that the
Crankshaft team have been looking into.

Parallel Split Shadow Mapping The principle be-
hind parallel split shadow mapping (PSSM) as de-
scribed in [17] is that instead of as in the basic
shadow mapping algorithm, where one uses one
depth texture, in PSSM one splits the view frustum
in parts with a suitable strategy (more about strategy
and how the splitting is done in [17]). Then smaller
depth maps are created (ex: 512 x 512 pixels in resu-
lotion) from the splitted parts.

The main advantage is that the aliasing problem
is reduced. the disadvantage with this technique is
that multiple rendertargets have to be created, and
writing the targets to multiple textures to create the
depth maps, will take many expensive cycles. For a
clarification of the algorithm see figure 9. (finslipa)

Figure 9: clarification picture for the PSSM algorithm.
Also shows the splitting by using the frustum plane. Pic-
ture is taken from [17]

Variance Shadow Mapping The principle of vari-
ance shadow mapping as described [18] is that one
has to render the depth to one channel buffer and the
squared depth to another channel buffer. After that
preprocessing is done to make it easier for filtering.

After that the shadow map can be blurred to re-
duce the aliasing. This technique requires a lot of
processing power and are not suited for implemen-
tation in Crankshaft.

Percentage Closer Filtering Shadow Mapping In
percentage closer filtering (PCF) the surrounding
texels are taken from the depth map and the values
are then compared to the depth of the current pixel.
After that one will know if that texel is shadowed
or not. Figure 10 (after the compare step) shows the
process of doing PCF. After that the filtering is done
and the value is returned.

The advantage of this technique is that it is easy
to implement and does not require as much process-
ing power as in VSM.

Figure 10: The process of doing PCF. Picture is taken
from [19]

4.3.3 Result

In the Crankshaft implementation we decided to
use the shadow mapping algorithm for the direc-
tional light source that we had, combined with PCF
(Perentage Closer Filtering) to reduce the aliasing
problem on the generated shadows. We also used
a orthogonal view matrix instead of a perspective
view matrix. We were very satisfied with the final
result when using shadow mapping with PCF. See
figure 11 for the final result in Crankshaft.

11

4.4 Particle system 4 GRAPHICS

Figure 11: The upper image is the final result of the
shadows in Crankshaft where percentage closer filtering
was applied. Notice the difference with the lower image
where only the basic shadow mapping algorithm was im-
plemented. Although the depth texture is of resolution
2048 x 2048 pixels, the aliasing problem can clearly be
seen (especially shadows cast by the trees)

4.3.4 Discussion

The reason that we used shadow mapping was that
shadow mapping is more suited for our scene where
we have a large environemnt with many trees. By
using shadow volumes we would have to make
heavy computations. and the use of PCF was due
to that we found that inplementing shadows to our
game gave a pretty much framerate drop and later
on we found that the reason of that drop was due to
CPU bottlenecks.

The reason why we didn’t choose PSSM and
VSM is that those two algorithms requires more pro-

cessing power in the CPU. So implementing PCF
was was a good idea because that can be done in the
Pixel shader which won’t burden the CPU.

Because of our scene beeing very static (only the
car moving) we thought of creating the depth tex-
tures first for the whole scene without the car and
then creating the shadows. This idea seem to be a
good idea but we have to create many textures to
map the whole scene and creating the depth tex-
tures will make it not worth implementing, and also
the GPU may not have support for so many textures
which would be needed.

4.4 Particle system

4.4.1 Introduction

To further improve the game experience at the
graphical level we decided to implement a particle
system [20]. The particle system is used to simu-
late fuzzy objects as for instance smoke, fog and rain.
The basic flow consists of two major stages.

Simulation In the simulation stage the new parti-
cles to render are being created. They are all given a
3D position in the world of the game. This position
is based on the emitter’s position. The emitter is the
core of the system because all particles initially orig-
inate from this object. During this update phase all
existing particles are also checked to see if they have
exceeded their time to live and in that case removed
from the simulation. In the case of their existence
their new position and characteristics are calculated.
This calculating can be implemented with different
techniques but the essential part is to move the par-
ticle a little bit each frame to simulate some kind of
real behaviour. Particle systems often perform col-
lision detection between particles and 3D objects in
the game but collisions between particles are more
often ignored.

Rendering When the calculations during simula-
tion stage are done all the particles are rendered. The
particles can be rendered in different ways. There
are techniques that render all particles as a single
pixel. More often the particles are rendered as a tex-
tured billboarded quad. This is an object (quadrilat-
eral) that is always facing the viewer, in this case the
player’s screen.

12

4.5 Ground 4 GRAPHICS

4.4.2 Available techniques

GPU It is very important that the system is effi-
cient in the sense that it doesn’t demand too much
time per frame. One way of solving this problem is
to let the GPU on the graphic card handle the up-
date procedures that are part of the particle system
[21]. You can do this by making the vertexshader
and pixelshader calculating position, velocity, angle
etc of the objects in the system.

Billboard The model we use for the particle sys-
tem represent a simple plane. The texture is applied
to this plane and it is important that the object at
all times is faced directly to the camera. This tech-
nique implements the idea of billboards. The big ad-
vantage of using billboards is that it consists of only
two triangles and a texture instead of a more com-
plex and more processor-demanding 3D model with
a lot of triangles. The disadvantage is that the image
will look the same from every direction and there-
fore this technique is not always suited. To display a
car as a billboard simply wouldn’t work. However
for our particle system this works fine, by using a lot
of particles with different rotation and transparency
the system makes a realistic effect.

4.4.3 Chosen techniques

A particle system often consists of several of thou-
sands or more small particles. Instead we use a tech-
nique where one particle equals one model with a
texture applied to it. This way a couple of hun-
dreds of particles are enough to simulate a realis-
tic effect. The models are rotated and given a trans-
parent value, alpha value. This gives a surprisingly
smooth and realistic effect. By using models we can
add all particles to our renderer and automatically
use the z-sorting algorithm used in our renderer.

4.4.4 Results

The use of billboards greatly improves performance
because of the substantial lesser amount of triangles
to render in each frame.

4.4.5 Discussion

Because of the z-sorting we sadly weren’t able to
implement the calculations of the particles positions
and transparency values.

4.5 Ground

The ground in a game can be thought of as a sur-
face. When coloring surfaces there are several ways
to proceed about this. The most common way to
do this in video games, is to map textures down to
the surface using UV-coordinates. By just coloring
the surface by mapping textures to it, will cause the
outcome to look very flat since all light reaching the
ground will be reflected back to the eye in the very
same way. This problem is very well known, and
has a whole area of techniques available for bending
the normals in a proper way. Some of those together
with the one Crankshaft is using is brought up in the
bumpmapping section. The only remaining problem
is that the ground is large consisting of a lot of ver-
tices which means that rendering it all in each and
every frame would be very expensive. This is solved
by splitting the ground up in different patches, so
that the frustum culling will ignore the patches not
viewed by the camera.

4.5.1 Techniques

Generating geometry The most commonly used
technique for doing this is the generation of
heightmaps. Those are generated from a grey scaled
bmp file where each rgb-vaule at a certain pixel
serves as a height. White usually present high points
while black stands for the opposite. A problem that
easily occurs to this is that the ground can look very
angular and rough. To solve this the heightmap can
be sent through a filter that evens out the height val-
ues. In our implementation of this, 9 samples were
taken for each and every vertex. This is a very ex-
pensive way of doing it, but since the ground is gen-
erated only once, performance is not an important
issue.

Texturing Just like the generation of a heightmap,
texture splattning[22] operates on a bmp file. This
colormap consists of a red, green, blue, black and
a alpha value that represents different textures. In
the shader each color component for a certain pixel
serves as a weight on how much of each texture that
is supposed to be drawn.

13

4.6 Bumpmapping 4 GRAPHICS

� �
Input : Texture Spattmap ,

Grass , Earth , Road ;

f l o a t 3 c o l o r = (Splattmap . Green∗Grass +
Splattmap . Red∗Earth +
Splattmap . Black∗Road)� �

Figure 12: This is run for each pixel in the pixel shader.
The more red there is in the map for that pixel, the more
will be taken from the earth texture. The more black there
is, the more of the road texture will be taken, and it keeps
on going like that.

Figure 13: In the upper image the splatt map represent-
ing different textures is shown, in the lower image the
textures have been applied in the pixel shader.

Level of Detail As mentioned in the introduction
the ground needs to be split into patches so that the
areas not viewed by the camera can be culled out.
Now let’s consider the parts actually viewed by the
camera. The idea of LOD is that areas close to the
camera will be rendered using objects with high res-
olution while areas far away from the camera will
be rendered using objects with low resolution. To
reduce the LOD of an object there are several LOD-
algorithms available.

4.5.2 Result and Discussion

The Geometry The result using heightmaps gave
the ground a very pleasant look. By splitting it up
into different patches the rendering of the ground
ended up to be very cheap.

Texturing Splatting gave the exact look we were
after, the textures melted together without giving an
unnatural look.

Lighting Out of the three major techniques for do-
ing this we picked bump mappnig. It gave the ob-
jects using it an impression of deepness in the sur-
face and it didn’t cause any loss in performance.

Level of Detail Rendering the ground in
Crankshaft didn’t result in any decrease of perfor-
mance since the camera is always directed slightly
down towards the ground. Also some areas that
could have been considered far away from the view,
was covered by trees anyway. Therefore we decided
to skip implementing any LOD technique for ren-
dering the ground.

4.6 Bumpmapping

When viewing surfaces that only has normals based
on the geometry of the surface itself the result looks
very flat and unnatural. Since textures are in 2D
there are a lot of height information that gets lost.
So a way of solving this is to compute normals out
of those textures and apply them to the surface in
some way. There are various techniques available
for doing this that is brought up in this section.

4.6.1 Techniques

Normal mapping is a quite cheap technique while
also being very easy to implement. It simply applies

14

4.6 Bumpmapping 4 GRAPHICS

a map of normals on to a certain surface. It doesn’t
consider the precomputed normals of the surface. It
just swaps them out to the ones in the map.

Bump mapping[23] can be implemented in some
different ways but the technique behind those are
very similar. In the Silicon Graphics version used in
Crankshaft, 3 vectors are needed to create an orthog-
onal matrix used to transform the bump normal into
one fitting the ground. The 3 vectors are computed
as seen below and then put into a matrix.

v1 = groundNormal × bumpNormal

v2 = groundNormal × v1

 v1
v2

groundNormal

Figure 14: The matrix used for transforming the bump
normal.

To get this set of bump normals needed to do
those computations a normalmap is used. The nor-
malmaps was created using a tool called "crazy-
bump" that is explained in detail in the tool sec-
tion. Crazybump takes a grey scaled texture and
returns a normalmap for the given texture. When
those calculations are done this bumpmap is used in
the shaders to reflect the light hitting the ground in
their proper directions.

Parallax mapping [24] is slightly more complex.
In difference from normal mapping and bump map-
ping it actually displaces the geometry. This is done
using a heightmap for describing the roughness in
the surface. This technique makes the surface of ob-
jects look even more natural than bump mapping
and normal mapping. This technique is still fairly
new and would go to hard on this game’s perfor-
mance. There are other techniques for displacing
the geometry. Some also operating in the vertex
shaders. If the resolution is high it will give a simi-
lar result to parallax mapping which operates in the
pixel shaders.

4.6.2 Result and Discussion

Bump mapping made the surfaces reflect the light
more accordingly to the hidden geometry within

the textures. The reason we used bump mapping
instead of normal mapping was only because the
material we found about bump mapping seemed
easy to implement and the examples shown of it
looked promising. The difference in performance
wasn’t brought up to be of any importance either.
In Crankshaft bump mapping was used on the car
and the ground.

Figure 15: The car above uses bump mapping in the
shader while the one below doesn’t. Notice the shininess
of the grill in the car above.

Parallax mapping would have been the best
when only thinking about looks, but for creating dis-
placement in the surfaces we estimated to lose per-
formance. Also the implementation seemed to be
more complex.

15

4.7 Culling 4 GRAPHICS

4.7 Culling

Scenes in a 3D game often consists of millions of
millions of triangles. No modern graphics cards
can handle this much data and thus, if all trian-
gles would be rendered each frame, it would dras-
tically lower the frame rate of the game. To combat
this there is various techniques to remove triangles
which would not affect the final scene, known col-
lectively as culling techniques[25].

Figure 16: Example of a view frustum in 2D. Picture
from [26].

4.7.1 Techniques

View frustum culling Removing objects which is
outside the view frustum, more on this later.

Backface culling Backface culling determines
whether a face is facing the viewer or not, and
ignores rendering those which does not face the
viewer[27]. It is handled entirely on the GPU on
modern hardware. Mathematically it is a very sim-
ple test, described by the following formula:

n = (v1 − v0)× (v2 − v0)

Where v0,1,2 is the vertices of a triangle. If the z value
of the n vector is > 0 the face is pointing away from
the screen and does not need to be drawn (provided
it is counter clockwise ordering).

Distance culling Objects which are very far away
from the viewer may not be large enough to be rep-
resented on the screen, and can thus be removed.

Occlusion culling Occlusion culling removes ob-
jects which are behind non-transparent objects, and
hence would not be visible anyhow. It can be done
using a skyline algorithm[27].

Portal culling This technique is used when look-
ing through a door or a window, in which case the
frame and its surrounding occlude the scene behind
the door. On way is to simply forms a new view frus-
tum from the current view frustum and the frame of
the door or window, and then rendering the scene on
the other side of the door/window using this new
frustum[27].

4.7.2 View frustum culling

Objects which are outside the view field of the
screen, ie the view frustum, is unnecessary to render
and can be removed, which is what is done by view
frustum culling[26] (see Figure 16). In it is most ba-
sic form the program keeps a list of objects and each
frame goes through the list, deciding which objects
are visible and which are not by doing a frustum-
bounding volume intersection. The bounding vol-
ume can be of any type, but commonly is a axis
aligned bounding box (AABB). The frustum consists
of 6 planes, the near, far, left, right, top and bot-
tom planes of the cone constructed from the cameras
view.

Calculating the view frustum can be done in sev-
eral ways, one way is to back project points in the
corners of the frustum, for example the top far left
point would be (−1,−1, 1) (depending on how the
view matrix is defined, but assuming it is defined to
be [(−1,−1, 0), (1, 1, 1)] where z=1 is the far plane).
This point is then back projected simply by multi-
plying the inverse view matrix with the point.

point′ = inv(viewMatrix) ∗ point

With all the eight corners transformed planes can be
formed between them, for example the bottom plane

16

4.7 Culling 4 GRAPHICS

would be:

p = bnl, n = cross(bfl − bnl, bnr − bnl)
bnl = bottom near left point
bfl = bottom far left point

bnr = bottom near right point

The culling itself, in the case of an AABB, is done
by intersecting each plane to the AABB. The out-
come is either, inside, outside or intersecting. There
are various ways of doing this but a decently fast ap-
proach is described in [28].

4.7.3 Quadtrees

In a modern game the maps can be enormous with
millions of objects, and culling each one of them each
frame would just be too slow. A technique to counter
this is to insert all the objects into a so called spa-
tial data structure, more specifically bounding vol-
ume hierarchies, which organizes the objects based
on their bounding volumes. Culling can then be
done to groups in this hierarchy, resulting in a lower
number of cullings. There are many techniques to
do this, such as BSP trees, Axis-Aligned BSP trees,
Octrees and Quadtrees[27]. The technique described
here will be Quadtrees.

A Quadtree is a tree structure where each node
represent a bounding volume (see Figure 17). The
tree is built by first placing a node covering the
whole world, then this node has children recursively
which each divide the world into 4 parts, one for
each child node. When an object is inserted in the hi-
erarchy it is simply culled against the node’s bound-
ing volume until it finds the smallest volume it can
fit into, see Figure 19. Culling the objects in the scene
then simply becomes culling the trees’ nodes recur-
sively and any children they hold. If a node is out-
side we know all it is children is outside too and it
can be skipped safely. If it is on the other side inside
we know all the children must also be inside and all
of them can hence safely be rendered, see Figure 18.

The depth of the Quadtree depends on the size of
the world, and since we always divide each node in
four, we can use a logarithmic function to calculate
it:

depth =
log(max(mapwidth,mapheight)

squaresize)

log(2)

Where squaresize is the desired smallest size of a
node in the tree.

Figure 17: Example Quadtree. Picture from [26].

� �
func t ion c u l l (node , frustum)
{

i f (node i s outs ide frustum) return

i f (node i s i n s i d e frustum)
draw a l l o b j e c t s in node

and i t s ch i ldren
e lse
{

foreach (o in node . o b j e c t s)
i f (o i s not outs ide frustum)

draw (o)

c a l l r e c u r s i v e l y for each
node . ch i ldren

}
}� �

Figure 18: Quadtree culling pseudocode

17

4.8 Optimizations 4 GRAPHICS

� �
func t ion i n s e r t (node , o b j e c t)
{

i f (o b j e c t f i t s i n t o
any node . ch i ldren)

i n s e r t i t in t h a t childnode
e lse

i n s e r t i t i n t o node
}� �

Figure 19: Quadtree insertion pseudocode

4.7.4 Result and Discussion

In Crankshaft we made use of Quadtrees, since
Crankshaft is a very open terrain game with only
one "level" (i.e. no bridges or other ways to drive
above other cars, which would require another spa-
tial data technique such as an Octree). The Quadtree
greatly improved the performance of the applica-
tion and enabled us to have huge maps with more
than a million trees and bushes. A simple graphical
representation of the quadtree was developed using
boxes representing nodes, to help debugging, which
proved very useful. Also backface culling was nat-
urally used on much of the geometry, although not
on some of the transparent geometry such as check-
points as they can be viewed from both sides of the
triangles.

4.8 Optimizations

4.8.1 Background

The often taken approach in the gaming industry for
optimizations is that one developes a games and add
features to a game until the performance of the game
is not satisfying. After noticing that ones starts to
profile the game to see what the bottlenecks of the
game are. After discovering the bottlenecks, various
optimization techniques for that bottleneck can be
used to improve the performance. And so the cycle
continues until the game runs as satisfied.

4.8.2 Techniques

Statechanges Statechanges in the code is expen-
sive. For example: Where a setting of a vertexdec-
laration can cost up to 6500 - 11250 cycles (in an
average) (see [29]). Restrucutring what have to be
rendered correctly will reduce the number of state
changes (like changes of textures, models etc) and

will save many cycles. By sorting the models with
the same models after each other, the number of
state changes will be reduced. And by reducing
the changes of textures and effects will reduce the
number of cycles lost even more. This technique
widely used in almost all engines. (ej så övertygande
mening)

There are many ways of reducing the number of
state changes, but in Crankshaft we sorted all mod-
els, so the same models came after each other and
then we rendered them in that order. We also kept
track of which effect and texture that was used cur-
rently, and checked if a change was necessary.

By doing so the number of state changes were re-
duced.

Hardware Instancing The purpose of hardware
instancing is to lessen the burden of the CPU and
should be done when the CPU is the bottleneck and
when your scene consist of many instances of the
same model which is just placed in different places.

By using hardware instancing the time spent in
draw calls are reduced because there is only one in-
stance of a model per unique model.

The basic principles behind hardware instancing
(see [30] for a detailed description) is that there is
two streams to the GPU, but the GPU will interpret
these streams as one stream. The first stream will
contain the instance of a model to be rendered. The
second stream consist of the world matrices for the
models. The Vertexshader will then get the world
matrices for all the models and place the vertices on
the proper places. See figure 20.

Figure 20: Figure showing how Hardware instancing
is working. Two streams are sent to the vertexshader,
where the first stream consist of your model and the sec-
ond stream consists of world matrices which determines
where your models should be placed in the world. Picture
is taken from [30]

4.8.3 Result

In Crankshaft we implemented both Hardware In-
stancing and reduced the number of state changes
when rendering.

18

4.8 Optimizations 4 GRAPHICS

4.8.4 Discussion

Implementing the both techniques in Crankshaft
was done without bigger problems. The biggest
problem in the optimization part was that we did
not properly profile the game before we started
to do optimizations. reducing state changes can
be done before doing some profiling, but optimiz-
ing shaders and implementing hardware instancing
could have been waited until we had properly pro-
filed the game.

We thought early in the development that the
game was only CPU bound, because the CPU re-
sources was at maximum. But it turned out to be

almost right. Because after profiling the game with
proper software (PerfHud, CLR Profiler and nProof),
it turned out that Crankshaft was having problems
with both the CPU and the GPU. The problem was
that the CPU and GPU was often in idle time waiting
for each other.

The best approach (as described in the introduc-
tion of this section) would be to first profile the game
and then see what bottlenecks there were and then
optimize those parts. And then continue the cycle
until we are satisfied.

Due to lack of time and the Crankshaft team bee-
ing inexperienced with optimizations we could not
optimize the game as much as we wanted.

19

5 PHYSICS

5 Physics

5.1 Introduction

In just about every computer game there is an un-
derlying physics engine. Older physics engines do
just about enough to prevent objects from falling
through the floor or travelling through each other
but as processing power increases the physics sim-
ulation in games become more and more advanced.
Lately we’ve been introduced to games with much
higher physical realism such as Half-Life 2 which
uses the Havok Engine and more recently the game
Crysis. Both are high paced action games where gun
shots will cause barrels to tilt over and explosions
will cause nearby objects to fly in all directions and
bounce around the game world in a very believable
fashion. A good physics engine is capable of enhanc-
ing the gaming experience and has almost become
mandatory in modern games.

5.2 Integration

A physics engine stores the states of all the objects
in the game. This state can contain many quantities
such as position, velocity and acceleration among
others. To simulate the motion of an object, the
quantities stored in the object state are numerically
integrated over a given time step. The two main in-
tegration methods used are Euler Integration and RK4
Integration[31].

Euler Integration Euler integration is the most ba-
sic form of integration. The main idea behind this
technique is to approximate the change of a func-
tion over an interval by using the derivative of the
function at the beginning of the interval. If you
have a differential equation f(y, t), and its derivative
f ′(y, t) and a time step deltaT you can approximate
f(y, t+deltaT) (which is the value of the function af-
ter the time step has passed) by using the following
formula:

f(y, t + deltaT) = f(y, t) + f ′(y, t) · deltaT

This approximation can be applied on many
physical quantities. For example, the position quan-
tity has velocity as its derivative so we can approx-
imate the position of an object after a certain time
step by using Euler Integration:

newPosition = currentPosition+currentSpeed·timestep

The major drawback with Euler Integration is
that it introduces an error if the derivative of a quan-
tity changes over the integration time step. This will
also cause the error to grow larger over time.

RK4 Integration RK4 stands for Runge-Kutta or-
der 4 and it is an integration method that samples
the derivative of a quantity four times over the time
step and makes a weighted average of these deriva-
tives. The mathematical formula for RK4 Integration
is:

f(y, t+deltaT) = f(y, t)+
deltaT (k1 + 2k2 + 2k3 + k4)

6

where k1 ... k4 are the four derivatives sampled
by the method. The four derivatives are sampled in
the following way:

• k1 = f ′(y, t)

• k2 = f ′(y + deltaT/2 · k1, t + deltaT/2)

• k3 = f ′(y + deltaT/2 · k2, t + deltaT/2)

• k4 = f ′(y + deltaT · k3, t + deltaT)

By doing this the RK4 method is capable of de-
tecting the curvature of the quantity over the given
time step and this gives a much better approxima-
tion than for example Euler’s method. The error of
RK4 is so small that it can be used for any numerical
integration given that the time step is reasonable.

Time Step Independent Physics One problem
with any type of integration is that it becomes very
unpredictable when the time step grows very large.
For instance, imagine that an object is travelling in
the direction of another object and is already very
close to it. If the frame rate should drop to very
low numbers the time step will grow large and this
might cause one object to penetrate the other or
maybe even pass through it since the integration
step is too large. This can cause an erratic collision
response or there may never be a response at all if
the object passed through. This problem will ex-
ist even when an RK4 integrator is used since RK4

20

5.2 Integration 5 PHYSICS

� �
deltaT = TIMESTEP
while (del taT > 0)
{

Test i f the o b j e c t i s in a penet ra t ing s t a t e a f t e r del taT
i f (Object i s penet ra t ing)

Find point in time c o l l i s i o n T where the c o l l i s i o n occurred
I n t e g r a t e with t imestep c o l l i s i o n T
C al c u la t e c o l l i s i o n response
deltaT−=c o l l i s i o n T

e lse
I n t e g r a t e with the t imestep del taT and break

}� �
Figure 21: The psuedo-code for time division

doesn’t do any type of collision detection when it
samples its derivatives

One solution to this problem is to use a fixed time
step and a time accumulator[32]. When the physics
are updated the time interval between the previous
and current frame is given as a parameter. This in-
terval is added to the time accumulator and if the ac-
cumulator is larger than the fixed time step it means
that enough time has passed to make a physics up-
date. The pseudo-code for the update method looks
like this:� �
void Update (f l o a t dtime)
{

accumulator+=dtime
while (accumulator >= TIMESTEP)
{

UpdateTimeStep ()
accumulator−=TIMESTEP

}
}� �

Using the above algorithm and a small time step
will produce nice results but will not remove pene-
trations completely.

Collision Resolver To further avoid penetrations
there exists a technique called time division . The
pseudo-code for the time-division algorithm is
shown in Figure 21.

When a penetration has been detected it means
that a collision happened somewhere between t and
t + deltaT . To find what point in time the collision
occurred we use a algorithm called bisection . Bisec-
tion performs a binary search over the time step to

approximately find the point of collision. Given a
time interval deltaT the method samples the state of
an object at t + deltaT/2 and t + deltaT . If it turns
out that the object is in a penetrating state at both
t + deltaT/2 and t + deltaT it means that the ob-
ject collided somewhere between t and t + deltaT/2.
If the object is in a penetrating only at t + deltaT
it means that the collision occurred somewhere be-
tween t+deltaT/2 and t+deltaT . The algorithm will
recursively search the time interval (t, t + deltaT/2)
or (t + deltaT/2, t + deltaT) depending on where in
time the collision occurred. The binary search will
end when the algorithm has found a point in time
where the object is within a certain distance from the
colliding object while not actually penetrating the
object. This point in time will be the collisionT seen
in the above pseudo-code.

Resting Physics Another problem arises when ob-
jects have very low velocity and are close to rest-
ing on a surface. In this case, a collision will be
registered every frame and the repeated collision re-
sponses make it impossible for the object to truly rest
unless special measures are taken. One way to solve
this problem is to use a velocity threshold. If objects
have a velocity that is smaller than a certain value
they do not move.

Results In the end we decided to go with an Eu-
ler integrator instead of an RK4 Integrator. This is
because we thought that absolute precision was not
necessary for our game and that speed was more im-
portant. Also, by using a small time step together
with the algorithm used for time-step independent

21

5.3 Rigid Body Dynamics 5 PHYSICS

physics the error caused by Euler integration be-
comes much smaller. Crankshaft also uses a time-
division algorithm much like the one described in
a previous section and the problems with resting
physics have also been solved by using a velocity
threshold. When a collision response is generated
the velocity of the colliding object is set to zero if the
velocity of the object is less than the acceleration of
the object. This means that the object was in a resting
state before the update and that it was accelerated by
the forces acting upon it.

5.3 Rigid Body Dynamics

A rigid body is a physical object that cannot change
its shape unlike for example jello. In Crankshaft we
have used the dynamics of rigid bodies to simulate
the cars and this is pretty realistic under the assump-
tion that the cars can not be damaged. The four main
physical quantities needed to simulate the motion of
a rigid body are acceleration, velocity, position and
orientation.

Acceleration The acceleration of an object is based
on the forces that act on the object. Forces are repre-
sented with two vectors: one vector representing the
direction and strength of the force and one vector
representing the point where the force is applied on
the object. The reason for having a vector for point
of application is because the rotation of an object is
effected differently depending on where the force is
applied as will be shown in a later section. To get
the acceleration of an object, the sum of all forces is
divided by the mass of the object. This is the same
as using the well know formula F = ma.

Velocity and Position Velocity has acceleration as
its derivative so when the acceleration of an object is
known we can numerically integrate over the time
step to find out the new velocity of the object. Once
we have the velocity we can numerically integrate to
find the new position of the object since position has
velocity as its derivative.

Orientation and Angular Effects Orientation is
the most complex of all physical quantities since it
consists of multiple sub quantities. First of all, orien-
tation itself can be represented in two different ways.
One way is to represent orientation by using a 4x4
matrix.

Orientation and Angular Effects is not complete
and will be fully explained in another version of the
report.

5.4 Collision Detection

Collision detection is necessary in every physics sim-
ulation since the results would not be believable
without it.

Separating Axes Theorem One method of colli-
sion detection between objects is the so called Sep-
arating Axes Theorem (SAT)[33]. This theorem states
that two convex, disjoint objects do not intersect
each other if there exists a separating axis where the
projections of both objects on the axis do not over-
lap. Given a shape A and a shape B the following
are considered separating axes:

1. The normal of a face in shape A

2. The normal of a face in shape B

3. The cross product between an edge in shape A
and an edge in shape B

SAT could be used to do exact collision detec-
tion but it is not very efficient when objects consist
of many polygons. What you often do in reality is
an approximation of an object’s shape. Three com-
mon approximations are so called Oriented Bound-
ing Boxes (OBB) , Axis Aligned Bounding Boxes (AABB)
and Bounding Spheres[33]. An OBB is a minimal box
that contains the entire object and is oriented accord-
ing to the orientation of the object itself. An AABB is
a minimal box that contains the object and is aligned
with the x, y and z axes. This approximation is very
fast but it can be very loose-fitted depending on the
shape of the object Finally, a bounding sphere is a
minimal sphere that will contain the object for every
possible rotation. The advantage with using bound-
ing spheres is that the bounding volume does not
need to be recalculated whenever an object rotates
unlike AABBs and OBBs.

Results In Crankshaft, AABBs are used when do-
ing car-tree collisions and car-car collisions. This
is because XNA contains a BoundingBox class that
represents an AABB and it also contains methods
for collision detection. Using the BoundingBox class
was much easier than writing our own classes for
bounding boxes and collision detection so there

22

5.5 Collision Response 5 PHYSICS

j =
−(1 + e)vAB

1 · n
n · n(1

MA
+ 1

MB
) + [(I−1

A (rAP × n))× rAP + (I−1
B (rBP × n))× rBP]× n

Figure 22: The impulse formula for collision response

seemed like there was no reason to reinvent some-
thing that was already at our disposal. However, the
BoundingBox class cannot be used for car-to-ground
collisions since the AABB of the terrain would be
very loose fitted. For car-to-ground collisions, we
use an OBB to represent the car and every frame the
Z-value of every corner of the OBB is tested towards
the Z-value stored in the height map. If the Z-value
of any corner is less than the corresponding Z-value
of the height map a collision has occurred.

5.5 Collision Response

When an object has collided with something in the
game world, it should bounce off in some way or
at least be prevented from penetrating the collision
surface. This step is called collision response and is
essential for a believable physics simulation.

Before one can calculate a collision response you
have to find the collision normal[34]. Our height
map is capable of returning a terrain normal given
an x and y coordinate and this normal is used for
car-to-ground collisions. For car-to-car and car-to-
tree collisions we calculate the distance on the x/y
plane between the two objects. The distance vector
then becomes the collision normal.

Spring-based Collision Response When the colli-
sion normal has been determined it is finally pos-
sible to calculate a collision response. Collision re-
sponses can be modelled using spring physics and
in this case you apply a spring and a damper force
along the collision normal between the two colliding
objects causing them to move apart[34]. The formula
for a spring-based collision looks like this:

F = Nkd− bN(N · V)

where F is the separating force, N is the collision
normal, V is the relative velocity between the two
objects, k and d are the spring dampener constants
and finally d is the desired separating distance be-
tween the two objects. This gives a spring force that
dampens the velocity along the collision normal and
pushes the two objects apart.

There are a few drawbacks with using springs to
simulate collision responses. One of them is that the
effects of the applied force take time to propagate
since a force does not effect the velocity or the ro-
tation of an object instantaneously. This means that
objects can penetrate each other regardless of a colli-
sion response. Spring constants have to be tuned in
order to get the desired effect and they are also de-
pendent on various environment variables such as
gravity. All in all, using springs is not a very robust
solution.

Impulse-based Collision Response Another ap-
proach to modelling collision responses is by using
impulses[35]. Impulses can be seen as very large
forces acting over a very short time span that cause
an immediate change in an object’s velocity and ro-
tation. To calculate an impulse a restitution constant
is needed. The restitution constant tells how much of
the kinetic energy is absorbed in the collision. This
constant has to be tuned to get the desired effect,
however, it is independent of gravity and other en-
vironmental variables. The collision impulse j is a
scalar value that is calculated using the formula in
Figure 22.

• A and B are the two colliding objects.

• e is the restitution constant.

• vAB
1 is the relative velocity between the two

objects.

• n is the collision normal.

• MA and MB are the masses of the two objects

• I−1
A and I−1

B are the inverse inertia matrices for
the two objects

• rAP and rBP are the vectors between the cen-
tres of mass of the two objects and the point of
collision P

For a full derivation of this formula, check [35]
for details. The formula can be applied for collisions
with objects that are meant to be stationary (such

23

5.6 Discussion 5 PHYSICS

as the terrain and trees) and this is done by giving
these objects infinite mass and zero velocity. This
will cause many factors to fall out of the equation.

Once the impulse has been calculated the new
velocities of the objects can be calculated in the fol-
lowing way:

vA
2 = vA

1 +
j

MA
n

vB
2 = vB

1 +
j

MB
n

The impulse only acts along the collision normal
and this is because the collision model is very simple
and does not take friction into account.

The impulse also acts on the angular velocity of
an object and it is recalculated in the following way:

wA = I−1
A (LA + rAP × jn)

wB = I−1
B (LB + rBP ×−jn)

Results In Crankshaft, we decided to use impulse
based collision response. This is because the solu-
tion did not seem to be robust at all. It seemed likely

that we would want try different values for the grav-
ity force to get the right feel of the game and hav-
ing to tune the spring constants whenever gravity
is changed seemed like too much of a hassle. Also,
spring-based collision responses allow some amount
of penetration which we did not want in the game.

5.6 Discussion

The physics of Crankshaft do not behave as well
as we could have hoped for. The car does not re-
ally behave like a car at all, instead it resembles
and ice cube sliding over the terrain. This is proba-
bly because we do not take tire friction into account
and that is probably why the car is always skidding
around. Another problem is that the rotational ef-
fects are heavily dampened. As it is now we apply a
torque whenever the player steers the car and since
the rotational effects have no friction it would cause
the car to rotate infinitely if it weren’t for the damp-
ening effect. The rotational effects only manage to
keep the car aligned with the road and not much else
which makes the physics look a little dull. This could
be solved by handling steering differently so that a
torque is not applied when a players steers the car.

24

6 NETWORK

6 Network

The PC gaming industry is focusing more and
more on multi player games, and although the area
is already widely explored in the most basic setups,
it still expands and evolves in a rapid pace. As
graphics and game play improves by each year, so
has the network systems also had to adapt to han-
dle the new requirements, such as handling more
players, higher precision and more data (for exam-
ple from physics simulations).

The keyword for any network solution for a
game is latency. Latency is the time it takes for
a package of information to reach the recipient.
Games with high latency has a slow and indirect feel
to them, as well as making it harder to react to the in-
formation on the screen as it is always old informa-
tion. In some games high latency means less (such as
turned based games or strategy games) and in oth-
ers it is of highest importance to the player experi-
ence (for example first person shooters and racing
games)[36].

6.1 UDP and TCP

The first thing to decide upon when designing a net-
working solution is what protocol use. The two most
common networking protocols today are UDP and
TCP. In gaming both are used, but for different situ-
ations and games.

UDP (User Datagram Protocol) is a connection
less protocol based on having small packages and
almost no reliability, for example it does not guar-
antee delivery, or in-order delivery. The protocol is
based on sending packages, and each package has a
header that is 20 bytes large (IPv4). The body (user
data) can be at most 65,507 bytes[37].

TCP (Transmission Control Protocol) on the
other hand is a connection-oriented protocol which
provides reliability, both ensured delivery and in or-
der delivery. It provides these features at the cost
of speed and latency. In actionbased, low latency
games, UDP is most often used simply due to it is
superior speed (and hence inherently lower average
latency).

6.2 Game state

The game state is a collection of information that de-
scribes the game at a certain instance in time. For
example in a racing game it is the players and their

cars, and the location and orientation of those. In
a first person shooter with physics it can be all the
players as well as all the objects that can interact in
the physics engine. Now, the problem is, how do
we share this information between all the connected
users. The two largest approaches to at all connect-
ing systems is client/server and peer to peer (P2P).

Peer to peer assumes no central authority, and
hence everybody has a copy of the game state and is
responsible for updating everybody else on changes
in the game state.

In a Client/Server architecture the server is the
part responsible to keep the game state intact and the
players only need to communicate with the server.

Modern games almost always uses a Clien-
t/Server approach since it greatly simplifies se-
curity and game state coherency. Though there
are examples of attempts using P2P to speed up
networking[38].

Since the bandwidth for any connection is lim-
ited so has the amount of data that is transferred by
the game have to be limited too. A solution is to
only send data at a fixed time step, say 30 times per
second, which is a very common solution. The prob-
lem with this solution is that the client often under
samples the game state. Say for example the video
updates 60 times per second but the network only
updates the game state 30 times per second which
means the perceived frame rate is only 30 updates
per second. There is however several solutions to
this;

Interpolation We can use the previous two game
state and interpolate between them to create a
smoother effect. The downside with this is that it
uses old data, and hence the information on the
screen is always one or two frames old.

statei = statei−2 ∗ (1− a) + statei−1 ∗ a

a = dt/avg.frametime

Dead reckoning A technique that tries to solve the
interpolation problem is dead reckoning[39]. In this
technique we send the derivative to the variables
too, which enables the client of doing a crude pre-
diction as to where objects will be dt sec after the
package has been received (as there is always a short
time between the package being received and the in-
formation display, and as previously stated it may

25

6.3 Quake 3 networking 6 NETWORK

even be over two frames).

statei = statei−1 + state′i−1 ∗ dt

Prediction This technique does the same thing
as extrapolation, though instead of just using the
derivatives to calculate the state it runs a full sim-
ulation on the objects involved. For example in a
game with a physics engine this would mean run-
ning the actual physics engine on the client as well.
This gives even better result, but at the cost of cpu
power as running simulations often is very cpu in-
tensive.

statei = simulate(statei−1, dt)

Grouping The grouping technique is usable when
the game state is very large, an thus unsuitable to
be sent everywhere all the time. The idea is to
group players in smaller game state chunks, for ex-
ample grouping players by geographical location.
The technique is described in greater detail in "Us-
ing Groupings for Networked Gaming"[40].

6.3 Quake 3 networking

The Quake 3 networking model solves a lot of the
UDP reliability problems. There is only one type of
server to client package in the Quake 3 networking
model[41], the game state package. When the client
receives a package it sends back an ack with the se-
quence number in to, bundled in the first package
that is on its way over to the server. This means
the server always knows the latest package which
was received by the client. The use of this is that
the server does not send the whole game state, but
rather only the changed game state from the last
acked package it knows. If a package is lost the same
information is sent over and over until the client
sends back an ack. The advantage is that the infor-
mation is guaranteed to be delivered, at a very low
(or none) latency cost. The server can just feed the
same information over and over again till the client
acks it, and the delta compression ensures the pack-
ages are relatively small. The client and server code
turns out very simple as can be seen in Figure 23 and
Figure 24.

� �
i f (newState . sequence <

l a s t S t a t e . sequence)
discard packet

e lse i f (newState . sequence >
l a s t S t a t e . sequence)

{
l a s t S t a t e =

deltaUncompress (
l a s t S t a t e ,
newState) ;

ackServer (l a s t S t a t e . sequence) ;
}� �

Figure 23: Client network loop in Quake 3

� �
deltaCompressState (

c l i e n t . l as tAckSta te ,
newState ,
&compressedState) ;

sendToClient (c l i e n t , compressedState) ;� �
Figure 24: Server network loop in Quake 3

6.4 Crankshaft

The networking solution in Crankshaft is based on a
Client/Server architecture with interpolation at the
client side. Both client and server is state based and
thereby react differently depending on the state, for
example if they are in the lobby state where players
can join the game. The networking before the actual
game start is not very critical in any aspect so the
description that follows is limited to the actual game
running state. There is however a crude layer above
this that looks at the packages received and use them
to detect disconnections (i.e. timeouts), which ap-
plies to all the states.

In the race state the client sends packages to the
server at a fixed frame rate of 30 frames per second,
and the server send information back in the same
frame rate. In this state there is only type of message,
for the client to server it is a package with input in-
formation, for the server to client package it is the
game state. This type of packages are called a non-
blocking remote procedure call (rpc)[42]. A non-
blocking rpc can be seen as a command, issued on
the client and run on the server. It is non-blocking in

26

6.5 Results 6 NETWORK

the sense that the client does not wait for the server
to complete execution.

Each client package consist of a header with a
sequence number to prevent out of order packages
and a body with input information to control the car.
This package is a total of 18 bytes. With the 20 bytes
UDP header it sums up 38 bytes, resulting in 1140
bps out from the client.

The server to client package also consist of a
header with a sequence number, but the body con-
sist of the game state with the orientation of all the
cars in the game. The size of this package is 9 + 52n
bytes where n is the number of players. This gives
an output of 600 + 270 + 1560n bps (the UDP header
is 600 bps), for example in the case of 4 players this
is about 7 kbps.

The sequence number in the packages ensure
that out-of order packages is not used, preventing
snapping when the game first runs in state i, then in
i-1 and finally in i+1.

Bytes Field
1 Message type
4 Local id number
4 Sequence number
1 Break
4 Steering
4 Throttle

Table 1: Crankshaft client to server package

Bytes Field
1 Message type
4 Sequence number
4 Number of players

For each player:
4 Id number

12 Position
12 Direction
12 Speed
12 Up

Table 2: Crankshaft server to client package

6.5 Results

The network in Crankshaft is lightweight and fast,
but unreliable and unsafe. The sequence numbering
ultimately proved not very useful in non stress sit-
uations. From our own measurements (simply out-
putting the number of skipped packages per second)
we concluded that out of order packages was almost
never a problem in a LAN environment. The inter-
polation on the other hand did very good for the vi-
sual impression. Overall, the networking solution
works very good with the task at hand, but would
preform inadequately in a more stressful situation
with a larger game state.

6.6 Discussion

In the end we had the choice of doing client side pre-
diction or not, but choose not to. As noted in "Net-
worked Physics"[42], the improving bandwidths of
networking today decreases the need for prediction,
as the information can be sent with higher intervals
and more precision. Another argument is that pre-
diction merely reduces the latency, but as the human
reaction time is somewhere around 180-200ms[43],
it is often better to add a small latency in favor of
frame rate.

We also chose not to do anything to reduce the
data flow, as it was already very low. Delta com-
pression does not improve bandwidth usage at all
when the game state is constantly changing (the cars
are always moving). Grouping might save band-
width if the number of players was high, or if the
physics simulation incorporated more objects like
barrels and destructible fences.

The security aspects of the game is basically non-
existing, but was considered out of scope for the task
and timeframe.

27

7 DISCUSSION

7 Discussion

Our goals with the project was to develop a rac-
ing game which would be comparable to other mod-
ern racing games. This goal was deliberately high
and we knew from the start that we were not go-
ing to achieve it, but we also knew that parts of the
goal could be completed. And they were. Partly the
graphics, although not the content, has a high stan-
dard, with the drawback that it is not as optimized
as required by a modern game. The same goes with
physics, which in its basics is a pretty rigid and true
physics simulator, but proved hard to tweak to the
desired behavior. Similarly the network worked, but
we did not have the resources to test it outside a
small lan environment or under stressful situations
and thus we only knew it worked in the most perfect
of worlds.

Our method of development and responsibility

distribution worked very well for us. Our group had
a low experience level among the majority of partici-
pants but quickly learned and master a large number
of areas.

The biggest problems was optimizing the game,
and tweaking the input/physics. The first problem
meant the game was running at a very low frame
rate, sometimes as low as 16 frames per second. The
second problem meant that it was very hard driving
through the map, which in turn meant it was not a
very fun game to play, which of course is a major
drawback for any game.

Overall we were happy with the result given the
tight time frame, but at the same time we would very
much have liked to work more with it and removing
some of mentioned problems.

28

REFERENCES REFERENCES

References

[1] Dataspelsbranschen, “Spelförsäljningen under år 2007,” 2007. http://www.
dataspelsbranschen.se/statistics.aspx.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Boston, MA: Addison-Wesley, Jan-
uary 1995.

[3] R. Fine, “Enginuity,” GameDev.net, 2003. http://www.gamedev.net/reference/programming/
features/enginuity1/.

[4] J. Tulip, J. Bekkema, and K. Nesbitt, “Multi-threaded game engine design,” in IE ’06: Proceedings of
the 3rd Australasian conference on Interactive entertainment, (Murdoch University, Australia, Australia),
Murdoch University, 2006.

[5] “Model class,” Microsoft MSDN. http://msdn.microsoft.com/en-us/library/microsoft.
xna.framework.graphics.model.aspx.

[6] K. Channa, “Light mapping - theory and implementation,” flipcode.com, 2003. http://www.
flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml.

[7] L. Hodorowicz, “Advanced lightmapping,” flipcode.com, 2001. http://www.flipcode.com/
archives/Advanced_Lightmapping.shtml.

[8] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Transactions on Computers, 1971.

[9] B. T. Phong, “Illumination for computer generated images,” University of Utah, UTEC-CSs-73-129, 1973.

[10] “Phong shading,” wikipedia.org. http://en.wikipedia.org/wiki/Phong_shading.

[11] J. F. Blinn, “Models of light reflection for computer synthesized pictures,” University of Utah, 1977.

[12] A. F. Andrew Woo, Pierre Poulin, “A survey of shadow algorithms,” University of Toronto, Ontario,
Canada M5S 1A4, 1990.

[13] A. V. Nealen, “Shadow mapping and shadow volumes,” devmaster.net, 2005.

[14] F. C. Crow, “Shadow algorithms for computer graphics,” University of Texas at Austin, 1977.

[15] T. A. Möller and U. Assarsson, “Approximate soft shadows on arbitrary surfaces using penum-
brawedges,” Department of Computer Engineering, Chalmers University of Technology, Sweden, 2002.

[16] A. F. Andrew Woo, Pierre Poulin, “Casting curved shadows on curved surfaces,” Computer Graphics
Lab New York Institute of Technology Old Westbury, New York 11568, 1978.

[17] F. Zhang, H. Sun, L. Xu, and L. K. Lun, “Parallel-split shadow maps for large-scale virtual environ-
ments,” Department of Computer Science and Engineering The Chinese University of Hong Kong, 2006.

[18] W. Donnelly and A. Lauritzen, “Variance shadow maps,” Computer Graphics Lab, School of Computer
Science, University of Waterloo.

[19] W. T. Reeves, D. H. Salesin, and R. L. Cook, “Rendering antialiased shadows with depth maps,” Pixar
San Rafael, CA, p. 284, 1987.

[20] W. T. Reeves, “Particle systems - a technique for modeling a class of fuzzy objects,” Computer Graphics
17:3 pp. 359-376, 1983. http://portal.acm.org/citation.cfm?id=800059.801167&coll=
portal&dl=ACM&CFID=65087275&CFTOKEN=20160208.

29

http://www.dataspelsbranschen.se/statistics.aspx
http://www.dataspelsbranschen.se/statistics.aspx
http://www.gamedev.net/reference/programming/features/enginuity1/
http://www.gamedev.net/reference/programming/features/enginuity1/
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.graphics.model.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.graphics.model.aspx
http://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml
http://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml
http://www.flipcode.com/archives/Advanced_Lightmapping.shtml
http://www.flipcode.com/archives/Advanced_Lightmapping.shtml
http://en.wikipedia.org/wiki/Phong_shading
http://portal.acm.org/citation.cfm?id=800059.801167&coll=portal&dl=ACM&CFID=65087275&CFTOKEN=20160208
http://portal.acm.org/citation.cfm?id=800059.801167&coll=portal&dl=ACM&CFID=65087275&CFTOKEN=20160208

REFERENCES REFERENCES

[21] S. Drone, “Real-time particle systems on the gpu in dynamic environments,” International Conference on
Computer Graphics and Interactive Techniques held in San Diego, California. SESSION: Course 28: Advanced
real-time rendering in 3D graphics and games pp.80-96, 2007. http://portal.acm.org/citation.
cfm?id=1281500.1281670&coll=portal&dl=ACM&CFID=65087275&CFTOKEN=20160208.

[22] N. Glasser, “Texture splatting in direct3d,” Gamedev, 2005. http://www.gamedev.net/
reference/articles/article2238.asp.

[23] I. Ernst, H. Rüsseler, H. Schulz, and O. Wittig, “Gouraud bump mapping,” Siggraph,
1998. http://delivery.acm.org/10.1145/290000/285311/p47-ernst.pdf?key1=
285311&key2=6431788021&coll=GUIDE&dl=GUIDE&CFID=25111382&CFTOKEN=92099845.

[24] N. Tatarchuk, “Practical parallax occlusion mapping with approximate soft shadows for detailed sur-
face rendering,” in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, (New York, NY, USA), pp. 81–112,
ACM, 2006.

[25] V. Young, “Programming a multiplayer fps in directx: Culling,” "Gamasutra", 2005. http://www.
gamasutra.com/features/20050411/young_01.shtml.

[26] D. Picco, “Frustum culling,” flipcode.com, 2003. http://www.flipcode.com/archives/
Frustum_Culling.shtml.

[27] T. Akenine-Möller and E. Haines, Realtime Rendering. A K Peters, 2002.

[28] K. Hoff, “A faster overlap test for a plane and a bounding box,” 1996. http://www.cs.unc.edu/
~hoff/research/vfculler/boxplane.html.

[29] “State changes,” Circlesoft.org, 2006. http://www.circlesoft.org/pages.php?pg=
kbasepage&id=12.

[30] P. Scott, “Shader model 3.0, best practices,” nvidia.developer.com, pp. 9–10. ftp://download.
nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_SM3_
Best_Practices.pdf.

[31] G. Fiedler, “Integration basics,” 2006. http://www.gaffer.org/game-physics/
integration-basics.

[32] G. Fiedler, “Fix your timestep!,” 2006. http://www.gaffer.org/game-physics/
fix-your-timestep.

[33] S. Hadap, D. Eberle, P. Volino, M. C. Lin, S. Redon, and C. Ericson, “Collision detection and proximity
queries,” Siggraph, 2004. http://delivery.acm.org/10.1145/1110000/1103915/cs14.
pdf?key1=1103915&key2=2964509021&coll=GUIDE&dl=ACM&CFID=65266420&CFTOKEN=
94163159.

[34] G. Fiedler, “Spring physics,” 2006. http://www.gaffer.org/game-physics/
spring-physics.

[35]

[36] J. Watte, “Gamedev.net multiplayer and network programming forum faq,” GameDev.net, 2005. http:
//www.gamedev.net/community/forums/showfaq.asp?forum_id=15.

[37] J. Postel, “RFC 768: User datagram protocol,” Aug. 1980.

[38] O. A. Abdelwahed, “Distributed gaming,” GameDev.net, 2003. http://www.gamedev.net/
reference/articles/article1948.asp.

30

http://portal.acm.org/citation.cfm?id=1281500.1281670&coll=portal&dl=ACM&CFID=65087275&CFTOKEN=20160208
http://portal.acm.org/citation.cfm?id=1281500.1281670&coll=portal&dl=ACM&CFID=65087275&CFTOKEN=20160208
http://www.gamedev.net/reference/articles/article2238.asp
http://www.gamedev.net/reference/articles/article2238.asp
http://delivery.acm.org/10.1145/290000/285311/p47-ernst.pdf?key1=285311&key2=6431788021&coll=GUIDE&dl=GUIDE&CFID=25111382&CFTOKEN=92099845
http://delivery.acm.org/10.1145/290000/285311/p47-ernst.pdf?key1=285311&key2=6431788021&coll=GUIDE&dl=GUIDE&CFID=25111382&CFTOKEN=92099845
http://www.gamasutra.com/features/20050411/young_01.shtml
http://www.gamasutra.com/features/20050411/young_01.shtml
http://www.flipcode.com/archives/Frustum_Culling.shtml
http://www.flipcode.com/archives/Frustum_Culling.shtml
http://www.cs.unc.edu/~hoff/research/vfculler/boxplane.html
http://www.cs.unc.edu/~hoff/research/vfculler/boxplane.html
http://www.circlesoft.org/pages.php?pg=kbasepage&id=12
http://www.circlesoft.org/pages.php?pg=kbasepage&id=12
ftp://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_SM3_Best_Practices.pdf
ftp://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_SM3_Best_Practices.pdf
ftp://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_SM3_Best_Practices.pdf
http://www.gaffer.org/game-physics/integration-basics
http://www.gaffer.org/game-physics/integration-basics
http://www.gaffer.org/game-physics/fix-your-timestep
http://www.gaffer.org/game-physics/fix-your-timestep
http://delivery.acm.org/10.1145/1110000/1103915/cs14.pdf?key1=1103915&key2=2964509021&coll=GUIDE&dl=ACM&CFID=65266420&CFTOKEN=94163159
http://delivery.acm.org/10.1145/1110000/1103915/cs14.pdf?key1=1103915&key2=2964509021&coll=GUIDE&dl=ACM&CFID=65266420&CFTOKEN=94163159
http://delivery.acm.org/10.1145/1110000/1103915/cs14.pdf?key1=1103915&key2=2964509021&coll=GUIDE&dl=ACM&CFID=65266420&CFTOKEN=94163159
http://www.gaffer.org/game-physics/spring-physics
http://www.gaffer.org/game-physics/spring-physics
http://www.gamedev.net/community/forums/showfaq.asp?forum_id=15
http://www.gamedev.net/community/forums/showfaq.asp?forum_id=15
http://www.gamedev.net/reference/articles/article1948.asp
http://www.gamedev.net/reference/articles/article1948.asp

REFERENCES REFERENCES

[39] J. Aronson, “Dead reckoning: Latency hiding for networked games,” Gamasutra, 1997. http://www.
gamasutra.com/features/19970919/aronson_01.htm.

[40] J. Aronson, “Using groupings for networked gaming,” Gamasutra, 2000. http://www.gamasutra.
com/view/feature/3158/using_groupings_for_networked_.php.

[41] “The quake3 networking model,” http://trac.bookofhook.com/bookofhook/trac.cgi/
wiki/Quake3Networking.

[42] G. Fiedler, “Networked physics,” 2006. http://www.gaffer.org/game-physics/
networked-physics.

[43] “Reaction time,” Wikipedia. http://en.wikipedia.org/wiki/Reaction_time.

31

http://www.gamasutra.com/features/19970919/aronson_01.htm
http://www.gamasutra.com/features/19970919/aronson_01.htm
http://www.gamasutra.com/view/feature/3158/using_groupings_for_networked_.php
http://www.gamasutra.com/view/feature/3158/using_groupings_for_networked_.php
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://www.gaffer.org/game-physics/networked-physics
http://www.gaffer.org/game-physics/networked-physics
http://en.wikipedia.org/wiki/Reaction_time

	Introduction
	Purpose
	Background
	History

	Method
	Mapeditor
	Tools

	Program
	Crankshaft
	Server
	Client
	Results and Discussion

	Graphics
	Design
	Structures
	Discussion

	Lighting
	Background
	Techniques
	Result
	Discussion

	Shadows
	Background
	Techniques
	Result
	Discussion

	Particle system
	Introduction
	Available techniques
	Chosen techniques
	Results
	Discussion

	Ground
	Techniques
	Result and Discussion

	Bumpmapping
	Techniques
	Result and Discussion

	Culling
	Techniques
	View frustum culling
	Quadtrees
	Result and Discussion

	Optimizations
	Background
	Techniques
	Result
	Discussion

	Physics
	Introduction
	Integration
	Rigid Body Dynamics
	Collision Detection
	Collision Response
	Discussion

	Network
	UDP and TCP
	Game state
	Quake 3 networking
	Crankshaft
	Results
	Discussion

	Discussion

